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Abstract

As planning problems become more complex, it is in-
creasingly useful to integrate complex constraints on
time and resources into planning models, and use com-
plex constraint reasoning approaches to help solve the
resulting problems. Dynamic constraint satisfaction is
a key enabler of automated planning. In this paper we
identify some limitations with the previously developed
theories of dynamic constraint satisfaction. We iden-
tify a minimum set of elementary transformations from
which all other transformations can be constructed. We
propose a new classification of dynamic constraint satis-
faction transformations based on a formal criteria. This
criteria can be used to evaluate elementary transforma-
tions of a CSP as well as sequences of transformations.
We extend the notion of transformations to include opti-
mization problems. We show how these transformations
can inform the evolution of planning models, automated
planning algorithms, and mixed initiative planning.

Introduction

Automated planning can be posed as a constraint satisfac-
tion problem (CSP), and subsequently solved using CSP
techniques (e.g. (Do and Kambhampati 2000), (Vidal and
Geffner 2006), (Banerjee 2009)). Automated scheduling
also makes extensive use of constraint satisfaction tech-
niques (e.g. (Laborie 2003)). As planning problems become
more complex, it is increasingly useful to integrate com-
plex constraints on time and resources into planning models,
and therefore use complex constraint reasoning approaches
to help solve the resulting planning problems (Jónsson and
Frank 2000), (Frank and Jónsson 2003), (Ghallab and Lau-
relle 1994). Similarly, many planning problems are opti-
mization problems; one variation includes plan quality mea-
sured by the set of satisfiable goals (van den Briel et al.
2004). As an intermediate step between satisficing and opti-
mization problems, a problem instance may be modified by
the addition or subtraction not only of goals, but the chang-
ing, or waiving, of some constraints. These incremental
modifications of the problem often takes place in a ’mixed-
initiative’ setting, where human planners use automation to
solve problems, e.g. (Bresina et al. 2005).

During the search process, a plan can be translated into
an underlying CSP, on which reasoning (propagation and

heuristics computations) are performed. The CSP may be
modified by the addition or subtraction of variables, domain
values, and constraints. In order to support planning, the un-
derlying CSP machinery must be modified to support dy-
namic constraint satisfaction (DCSP). Previous formalisms
for dynamic constraint satisfaction have been developed to
support automated planners. However, these formalisms are
unsatisfactory for several reasons, as described below.

We propose a new formal criteria to classify dynamic con-
straint satisfaction transformations, and identify a minimum
set of transformations from which all other transformations
can be constructed. This criteria can be used to evaluate el-
ementary transformations of a CSP as well as sequences
of transformations. We extend the new formalism to in-
clude optimization problems, leading to a novel integration
of dynamic constraint satisfaction and partial constraint sat-
isfaction. We show how these transformations can inform
the evolution of planning models, automated planning algo-
rithms, and mixed initiative planning. The resulting set of
simple transformations allows analysis of every modifica-
tion of CSPs, with and without optimization criteria.

Dynamic Constraint Satisfaction

In this section we briefly review the Dynamic Constraint Sat-
isfaction Problem (DCSP).

The DCSP was originally formalized by (Dechter 1988).
In this formalism, all variables have identical domains, and
the set of constraints and variables is allowed to vary over
time, thereby creating a sequence of problems. The focus in
this work was on maintaining one or a set of solutions as
the problem is changed. In this formalism, the notion of re-
strictions and relaxations is directly associated with specific
changes to the CSP. Adding variables and constraints are
termed restrictions, and removing variables and constraints
are termed relaxations.

A restricted variation of the DCSP was introduced by
(Mittal and Falkenhainer 1990). In this formalization the set
of variables and constraints is fixed, but the set of constraints
limiting the solutions are activated by variable assignments,
i.e. all of the variables in the scope of a constraint must be
activated for the constraint to apply. The set of active vari-
ables (those that must be assigned) can be a function of other
variables’ values. There is also a minimum subset condition
to ensure no ’extra’ variables are assigned. Thus, the prob-
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lem does not change via some external entity adding variable
and constraints, but the act of solving ’activates’ variables
and constraints.

An extension to (Mittal and Falkenhainer 1990) was in-
troduced by (Soininen, Gelle, and Niemelä 1999) to allow
disjunctive activity constraints (satisfaction of activity con-
straints implies some subset of variables must be assigned),
include ’null’ variable assignment, and change the definition
of solution (fixed point / closure instead of minimum subset)
to reduce computational complexity.

The Disjunctive Temporal Network introduced by
(Tsamardinos and Pollack 2003) is similar to the DCSP of
(Mittal and Falkenhainer 1990). Here the focus is on a dis-
crete choice of which temporal constraint to apply to a pair
of temporal variables.

An extension to the DCSP to support automated planning
was introduced by (Jónsson and Frank 2000) In addition to
adding or removing variables and restricting or relaxing con-
straints, new values for existing variables may be added, or
values of variables can be removed from the domains per-
manently. Adding new constraints and changing the scope
of constraints was not considered. This approach is elabo-
rated on in (Frank, Jónsson, and Morris 2000).

We shall now describe some limitations with the current
formalisms for DCSPs.

Previously, changes to CSPs were simply labeled restric-
tions (or relaxations) with no formal criteria to determine
which is which. Consider adding a variable without con-
straints to a CSP. Compared to the previous CSP (without
the new variable), a decision is now required in the new
CSP where no decision was required before. The resulting
transformation is labeled a restriction. However, the label is
somewhat unintuitive; a variable with no constraints does
not strike one as obviously restrictive. Further, adding a new
variable X with domain size ≥ 2 increases the number of
assignments and the number of solutions but not the per-
centage of assignments that are solutions. In fact, the per-
centage of assignments that are solutions is left unchanged.
That is because the new variable’s values are unconstrained
and therefore increase both the number of assignments and
the number of solutions by the same constant factor (namely
|d(X)|). This means classes of change to a CSP should be
more carefully evaluated with respect to a formal criteria.

The formalisms of DCSPs have not been extended to
problems with costs and quality bounds. How is a problem
of satisfiability transformed into such a problem? Does in-
troducing optimization restrict or relax the problem? Finally,
suppose the problem is an optimization problem, and ini-
tially solutions below some cost are demanded. Over time,
the cost bound is found to be too low, and the problem is
changed by either increasing the cost bound, or by reduc-
ing (or eliminating) the cost of assignments associated with
some constraints. Intuitively, making the cost bound higher
might seem like a relaxation. Similarly, making some solu-
tions have higher cost might seem like a restriction. If we
are in an optimal setting with a cost bound defining the set
of feasible solutions, then increasing the bound will increase
the number of solutions, and decreasing cost will only re-
duce the number of solutions. However, if you reduce how

good one or more solutions are, but preserve the set of so-
lutions, is this a restriction or relaxation? If the set of all
optimal solutions’ costs are reduced, the set of solutions of
the next lowest level of quality could be larger or smaller.

A recent line of research known as Model-Lite Planning
(S.Kambhampati 2007) contemplates early-stage models for
criticism as opposed to planning. A formalism such as the
one proposed here could be used for such a purpose. Sup-
pose new constraints are added to some activity as part of the
modeling process. Is the change a restriction or relaxation?
Is it easy to tell immediately? If the change is not obvious,
or perhaps even if it is, informing the modeler of the con-
sequences of such a change at modeling time may be valu-
able. As just one example, consider transforming a problem
in which constraints cannot be waived into one where they
can. This is a significant transformation; a new variable must
be introduced, the scope of the waivable constraint must
be changed, and the relations in the constraint extended.
In (Frank and Jónsson 2003) such a change is not consid-
ered; while adding constraints was concieved of in (Dechter
1988), a change of scope was not, and must be synthesized
from other primitives in the other formalisms. What is the
ultimate impact of such a transformation?

Constraint Satisfaction Problems

Definition 1 Let X1...Xn be a set of variables. The domain
of variable Xi is denoted d(Xi). Let xij ∈ d(Xi) be a value.

Definition 2 A Constraint Cj is a tuple Sj , Rj . The scope
Sj of the constraint is a set of variables Xj1 ...Xjk . The re-
lation Rj ⊆ d(Xj1) × ... × d(Xjk) is a list of tuples rjh
defining the allowed combinations of values to the variables
in the scope of the constraint.

Definition 3 A Constraint Satisfaction Problem or CSP P is
a set of variables X1...Xn with domains d(X1)...d(Xn) and
a set of constraints C1...Cm. The projection of an assign-
ment x ∈ d(X1)× ...×d(Xn) onto a set of variables X , de-
noted π(x,X ), is the value of each variable in X . An assign-
ment is a solution if its projection onto the scope of each con-
straint Ci is in the relation Ri, that is, if ∀Ci π(x, Si) ∈ Ri.

Throughout the remainder of this paper, we assume CSPs
are all finite discrete domain.

Dynamic Constraint Satisfaction Problems: A

New Formalism

Definition 4 A transformation τ is a function that maps a

CSP Pi to a CSP Pj denoted Pi
τ
−→ Pj . Let n be the number

of variables in Pi. Let m be the number of constraints in
Pi. Let di = |d(Xi)|. Let cj = |Rj |. The set of classes of
transformations is:

1. Add Xn+1 to Pi with |d(Xn+1)| = 1. Denote this trans-
formation X+.

2. Remove Xj from Pi with |d(Xj)| = 1 s.t. ∀Ck Xj 6∈ Sk.
Denote this transformation X−.

3. Add a unique value xidi+1
to d(Xi) s.t. ∀Ck Xi 6∈ Sk.

Denote this transformation d+.
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X1 X2

b a
a b

r11
r12

C1

d(X1)={a,b} d(X2)={a,b}

X1 X2

b a
a b

r11
r12

C1

d(X1)={a,b} d(X2)={a,b}

X3

d(X3)={a}

X1 X2

r11
r12

C1

d(X1)={a,b} d(X2)={a,b}

X3

d(X3)={a,b}

r2,1
r2,2

C2

a a
a b
b a
b b

X1 X2

r11
r12

C1

d(X1)={a,b} d(X2)={a,b}

X3

d(X3)={a,b}

X1 X2

b ar11

C1

d(X1)={a,b} d(X2)={a,b}

r+

X+

d+

C+

r-

X-

d-

C-

X+
X-

X1X2

X1X2

X1X2

X1X2 X1X2

X1X3

b a
a b

b a
a b

r2,3
r2,4

C+

C-

Figure 1: Transformations. The set of all valid DCSP trans-
formations. (The dotted lines show valid transformations,
but not the exact transformations of the DCSP in the figure.)

4. Remove a value xij from d(Xi) s.t. ∀Ck, Xi 6∈ Sk. Denote
this transformation d−.

5. Add a unique tuple rjcj+1
to Rj Denote this transforma-

tion r+.

6. Remove a tuple rjh from Rj . Denote this transformation
r−.

7. Add Cm+1 with Sm+1 = Xm+11 ...Xm+1k and relation

Rm+1 = ×k
i=1d(Xm+1k) to Pi. Denote this transforma-

tion C+.

8. Remove Cj with Rj = ×k
i=1d(Xjk) from Pi. Denote this

transformation C−.

These transformations are shown graphically in Figure 1.

Definition 5 Let L(P) be the number of solutions to P . The

fraction of solutions denoted Lp(P) is then
L(P)∏

n
i=1

|d(Xi)|
.

Definition 6 Let τ be a transformation from Pi
τ
−→ Pj . A

relaxation increases the fraction of solutions, i.e. Lp(Pi) <
Lp(Pj); a restriction decreases the fraction of solutions, i.e.
Lp(Pi) > Lp(Pj). A neutral transformation is neither a re-
striction or a relaxation.

Unlike previous theories of transformations on DCSPs,
the classes transformations on PCSPs cannot all be classified
as restrictions, relaxations, or neutral:

Theorem 1 There are classes of transformations that are
restrictions, relaxations, and neutral. Furthermore, for a

DCSP Pi, there are classes of transformations that can be
either restrictions or neutral, and there are classes of trans-
formations that can be relaxations or neutral.

The proof employs straightforward analysis of each class
of transformation:

1. Since |d(Xn+1)| = 1, L(Pj) = (L(Pi))(|d(Xn+1)|) =
L(Pi). Similarly, (

∏n

i=1 |d(Xi)|)(|d(Xn+1)|) =
∏n

i=1 |d(Xi)|. Adding a variable with a single value but
not adding this value to any relations leaves the number
of assignments and solutions unchanged, so the fraction
of solutions is unchanged.

2. Removing a variable with a single value that participates
in no constraints leaves the number of assignments and
solutions unchanged, so the fraction of solutions is un-
changed.

3. Adding a value to a variable but leaving the relations
unchanged increases the number of assignments and the
number of solutions by the same factor, leaving the per-
centage of solutions unchanged. Let d+ change d(Xn)
w.l.o.g. (simplifies notation for the computation). Note
a(b+1)

ab
= b+1

b
. Then

(
∏n−1

i=1 |d(Xi)|)((|d(Xn)|+ 1))

(
∏n−1

i=1 |d(Xi)|)(|d(Xn)|)
=

|d(Xn)|+ 1

|d(Xn)|

which means

(
n−1
∏

i=1

|d(Xi)|)((|d(Xn)|+ 1|))

= (
n−1
∏

i=1

|d(Xi)|)(|d(Xn)|)

(

|d(Xn)|+ 1

|d(Xn)|

)

Next, recall values can only be added to variables not
in the scope of any constraint. So rewrite L(Pi) =
(L(Qi))(|d(Xn)|). Now

(L(Qi))(|d(Xn) + 1|)

(L(Qi)(|d(Xn)|)
=

|d(Xn)|+ 1

|d(Xn)|

which means

(L(Pi)

(

|d(Xn)|+ 1

|d(Xn)|

)

= L(Pj)

Finally,

Lp(Pj) =
L(Pj)

(
∏n−1

i=1 (|d(Xi)|)(|d(Xn)|+ 1)

=

(

|d(Xn)|+1
|d(Xn)|

)

L(Pi)
(

|d(Xn)|+1
|d(Xn)|

)

∏n

i=1 |d(Xi)|

=
L(Pi)

∏n

i=1 |d(Xi)|
= Lp(Pi)

.
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4. Removing a value from a variable domain leaves the frac-
tion of solutions unchanged as argued above.

5. Adding a tuple to a relation may not increase the number
of solutions, as the tuple may be excluded by other rela-
tions. However, adding a unique tuple to a relation cannot
decrease the number of solutions. The number of assign-
ments does not change, so the fraction of solutions cannot
decrease.

6. Removing a unique tuple from a relation cannot increase
the number of solutions. The number of assignments does
not change, so the fraction of solutions cannot increase.

7. Adding a constraint with the relation consisting of all as-
signments to the variables in the scope leaves the fraction
of solutions unchanged.

8. Removing a constraint whose relation consists of all as-
signments to the variables in the scope leaves the fraction
of solutions unchanged.

Definitions 5 and 6 and can now be used to classify a sin-
gle transformation, and also to evaluate a sequence of trans-
formations.

As an aside, the rule on the addition of variables with one
value in the domain and the removal of variables with one
value in the domain ensure the calculation of the number of
assignments and solutions remains well-formed (i.e. no mul-
tiplications by zero for the number of assignments!) The ad-
dition and removal of constraints with no tuples in the rela-
tion has similar technical restrictions. The rule on changing
domains of variables involved in no constraints ensures the
CSP remains well-formed; removing a value of a variable
requires removing all relations involving the value, which is
cumbersome.

Let us compare this set of transformations and their clas-
sification as restrictions and relaxations to previous defini-
tions of restrictions and relaxations. First, we have a princi-
pled definition of restriction and relaxation in terms of the
fraction of assignments that solve the transformed CSP. As
mentioned, this definition applies to both single transforma-
tions and sequences of transformations. Next, we have finer-
grained and more precisely characterized transformations
than those identified previously. We see that transformations
need not be restrictions or relaxations, and that some trans-
formations previously identified as restrictions are, in fact,
not necessarily characterized this way in the new classifi-
cation. For example, adding a variable is considered a re-
striction in (Dechter 1988) but is neither a restriction nor a
relaxation according to the new classification.

Theorem 1 holds regardless of whether the definition of
restriction or relaxation uses the number or fraction of so-
lutions. This is summarized by the table below. Recall from
defintion 5 that L(P) is the number of solutions, and Lp(P)
is the fraction of solutions. In the table below we denote the
number of assignments

∏n

i=1 |d(Xi)| by A.

τ ∆Lp(P) ∆L(P) ∆A

X+ 0 0 0
X− 0 0 0
d+ 0 > 0 > 0
d− 0 < 0 < 0
C+ 0 0 0
C− 0 0 0
r+ ≥ 0 ≥ 0 0
r− ≤ 0 ≤ 0 0

The table shows that only a small number of transforma-
tions actually change the set of solutions in a meaningful
way. Consider the transformation τ = d+ (i.e. adds values
to d(Xi)). Since X−i can’t be involved in any constraints,
no relations in existing constraints are modified, and no con-
straints are added, all of the new values participate in so-
lutions to Pj . However, every solution to Pi is a solution
to Pj . In a sense, the transformation is trivial, in that little
work is required to keep up with this ’restriction’. Similarly,
the transformation d− (removing a value) is not in any rela-
tions, reduces the number of assignments, and the solutions
are reduced by the same fraction. The only non-trivial trans-
formations are those in which the set of tuples in an existing
relation are modified.

It is possible to synthesize the previously defined restric-
tions and relaxations from a sequence of these new, primitive
transformations. For instance, adding a variable Xn+1 with
domain size dn+1 takes dn+1 transformations: one addition
of the variable with domain size 1, followed by dn+1 − 1
additions of values to the domain. The overall effect of the
sequence is neutral, since each transformation d+ is neutral,
and the variable addition is neutral. Next, consider changing
the relation Rj of constraint Cj to R′

jsuch that |R′
j | < |Rj |.

This restriction can be done by a sequence of transforms
r−, r+. By ordering the adding of values and the chang-
ing of the relation, an existing constraint can be arbitrarily
modified as proposed in (Jónsson and Frank 2000). Finally,
adding new variables and an arbitrary number of constraints
on these variables is accomplished by first adding the vari-
ables, then filling out their domains, then adding the trivial
constraints with all elements of the relation allowed, and fi-
nally removing the invalid combinations from each relation.
Such complex transformations could be relaxations, restric-
tions, or neither, depending on the ultimate modification of
the relation.

In addition, a variety of new ’macro-transformations’ can
be defined. For instance, consider changing a constraint Ck

to C ′
k such that the scope of the constraint Sk is changed to

S′
k. Assume all of the variables added to the new scope are

already present in the CSP. A succession of transformations
on the relation r+ must be performed to make Cj the trivial
relation on the old scope. Then Cj can be removed. Next,
the trivial relation C ′

j is added on the correct scope. Finally,
a series of transformations r− are performed to eliminate
the invalid tuples. The resulting sequence can be either a
restriction or relaxation, depending on the new relation.

We provide a specific example in figure 2 of adding a vari-
able to the scope of a constraint to support waiving the orig-
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C1d(X1)={a,b} d(X2)={a,b}

X3

d(X3)={a,b}

r13
r14

X1 X2

a b
b b 

r11
r12

C1

d(X1)={a,b} d(X2)={a,b}

X1X2

X1X2X3

r11
r12

X1X2

r15
r16

a b
b b 

a b a
b b a
a a b
a b b
b a b
b b b

X+,v+

r+,C-,C+,r-

X1 X2

d(X1)={a,b} d(X2)={a,b}

X1 X2

a b
b b 

C1

d(X1)={a,b} d(X2)={a,b}

X1X2

r-,C-

r11
r12

Figure 2: Extending a constraint to allow waiving violations
by variable assignment during solving (top) versus removing
a constraint (bottom).

inal constraint. In this figure some of the transformations
have been combined for brevity. This transformation is con-
trasted to the transformation of simply removing a constraint
from the variables.

Planning Using DCSPs

In this section we describe how this formalization of DCSPs
can be used during planning. As described in the introduc-
tion, some planners use a DCSP framework during search.
We consider whether this new DCSP formalization should
lead to revisiting the design of those frameworks. In addi-
tion, we describe how the DCSP formalism can be used to
assist in the modeling process.

During Search

Generally, each time a new action is added, there are one or
more variables to represent the choices of how the action is
added to the plan. For instance, there could be a single vari-
able for each action; the values indicate whether it is added
to the plan or not. There could be a variable for the next
action in a sequential plan, whose domain consists of all ac-
tions whose preconditions are satisfied. In a partial order set-
ting, or when planning with resources, action ordering may
require more variables. Determining whether the resulting
problem is a restriction or relaxation of the previous problem
requires analyzing the constraints on those new variables.

We saw previously how to transform constraints to make
them waivable as shown in Figure 2 (top). Suppose instead
we constructed a planner to remove violated constraints de-
tected during search as shown in Figure 2 (bottom). Remov-
ing the constraint from the CSP requires a series of r+ trans-
formations to make the constraint trivially satisfiable, then
removing it using the C− transformation. When considered
in isolation, the result is a net relaxation, as expected. How-
ever, the new tuples may not actually increase the number
of solutions when considered in light of the rest of the con-
straints.

Recall that a Simple Temporal Constraint has the form
a ≤ |Xi −Xj | ≤ b. A Disjunctive Temporal Constraint has
scope Xi, Xj , Xk; d(Xk) is discrete and d(Xi) = d(Xj) =
Z . For each xk ∈ d(Xk) there is a pair of constants ax, bx;
the constraint has the form (Xk = xk) ⇒ (ax ≤ |Xi −
Xj | ≤ bx). What happens if a new assignment Xk = xk

is made in a Disjunctive Temporal Network (DTN) during
search after determining that the previous value yk resulted
in a temporal constraint violation? One approach is to have
the planner maintains the mapping between discrete values
of the variable Xk and a Simple Temporal Network (STN)
by transforms C+, C− executed during search. When a vio-
lation is detected during search, the violated Simple Tempo-
ral Constraint is removed, as described in Figure 2 (bottom),
then the new constraint is added.

The transformations are defined in such a way that the
CSP resulting after any transformation is well-formed. That
is, the resulting CSP has no unusual constructions like a rela-
tion with no tuples in it between variables that are supposed
to have solutions, or tuples with values for variables not in
the scope of the constraints. Thus, after any transform, any
form of propagation can be performed, and the results are
correct (assuming no further transforms are performed). The
difficulty, of course, is that more transforms will take place.
Either these transforms are the results of some known oper-
ation, e.g. as part of adding an action to a plan during search,
or the transforms are possible but not yet known, e.g. some
new action could be added afterwards, because the search
for a plan is not yet complete. One potential value of prop-
agation is to determine infeasability early, e.g. during con-
struction of the plan graph level, to avoid needless work. A
second alternative is to inform heuristics to make smarter de-
cisions during search. Whether it is worthwhile to propagate
’eagerly’ or ’lazily’ remains an open question.

During Modeling

To analyze the consequences of changing actions in a plan-
ning problem model, we restrict ourselves to STRIPS mod-
els. We use the common STRIPS assumption that action pre-
conditions are all positive, and we do not consider domain
axioms. We describe the analysis in the context of Graph-
plan (Blum and Furst 1995), both for simplicity and because
the plan graph can be transformed into a CSP, as described
earlier (Do and Kambhampati 2000). Recall in this transfor-
mation that 1) variables are the propositions that hold or do
not hold at levels of the plangraph; 2) ⊥ is used to represent
false propositions; and 3) the values of variables are the ac-
tions that establish propositions. Adding new preconditions
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pre(a2):p3
eff(a2): p1 p4

pre(a1): p1 p2
eff(a1): ¬p1 p3

p1 p2

a1

p1 p2 p3

pre(a3):p1p4
eff(a3):p5

a1 a2

pre(api):pi
eff(api):pi

ap1

ap1 ap2 ap3

p1 p2 p3 p4

ap2

init(p1) init(p2) goal(p5)

p5

a
3

a1 a2ap1 ap2 ap3 ap4

p1 p2 p3 p4

L0

L1

L2

Figure 3: Adding a new positive effect. Arrows show sup-
port of actions by propositions, and also how actions lead to
positive effects. Dotted lines show mutual exclusions (both
action and proposition). Prior to adding positive effect p1 to
a2, there is no plan with a3 to reach p5 from the initial state
p1, p2. After adding the effect, it is now possible to add ac-
tion a3 with effect p5 at Level 2 of the plan graph. The new
positive effect and a3 are shown in bold above. The mutual
exclusions between propositions or actions at Level 2 are
removed, and hence are also shown in bold.

or effects are more than neutral transformations; while they
add variables whose values are the existing actions, there are
associated constraints that must be added as well. Similarly,
adding an action is also more than a neutral transformation,
adding values to the domains of the existing (state) variables.
To find out more, we must do some additional analysis.

First, consider adding a precondition p to an action ai.
For every action aj such that ¬p ∈ eff(aj), we add a static
mutex constraint between the action variables. This results
in a restriction, since it is a constraint in the plan graph and
thus in the DCSP. It is accomplished by C+ followed by a
succession of r− transformations. If p is a new proposition,
new variables and constraints are added at every level of the
plan graph. This is accomplished by X+, followed by a suc-
cession of C+ and r− transformations. Finally, the mutual
exclusions between actions may propagate and lead to other
mutual exclusions, leading to more C+ and r− transforma-
tions. So on balance, any precondition addition cannot be a
net relaxation, and thus removing preconditions cannot be a
net restriction.

a1 a2ap1 ap2 ap3

p12
p2 p3 p42

L2
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d(p11)={⊥,ap1}

⊥, a1

ap1,⊥

p12
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r11
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p42
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ap1 ap2
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r13
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ap1,ap1

r11

r12
r13

p11 p31

p31 p42 
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L1
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ap1,⊥

p12

d(p12)={⊥,ap1}

p31

d(p31)={⊥,a1}
r11

C3

p42

C2

d(p42)={⊥,a2}

r12

C1

C5

⊥ , ⊥

a1, ⊥

a1, a2

r11

r12
r13

⊥ , ⊥

⊥, ap1

a1, ⊥

a1, a2

a1, ap1

r11
r12

⊥  ,  ⊥

ap1,  ⊥     

ap1,ap1

⊥  , a2 

r11
r12

r13

r14

p11 p31

p31 p42 

p31 p12 

p11 p12 

r15

r13
r14

a)

b)

c)

Figure 4: Adding a new positive effect; Level 1 of the plan-
graph. Prior to adding the positive effect p1 to a2, it is not
possible to achieve p1 and p4 at the same time in level 1
(a). The figure shows the CSP for the variables represent-
ing p1 and p4 at level 1 of the plangraph, and p1 and p3 at
level 0 of the plangraph (b). Adding the effect adds a2 to
the domain of p1 at level 1, leads to elimination of the static
mutual exclusion between p1 and p4 at level 1, and modifies
the constraints whose scope contains p1(c).

When adding effects, if p is a new proposition, new vari-
ables and constraints are added at every level of the plan
graph. This is accomplished by X+, followed by a succes-
sion of C+ and r−

Adding a negative effect ¬p ∈ eff(ai) introduces a static
mutex with every action for which p ∈ eff(aj). This is ac-
complished by C+ followed by a succession of r− trans-
formations. Adding a negative effect also introduces static
mutexes with every action such that p ∈ pre(ak), which is
also C+ followed by a succession of r− transformations.
Again, adding a negative effect cannot be a net relaxation.

Adding a positive effect p ∈ eff(ai) introduces a static
mutex with every action such that ¬p ∈ eff(aj). Once again,
this is a transformation C+ followed by a succession of r−
transformations, and cannot be a net relaxation. If p could
have been added by some action aj at this level of the plan-
graph, then adding the effect to ai relaxes the constraints on
p. The value representing ai will be added to the domain
of the variable p. This is accomplished by a d+ transforma-
tion. Recall the variable could be in the scope of one or more
constraints; in our formalism, this would requite a complex
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series of r+ and a C− transformation prior to the d+ trans-
formation. The value also is added to one or more tuples
of the existing constraints, using the r+ transformation. If,
however, 1) p was not present in the initial state and 2) no
action could have added p to a level of the plangraph where
ai could be executed, then a new variable is added to the
plangraph at this level. The new variable has one action, ai,
that adds it. This action may be mutex with other actions,
and hence p may be mutex with other propositions at this
level. This is accomplished via the X+ transformation, pos-
sibly followed by C+ and r− transformations if there are
mutexes present. Finally, if ¬p ∈ eff(aj) earlier in the plan
graph, a fact mutex could be deleted by adding p as an ef-
fect, thereby relaxing some constraints. So adding positive
effects is potentially a restriction, a relaxation, or a neutral
transformation.

Figures 3 and 4 show the plan graph and resulting changes
to the CSPs when adding a positive effect to one action. A
summary of the changes to the model in terms of restrictions
and relaxations is shown in the table below. Unless other-
wise stated, propositions in the change and context are at the
first level of the plan graph where action ai appears. (The
inverse model changes are also permitted with the reverse
transformations.)

Change Context τ Notes

p ∈ pre(ai) new p X+ New p at this level

p ∈ pre(ai) p ∈ later level X+ New p at this level

p ∈ pre(ai) ¬p ∈ eff(aj) C+, r− Create static mutex

p ∈ eff(ai) new p X+ New p at this level

¬p ∈ eff(ai) new p X+ New p at this level

¬p ∈ eff(ai) p ∈ eff(aj) C+, r− Create static mutex

p ∈ eff(ai) ¬p ∈ eff(aj) C+, r− Create static mutex

p ∈ eff(ai) p ∈ later level X+ New p at this level

p ∈ eff(ai) p ∈ eff(aj) d+, r+, r− New establisher of p

p ∈ eff(ai) ¬p earlier level r+, C− Delete fact mutex

Extending DCSPs to Optimization Problems
We now show how to extend the notion of DCSPs to op-
timization problems; more precisely, we address problems
in which assignments have costs, and there is a cost bound
defining the set of feasible solutions. We choose the Par-
tial Constraint Satisfaction Problems (PCSP) formalism to
extend the analysis of dynamic constraint satisfaction PC-
SPs were originally defined by (Freuder and Wallace 1992).
While more modern formalisms (such as constraints over
semirings) have more expressive power and more sophis-
ticated theoretical grounding, we will develop the theory of
DCSPs using PCSPs for simplicity.

Definition 7 A Partial Constraint Cj is a tuple Sj , Rj , fj .
The scope Sj of the constraint is a set of variables
Xj1 ...Xjk . The relation Rj ⊆ d(Xj1) × ... × d(Xjk). Fi-
nally, f : Rj → R+.

Definition 8 A Partial Constraint Satisfaction Problem or
PCSP P is a set of variables X1...Xn and domains
d(X1)...d(Xn) and a set of partial constraints C1...Cm and
a real number B. A solution is an assignment x such that
∑

rjh |∃Cj π(x,Sj)=rjh
f(rjh) < B.

We will refer to f as the cost of a tuple, since solutions
must have a cumulative value below B. This definition al-
lows the cost function of PCSPs with partially defined rela-
tions (i.e. f defined on a subset of d(Xj1)× ...× d(Xjk)) to
be well-defined; specifically, an assignment x with a projec-
tion π(x, Sj) not equal to any rjh contributes nothing to the
cost of the assignment.

Changing a PCSP requires several new transformations.
First, we must be able to change the cost of any tuple:

Definition 9

Denote the transformation that increases the value of tuple
rjh in Cj by f+.

Denote the transformation that decreases the value of tuple
rjh in Cj by f−.

It also requires revising the definitions of some of the
other transformations introduced previously. Strictly speak-
ing, adding and removing constraints and tuples from rela-
tions are different for CSPs and PCSPs. In order to avoid
confusion we assign new denotations for these transforma-
tions:

Definition 10

Denote the transformation that adds Cm+1 with Sm+1 =
Xm+11 ...Xm+1k and relation Rm+1 = ∅ by B+.

Denote the transformation that removes Cj with Sj =
Xj1 ...Xjk and relation Rj = ∅ by B+.

Denote the transformation that adds a tuple rjh to Rj with
f(rjh) = 0 by s+.

Denote the transformation that removes a tuple rjh from Rj

with f(rjh) = 0 by s−.

The transformations X+, X−, d+, d− are identical to
their DCSP counterparts.

We now are in a position to show how a CSP Pi can be
transformed into a PCSP Pj . Doing so requires transforming
Cj , or more specifically, Rj ∈ Pi, into R′

j ∈ Pj . For each

rjh ∈ d(Xj1)×...×d(Xjk) such that rjh 6∈ Rj , add rjh with
f(rjh) = 1 to R′

j . Let B = 1. Let x be a satisfying assign-

ment to Pi. Then π(x, Si) 6∈ R′
j , and therefore contributes

zero to the sum,
∑

rjh |∃Cj π(x,Sj)=rjh
f(rjh) by definition.

The sum is therefore below the bound 1. Any other assign-
ment has a sum of at least 1 and therefore does not satisfy
the inequality. We can then replace Rj with R′

j as the re-
lation for Cj in the new PCSP. The transformed problem
Pj is the MAX-CSP (Wallace 1996), which is a sub-class
of PCSP. We call this new transformation v+. Similarly, we
can define its inverse transformation v− which can only be
performed if, ∀Cj ∀rjh ∈ Cj , f(rjh) = 0 or f(rjh) = 1 and
B = 1. These transformations are neither a restriction nor
a relaxation in the sense that all satisfying assignments con-
tinue to satisfy. The transformation is polynomial time, or
to put it another way, it is exponential in s = maxj∈C |Sj |
(maximum arity of any relation). Note the transformation
’inverts’ the set of tuples in the relations, since we add the
tuples that will exceed the cost bound and therefore ’violate’
the constraints.

Definition 11
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Denote the transformation from a CSP into PCSP by v+.

Denote the transformation from a PCSP into CSP by v−.

There are some equivalences between f+, f− on a PCSP
and r+, r− transforms on the CSP from which it is derived.
For instance, if f(rjh) < 1 and B = 1, and after a f+
transform f ′(rjh) > 1, this is equivalent to r− on the CSP
variant, in which rjh is removed from Rj . The equivalence
is imperfect, in the sense that we should not allow r+, r−
transforms on a PCSP, because the sum of costs becomes
undefined for some assignments. Similarly, the transforms
f+, f− are not allowed on a DCSP since f is undefined for
all tuples in all constraints. However, these transformations
are equivalent in the sense that they preserve solutions be-
tween a CSP and its PCSP.

Theorem 2 Let Pi
v+
−−→ Pj transform a CSP into a PCSP

and Let Pi
v−
−−→ Pj transform a PCSP into a CSP.

1. Let Pi
r+
−−→ P ′

i increase L(P ′
i). Then there is a transform

Pj
f−
−−→ P ′

j such that L(P ′
i) = L(P ′

j). Let Pi
r−
−−→ P ′

i

decrease L(P ′
i), Then there is a transform Pj

f+
−−→ P ′

j

such that L(P ′
i) = L(P ′

j).

2. Let Pi
f−
−−→ P ′

i increase L(P ′
i). Then there is a transform

Pj
r+
−−→ P ′

j such that L(P ′
i) = L(P ′

j). Let Pi
f+
−−→ P ′

i

decrease L(P ′
i), Then there is a transform Pj

r−
−−→ P ′

j

such that L(P ′
i) = L(P ′

j).

Finally, consider a transformation to increase or decrease
B. This transformation arises naturally in branch-and-bound
search, and may also arise during modeling. Is this equiva-
lent to a series of transformations +f,−f? Trivially, the an-
swer is no. Making a single change +f,−f can introduce
a small change to the solutions that is impossible to mimic
with a change to B, as shown in Figure 5.

By contrast, can changes to the solutions due to changes to
B be accomplished by a set of changes +f,−f? The trivial
answer is yes.

Theorem 3 Let Pi
τ
−→ Pj transform a PCSP by means of

a change in bound from B to B + b or B − b. Then there

is a series of transforms Pi
f+,f−
−−−−→ Pk such that L(Pj) =

L(Pk).

Recall the criteria for x to be a solution to a PCSP is
∑

rjh |∃Cj π(x,Sj)=rjh
f(rjh) < B. If we transform B to

B + b to admit more solutions, we could alternatively scale
each f(rjh) by a factor of B

B+b
. To show the solutions satisfy

the old bound:

∑

rjh |∃Cj π(x,Sj)=rjh

(

B

B + b

)

f(rjh)

=

(

B

B + b

)

(
∑

rjh |∃Cj π(x,Sj)=rjh

f(rjh))

<

(

B

B + b

)

(B + b) = B
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Figure 5: Changes to solutions via f+, f− may not be
achievable via a change to B. This PCSP (top left) is a trans-
formed CSP allowing no constraint ’violations’ (i.e. the only
solution has accumulated cost 0. Changing B from 1 to 2
(top right) allows one ’violation’, thereby introducing three
new solutions. This is the minimum number of new solutions
that can be achieved. By contrast, if f(r2,4) of constraint C2

is changed from 1 to .9, (bottom) then one new solution is
introduced.

The same argument holds for assignments that are not so-
lutions, and if we reduce B. Notice also that the ranking of
optimal solutions is also preserved.

While transforming the bounds can, in fact, be simulated
by transformations f+, f−, the fact that the required trans-
formations impact every tuple in every constraint makes for
a somewhat indiscriminate transformation. This justifies the
inclusion of more concise bounds changes in our list of
transformations.

Definition 12

Denote the transformation that raises the bound by b+.

Denote this transformation that lowers the bound by b−.

In figure 6 we show the transformations from CSPs to PC-
SPs, and between PCSPs.

Theorem 4 There are classes of transformations on PCSPs
that are restrictions, relaxations, and neither restrictions nor
relaxations. Furthermore, for a PCSP Pi, there are classes
of transformations that can be either restrictions or neutral,
and there are classes of transformations that can be relax-
ations or neutral.

COPLAS 2014: 9th Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

12



X1 X2
C1

d(X1)={a,b} d(X2)={a,b}

X3

d(X3)={a,b}

C2

v+

r+

v-

r-

r21
r22

X1 X2

r11
r12

C1

d(X1)={a,b} d(X2)={a,b}

X3

d(X3)={a,b}

C2

r13

a a = 1
a b = 1
b b = 1

B=1

X1 X2
C1

d(X1)={a,b} d(X2)={a,b}

X3

d(X3)={a,b}

C2

B=1

B=2

X1 X2
C1

d(X1)={a,b} d(X2)={a,b}

X3

d(X3)={a,b}

C2

b+ b-

b+

b-

r11

X1X2

X1X2

b a

X1X2 f

a b
b a

r21
r22

X1X3 f

a a = 1
b b = 1

a a = 1
a b = 0
b b = 1

X1X2 f

r21
r22
r23

X1X3 f

a a = 1
a b = 1 
b b = 1

a a = 1
a b = 0
b b = 1

X1X2 f

X1 X2
C1

d(X1)={a,b} d(X2)={a,b}

X3

d(X3)={a,b}

C2

B=1

a a = 1
a b = 0
b b = 1

X1X2 f

X1X3 f

a a = 1
a b = 1 
b b = 1

b+

b-

f+ f-

r11
r12
r13

r21
r22
r23

r11
r12
r13

r11
r12
r13

r21
r22
r23

X1X3 f

a a = 1
a b = 1 
b b = 1

Figure 6: Transformations between CSPs and PCSPs. Set
of all valid transformations. (The dotted one shows a valid
transform but not the exact evolution of the DCSP in the
figure.)

Increasing the cost of a tuple f+ or decreasing the bound
b− may not decrease the number of solutions or fraction of
solutions, but it cannot increase the number or fraction of
solutions. Vice versa, decreasing the cost of a tuple f− or
increasing the bound b+ may not increase the number of
solutions or fraction of solutions, but it cannot decrease the
number or fraction of solutions.

τ ∆Lp(P) ∆L(P) A

X+ 0 0 0
X− 0 0 0
d+ 0 > 0 > 0
d− 0 < 0 < 0
B+ 0 0 0
B− 0 0 0
s+ ≥ 0 ≥ 0 0
s− ≤ 0 ≤ 0 0
f+ ≤ 0 ≤ 0 0
f− ≥ 0 ≥ 0 0
b− ≤ 0 ≤ 0 0
b+ ≥ 0 ≥ 0 0
v+ 0 0 0
v− 0 0 0

Analyzing Optimal Planning and Scheduling

We now briefly discuss optimal planning and scheduling us-
ing this new formalism. We will discuss how to transform a
model that does not include optimization into a model that
does include optimization. We will not spend time on the
changing of an optimization problem during search.

Transforming a problem into an optimization problem di-
rectly can be done in numerous ways. When few or no so-
lutions are available, a problem is often transformed from
a satisfiability problem into an optimization problem. Typ-
ical optimization criteria for planning include minimizing
plan steps, minimizing makespan for concurrent plans, and
maximizing the number or value of goals achieved. The first
transformation is neutral, after which either some bounds
adjustments or cost adjustments are required. Most of the
time, these transformations will introduce new solutions,
and therefore be relaxations. Global optimization criteria
like minimizing makespan may be difficult to represent ex-
plicitly as functions on the value assignments of small num-
bers of variables.

As mentioned above, an intermediate model change is to
allow waiving some or all of the constraints. Allowing the
waiving of constraints, however, introduces interesting prob-
lems. If all constraints can be waived then there are trivial
solutions. Optimization criteria like minimizing the number
of waived constraints are needed to prevent the introduction
of trivial solutions.

Similarly, there are interesting philosophical differences
in how constraints can be waived. Making the variables ex-
plicit lets the search algorithm handle it. As in Mapgen and
Ensemble, the human can handle it. However, the number
of variables goes up as does the representation in the con-
straints. Letting constraints be removed and added is already
required for planners (e.g. IxTeT and EUROPA).

Conclusions and Future Work

In this paper we present a new classification of dynamic con-
straint satisfaction transformations based on a quantifiable
criteria: the change in the fraction of solutions ∆Lp(P). We
have broken down the transformations of DCSPs into a set
of elementary transformations. The new criteria can be used
to evaluate elementary transformations of a CSP as well as
sequences of transformations. We identify a minimum set of
transformations from which all other transformations can be
constructed. We extend the notion of transformations to in-
clude optimization problems. The resulting transformations
are shown to consist of restrictions, relaxations, and neu-
tral transformations that neither restrict nor relax a problem.
For optimization problems, classes of transformations may
contain more than one type of transformation. We identify
a complete set of transformations that can transform a prob-
lem from a satisficing problem to an optimization problem,
or back. We show how these transformations can inform
the evolution of planning models, automated planning algo-
rithms, and mixed initiative planning.

The analysis of transformations of planning problems us-
ing the new framework contains few real surprises. The most
complex transformation, adding or subtracting from the sat-
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isfying tuples in a relation, have the most impact on the so-
lutions, but are the hardest to analyze. The most interesting
question from the point of view of computational complex-
ity is whether or not deconstructing a transformation into
its primitive parts helps ’eager’ propagation. Unfortunately
there are no easy answers to this question.

From the point of view of modeling, the potential use of
this new framework is to analyze proposed model changes.
How would such information be provided to a modeler?
What can modelers do with this information when it is pro-
vided? Consider, for instance, integrating a simple report on
the consequences of adding or removing conditions and ef-
fects to a tool such as itSimple (Vaquero et al. 2007) for use
in a plan or model critique phase of Model-Lite planning.
This may be especially useful when satisficing problems are
transformed into optimization problems, but feedback for
simple situations like adding or removing conditions and ef-
fects may provide value. Different planning to CSP encod-
ings, such as those described in (Banerjee 2009) or (van den
Briel, Vossen, and Kambhampati 2005), may lead to differ-
ent results than those described here. Extending the analysis
for modeling to include more complex formalisms such as
time, resources, domain axioms, and ADL-like constructs
(disjunctive preconditions and conditional effects) will ex-
tend the power of the approach.
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Abstract

The increasing demand of maritime transport and the
great competition among port terminals force their man-
agers to reduce costs by exploiting its resources accu-
rately. In this environment, the Berth Allocation Prob-
lem, which aims to allocate and schedule incoming ves-
sels along the quay, plays a relevant role in improving
the overall terminal productivity. In order to address this
problem, we propose Decentralized Cooperative Meta-
heuristic (DCM), which is a population-based approach
that exploits the concepts of communication and group-
ing. In DCM, the individuals are organized into groups,
where each member shares information with its group
partners. This grouping strategy allows to diversify as
well as intensify the search in some regions by means
of information shared among the individuals of each
group. Moreover, the constrained relation for sharing
information among individuals through the proposed
grouping strategy allows to reduce computational re-
sources in comparison to the ‘all to all’ communication
strategy. The computational experiments for this prob-
lem reveal that DCM reports high-quality solutions and
identifies promising regions within the search space in
short computational times.

Introduction

Maritime container terminals are infrastructures built with1

the goal of facing the technical requirements arising from2

the increasing volume of containers in the international sea3

freight trade. They are aimed at transferring and storing4

containers within multimodal transportation networks. The5

main transport modes found at a maritime container termi-6

nal are container vessels, trucks, and trains. In this regard,7

according to the UNCTAD 1, the international maritime con-8

tainer trade has greatly grown over the last decades. One9

of the most widespread indicators for assessing the com-10

petitiveness of a maritime container terminal is the time re-11

quired to serve the container vessels arriving to the port (Yeo12

2010). For this reason, an inefficient utilization of some key13

resources, like berths, could produce delays of yard-side and14

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1United Nations Conference on Trade And Development,
http://unctad.org

land-side operations, giving rise to a poor overall productiv-15

ity of the container terminal.16

The aforementioned issue leads to the definition of the17

Berth Allocation Problem (BAP). Its main goal is to as-18

sign berthing positions along the quay to incoming vessels.19

In this process, container terminal managers must consider20

several factors such as the vessels and berth time windows,21

number of loaded/unloaded containers, water depth, and tide22

conditions. In this paper, we study the Dynamic Berth Allo-23

cation Problem (DBAP) introduced by (Cordeau et al. 2005),24

which considers berth and vessel time windows as well as25

heterogeneous vessel service times stemming from the as-26

signed berth.27

In order to solve the DBAP, this work proposes Decen-28

tralized Cooperative Metaheuristic (DCM). This algorithm29

is a population-based approach in which a set of individuals30

is organized into groups that exchange information among31

them while the search is performed. In this regard, as indi-32

cated by (Gutiérrez-Castro et al. 2008), the ‘all to all’ com-33

munication in working systems is not appropriate because it34

demands too many computational resources. Therefore, the35

way the information is shared in DCM pursuits a decentral-36

ized grouping strategy. Namely, during the search, the in-37

dividuals only share information with their group partners.38

Each group has its own leader and rules regarding how to39

exchange information.40

The goals of this work are, on the one hand, to assess the41

behaviour of DCM as well as provide high-quality solutions42

by means of short computational times for the berth allo-43

cation at maritime container terminals. On the other hand,44

we seek to evaluate the effectiveness of DCM by comparing45

its computational results with those reported by the math-46

ematical model proposed by (Christensen and Holst 2008)47

and the results obtained by the best algorithms from the re-48

lated literature for the DBAP. In this regard, as discussed in49

the relevant section, the computational results provided by50

DCM indicate that it requires less computational time than51

the best solution approach recently proposed in the literature52

for the DBAP.53

The remainder of this paper is organized as follows. A54

short literature review of the BAP is presented in the fol-55

lowing section. Then, the mathematical formulation of the56

DBAP used in this work is described. In the next section,57

the algorithm proposed for addressing the BAP is described.58
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Later, the computational experience carried out and a com-59

parative summary are presented. Finally, some conclusions60

and several lines for further research are drawn in the last61

section.62

Literature Review63

The Berth Allocation Problem (BAP) has been extensively64

studied in the literature. In this regard, due to the large va-65

riety of maritime terminal layouts, research has produced66

multitude of variants for this problem. Depending on how67

the quay is modelled, the BAP can be referred to as discrete68

(the quay is divided into segments called berths) or contin-69

uous (the quay is not divided, thus the vessels can berth at70

any position in the quay). Moreover, in some related works71

(Cordeau et al. 2005), (Umang, Bierlaire, and Vacca 2013))72

there is also a hybrid consideration of the quay (the quay73

is divided into a set of berths and a vessel can occupy more74

than one berth at a time or share its assigned berth with other75

container vessels). Depending on the arrival time, the BAP76

can be classified into static (the vessels are already in port77

when the berths become available) or dynamic (the vessels78

arrive during the planning horizon). For detailed descrip-79

tions, the reader is referred to (Bierwirth and Meisel 2010)80

and (Christiansen et al. 2007).81

One of the most relevant approaches is the Dynamic82

Berth Allocation Problem (DBAP). It was first formulated83

by (Imai, Nishimura, and Papadimitriou 2001) as an exten-84

sion of the model proposed in (Imai, Nagaiwa, and Chan85

1997) for the Static Berth Allocation Problem. Alternative86

formulations for the dynamic problem have been proposed87

and studied by (Monaco and Sammarra 2007), (Cordeau et88

al. 2005) and (Christensen and Holst 2008). These models89

are described and compared in (Buhrkal et al. 2011). The90

main conclusion extracted from the latter work is that the91

model presented by Christensen and Holst is superior to the92

other models when considering the temporal behaviour. In93

this regard, it is able to reach the optimal solutions within94

short computational time for the set of instances used by all95

the previous authors.96

Recently, (Lalla-Ruiz, Melián-Batista, and Moreno-Vega97

2012) presented an efficient Tabu Search metaheuristic with98

Path-Relinking for solving the DBAP. They also proposed a99

benchmark suite of instances for which the model by (Chris-100

tensen and Holst 2008) does not provide feasible solutions101

within a time limit. (de Oliveira, Mauri, and Lorena 2012)102

presents a Clustering Search (CS-SA) with Simulated An-103

nealing for solving the DBAP. This algorithm provides the104

optimal solutions for all the largest instances proposed by105

(Cordeau et al. 2005). In this regard, (Ting, Wu, and Chou106

2013) propose a Particle Swarm Optimization algorithm107

for addressing the DBAP, which reports optimal solutions108

within shorter computational times than CS-SA.109

Dynamic Berth Allocation Problem110

In this work, we address the Dynamic Berth Allocation111

Problem (DBAP) proposed by (Cordeau et al. 2005), which112

is modeled as a Multi-Depot Vehicle Routing Problem with113

Time-Windows (MDVRPTW). The vessels are seen as cus-114

tomers and the berths as depots at which one vehicle is lo-115

cated. The goal of the DBAP is to determine the berthing116

position and berthing time of |N | incoming vessels along117

the quay, which is divided into |M | berths. In order to make118

this paper self-contained, the description of the model pro-119

posed by (Cordeau et al. 2005) is included. The following120

parameters are defined in the problem:121

• N , set of vessels122

• M , set of berths123

• tki , handling time of vessel i ∈ N at berth k ∈M124

• ai, bi, arrival, departure time of vessel i ∈ N125

• lk, ek, start, end of the availability of the berth k ∈M126

• vi, the service priority of each vessel i ∈ N127

Let us define a graph, Gk = (V k, Ak) ∀ k ∈ M , where128

V k = N ∪ {o(k), d(k)} contains a vertex for each vessel129

as well as the vertices o(k) and d(k), which are the origin130

and destination nodes for any route in the graph. The set of131

arcs is defined as Ak ⊆ V k × V k, where each one represent132

the handling time of the vessel. The decision variables are as133

follows:134

• xk
ij ∈ {0, 1}, ∀ k ∈ M , ∀ (i, j) ∈ Ak, set to 1 if135

vessel j is scheduled after vessel i at berth k, and136

0 otherwise.137

• T k
i , ∀ k ∈M , ∀ i ∈ N , the berthing time of vessel i138

at berth k, i.e., the time when the vessel berth.139

• T k
o(k), ∀ k ∈ M , starting operation time of berth k,140

i.e., the time when the first vessel berths at the berth.141

• T k
d(k), ∀ k ∈ M , ending operation time of berth k,142

i.e., the time when the last vessel departs at the berth.143

The assumptions considered in the mathematical model144

are the following:145

(a) Each berth k ∈ M can only handle one vessel at a146

time.147

(b) The service time of each vessel i ∈ N is determined148

by the assigned berth k ∈M .149

(c) Each vessel i ∈ N can be served only after its arrival150

time ai.151

(d) Each vessel i ∈ N has to be served until its departure152

time bi.153

(e) Each vessel i ∈ N can only be berthed at berth k ∈154

M after k becomes available at time step lk.155

(f) Each vessel i ∈ N can only be berthed at berth k ∈156

M until k becomes unavailable at time step ek.157

The time windows of the vessels and berths are defined by158

(c)-(f). The objective function (1) aims to minimize the to-159

tal (weighted) service time for all the vessels, defined as the160

time elapsed between their arrival to the port and the com-161

pletion of their handling. When i is not assigned to berth162

k, the corresponding term in the objective function is zero163

because
∑

j∈N∪d(k) x
k
ij = 0 and T k

i = ai. A detailed164
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mathematical formalization of the model can be consulted165

in (Cordeau et al. 2005).166

minimize
∑

i∈N

∑

k∈M

vi



T k
i − ai + tki

∑

j∈N∪d(k)

xk
ij



 (1)

In order to improve the understanding of the DBAP, we167

provide in Figure 1 an example of a berth scheduling. In the168

figure, a schedule and an assignment plan are shown for 6169

vessels within 3 berths. The rectangles indicate the vessels170

and inside each rectangle we display its corresponding ser-171

vice priority (vi), used for establishing vessels priorities. The172

time windows of the vessels are represented by the lines at173

the bottom of the figure. In this case, for example, vessel 1174

arrives at time step 4 and it should be served before time step175

14. Moreover, the time window of each berth is limited by176

the not hatched areas. Table 1 reports the different handling177

times for each vessel depending on the assigned berth. For178

example, if vessel 1 is assigned to berth 1, its handling time179

would be equal to 6, which is shorter than the handling time180

of 8 that it would have at berth 2. As can be seen in the exam-181

ple, vessels 5 and 6 would have to wait for berthing in their182

respective assigned berths. In this regard, since their service183

priorities value are 1, their wait for berthing will have less184

impact in the objective function value than delaying other185

vessels, like vessels 3 and 4, for which the service priori-186

ties are 6 and 4, respectively. That is, if their berthing time187

are delayed, the waiting time step of each vessel is multi-188

plied for 6 and 4, respectively. The objective function value189

of this solution example is 101.190

Table 1: Vessels handling times depending on the allocated
berth

Berth 1 Berth 2 Berth 3

Vessel 1 6 8 5

Vessel 2 2 3 4

Vessel 3 5 5 4

Vessel 4 4 6 5

Vessel 5 5 8 7

Vessel 6 4 4 5

Decentralized Cooperative Metaheuristic191

In this work, we propose Decentralized Cooperative Meta-192

heuristic (DCM), which is a population-based approach that193

exploits the concepts of communication and grouping. It is194

inspired by the work by (Duman, Uysal, and Alkaya 2012).195

In that work, the authors propose a nature-inspired meta-196

heuristic based on the V-formation flight of migrating birds.197

The method is called Migrating Birds Optimization (MBO)198

and consists of a set of individuals called birds that are cen-199

tred around a leader bird. The way they perform this com-200

munication is by considering a V-formation structure. Fig-201

ure 2(b) shows an illustrative scheme of the V-formation, in202

which each circle corresponds to a bird. The leader is rep-203

resented by the circle at the top, whereas the remaining cir-204

cles represent the rest of the flock. The arrows in the figure205

represent how the information is shared among the birds.206

In MBO the shared information corresponds to the best dis-207

carded neighbour solutions. The initial positions of the in-208

dividuals along the V-formation depend on the generation209

order. That is, the first individual generated will be the bird210

1 and, therefore, the leader of the flock, the second and third211

will be its followers, and so forth. Figure 2(a) shows an ex-212

ample of an initial population: id represents the identifier213

of each bird derived from the generation order and obj in-214

dicates the objective function value associated to each indi-215

vidual. After generating the initial population, the individ-216

uals are organized into a V-formation, as shown in Figure217

2(b). It should be noted that the individuals are positioned218

regardless the objective function value associated to them.219

In MBO, during the search process, the leader bird ran-220

domly generates a number non of neighbour solutions. The221

remaining birds of the flock generate non neighbour solu-222

tions minus the number of solutions to be shared δ. For each223

bird, if the best generated neighbour leads to an improve-224

ment, the current individual is replaced by that neighbour225

solution. The δ neighbour solutions that are not used to re-226

place the existing bird are shared with its followers. For in-227

stance, in the example shown in Figure 2(b), the bird 2 will228

share its best discarded neighbour solutions with bird 4. This229

search process is repeated until a number of prefixed itera-230

tions, iterl is reached. Once, the leader bird becomes the231

last solution, one of its direct followers becomes the new232

leader. Considering the example shown in Figure 2(b), the233

bird 1 would occupy the place of bird 6 and all the birds234

of that wing of the V-formation will move forward one po-235

sition. That is, bird 2 would become the leader and bird 4236

will be its next follower, and so on. Then, the search process237

is re-started until iterl iterations are reached. Once that, the238

next bird to take the leader role will be bird 3 and bird 2 will239

occupy the place of bird 7. This process is executed until a240

number of neighbour solutions, maxN , has been generated241

through the search process. For a more detailed description242

of the MBO algorithm, the reader is referred to (Duman,243

Uysal, and Alkaya 2012).244

The MBO algorithm has been successfully applied to the245

Quadratic Assignment Problem (Duman, Uysal, and Alkaya246

2012). Although it provides good quality solutions by means247

of short computational time, one of its main drawbacks is248

that the search can easily converge to a local optimum. This249

is due to the fact that the V-formation is centred on a leader250

and the way the communication among the individuals is251

performed. In this regard, the convergence to a local opti-252

mum depends on the number of shared solutions, δ, and the253

current leader. For example, when a leader reaches a local254

optimum, its δ discarded solutions are shared with the rest255

of the flock. Thus, these birds could likely become neigh-256

bour solutions of that local optimum. In this regard, once257

the leader reaches the iterl number of iterations being the258

head of the formation, one of its direct followers would take259

over the lead role and it could likely be a neighbour solution260

of its past leader, which was a local optimum solution.261

COPLAS 2014: 9th Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

17



Figure 1: Example of solution for the DBAP with 6 vessels and 3 berths

(a) Initial population

(b) Population V-formation

Figure 2: MBO scheme example

Other minor issues concerning the MBO algorithm are the262

initial position of each bird in the formation and the way in263

which the birds are relieved. The initial position of the in-264

dividuals, as explained above, are determined by the gener-265

ation order. This could produce that, depending on the val-266

ues of iterl and the δ number of shared neighbours, some267

birds (the lower-medium ones in the formation) would lose268

their identity since they can become a neighbour solution of269

a bird in front of them and thus, some promising regions may270

be ruled out. It makes sense then to include a decentralized271

strategy that would allow to diversify the search and reduce272

the likelihood to converge to local optima. Moreover, as in-273

dicated by (Klotsman and Tal 2012), the initial formation of274

the birds when starting a flight is not the V-formation. Thus,275

a V-formation from the beginning of the flight as described276

in the MBO would not be the accurate behaviour of the mi-277

gratory birds. Moreover, as described by (Bajec, Zimic, and278

Mraz 2005), the migratory birds can also be organized in279

groups or present a different flight formation besides the V-280

formation.281

To address the above mentioned details, the DCM is de-282

veloped. In this approach, a population of individuals, S, is283

organized into groups. This distribution into groups is called284

formation. An example of a formation composed of three285

groups and two not grouped solutions is shown in Figure286

3(b). The organization of the population into groups allows287

to recognize:288

• A set of leader individuals (Sleaders): This set is made up289

by the best solutions of each group.290

• A set of independent individuals (Sind): This set includes291

all the individuals that are not grouped. Thus, they do not292

exchange information with any other individuals.293

• A set of follower individuals (Sfol): This set contains the294

individuals that are neither leaders nor independents.295
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Moreover, in DCM, as it is done in MBO, each individual of296

a group performs a search procedure and exchanges infor-297

mation with other while the search is being developed. This298

characteristic gives rise to a cooperative scheme. The way299

the information is shared is almost constrained to the group300

members, in the sense that only at most two members of a301

group can share information with other groups. Neverthe-302

less, some individuals may belong to more than one group303

and, therefore, share information with more than one group.304

DCM consists basically of three main components that are305

summarized in the following items:306

(i) Grouping. The individuals are organized into groups.307

The criterion for establishing the groups is a decision of308

the designer since it can be performed according to dif-309

ferent criteria such as objective function value, solution310

structure, frequency, etc. In the context of the DBAP,311

we use the objective function value of each individual312

calculated according to Eq. 1. Moreover, the adjacency313

of each individual is determined by their creation order.314

That is, considering the individuals of Figure 3(a), the315

first individual created, 1, will have only one adjacent316

solution 2. The second individual created, 2, will have317

two adjacent solutions, 1 and 3, and so on. The adja-318

cency among individuals is never altered during the ex-319

ecution of the algorithm.320

Once the individuals are created and their objective321

function values are calculated, a comparison among the322

individuals and their adjacent ones with respect to the323

objective function value is performed. When an indi-324

vidual presents a worse objective function value than325

its adjacent individual, then it will directly form part of326

its adjacent group. However, if both of them have the327

same objective function value, there will no exist any328

communication. Figure 3 shows an example where 15329

individuals are organized into groups according to their330

objective function value. In this case, individual 1 has a331

worse objective function value (50) than its adjacent 2332

(46) so it will form part of the individual 2 group.333

(ii) Sharing. The individuals of each group share informa-334

tion with their adjacent group partners. There is no di-335

rect exchange between individuals in different groups,336

but indirect exchanges may arise due to individuals ap-337

pearing in more than one group. This is shown in Figure338

3(b), where the individual 8 belongs to two groups.339

The information shared in the DCM approach ap-340

plied to the DBAP consists of the best discarded solu-341

tions. The way they exchange information depends on342

their objective function value. That is, if an individual343

presents a better objective function value than its adja-344

cent solution, it will directly change information with345

it by providing its best discarded solutions. However,346

if both of them have the same objective function value,347

there will not be any information exchanged. Finally,348

if the individual has a worse objective function value,349

it will receive information from its adjacent. In the ex-350

ample shown in Figure 3, the individual 1 will receive351

information by means of the best discarded neighbours352

solutions from individual 2. Individuals 5, 6 and 7 will353

not exchange information among them.354

(iii) Formation. The formation consists of the division of355

the population into groups and the way the information356

is exchanged among them. In DCM, the formation is357

not always the same, it can be re-determined if a given358

formation stopping condition is met. That is, when a359

certain criterion is met, the distribution of the popula-360

tion is re-designed. In that case, all the individuals are361

compared again and a new division of the population362

into groups is performed. For the proposed solution ap-363

proach, the formation stopping condition is met when364

the best solution found is improved or all group leader365

individuals could not improve their objective function366

value in the current iteration.367

The pseudocode of DCM is depicted in Algorithm 1. The368

initial population composed of ns individuals is randomly369

generated (line 1). The best solution is initialized to the best370

individual (line 2). The formation is determined by consid-371

ering and comparing the objective function value of each in-372

dividual and its adjacent ones (line 4). Once the individuals373

are organized into groups, the search process for that forma-374

tion is performed (lines 5− 15) until the formation stopping375

condition is met. In this case, the formation stopping criteria376

used for the DBAP is set until the best solution known, sbest,377

is improved or any leader solution, s ∈ Sleaders, is able to378

improve. In the search process, non random neighbour so-379

lutions are generated for each group leader and independent380

individual (line 7). If the best neighbour random solution381

leads to an improvement, the current solution is replaced by382

that one (line 8). Then, each individual s ∈ Sfol generates383

non−δ neighbours and adds the δ best discarded neighbours384

received from its adjacent individual (lines 11 − 12). In the385

special case that an individual belongs to two groups it will386

receive 2 · δ solutions. If the best solution (generated by the387

individual or received from an individual in front of it) leads388

to an improvement, the solution is replaced by that one (line389

13). The DCM search process is carried out while a stop-390

ping criterion is not met (line 3). For the DBAP, the search391

is performed until a maximum number of neighbours equal392

to |N |3 has been generated by the individuals, where |N |393

is the number of vessels, or a number nimp of consecutive394

iterations without improvement of any individual has been395

performed.396

Figure 3 shows an example of a formation for DCM. That397

is, the individuals are organized into three different groups398

and two independent solutions that do not cooperate with399

other individuals. These ‘freelance’ individuals generate the400

same number of neighbours as a group leader. They can be401

seen as part of a diversification strategy since they do not402

communicate with other individuals. Thus, they are not in-403

fluenced to move to other regions of the search space by404

other individuals because they do not receive any neighbour405

solution. Furthermore, it should be highlighted that some406

groups can influence other ones if they have common in-407

dividuals. This is the case of the groups 2 and 3.408

The relationship among individuals is based on sharing409

their best discarded neighbours with their adjacent individ-410

uals. Therefore, the individuals of a group are able to inten-411
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Algorithm 1: Decentralized Cooperative Metaheuristic

1 Generate a set S of ns individuals at random
2 sbest ← best solution ∈ S
3 while (stopping criterion is not met) do
4 Determine the groups according to Eq. 1
5 while (formation stopping condition is not met) do
6 for (∀s ∈ Sleader ∪ Sind) do
7 Generate non neighbour solutions for each s
8 Move each individual to its best solution if

leads to an improvement
9 end

10 for (∀s ∈ Sfol) do
11 Generate non − δ neighbour solutions for

each s
12 Each s obtains δ unused best neighbours

from the solution in the front
13 Move each individual to its best solution if

leads to an improvement
14 end

15 end

16 end
17 return sbest

(a) Individuals

(b) Formation

Figure 3: Example of the DCM scheme

sify the search on those promising search space regions by412

increasing the number of generated neighbours. Table 2 and413

Figure 4 show an example of an iteration within the DCM414

search process. In this example, we have a population of in-415

dividuals S = {1, ..., 6} organized into 2 groups according416

to their objective value. The leaders of the groups are indi-417

viduals 2 and 5. For this example, we consider that each in-418

dividual manages non = 3 random neighbour solutions and419

each follower receives δ = 1 solution. Table 2 reports the420

objective value of each individual, obj. Under the heading421

Generated solutions, shows the neighbour solutions gener-422

ated, φi, by each individual i ∈ S and j ∈ {a, b, c}. Column423

Received solutions shows the solutions received from indi-424

vidual j according to the formation. Figure 4 illustrates the425

group division and the way the individuals exchange infor-426

mation. In this example, the leader individual 2 generates427

Table 2: Example of the search process within DCM. Under-
lined indicates that the individual will move to that solution
at the next iteration

Index obj Generated solutions (obj.) Received solutions (obj.)

1 50 φ1a (51) φ1b(49) - φ2a(44)

2 42 φ2a (44) φ2b(46) φ2c(47) -
3 55 φ3a (53) φ3b(50) - φ4a (50) , φ2b(46)

4 52 φ4a (50) φ4b (54) - φ5a (49)

5 48 φ5a (49) φ5b (46) φ5c(51) -

6 54 φ6a (53) φ6b (52) - φ5b (46)

three random neighbour solutions φ2a, φ2b, and φ2c. The428

objective value of those solutions will not lead to an im-429

provement of its objective value. Thus, it will no move to430

other solution but it shares its best discarded solutions with431

its followers. In this case, according to Figure 4, individual432

1 receives from individual 2 the solution, φ2a. This solution433

is the one that allows the greatest improvement of objec-434

tive function value of individual 1. Therefore, the individual435

1 moves to that solution. Moreover, as can be seen in Ta-436

ble 2, individual 3 receives two neighbour solutions since it437

belongs to two groups. In this case, individual 3 will move438

to solution φ2b because it allows the greatest improvement.439

Hence, at the next iteration individuals 1 and 3 will move to440

the same region as their leader 2. This allows to intensify the441

search in that region.442

Figure 4: DCM information exchange

DCM for the DBAP443

In the context of the DBAP, the DCM implementation for444

this problem considers a solution s as a sequence composed445

by features, where a feature, is defined as indicated below:446

features(s) = {(i, j) : vessel j is assigned to berth i} .

Figure 5 shows an example of the solution structure for447

the planning example shown in Figure 1. Each berth is de-448

limited by a 0. Thus, there will be M sub-sequences. The449

service order of each vessel is determined by its position in450

the subsequence. As can be seen in Figure 5, only vessel 1 is451

allocated at berth 1. At berth 2, the vessel 2 is the first ves-452

sel to be allocated. Once it departs from the berth, the next453

vessel to be allocated is vessel 4, and so on.454

The neighbourhoods used in this approach are the follow-455

ing:456
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Figure 5: Solution structure for the BAP

1 0 2 4 6 0 3 5

(a) Reinsertion-move, N1(s, λ): λ vessels are removed457

from a berth i and reinserted into another berth i′ (∀i, i′ ∈458

M, i 6= i′).459

(b) Interchange-move, N2(s): It consists of exchanging a460

vessel j assigned to berth i with a vessel j′ assigned to461

berth i′ (∀j, j′ ∈ N, j 6= j′, ∀i, i′ ∈M, i 6= i′).462

The leaders and independent individuals produce non ran-463

dom neighbour solutions using the reinsertion movement,464

whereas the other individuals use the interchange-move. The465

DCM approach for the DBAP is performed until a maximum466

number of neighbours equals to |N |3 has been generated,467

where |N | is the number of vessels, or a number nimp of468

consecutive iterations without improvement of any individ-469

ual has been performed.470

Computational Results471

This section is devoted to present the computational exper-472

iments carried out in order to assess the performance of the473

Decentralized Cooperative Metaheuristic. All the reported474

computational experiments were conducted on a computer475

equipped with an Intel 3.16 GHz and 4 GB of RAM. By tak-476

ing into account the experiments carried out in this work, we477

identified the following parameter values for DCM: non =478

20, δ = 3, number of individuals ns = 30, and stopping479

criteria of maxN = |N |3 number of generated neighbour480

solutions by the individuals or nimp = 20 consecutive iter-481

ations without improvement of reached by some individual482

of DCM.483

The problem instances used for evaluating the proposed484

algorithm are provided by (Cordeau et al. 2005) and (Lalla-485

Ruiz, Melián-Batista, and Moreno-Vega 2012). The in-486

stances from (Cordeau et al. 2005) were generated by taking487

into account a statistical analysis of the traffic and berth allo-488

cation data at the maritime container terminal of Gioia Tauro489

(Italy). The problem instances from (Lalla-Ruiz, Melián-490

Batista, and Moreno-Vega 2012) were generated according491

to the work by (Cordeau et al. 2005) and address other re-492

alistic scenarios arising at container terminals. Moreover,493

with the aim of comparing DCM with MBO, an approach494

of MBO for the DBAP is implemented in the same way as495

proposed by (Duman, Uysal, and Alkaya 2012). Therefore,496

the comparison among the following algorithmic methods497

for the DBAP is provided along the remainder of this sec-498

tion.499

− Generalised Set-Partitioning Problem mathematical500

model (GSPP) (Christensen and Holst 2008)501

− Clustering Search with Simulated Annealing for502

generating initial solutions (CS-SA) (de Oliveira,503

Mauri, and Lorena 2012)504

− Particle Swarm Optimization (PSO) (Ting, Wu, and505

Chou 2013)506

− Migrating Birds Optimization approach for the507

DBAP developed in this work (MBO) (Duman,508

Uysal, and Alkaya 2012)509

− Decentralized Cooperative Metaheuristic (DCM)510

Table 3 shows the computational results obtained by ap-511

plying these solution approaches. The mathematical formu-512

lation GSPP implemented in CPLEX2 by (Buhrkal et al.513

2011) provides the optimal solution in 17.92 seconds in the514

worst case. However, as highlighted by (Lalla-Ruiz, Melián-515

Batista, and Moreno-Vega 2012), GSPP can require large516

amounts of memory and computational time, depending on517

the complexity of the instances. In this regard, a Cluster-518

ing Search with Simulated Annealing (CS-SA) that is able519

to provide the optimal solutions in all the cases and outper-520

forms the GSPP time behaviour is presented in (de Oliveira,521

Mauri, and Lorena 2012). The results shown in the table522

related to this algorithm correspond to the best objective523

function values obtained and the average computational time524

required for 5 tests. Recently, (Ting, Wu, and Chou 2013)525

have proposed a Particle Swarm Optimization (PSO), which526

finds the optimal solutions with less computational effort.527

The results shown in the table correspond to the best objec-528

tive function values provided by PSO and the computational529

time is the average time required for the 30 executions.530

The comparison of DCM with the two different531

population-based solution approaches, CS-SA and PSO, re-532

ported in Table 3, shows that DCM presents a similar be-533

haviour regarding the quality of the solutions within less534

computational time. In this regard, the comparison with535

PSO, which is a metaheuristic that follows a decentralized536

strategy inspired by the social behaviour of individuals in-537

side swarms, would highlight the benefits of applying a co-538

operative structure within a decentralized scheme. More-539

over, the comparison with CS-SA can give us an idea of540

the capability of DCM for identifying high promising re-541

gions since CS-SA locates promising regions through fram-542

ing them by clusters. This could likely indicate that the way543

the regions are pointed out by DCM could be appropriate.544

However, this detail cannot be clearly claimed since the545

CS is used jointly with a Simulated Annealing and a Lo-546

cal Search process. Therefore, a more in-depth analysis of547

the individual contribution of those components would be548

required.549

In this work, a MBO approach for the DBAP is also im-550

plemented. The rationale behind including this algorithm is551

to compare the behaviour of DCM with MBO. Moreover,552

both algorithms are studied with and without a Local Search553

applied to each leader solution once their search process is554

over. The aim of applying a local search after the algorithms555

have been executed seeks to analyse if they are able to point556

out high promising regions in the search space. As can be557

seen in Table 3, the bold numbers indicate those solutions558

where DCM without local search is able to point out 21 re-559

gions, where the optimal solution obtained after applying the560

local search to each leader individual. In this regard, MBO is561

able to highlight 17 regions, where the optimal is included.562

2http://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/
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Table 3: Computational results for the instances provided by (Cordeau et al. 2005). Bold numbers indicate those solutions that
after applying a local search it is possible to reach the optimal solution

GSPP CS-SA PSO
MBO DCM

w/LS w/o LS w/LS w/o LS

Opt. t (s.) Best Gap (%) t (s.) Best Gap (%) t (s.) Best Gap(%)t (s.) Best Gap(%)t (s.) Best Gap (%)t (s.) Best Gap (%)t (s.)

i01140917.92 1409 0.00 12.47 1409 0.00 11.11 1411 0.14 3.42 1441 2.27 2.72 1409 0.00 5.95 1420 0.78 3.25
i02126115.77 1261 0.00 12.59 1261 0.00 7.89 1261 0.00 3.52 1265 0.32 2.43 1261 0.00 4.15 1261 0.00 3.29
i03112913.54 1129 0.00 12.64 1129 0.00 7.48 1129 0.00 3.63 1144 1.33 2.51 1129 0.00 4.18 1130 0.09 3.20
i04130214.48 1302 0.00 12.59 1302 0.00 6.03 1302 0.00 3.81 1304 0.15 2.43 1302 0.00 4.25 1302 0.00 3.07
i05120717.21 1207 0.00 12.68 1207 0.00 5.84 1207 0.00 3.13 1212 0.41 2.12 1207 0.00 3.21 1207 0.00 2.86
i06126113.85 1261 0.00 12.56 1261 0.00 7.67 1261 0.00 3.46 1272 0.87 2.42 1261 0.00 4.04 1262 0.08 2.90
i07127914.60 1279 0.00 12.63 1279 0.00 7.5 1279 0.00 3.05 1291 0.94 2.09 1279 0.00 3.36 1280 0.08 2.97
i08129914.21 1299 0.00 12.57 1299 0.00 9.94 1299 0.00 3.30 1313 1.08 2.21 1299 0.00 4.96 1304 0.38 3.10
i09144416.51 1444 0.00 12.58 1444 0.00 4.25 1444 0.00 3.48 1457 0.90 2.29 1444 0.00 5.25 1446 0.14 3.31
i10121314.16 1213 0.00 12.61 1213 0.00 5.2 1213 0.00 3.40 1219 0.49 2.44 1213 0.00 3.46 1213 0.00 3.20
i11136814.13 1368 0.00 12.58 1368 0.00 10.52 1370 0.15 3.41 1380 0.88 2.16 1368 0.00 5.21 1374 0.44 3.39
i12132515.60 1325 0.00 12.61 1325 0.00 12.92 1330 0.38 3.54 1344 1.43 2.54 1325 0.00 4.62 1330 0.38 3.38
i13136013.87 1360 0.00 12.58 1360 0.00 11.97 1360 0.00 3.59 1372 0.88 2.45 1360 0.00 3.76 1362 0.15 3.47
i14123315.60 1233 0.00 12.56 1233 0.00 7.11 1233 0.00 3.27 1242 0.73 2.28 1233 0.00 4.14 1233 0.00 3.04
i15129513.52 1295 0.00 12.61 1295 0.00 8.3 1295 0.00 3.43 1306 0.85 2.28 1295 0.00 4.31 1295 0.00 3.40
i16136413.68 1364 0.00 12.67 1364 0.00 8.48 1367 0.22 4.14 1394 2.20 2.51 1364 0.00 4.89 1368 0.29 3.94
i17128313.37 1283 0.00 13.80 1283 0.00 5.66 1283 0.00 2.63 1283 0.00 1.94 1283 0.00 3.09 1283 0.00 2.68
i18134513.51 1345 0.00 14.46 1345 0.00 8.02 1345 0.00 3.38 1350 0.37 2.18 1345 0.00 4.14 1347 0.15 3.36
i19136714.59 1367 0.00 13.73 1367 0.00 11.42 1372 0.37 3.81 1390 1.68 2.57 1367 0.00 5.93 1374 0.51 4.03
i20132816.64 1328 0.00 12.82 1328 0.00 12.28 1329 0.08 3.55 1352 1.81 2.39 1328 0.00 5.60 1334 0.45 3.97
i21134113.37 1341 0.00 12.68 1341 0.00 7.11 1343 0.15 3.93 1359 1.34 2.65 1341 0.00 5.54 1346 0.37 3.51
i22132615.24 1326 0.00 12.62 1326 0.00 7.94 1326 0.00 3.38 1348 1.66 2.25 1326 0.00 4.97 1333 0.53 3.13
i23126613.65 1266 0.00 12.62 1266 0.00 7.25 1266 0.00 3.47 1283 1.34 2.28 1266 0.00 4.01 1266 0.00 3.75
i24126015.58 1260 0.00 12.64 1260 0.00 5.67 1260 0.00 3.51 1264 0.32 2.37 1260 0.00 4.90 1261 0.08 3.61
i25137615.80 1376 0.00 12.62 1376 0.00 7.13 1377 0.07 3.30 1392 1.16 2.00 1376 0.00 5.54 1381 0.36 3.39
i26131815.38 1318 0.00 12.62 1318 0.00 7.44 1319 0.08 3.45 1333 1.14 2.20 1318 0.00 4.92 1325 0.53 3.52
i27126115.52 1261 0.00 12.64 1261 0.00 6.16 1261 0.00 3.16 1273 0.95 2.27 1261 0.00 4.00 1261 0.00 3.15
i28135916.22 1359 0.00 12.71 1359 0.00 11.52 1361 0.15 3.42 1372 0.96 2.50 1359 0.00 5.56 1363 0.29 3.40
i29128015.30 1280 0.00 12.62 1280 0.00 8.11 1281 0.08 3.77 1289 0.70 2.60 1280 0.00 5.82 1282 0.16 3.25
i30134416.52 1344 0.00 12.58 1344 0.00 7.13 1349 0.37 3.78 1380 2.68 2.48 1344 0.00 5.76 1350 0.45 3.52

14.981306.77 12.761306.77 8.171307.77 3.471320.80 2.351306.77 4.651309.77 3.33
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Concerning the required computational effort, DCM is563

able to improve the computational time if compared with the564

best solution approaches presented in the literature. In this565

regard, it can be pointed out that MBO requires less compu-566

tational time. However, since both algorithms are executed567

under the same stopping criterion of 20 iterations without568

any improvement in any solution or a maximum number of569

generated neighbours equal to |N3|, that could likely indi-570

cate a premature convergence.571

Moreover, as indicated by (Lalla-Ruiz et al. 2013) the572

GSPP mathematical formulation implemented in CPLEX is573

not able to provide even a feasible solution for some com-574

plex instances where other characteristics are considered. In575

this regard, we are interested in assessing the behaviour of576

DCM in such kind of instances. In doing so, a representative577

set of some of the largest instances proposed by (Lalla-Ruiz,578

Melián-Batista, and Moreno-Vega 2012) has being tackled.579

The dimensions of the set of instances are 60 vessels and580

5 berths. For evaluating the performance of DCM, a com-581

parison among the best algorithmic methods used for those582

instances is provided:583

− GSPP mathematical model (Lalla-Ruiz, Melián-584

Batista, and Moreno-Vega 2012)585

− Tabu Search (T 2S∗+PR) (Lalla-Ruiz, Melián-586

Batista, and Moreno-Vega 2012)587

− Decentralized Cooperative Metaheuristic (DCM)588

Table 4 shows the computational results for the algorithms589

listed above. A column, MIN , with the best solution known590

for those instances is also included. As can be seen, GSPP591

is not able even to provide a feasible solution because it592

runs out of memory. Regarding the approximate solution ap-593

proaches, DCM presents a better performance on average594

within an almost similar time requirement than the best ap-595

proach (T 2S∗+PR) reported in the literature. Moreover, af-596

ter analysing the use of the local search method, DCM points597

out 7/10 regions where the best solution known can be found598

after applying a local search. In this regard, DCM provides599

two new best objective function values that have not been600

reached before, namely, instances i04 and i10.601

Conclusions and Further Research602

The Dynamic Berth Allocation Problem (DBAP) has been603

addressed in this work. In order to efficiently solve it, we604

propose Decentralized Cooperative Metaheuristic (DCM).605

It is based on a decentralized grouping strategy for divid-606

ing a population of individuals into groups. The individuals607

within the same group cooperate by interchanging informa-608

tion. This grouping strategy improves the diversification of609

the search as well as the intensification in some regions of610

the search space through the sum of efforts among the in-611

dividuals of the same group. Furthermore, the constrained612

relation for sharing information among individuals through613

the division of groups allows to reduce resources in compar-614

ison to ‘all to all’ communication.615

It is concluded from the computational experimentation616

that the proposed algorithm is able to provide the optimal617

solutions within reasonable computational time for the in-618

stances proposed by (Cordeau et al. 2005). In this regard, the619

time advantage makes DCM suitable as a resolution method620

for being applied either individually or included into inte-621

grated schemes where the berth allocation is required. DCM622

is also appropriate for pointing out high promising regions623

in the search space.624

Furthermore, the computational results show that DCM625

exhibits a better performance than other optimization algo-626

rithms presented in the literature for the DBAP. In this sense,627

the comparison with PSO and CS-SA remarks the benefits of628

applying a decentralized cooperative scheme for improving629

the processing times and detecting promising regions in the630

search space. Moreover, the experimentation over a repre-631

sentative set of instances, where the GSPP formulation im-632

plemented in CPLEX is not able to provide any feasible so-633

lution, shows that DCM is able to provide feasible solutions634

within small computational effort. In this regard, the com-635

parison with the best approaches used for those instances in-636

dicates that DCM presents a better performance on average637

and provides two new best known solutions.638

The analysis of different ways to exchange information639

among individuals and generate the groups will be a topic640

for future works. Moreover, we are also interested in assess-641

ing this approach in other berth allocation strategies and con-642

tainer terminal problems.643
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Abstract

Most of the current top-performing planners are sequen-
tial planners that only handle total-order plans. Although
this is a computationally efficient approach, the manage-
ment of total-order plans restrict the choices of reasoning
and thus the generation of flexible plans. In this paper we
present FLAP2, a forward-chaining planner that follows the
principles of the classical POCL (Partial-Order Causal-Link
Planning) paradigm. Working with partial-order plans allows
FLAP2 to easily manage the parallelism of the plans, which
brings several advantages: more flexible executions, shorter
plan durations (makespan) and an easy adaptation to support
new features like temporal or multi-agent planning. However,
one of the limitations of POCL planners is that they require
far more computational effort to deal with the interactions
that arise among actions. FLAP2 minimizes this overhead by
applying several techniques that improve its performance: the
combination of different state-based heuristics and the use of
parallel processes to diversify the search in different direc-
tions when a plateau is found. To evaluate the performance
of FLAP2, we have made a comparison with four state-of-
the-art planners: SGPlan, YAHSP2, TFD and OPTIC. Exper-
imental results show that FLAP2 presents a very acceptable
trade-off between time and quality and a high coverage on the
current planning benchmarks.

Introduction

Until the late 1990s, Partial-Order Planning (POP) was the
most popular approach to AI planning. In this approach,
based on the least-commitment philosophy, decisions about
action orderings and parameter bindings are postponed un-
til a decision must be taken. This is an attractive idea as
avoiding premature commitments requires less backtrack-
ing during the search process. Nevertheless, the most re-
cent total-order forward-chaining planners, such as LAMA
(Richter and Westphal 2010), Fast Downward Stone Soup-1
(Helmert, Röger, and Karpas 2011) or SGPlan (Chen, Wah,
and Hsu 2006), have demonstrated to be more efficient than
partial-order planners, mainly due to:

• Search states can be generated much faster as there is no
need to check threats (conflicts) among actions.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• They can generate complete state information and take
advantage of powerful state-based heuristics or domain-
specific control.

However, the general move towards state space search ig-
nores some important benefits of partial-order planning:

• A partial-order plan offers more flexibility in execution.

• The search can be easily guided to improve the action par-
allelism in the plan.

• It is a very suitable approach in multi-agent planning sys-
tems, either with loosely (Kvarnström 2011) or tightly
coupled (Torreño, Onaindı́a, and Sapena 2012) agents.

• It can easily be adapted to deal with temporal planning
(Benton, Coles, and Coles 2012).

These desirable properties have led many current re-
searchers to adopt POP techniques and to dedicate their ef-
forts to improve the performance of this planning approach.

In this paper we present FLAP2, a partial-order forward-
chaining planner that follows the design principles of POP,
except for the delayed parameter binding, thus keeping the
benefits of this successful approach. In spite of the inevitable
increase of the search cost, we will show that FLAP2 im-
proves the performance of existing partial-order planners
and that it is competitive against some total-order planners.
Particularly, FLAP2 returns solutions that represent a good
trade-off between time and quality and it also offers a high
coverage on the current planning benchmarks.

In the remainder of the paper we present the related work,
some background, the planning approach of FLAP2 and a
brief description of the other four planners that we will use in
the experiments. Finally, we present an empirical evaluation
of the performance of FLAP2 and we conclude with some
final remarks.

Related work

Looking at the winners of the last International Planning
Competitions (IPC’20111 and IPC’20082), we can observe
that the majority of planners participated in the sequen-
tial tracks. Fast Downward Stone Soup-1 (Helmert, Röger,
and Karpas 2011), Selective Max (Domshlak, Karpas, and

1http://www.plg.inf.uc3m.es/ipc2011-deterministic
2http://ipc.informatik.uni-freiburg.de/
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Markovitch 2010) and Merge and Shrink (Helmert et al.
2013) are optimal sequential planners built upon the clas-
sical Fast Downward planning system (Helmert 2006) based
on heuristic search. LAMA (Richter and Westphal 2010),
FF(hs

a) (Keyder and Geffner 2008) and C3 (Lipovetzky and
Geffner 2009) are also forward state-space search planners
that use powerful heuristics and compute (often suboptimal)
solution plans very rapidly.

Planners that generate partial-order plans are basically
found in temporal planning like SGPlan (Chen, Wah, and
Hsu 2006), Temporal Fast Downward (Eyerich, Mattmüller,
and Röger 2009), DAEYAHSP (Khouadjia et al. 2013),
YAHSP2 (Vidal 2011) and POPF2 (Coles et al. 2010). Tem-
poral planning requires the ability of dealing with action
parallelism due to the existence of temporally overlapping
durative actions. With the exception of POPF2, all of these
planners are built upon the parading of sequential planning.
SGPlan, for example, uses Metric-FF (Hoffmann 2002) as a
search engine, while DAEYAHSP and YAHSP2 are developed
on top of the YAHSP planner (Vidal 2003). These three plan-
ners need an additional module to parallelize the obtained
sequential plans and to enforce the temporal constraints of
the problem. This separation between action selection and
scheduling is doomed to fail in temporally expressive do-
mains and suffer from severe drawbacks in temporally sim-
ple problems, as choosing the wrong actions might render
the final solutions to be purely sequential and therefore of
very low quality.

The approach taken by Temporal Fast Downward (TFD)
is to perform forward search in the space of time-stamped
states, where at each search state either a new action can
be started or time can be advanced to the end point of an
already running action, thereby combining action selection
and scheduling (Eyerich 2012). This approach is usually
very good in terms of quality but their coverage on current
benchmarks is typically relatively low.

From the aforementioned planners, POPF2 is the only one
that follows a partial-order planning approach. It is a for-
ward planner that works with time, numbers and continuous
effects. POPF2 records state information at each step of the
plan (frontier state), like the negative interactions among the
variable assignments, and updates the state accordingly. The
frontier state is used to determine the set of applicable ac-
tions at each step of the plan. The late-commitment approach
of POPF2 is based on delaying commitment to ordering de-
cisions on the frontier state, thus ignoring other alternative
choices that would come earlier, i.e. before the frontier state.
Completeness, however, is ensured as search performs back-
tracking to find an alternative plan when necessary.

OPTIC (Benton, Coles, and Coles 2012) is the latest ver-
sion of POPF2 and also handles soft constraints and prefer-
ences. The key of its good performance is the fast generation
of the successor states during the search and the use of ef-
fective domain-independent heuristics. OPTIC yields high
quality plans, although, computationally speaking, it is not
that efficient as most of the sequential planners.

In this paper we present FLAP2, a partial-order forward-
chaining planner that follows the design principles of POP.
This approach is similar to the one of OPTIC, but introduces

two important differences:

• OPTIC adds additional temporal constraints over the ac-
tion to ensure that preconditions of the new actions are
met in the frontier state. The approach of FLAP2 is more
flexible as it does not commit to an action ordering if this
is not required, just like traditional POCL planners do.

• FLAP2 can add new actions at any point in the current
plan. OPTIC only adds actions after the frontier state, so
that the new actions do not threaten the preconditions of
earlier actions.

These two differences lead to a more flexible partial-order
planner, although this improvement entails a higher compu-
tational effort to deal with the interactions among actions.
However, FLAP2 outperforms OPTIC in many domains be-
cause it uses more sophisticated search methods and more
powerful heuristics. Moreover, delaying commitment on the
orderings of the actions allows FLAP2 to reach a solution
from a higher number of search nodes, which also improves
the search performance.

Background

For the purposes of this paper, we restrict ourselves to
propositional planning tasks. A planning task is a tuple
T = 〈O,V,A, I,G〉. O is a finite set of objects that model
the elements of the planning domain over which the plan-
ning actions are applied. V is a finite set of state variables
that model the states of the world. A state variable v ∈ V is
mapped to a finite domain of mutually exclusive values Dv.
A value of a state variable in Dv corresponds to an object of
the planning domain, that is, ∀v ∈ V,Dv ⊆ O. When a value
is assigned to a state variable, the pair 〈variable, value〉 acts
as a ground atom in propositional planning. A is the set of
deterministic actions. I is the set of initial values assigned
to the state variables and represents the initial state of the
task. G is the set of goals of the task, i.e., the values the state
variables are expected to take in the final state.

Definition 1. (Fluent) A ground atom or fluent is a tuple of
the form 〈v,d〉 where v ∈V and d ∈ Dv, which indicates that
variable v takes the value d.

Definition 2. (Action) An action a ∈ A is a tuple
〈PRE(a),EFF(a)〉 where PRE(a) = {p1, . . . , pn} is a set of
fluents that represents the preconditions of a and EFF(a) =
{e1, . . . ,em} is a set of fluents that represents the conse-
quences of executing a.

We define a partial-order plan for a planning task T = 〈O,
V , A, I, G〉 as follows:

Definition 3. (Partial-order plan) A partial-order plan is a
tuple Π = 〈∆,OR,CL〉. ∆ ⊆ A is the set of actions in Π. OR
is a set of ordering constraints (≺) on ∆. CL is a set of causal

links over ∆. A causal link is of the form ai
〈v,d〉
−−→ a j, meaning

that precondition 〈v,d〉 of a j ∈ ∆ is supported by an effect of
ai ∈ ∆.

This definition of a partial-order plan represents the map-
ping of a plan into a directed acyclic graph, where ∆ repre-
sents the nodes of the graph (actions) and OR and CL are
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the sets of directed edges that describe the precedences and
causal links among these actions, respectively.

The introduction of new actions in a partial plan may trig-
ger the appearance of flaws. There are two types of flaws
in a partial plan: preconditions that are not yet solved (or
supported) through a causal link and threats. A threat over

a causal link ai
〈v,d〉
−−→ a j is caused by an action ak that is

not ordered w.r.t. ai or a j and modifies the value of v, i.e.
〈v,d′〉 ∈ EFF(ak)∧ d′ 6= d, making the causal link unsafe.
Threats are addressed by introducing either an ordering con-
straint ak ≺ ai, which is called demotion because the causal
link is posted after the threatening action, or an ordering
a j ≺ ak, which is called promotion as the causal link is
placed before the threatening action (Chapman 1987).

We define a flaw-free plan as a threat-free partial plan
in which the preconditions of all the actions are supported
through causal links. Given a flaw-free partial-order plan Π,
we compute the frontier state, SΠ, resulting from the execu-
tion of Π in the initial state I. More formally:

Definition 4. (Frontier state) The frontier state SΠ of a flaw-
free partial-order plan Π = 〈∆,OR,CL〉 is the set of fluents
〈v,d〉 achieved in Π by an action a ∈ ∆/〈v,d〉 ∈ EFF(a),
such that any action a′ ∈ ∆ that modifies the value of v
(〈v,d′〉 ∈ EFF(a′)/d 6= d′) is not reachable from a by fol-
lowing the orderings and causal links in Π.

The basic POP algorithm starts by building an initial min-
imal plan containing two fictitious actions: the initial action
ainit , with no preconditions and EFF(ainit) = I, and the goal
action agoal , with no effects and PRE(agoal) = G. The algo-
rithm works by following the next three steps until a solution
is found: 1) select the next subgoal to achieve, 2) choose
an action to support the selected subgoal and 3) solve the
threats that arise as a consequence of the variables value
modification.

In the following section we describe the planning algo-
rithm of FLAP2 as well as the necessary modifications to
adapt a POP algorithm to support a forward search. In our
effort to maintain all the benefits of this approach, we tried
to keep the changes as minimal as possible.

Planning algorithm
FLAP2 is a modified version of FLAP planner (Sapena,
Onainda, and Torreño 2013). In the following subsections
we briefly describe the planning approach of FLAP and the
changes made in FLAP2 to improve its performance, respec-
tively.

FLAP’s working scheme

FLAP implements an A∗ search, as the standard textbook
algorithm in (Russell and Norvig 2009), guided by an eval-
uation function. A search node is a partial-order plan and
the starting node is the initial initial plan Π0 = 〈{ainit}, /0,
/0〉. Although Π0 does not contain the fictitious goal action
agoal , this action is available to be added to the plan as the
rest of actions in A, i.e. agoal ∈ A. In fact, a solution plan is
found when agoal is inserted in the plan.

FLAP follows two steps at each iteration of the search
process until a solution plan is found: a) it selects the best

node, Πi, from the set of open nodes according to the evalu-
ation function, and b) all possible successors of Πi are gen-
erated, evaluated and added to the list of open nodes. FLAP
considers that Π j is a successor of a plan Πi if the following
conditions are met:

• Π j adds a new action a j to Πi, i.e., ∆ j = ∆i ∪{a j}

• All preconditions of a j are supported with actions in Πi

by inserting the corresponding causal links: ∃ai
p
−→ a j ∈

CL j,ai ∈ ∆i,∀p ∈ PRE(a j).

• All threats in Π j are solved through promotion or demo-
tion by adding new ordering constraints; the result is that
Π j is a flaw-free plan.

The forward-search approach of FLAP allows to use state-
based heuristics, which are much more informed than classi-
cal POP-based heuristics. In order to evaluate a partial-order
plan Π, FLAP computes the frontier state SΠ. It uses three
different heuristics:

• hDT G. A Domain Transition Graph (DTG) of a state vari-
able is a representation of the ways in which the variable
can change its value (Helmert 2004). Each transition is la-
beled with the necessary conditions for this to happen, i.e.
the common preconditions to all the actions that induce
the transition. These graphs are used to estimate the cost
of the value transition required to support an action pre-
condition, and the Dijkstra algorithm is applied to calcu-
late the length of the shortest path in the DTG that causes
the transition. The hDT G heuristic returns the minimum
number of actions in a relaxed plan, where delete effects
are ignored, that achieves the problem goals from SΠ. Ac-
tions in the relaxed plans are selected according to the
sum of the estimated cost of their preconditions.

• hFF . FLAP also makes use of the traditional FF heuristic
function hFF (Hoffman and Nebel 2001), which builds a
relaxed plan by ignoring the delete effects of the actions
and returns its number of actions. The actions of this plan
are selected according to their levels in the relaxed plan-
ning graph.

• hLAND DT G and hLAND FF . Landmarks are fluents that
must be achieved in every solution plan (Hoffmann, Por-
teous, and Sebastia 2004; Sebastia, Onaindı́a, and Marzal
2006). FLAP computes a landmark graph and uses this in-
formation to calculate heuristic estimates: since all land-
marks must be achieved in order to reach a goal, the goal
distance can be estimated through the set of landmarks
that still need to be achieved from the state being eval-
uated onwards. Once we have the set of non-supported
landmarks, the heuristic value is the result of estimating
the cost of reaching these landmarks with either hDT G or
hFF . This way, FLAP has two versions of the landmarks
heuristic, called hLAND DT G and hLAND FF , respectively.

For evaluating a plan Π = 〈∆,OR,CL〉, FLAP defines two
different evaluation functions:

• fFF (Π) = w1 ∗g(Π) + w2 ∗hLAND FF (Π) + w3 ∗hFF (SΠ)

• fDT G(Π) = w1 ∗g(Π) + w2 ∗hLAND DT G(Π) + w3 ∗hDT G(SΠ)

COPLAS 2014: 9th Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

27



g(Π) measures the cost of Π in number of actions, i.e.
g(Π) = |∆|. The weights in the two functions are set to w1 =
1, w2 = 4 and w3 = 2. FLAP uses both evaluation functions
to simultaneously explore different parts of the search space,
thus defining two main search processes.

Additionally, a new A∗ search is started in parallel when
one of the two main search processes is stuck in a plateau,
i.e. the evaluation function does not improve after several it-
erations. The goal of this new search is not to escape from
the plateau, but to find a solution plan starting from the fron-
tier state of the best node found so far, as this node is more
likely to be closer to a solution than the initial state. The par-
allel search is cancelled if the main search manages to leave
the plateau.

FLAP planner is sound and complete since all possible
successors are considered at each point and, when agoal is
added to the plan, the support of all problem goals as well as
the plan consistency is guaranteed.

Performance improvements in FLAP2

In order to improve the performance of FLAP we performed
an analysis of the search process, specifically of the be-
haviour of the heuristics in domains with different charac-
teristics. This analysis is shown in the following subsection.
Finally, in a second subsection, we describe the modifica-
tions introduced in FLAP2 according to the conclusions of
the analysis.

Analysis of heuristics and the plateau escaping method.
Regarding hDT G, we found that this heuristic is more infor-
mative than hFF in planning domains that satisfy some spe-
cific characteristics:

• the state variables have rather large domains containing
multiple different values, and

• the DTGs of these variables are sparse graphs.

In Figure 1 we can observe an example of the DTGs of
two variables: (empty t1) and (at d1). There are only two
values, true and false, in the domain of (empty t1), mean-
ing that the cabin of the truck t1 can be empty or not. On
the contrary, the position of driver d1 can take several differ-
ent values: location 1 (l1), cities 1, 2 and 3 (c1, c2 and c3)
and truck 1 (t1). The values of hDT G obtained from the DTG
of variable (empty t1) are not very accurate because there
is only one transition that makes the variable change from
true to false, and this transition is derived by many differ-
ent actions, particularly all actions in which d1 boards t1 at
any possible city. Hence, selecting the action to be included
in the relaxed plan to support this transition is not an easy
task and a wrong decision would worsen the quality of the
heuristic.

On the contrary, the DTG of variable (at d1) is more in-
formative. For example, the path to change its value from
l1 to c1 contains three transitions: l1 → c2 → t1 → c1 or
l1 → c3 → t1 → c1, depending on the position of the truck.
Moreover, each transition in the path is produced by a single
action and thus the correct action is always selected by hDT G

when computing the relaxed graph. Our conclusion is that
hDT G performs slightly better than hFF in transportation-like

Figure 1: DTGs of variables (empty t1), the state of the cabin
of truck t1, and (at d1), the location of driver d1, in a Driver-
Log problem example.

domains, such as DriverLog or ZenoTravel, where the DTGs
of several variables are rather large sparse graphs. For the
rest of domains, hFF clearly outperforms hDT G.

hDT G also presents some limitations in non-reversible do-
mains, where the effects of some actions cannot be undone.
The search space of these domains may contain dead-ends,
i.e., nodes with frontier states from which the problem goals
are unreachable. hFF is able to detect many of these dead-
ends as it builds a relaxed planning graph at each node of the
search tree: if any of the problem goals is not reachable in
the relaxed graph, the node is a dead-end. On the contrary,
hDT G only detects a dead-end state if no transition path can
be found in the DTGs that transforms the value of a variable
into its final value. Then, hDT G does not take into account
the interactions between variables to detect dead-ends. This
limitation can be alleviated by computing mutex fluents in a
preprocessing stage, i.e. fluents that cannot be true in a state
at the same time. Improvements in the hDT G heuristic is an
issue we want to address in future works.

On the other hand, the landmark-based heuristic, hLAND,
is very informative in domains which contain a large number
of atomic landmarks. An atomic landmark, which is a single
fluent that every solution plan must achieve at some point,
is usually much more accurate than a disjunctive landmark
since a disjunctive landmarks is less restrictive. In FLAP,
hLAND (both hLAND FF and hLAND DT G), is always used in
combination with hFF or hDT G. However, we observed that,
when the number of atomic landmarks is similar or greater
than the number of disjunctive landmarks, hLAND is informa-
tive enough to be used as a stand-alone heuristic.

These three heuristics (hDT G, hFF and hLAND) assess the
quality of a plan by estimating the number of actions re-
quired to reach the problem goals. However, this does not
seem to be the most appropriate approach for a planner that
works with concurrent actions. When dealing with partial-
order plans, optimizing the plan duration (makespan) is al-
ways preferable if we aim to improve the plan parallelism.
Even so, as we will see in the Experimental Results sec-
tion, the quality of the plans generated by FLAP2 w.r.t. the
makespan is quite good because it exploits the advantages of
working directly with concurrent actions. However, adapt-
ing the heuristics to evaluate the plans according to their
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makespan could significantly improve the quality of the so-
lutions, a research line we intend to explore in the future.

Finally, we analyzed the plateau escaping mechanism of
FLAP. The parallel search process started when one of the
main search processes gets stuck in a plateau is not enough
to solve some difficult problems as this new search may also
get stuck in another plateau.

Modifications in the search process of FLAP. Taking all
the above considerations into account, we designed FLAP2
as follows. First of all, we check if sufficient information
can be extracted from the landmarks graph. We define λ =
|dis junctive landmarks|/|atomic landmaks|, i.e. the ratio
between the number of disjunctive landmarks and the num-
ber of atomic landmarks; when no atomic landmarks are
found, λ = ∞. We consider that there is enough information
when λ ≤ 1.2.

When hLAND is not informative enough, λ > 1.2, FLAP2
starts a single main A∗ search with the fFF evaluation func-
tion with w1 = 1, w2 = 4 and w3 = 2. The weight for
hLAND FF , w2, is higher to make up for the poor heuris-
tic values returned by hLAND. Unlike FLAP, in FLAP2 we
do not start a second main search with hDT G because, as
we said in the previous section, hDT G is only worth using
in transportation-like domains and thereby a general use of
hDT G does not compensate for the overhead in computation
time and memory consumption. Consequently, hDT G is only
used in FLAP2 when search needs to be diversified due to
the existence of a plateau.

The search process of FLAP2 uses a variable, Πbest , that
stores the node with the best heuristic value found so far.
Initially Πbest is set to the initial plan, i.e. Πbest = Π0. When
a search node with a better heuristic value than the one of
Πbest is found, Πbest is updated to this node. We consider
that the search is stuck in a plateau when Πbest has not been
updated in several iterations. In this case, two new search
processes are started from the frontier state of Πbest to in-
crease the chances of escaping from the plateau. The first
one uses fFF and the second one the fDT G evaluation func-
tion, both with the same weight values than the ones used
for the main search. By using two new searches with dif-
ferent heuristic functions, we allow to diversify the search
directions and find a plateau exit more effectively.

A child search works equally as the main search. In fact,
when a child search finds a plateau, it also starts two new
search processes. This behaviour can be observed in Fig-
ure 2. When a search manages to escape from a plateau, i.e.
when a node with a heuristic value better than the value of
Πbest is found, then its two child processes are terminated.

In the case that hLAND is informative enough, λ ≤ 1.2,
FLAP2 starts a search process with fFF and a second
main A∗ search with the following evaluation function:
fLAND FF(Π) = w1 ∗g(Π) + w2 ∗hLAND FF(Π), with w1 = 1
and w2 = 1. In this case, hLAND FF is used as a stand-alone
heuristic function and it is given a small weight because this
is already a very informative heuristic when many atomic
landmarks are extracted from the problem. In this case, if a
plateau is found, two child searches are started in the same
way as for the case of λ > 1.2, but now we use fFF with

Figure 2: Parallel A∗ search processes for plateau escaping.

w1 = 1, w2 = 1 and w3 = 1, and fLAND DT G(Π) = w1 ∗g(Π)
+ w2 ∗hLAND DT G(Π) with w1 = 1 and w2 = 1. Table 1 sum-
marizes the configuration of the search processes of FLAP2
according to the value of λ .

λ > 1.2 λ ≤ 1.2

Main

search
fFF ,w1 = 1,w2 = 4,w3 = 2

fFF ,w1 = 1,w2 = 4,w3 = 2

fLAND FF ,w1 = w2 = 1

Child

search

fFF ,w1 = 1,w2 = 4,w3 = 2

fDT G,w1 = 1,w2 = 4,w3 = 2

fFF ,w1 = w2 = w3 = 1

fLAND DT G,w1 = w2 = 1

Table 1: Configuration of the search processes in FLAP2.

This configuration has been fixed as the result of an ex-
tensive experimental analysis and it offers a good trade-off
between search time and plan quality in most of the prob-
lems. Other settings significantly improve the performance
in some domains, but they are less robust since they worsen
the results in the other ones.

The mechanism of parallel searches implemented in
FLAP2 yields very good results but it can lead to an ex-
ponential growth in the number of simultaneous processes.
However, this problem does not usually occur in practice
since the number of simultaneous search processes that ex-
ceeded the number of processing cores (8 in our test com-
puter) only occurred in a few problems. Specifically, we
tested FLAP2 in 244 problems from 10 different domains
and only 7 of them required more than 8 search processes
at the same time. And yet, this did not prevent FLAP2 from
finding a solution plan for these problems.

Temporal planning systems

In order to evaluate the performance of FLAP2, we selected
four current top-performing planners that return parallel
plans: SGPlan, YAHSP2, OPTIC and TFD. All of them are
temporal planners as only this type of planners are currently
able to synthesize plans with concurrent actions. These plan-
ners are briefly described in the following subsections.
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SGPlan

SGPlan is designed to solve both temporal and non-temporal
planning problems specified in PDDL3 with soft goals, de-
rived predicates or ADL features. SGPlan was the winner of
the temporal satisficing track in the sixth planning competi-
tion (IPC 2008).

For each subgoal, SGPlan uses search-space reduction to
eliminate irrelevant actions and solves it using a modified
version of Metric-FF. If it fails to find a feasible plan within
a time limit, SGPlan aborts the run of Metric-FF and tries
to decompose the problem further. It first applies landmark
analysis to decompose and solve the subproblem and, if it
is unsuccessful in solving the subproblem, it tries path opti-
mization for numerical and time initial literals problems to
further partition the subproblem. When a separate subplan
has been computed for each subgoal, SGPlan merges them
into a consistent plan.

This partition-and-resolve process has proved to be very
successful in a wide range of domains, although its perfor-
mance worsens in domains in which there are strong interac-
tions between the subgoals. This is because the actions that
achieve the subgoals are highly related, making it more dif-
ficult to obtain a significant fraction of global constraints.

YAHSP2

YAHSP is a heuristic planner for suboptimal STRIPS do-
mains. The heuristic is similarly computed to FF heuristic,
but used in a different way. When a state is being evaluated,
the heuristic computes a relaxed plan where delete effects
are ignored. The beginning actions of the relaxed plan that
form a valid plan are applied to the state being evaluated, re-
sulting in another state that will often bring the search closer
to a solution state. The states computed this way are called
lookahead states. YAHSP uses this lookahead strategy in a
complete best-first search algorithm in which the helpful ac-
tions (Hoffman and Nebel 2001) computed by the heuristic
are prioritized.

YAHSP2 is designed as a simplified version of YAHSP.
The main modifications are the following:

• The relaxed plans used to build the lookahead plans are
computed directly from a critical path heuristic like hadd ,
avoiding the need of complex data structures to build
planning graphs.

• The heuristic value of states is no longer the length of the
relaxed plans, but the hadd value of the goal set.

• Some refinements, such as the use of helpful actions, are
abandoned due to the lack of robustness.

This minimalist approach makes YAHSP2 to be an ex-
tremely fast planner with a wide coverage on the current
benchmarks. In fact, a multi-core version of this planner was
the runner-up ex-aequo in the temporal satisficing track of
the IPC 2011. The lack of optimizations on the plan quality,
however, leads to the generation of overlength plans in many
problem instances.

OPTIC

Unlike SGPlan and YASHP2, OPTIC does not handle two
independent processes for action selection and temporal

scheduling of the actions, thus obtaining high quality plans
with respect to the makespan. It is an extended version of
POPF2, which was the runner-up ex-aequo in the temporal
satisficing track of the IPC 2011.

OPTIC is a forward-chaining temporal planner that in-
corporates some ideas from partial-order planning: during
search, when applying an action to a state, it seeks to in-
troduce only the ordering constraints necessary to resolve
threats, rather than insisting the new action occurs after all
of those already in the plan. OPTIC supports a substantial
portion of PDDL 2.1 level 5, including actions with (linear)
continuous numeric effects and effects dependent on the du-
rations of the actions. It also handles soft constraints and
preferences.

Temporal Fast Downward (TFD)

TFD, the runner-up in the temporal satisficing track of the
IPC 2008, is a variant of the propositional Fast Downward
planning system. It introduces several adjustments to cope
with temporal and numeric domains and no longer uses the
causal graph heuristic. Instead, it makes use of the context-
enhanced additive heuristic (CEA) proposed by Geffner
(Geffner 2007), which is a generalization of both the causal
graph heuristic and the additive heuristic.

TFD uses a greedy best-first search approach enhanced
with deferred heuristic evaluation. Besides the values of the
state variables, the time-stamped states in the search space
contain a real-valued time stamp as well as information
about scheduled effects and conditions of currently executed
actions. A transition from one time-stamped state to another
is accomplished by either a) adding an applicable action
starting at the current time point, applying its start effects
and scheduling its end effects as well as its over-all and end
conditions, or b) letting time pass until the next scheduled
happening and applying effects scheduled for the new time
point and deleting expired conditions. This integrated pro-
cess of action selection and time scheduling yields very good
results in terms of plan quality.

Experimental results

In this section we compare the performance of FLAP2
against the four aforementioned planners. Due to the dif-
ferent characteristics of these planners, we have divided this
section in two subsections:

• Comparison of FLAP2 with SGPlan and YAHSP2, two
sequential planners that apply a scheduler to parallelize
the plans at a later stage. This approach is extremely fast
but finds more difficulties in producing plans of good
quality regarding the makespan.

• Comparison of FLAP2 with OPTIC and TFD, two plan-
ners that merge the action selection and the scheduling
process. Working with partial-order planners allows to
compute more flexible plans, with a better makespan, but
slows down the search process.

In both cases, we selected six temporal domains from the
International Planning Competitions (IPC), setting the du-
ration of all actions to 1 as FLAP2 is still unable to work
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with durative actions. The IPCs provide an extensive set of
benchmarking problems to assess the state of the art in the
field of planning (Linares, Jiménez, and Helmert 2013).

We observed that the behaviour of these planners varies
greatly depending on the level of interaction between the
problem goals. For this reason we selected three domains
with strong dependencies between the goals, BlocksWorld,
Depots and DriverLog, and three domains with rather inde-
pendent goals, Satellite, Rovers and ZenoTravel. These do-
mains are described below:

• Blocksworld: this domain, presented in the IPC 2000, con-
sists of a set of blocks that must be arranged to form one
or more towers. We used a variation of this domain where
several robot arms are used to handle the blocks, thus al-
lowing parallel actions in the plans.

• Depots: this domain, introduced in the IPC 2002, com-
bines a transportation-like problem with the Blocksworld
domain.

• Driverlog: this domain, used in the IPC 2002, involves
transportation, but vehicles need a driver before they can
move.

• Satellite: this domain, used in the IPC 2004, involves
satellites collecting and storing data using different instru-
ments to observe a selection of targets.

• Rovers: used in the IPC 2006, the objective is to use a col-
lection of mobile rovers to traverse between waypoints
on the surface of Mars, carrying out a variety of data-
collection missions and transmitting data back to a lander.

• Zenotravel: in this domain, presented in the IPC 2002,
people must embark onto planes, fly between locations
and then debark, with planes consuming fuel at different
rates according to their speed of travel.

Testing was performed on a 2.3 GHz i7 computer with 12
GB of memory running Ubuntu 64-bits. In the presented re-
sults we only consider the first plan returned by the planners,
as most of them do not continue searching for better plans.
Each experiment was limited to 30 minutes of wall-clock
time.

FLAP2 vs. SGPlan and YAHSP2

Table 2 shows the number of solved problems and the av-
erage time employed by these planners to find the first so-
lution. Average times are calculated considering only those
problems that were solved by the three planners.

As it can be observed, FLAP2 solves more problems and
shows a more stable behaviour. Both, SGPlan and YAHSP2
present some difficulties in domains with strong interactions
between the goals (BlocksWorld, Depots and DriverLog),
but they are significantly faster in the other three domains.
The landmarks heuristic and the plateau escaping mecha-
nism of FLAP2 are very helpful to deal with strong depen-
dencies among the goals. FLAP2 also easily solves the prob-
lems from the Rovers, Satellite and ZenoTravel domains, but
the overhead to cope with threats among actions together
with a higher branching factor prevents FLAP2 from being
as faster as SGPlan or YASHP2 in these domains.

FLAP2 SGPlan YAHSP2

Average Average Average

Domain Prob Solved time Solved time Solved time

BlocksWorld 34 34 0.40 22 5.80 34 57.78

Depots 20 20 1.99 19 0.15 16 121.24

DriverLog 20 20 3.38 17 1.02 20 0.11

Satellite 20 20 4.19 20 0.07 20 0.05

Rovers 20 20 4.21 20 0.04 20 0.04

ZenoTravel 20 20 6.91 20 0.23 20 0.16

Total 134 134 3.52 118 1.22 130 29.90

Table 2: Number of problems solved and average time (in
seconds) of FLAP2, SGPlan and YAHSP2.

Regarding the plan quality, Figures 3 and 4 show the
makespan of the plans computed by the three planners. The
results are normalized by the makespan of the plans obtained
by FLAP2 for a better viewing. This way, a value of 2 indi-
cates a plan with a makespan twice as much as the makespan
of FLAP2, and a value of 0.5 a plan two times shorter.

In general, FLAP2 generates plans with better quality
than SGPlan and YAHSP2. SGPlan produces slightly worse
plans, 1.36 times longer in the six domains. The plan qual-
ity of YAHSP2 is much worse as the generated plans are 2.4
times longer than FLAP2 on average.

FLAP2 vs. OPTIC and TFD

Table 3 shows the number of solved problems and the av-
erage makespan of FLAP2, OPTIC and TFD. As it can be
observed, FLAP2 also solves more problems than OPTIC
and TFD. The average makespan is computed taking into
account only those problems that were solved by the three
planners. Regarding the makespan, FLAP2 is in a intermedi-
ate position between TFD, that produces plans of very good
quality, and OPTIC.

FLAP2 OPTIC TFD

Average Average Average

Domain Prob Solved makespan Solved makespan Solved makespan

BlocksWorld 34 34 10.92 24 15.88 34 7.25

Depots 20 20 11.93 11 14.86 10 9.10

DriverLog 20 20 14.47 15 12.93 16 13.40

Satellite 20 20 17.00 16 11.50 20 14.25

Rovers 20 20 12.65 20 13.35 17 14.29

ZenoTravel 20 20 8.56 16 8.31 20 8.31

Total 134 134 12.59 102 12.81 117 11.10

Table 3: Number of problems solved and average makespan
of FLAP2, OPTIC and TFD.

In Figures 5 and 6 we show the computation time of
FLAP2, OPTIC and TFD to find the first solution plan. For
the average times shown in these figures, we considered only
the problems that the three planners have managed to solve.
FLAP2 is much faster than OPTIC in the BlocksWorld, De-
pots, Satellite and ZenoTravel domains. On the contrary, OP-
TIC is slightly faster than FLAP2 in the Rovers domain. On
average, OPTIC is 113.94 times slower than FLAP2 in all
the six domains. TFD is also slower than FLAP2, especially
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Figure 3: Makespan of the plans of SGPlan and YAHSP2,
normalized by the makespan of the plans of FLAP2, for the
BlocksWorld, Depots and DriverLog domains.

in the Depots and DriverLog domains. On average, TFD is
45.3 times slower than FLAP2 in all the six domains.

In summary, we can conclude that FLAP2 is very com-
petitive in comparison with these four top-performing plan-
ners. It solves more problems than SGPlan, YAHSP2, OP-
TIC and TFD in the tested domains. FLAP2 also produces
plans of better quality than the sequential planners SGPlan
and YAHSP2, and is far more faster than OPTIC and TFD,
planners that, like FLAP2, handle partial-order plans.

Figure 4: Makespan of the plans computed by SGPlan
and YAHSP2, normalized by the makespan of the plans of
FLAP2, for the Rovers, Satellite and ZenoTravel domains.

Conclusions

The flexibility of the Partial-Order Planning (POP) paradigm
allows for the generation of high-quality parallel plans.
However, current sequential planners outperform partial-
order planners because they require less computational ef-
fort as they not need to cope with interactions among actions
and can use very effective state-based heuristics.

In this paper we present FLAP2, an improved version a
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Figure 5: Planning time (in seconds) of FLAP2, OPTIC and
TFD in the BlocksWorld, Depots and DriverLog domains.

FLAP. FLAP is a forward partial-order planner that com-
bines three different heuristics to guide the search and im-
plements a novel plateau-escaping method that diversifies
the search in different directions. FLAP2 changes the way
the heuristics are combined and applies a recursive method
to deal with plateaus, thus significantly improving the plan-
ning performance.

We compared FLAP2 with SGPlan, YAHSP2, OPTIC and
Temporal Fast Downward (TFD), four top-performing plan-
ners that can generate plans with concurrent actions. Like

Figure 6: Planning time (in seconds) of FLAP2, OPTIC and
TFD in the Rovers, Satellite and ZenoTravel domains.

FLAP2, OPTIC and TFD handle partial-order plans, com-
bining the action selection and the scheduling processes. On
the contrary, SGPlan and YAHSP2 are total-order planners
that parallelize the computed plans at a later stage.

FLAP2 is the only one that was able to solve all the prob-
lems in the selected benchmark set. Regarding the makespan
(plan duration), partial-order planners generate plans of
much better quality than the total-order planners. Particu-
larly, FLAP2 has shown to obtain plans of very good quality,
only surpassed by TFD, which is able to produce plans with
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a slightly better makespan. As for the planning time, FLAP2
has shown to be competitive with the sequential planners,
SGPlan and YAHSP2, especially in domains with strong in-
teractions between the problem goals, and far more faster
than the other partial-order planners, OPTIC and TFD.

As a future extension, we intend to investigate the adap-
tation of the heuristic functions of FLAP2 to optimise the
makespan and to mitigate the problem of hDT G with dead-
end states in non-reversible domains. Then, we want to ex-
ploit the good performance of FLAP2 and its flexibility as
a partial-order planner to develop a new version for dealing
with temporal planning problems.
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Abstract

Unmanned Aerial Vehicles (UAV) represent a major
advantage in defense, disaster relief and first respon-
der applications. UAV may provide valuable informa-
tion on the environment if their Command and Con-
trol (C2) is shared by different operators. In a C2 net-
working system, any operator may request and use the
UAV to perform a remote sensing operation. These re-
quests have to be scheduled in time and a consistent
navigation plan must be defined for the UAV. More-
over, maximizing UAV utilization is a key challenge for
user acceptance and operational efficiency. The global
planning problem is constrained by the environment,
targets to observe, user availability, mission duration
and on-board resources. This problem follows previ-
ous research works on automatic mission Planning &
Scheduling for defense applications. The paper presents
a full constraint-based approach to simultaneously sat-
isfy observation requests, and resolve navigation plans.

Introduction

Using Unmanned Aerial Vehicles (UAV) has become a ma-
jor trend in first responder, security and defense areas. UAV
navigation plans are generally defined during mission prepa-
ration. However, during mission preparation or execution,
different users can request for additional observations to be
performed by the UAV. It is then necessary to insert these
actions in UAV navigation plans. The user must deal with
constraints that will impact the overall plan feasibility, such
as observation preconditions, duration of the UAV mission
or resource consumption. For example, a rotorcraft can eas-
ily perform an observation using stationary flight, but has
poor endurance. In turn, a fixed wing can perform longer
missions but needs to orbit around a waypoint to acquire and
observe a target. This paper addresses vehicle planning is-
sues, managing constraints composed of mission objectives,
execution time and resource requirements. In this problem,
UAVs can communicate with the network to transmit remote
videos to ground manned vehicles on ground.

The optimization problem consists in finding the path
that maximizes the overall mission efficiency while ensur-
ing mission duration and resource consumption. The struc-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ture of consumption and observation constraints make the
problem difficult to model and hard to solve. Determin-
ing the shortest path may not lead to the most efficient one,
since observation requests may occur for various different
places. The paper proposes a constraint model for UAV ac-
tivity optimization, before and during mission execution. It
is formulated as a Constraint Satisfaction Problem (CSP),
and implemented using the Constraint Logic Programming
(CLP) framework over finite domains. The constraint-based
model combines flow constraints over {0,1} variables, with
resource constraints and conditional task activation models.
A solving method is also proposed, which tends to be a very
generic approach for solving these complex problems. It is
based on branch&bound, constraint propagation and a prob-
ing technique. Probing is a search strategy that manages
the state space solver exploration using the solution of a
low-computational relaxed problem evaluation. Results are
reported using a SICStus Prolog CLP(FD) implementation,
with performances that suit operational needs.

The first section introduces the problem and the second
one describes our constraint based approach, compared to
the state of the art. Next section presents problem formula-
tion as a CSP. Search algorithms are then described. We give
a few results on realistic benchmarks and a general conclu-
sion.

UAV Mission Planning Problem

Intrinsic UAV characteristics (i.e. maximal speed, manoeu-
vrability, practical altitudes) have a direct impact on opera-
tion efficiency. Figure 1 presents the Patroller, a UAV that
has large wingspan to allow medium altitude flight, which
enables performing long-range missions by minimizing en-
ergy consumption. UAV operations are not only constrained
by energetic resources, but also mission time and terrain
structure. Figure 2 shows a set of potential waypoints to
flyby. They are defined during mission preparation, by ter-
rain analysis, mission objectives and situation assessment.
Navigation constraints are also defined by available corri-
dors, that are provided either by navigation authorities, in
civilian space, or by the Air Command Order (ACO), in mil-
itary context.
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Figure 1: The Patroller UAV can detect targets at long range.
With such UAV, the operator requests observation at prepa-
ration time or during mission execution.

Informal Description

A navigation plan consists in a subset of waypoints, totally
ordered, estimated flyby dates and some observations to per-
form. Choosing the final mission plan depends on multiple
criteria (duration, available energy, exposure, objectives, ini-
tial and recovery points). Maximizing mission objectives,
for instance the number of observations performed during
the mission, is the primary cost objective of planning au-
tomation. The overall mission duration, exposure and on-
board energy may also be maintained as low as possible. To
decide a mission plan, the user must deal with the following
elements:

• Initial UAV conditions: initial positions and remaining
energy.

• Terrain structure: defined as a set of navigation way-
points, connected by available paths. Each waypoint has
a geographical reference, and a distance metric is defined
to compute the value between any couple of waypoints.

• Mission Objectives: the final recovery point, and any
waypoint to which a sensing observation has been asso-
ciated (requested by some user).

• On-board resource consumption: resources can be con-
sumed due to UAV mobility (from a waypoint to another
one) and/or observation action.

• Exposure: in some defense missions, the UAV exposure
to threats shall be mastered.

In general, the plan is defined at mission preparation time,
but it can be redefined on-line due to the situation evolution:

• Situation changes: new threats might appear.

• Mission objective: sensing and observations actions can
be updated. The recovery points can be updated during
mission execution.

• UAV state: energy consumption is not what was expected
(for instance due to wind conditions).

The remote operator receives in real time all the critical
data that may require a replanning event. To be able to keep

Figure 2: Navigation plan and observation requests from
users. The UAV must maximize the number of requested ob-
servations (specified by field of views, represented in red),
under time and energetic constraints.

operational efficiency, it is fundamental to have fast solving
algorithms that can address realistic missions plans and be
able to deal with all the mission constraints.

Example

In figure 2, the UAV takes off from the initial position (blue
circle) and must perform a maximal set of observations
among {O1, O2, O3, O4}. Each observation consumes en-
ergy and time, as for navigation between two points. In case
of a defense mission, it also exposes the UAV to opponent
visibility. The UAV is recovered after a last potential obser-
vation in O3 (blue circle). To satisfy energy and UAV ex-
posure, the user decides to only plan for observation actions
{O1, O2, O3} and discards observation O4. White circles
are potential flyby navigation points.

Complexity

Some simplified versions of the problem are equivalent
to known hard problems. If the set of observations is
fixed, then the problem can be specialized as a Travelling
Salesman Problem (TSP) with multiple distance constraints.
Maximizing the set of observation actions can also be re-
laxed as a knapsack problem by formulating a path weight
for each action. In both cases, these problems are known
to be NP-hard, and solution verification can be performed
in polynomial time. Solution can be evaluated by a simple
check of the navigation plan, verifying that each action is
correctly scheduled and metrics are correctly instantiated.
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Therefore some problem instances are NP-hard on worst
cases, although polynomial families may certainly be exhib-
ited.

A Constraint Programming Approach

State of the Art

Several approaches can deal with such problems, ranging
from classical planning to very specific algorithms.

• Domain-independent planning(Fox and Long 2000), us-
ing Planning Domain Description Language (PDDL) for-
malisms (Fox and Long 2003). This language can model
several complex actions.

• Dedicated planners have been developed for UAV, UGV
and vehicle planning: Ix-TeT (Laborie and Ghallab 1995),
Heuristic Scheduling Testbed System (HSTS) (Muscet-
tola 1993), Reactive Model-based Programming Lan-
guage (RMPL) (Abramson, Kim, and Williams 2001)...

• Planning frameworks like Hierarchical Task Network
(HTN)(Goldman et al. 2002; Meuleau et al. 2009) have
been developed to tackle specific operational domains.

All these framework need to be complemented with CSP
formulation in order to tackle resource and temporal con-
straints.

Linear Programming (LP) techniques can also be envis-
aged. However, if dealing with non-linearity or discrete vari-
ables, constraints cannot be easily reformulated into linear
ones without a massive increase of the variable set.

Many heuristic search methods are based on the well-
known A* (Hart, Nilsson, and Raphael 1968) and also com-
monly used in vehicle planning. Several families have been
derived, such as Anytime A* (Hansen and Zhou 2007), or
other variants, adapted to dynamic environments. They
can be divided into two categories: incremental heuristic
searches(Koenig, Sun, and Yeoh 2009) and real-time heuris-
tic searches (Botea, Mller, and Schaeffer 2004). For exam-
ple, an experiment has been performed for emergency land-
ing (Meuleau et al. 2011), that uses A* algorithm, integrated
into aircraft avionics. These algorithms can be efficient but
are limited to simple cost objectives or basic constraint for-
mulations.

Advanced search techniques can also solve vehicle rout-
ing problems, using Operation Research(Gondran and Mi-
noux 1995) (OR) or local search(Aarts and Lenstra 1997)
techniques. Simulated Annealing (Cerny 1985), Genetic Al-
gorithms (Goldberg 1989), Ant Colony Optimization (ACO)
(Dorigo and Gambardella 1997), and more generally meta-
heuristics are also good candidates. These techniques do not
necessarily provide optimality nor completeness, but scale
very well to large problems. However, it may require strong
effort to implement complex mission constraints.

This work follows previous research in vehicle routing us-
ing constraint logic programming (CP) in Prolog and hybrid
techniques (Lucas et al. 2010; Lucas and Guettier 2010).
In the field of logic programming, new paradigms have
emerged such as Answer Set Programming leading to A-
Prolog or, more recently, CR-Prolog languages (with their

dedicated solvers). However, their declarative extensions are
not significant in the context of this work.

Using Constraint Logic Programming

Operational users are not only interested in performance,
feasibility or scalability, but at first in mission efficiency.
In this paper, we consider maximizing mission observations
while taking into account time, energetic or exposure con-
straints.

To satisfy user needs, the problem must be addressed
globally, which requires composition of different mathe-
matical constraints. This can be done using a declarative
logical approach, constraint predicates and classical oper-
ators (Hentenryck, Saraswat, and Deville 1998). Due to
the introduction of complex navigation constraints related to
actions description, other approaches cannot be efficiently
used. Search techniques can be complex to design (in the
case of A*) or models difficult to express (in the case of LP).
Furthermore, as shown in previous works, the problem can
be extended in several ways by combining different formu-
lations. Search algorithms and heuristics must be developed
or adapted without reconsidering the whole model.

This can be achieved using CLP expressiveness, under
a model-based development approach. CLP is a competi-
tive approach to solve either constrained path or scheduling
problems. In CLP, CSP follows a declarative formulation
and is decoupled from search algorithms, so that both of
them can be worked out independently. Designers can per-
form a late binding between CSP formulation and search al-
gorithm. This way, different search techniques can be evalu-
ated over multiple problem formulations. The development
method also enables an easier management of tool evolu-
tions by the designers.

CSP formulation and search algorithms are implemented
with the CLP(FD) domain of SICStus Prolog library. It uses
the state-of-the-art in discrete constrained optimization tech-
niques: Arc Consistency-5 (AC-5) for constraint propaga-
tion, using CLP(FD) predicates. With AC-5, variable do-
mains get reduced until a fixed point is reached by constraint
propagation.

Most of constraint programming frameworks have differ-
ent tools to design hybrid search techniques, by integrating
Metaheuristics, OR and LP algorithms (Ajili and Wallace
2004). An hybrid approach is proposed to solve the mis-
sion planning problem by exploiting Dijkstra algorithm and
to elaborate a meta-metric over search exploration structure.
This approach, known as probing, relies on problem relax-
ation to deduce the search tree structure. This can be done
either statically or dynamically. The CLP framework also
enables concurrent solving over problem variables.

The global search technique under consideration guaran-
tees completeness, solution optimality and proof of optimal-
ity. It relies on three main algorithmic components:

• Variable filtering with correct values, using specific la-
belling predicates to instantiate problem domain vari-
ables. AC being incomplete, value filtering guarantees
the search completeness.
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• Tree search with standard backtracking when variable in-
stantiation fails.

• Branch and Bound (B&B) for cost optimization, using
minimize predicate.

Designing a good search technique consists in finding the
right variables ordering and value filtering, accelerated by
domain or generic heuristics. In general, these search tech-
niques are implemented with a conjunction of multiple spe-
cific labelling predicates.

Problem Formalization

A navigation plan is represented using a directed graph
G(X,U) where:

• the set U of edges represents possible paths;

• the set V of vertices are navigation points. In the remain-
ing of the paper, a vertex is denoted x, while an edge can
be denoted either u or (x, x′).

Navigation Plan

A navigation plan is defined by the set of positive flows over
edges. The set of variables ϕu ∈ {0, 1} models a possible
path from start ∈ X to end ∈ X , where an edge u belongs
to the navigation plan if and only if a decision variable ϕu =
1. The resulting navigation plan, can be represented as Φ =
{u| u ∈ U, ϕu = 1}.

Consistency Constraints

From an initial position to a final one, path consistency is
enforced by flow conservation equations, where ω+(x) ⊂
U and ω−(x) ⊂ U are outgoing and incoming edges from
vertex x, respectively.

∑

u ∈ ω+(start)

ϕu = 1,
∑

u ∈ ω−(end)

ϕu = 1, (1)

∑

u ∈ ω+(x)

ϕu =
∑

u ∈ ω−(x)

ϕu ≤ 1 (2)

Since flow variables are {0, 1}, equation (2) ensures path
connectivity and uniqueness while equation (1) imposes
limit conditions for starting and ending the path. This con-
straint provides a linear chain alternating flyby waypoint and
navigation along the graph edges.

Plan and metric formulations

Assuming a given date Dx associated with a position (e.g.
vertex) x we use a path length formulation (3). Variable Dx

is expressing the time at which the UAV reaches a position
x (see example in figure 3). Assuming that variable d(x′,x)

represents the time taken to perform the manoeuvre from po-
sition x′ to x (at an average edge speed) and perform poten-
tial observations on x′. This time cumulates action duration
and navigation between waypoints.

We have:

3

2 2
C:5

A:0

B:3 D:7

Figure 3: Illustrating manoeuvres over a graph of navi-
gation waypoints . This graph is a spatial representation
of navigation plan. A solution, representing the UAV ma-
noeuvres, corresponds to the set of positive values (here
Φ = {(A,B), (B,C), (C,D)}). Assuming a cumulative
time metric (edge values are transit times), flyby instant is
∆ = {(A, 0), (B, 3), (C, 5), (D, 7)}.

Dx =
∑

(x′,x) ∈ ω−(x)

ϕ(x′,x)(d(x′,x) +Dx′) (3)

∀(x, x′) ∈ U, d(x,x′) ∈ N, l(x,x′) ≤ d(x,x′) ≤ u(x,x′) (4)

Note that upper and lower speed limits (resp. u(x,x′)

and l(x,x′)) in (4) are an edge. Similar constraints are
used for propagating resource consumption, as variables
< Rx, r(x,x′) >, or UAV exposures, as variables <
Ex, e(x,x′) >. These variables are also associated to ver-
tices and edges. In practice Ex and Rx are normalised as a
percentage of consumption.

Navigation and action realization

The set of navigation points belonging to the plan P can also
be expressed as follows (5):

∀x, nx = min(1, Dx), P = {x ∈ X, nx = 1} (5)

where nx states whether a position x is part of the nav-
igation plan. If Dx = 0, the UAV does not flyby x. For
simplicity, nx is assimilated to a boolean variable.

A set of potential observation actions O is represented by
‖V ‖ variables Ox ∈ {0, 1} and

• an observation duration constant δx.

• a resource consumption constant ρx.

• a visibility exposure constant ηx

If there is no action on vertex Ox to be performed, its
default value is 0. Action activation model is defined using
the following preconditions (6) and postconditions (7,8,9):

Ox =⇒ nx ∧ Ex ≥ vx (6)

∀x, ∀x′ ∈ ω+(x),

d(x,x′) = δ(x,x′) +Ox.δx (7)

r(x,x′) = ρ(x,x′) +Ox.ρx (8)

e(x,x′) = η(x,x′) +Ox.ηx (9)

and where constant δ(x, x′) is the time to navigate from
point x to x′.
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In equation (6), the constant vx is an exposure threshold
that is tolerated and compared to the total exposure up to
waypoint x. Indeed, to satisfy the action, the UAV must
be incoming to the observation location, which is the role
of the term nx. This way, each observation precondition is
constrained by the level of exposure. Note that there is no
precondition for energy and time. Arrival date at the recov-
ery point is enough to constraint the whole CSP.
Dend ≤ Dmax, where Dmax is the maximal mission du-

ration.
Similarly, there must be remaining energy when arriving

at the recovery point.
Eend ≥ 0.
Other preconditions can be defined, depending on the type

of action to perform (including time windows, communica-
tion, target mobility). Using our model, it is easy to overload
the conjunction. However the problem can become very
complex and there is not necessarily a need as long as we
consider a unique UAV. Moreover, we notice that the set of
preconditions is predominant compared to postconditions.

Optimization Problem

The final cost function is the total amount of observations to
perform (10).

Ω(V ) =
∑

x ∈ V

Ox (10)

The sets of decision variables are Φ and O such that the
CSP can then be formulated in Prolog as follows (1):

Algorithm 1 Optimizing observations

Instantiate variable sets Φ, O

• Satisfying navigation constraints (1), (2), (5),

• Satisfying metric constraints (3), (4) and

• for all actions {O1, . . . Ox, . . . On}

– satisfying preconditions (6)

– satisfying postconditions (7), (8) and (9)

Maximizing Ω(V )

Search Algorithms

Overview

The goal of hybridizing global solving with stochastic ap-
proaches is to save the number of backtracks by quickly fo-
cusing the search towards good solutions. It consists in de-
signing the tree search according to the problem structure,
revealed by the probe. The idea is to use the prober to order
problem variables, as a pre-processing. Instead of dynamic
probing with tentative values such as in (Sakkout and Wal-
lace 2000), this search strategy uses a static prober which
orders problem variables to explore according to the relaxed
solution properties. Then, the solving follows a standard
CP search strategy, combining variable filtering, AC-5 and
B&B. As shown in figure 4, the probing technique proceeds
in three steps (the three blocks on the left). The first one is to

Figure 4: Diagram of the complete solver using probing
techniques.

establish the solution to the relaxed problem. As a reference,
we can for example compute the shortest path between start-
ing and ending vertices, abstracting away mandatory way-
points. The next step is to establish a minimal distance be-
tween any problem variable and the solution to the relaxed
problem. This step can be formally described as follows.
Let Xs ⊂ X be the set of vertices that belong to the relaxed
solution. The distance is given by the following evaluation:

∀x ∈ X, δ(x) = min
x′∈Xs

||(x, x′)|| (11)

where ||.|| is a specific distance metric (in our case, the num-
ber of vertices between x and x′). The last step uses the re-
sulting partial order to sort problem variables in ascending
order. At global solving level the relaxed solution is useless,
but problem variables are explored following this order.

Properties

Two interesting probe properties can be highlighted:

• probe complexity: since computation of minimum dis-
tance between a vertex and any node is polynomial thanks
to Dijkstra or Bellman-Ford algorithms, the resulting
probe construction complexity is still polynomial in worst
cases. The complexity of quicksort can in practice be ne-
glected (see below for further details).

• probe completeness: since the probe does not remove any
value from variable domains and the set of problem vari-
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ables remains unchanged, the probe still guarantees global
solving completeness.

Complexity analysis: let γ be the cardinality of Vs and n the
one of V . The complexity of probe construction is:

• in worst case performance: O(n2);

• in average case performance: O(γ.n. log(n)).

Sketch of the proof: the probing method first determines
the minimal distance between all vertices X ′ ∈ X ′ where
X ′ = X \ Xs and any vertex xs ∈ Xs. A Dijkstra al-
gorithm runs over a vertex xs allows to compute the dis-
tance to any point of X ′ with O(n. log(n)) worst case com-
plexity where n is the number of nodes in X . This has
to be run over each vertex of Xs and a comparison with
previous computed values must be done for every vertex
x′, to keep the lowest one. Thus, the resulting complexity
is O(γ.n. log(n)). Variables must finally be sorted with a
quicksort-like algorithm. The worst case complexity of this
sort is O(n2) but is generally computed in O(n. log(n)) (av-
erage case performance). Hence, the worst case complexity
of the probing method is O(n2), but in practice behaves in
max{O(γ.n. log(n)), O(n. log(n))} = O(γ.n. log(n)).

Pseudocode

Algorithm 2 synthesizes probe construction mechanisms.
Firstly, a vector Ld of size n (n being the number of nodes
in X) is created and initialized with infinite values. At the
end of the execution, it will contain a value associated to
each vertex, corresponding to the minimal distance between
this vertex and the solution to the relaxed problem. To do
so, a Dijkstra algorithm is run over each node of the solu-
tion. During a run, distances are evaluated and replaced in
Ld if lower than the existing value (in the pseudo code, com-
parison are made at the end of a run for easier explanation).
Once minimal distances are all computed, they are used to
rank the set of vertices X in ascending order (to be used by
the complete solver).

Algorithm 2 Probe construction

1: Initialize a vector Ld of distances (with infinite values)
2: Get P the best solution of the relaxed problem
3: for each node xi of P do
4: L′

d ⇐ Run Dijkstra algorithm from xi

5: Ld = min(Ld, L
′
d) (value by value)

6: end for
7: Sort X using Ld order
8: return the newly-ordered X list

Preliminary Results

Experiments on four benchmarks are presented. They are
representative of modern peace keeping missions or disaster
relief. Missions must be executed in less than 30 minutes.
Areas range from 5x5 kms to 20x20 kms.

1. Recon villages: Observing different villages after a water flood-
ing event.

2. Reinforce UN: Bring support to a United Nations mission by
observing an unsecure town.

3. Sites inspections: Observing different parts of a town during
inspection of suspect sites.

4. Secure humanitarian area: Observing different threats before se-
curing refugees, over a large area.

For each benchmark, four experimentations are run. Two
sets of runs are performed, one with the simple branch and
bound, the other one with the probing method. For each set,
two different constraints are preconditions to observation ac-
tions (constraint 6):

• Energy constraint, precondition is simplified to

Ox =⇒ nx

• Exposure constraint, precondition is as (6):

In practice, the exposure threshold is set between 10 and
20 percent for each observation action. This overconstrains
the problem, allowing us to observe performance differ-
ences.

Experiments Results

Problem Algorithm Actions Time (ms) for Best Value

opt. proof (#actions)

1. Recon villages
(22 nodes, 74 edges, 702 vars, 2251 constraints)

Energy Probing 3 250 560 1
Exposure Probing 3 234 609 1

Energy Simple 3 274 1092 1
Exposure Simple 3 358 982 1

2. Reinforce UN
(23 nodes, 76 edges, 723 vars, 2312 constraints)

Energy Probing 3 93 93 3
Exposure Probing 3 296 702 2

Energy Simple 3 1045 1061 3
Exposure Simple 3 5460 11139 2

3. Site inspection
(22 nodes, 68 edges, 654 vars, 2081 constraints)

Energy Probing 4 109 249 3
Exposure Probing 4 187 312 3

Energy Simple 4 717 1575 3
Exposure Simple 4 1451 2261 3

4. Secure area
(33 nodes 113 edges, 1069 vars, 3447 constraints)

Energy Probing 3 2371 4977 2
Exposure Probing 3 7566 10234 2

Energy Simple 3 8237 15944 2
Exposure Simple 3 22074 29375 2

Figure 5: Results overview on benchmark scenarios, maxi-
mizing the number of action to perform

Table 5 reports the time to find the optimal solution, as
well as for proving optimality. It also shows the maximal
number of observations that can be executed. Simple prob-
lems can be solved fairly quickly, but the last benchmark
is more computation demanding, which is certainly due to
a large area to cover. On the second benchmark, exposure
constraints prevent from performing all observations. Again
for all the problem instances, the probing method improves
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drastically the solver performances, which confirm former
researches (Lucas et al. 2010) and (F. and C. 2012). By
comparing with energetic constraints, exposure precondi-
tions makes the problem really harder to solve.

Conclusion

This paper shows the development of the mission planning
framework, that can be used either for C2 systems or for
unmanned systems. Introducing actions with complex pre-
conditions and postconditions increases the practical com-
plexity of problem instances. In particular, with the existing
design, the solving approach does not scale huge numbers of
observation or large graph structures. Nevertheless, as ex-
pected by previous results, the probing approach improves
drastically solving performances. Using the modeling ap-
proach, the formulation of action preconditions and postcon-
ditions can be extended in several ways. Further works will
focus on scalability as well as different forms of probing,
relying on action definition in the relaxation process.
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Abstract

Many real-world scheduling problems are solved to obtain
optimal solutions in term of processing time, cost and qual-
ity as optimization objectives. Currently, energy-efficiency is
also taking into consideration in these problems. However,
this problem is NP-Hard, so many search techniques are not
able to obtain a solution in a reasonable time. In this paper,
a genetic algorithm is developed to solve an extended version
of the Job-shop Scheduling Problem in which machines can
consume different amounts of energy to process tasks at dif-
ferent rates. This problem represents an extension of the clas-
sical job-shop scheduling problem, where each operation has
to be executed by one machine and this machine can work at
different speeds. The evaluation section shows that the pow-
erful commercial tools for solving scheduling problems was
not able to solve large instances in a reasonable time, mean-
while our genetic algorithm was able to solve all instances
with a good solution quality.

Introduction

Nowadays, the main objective of many companies and or-
ganizations is to improve profitability and competitiveness.
These improvements can be obtained with a good optimiza-
tion of resources allocation. But in the last years many com-
panies are not only facing complex and diverse economic
trends of shorter product life cycles, quick changing science
and technology, increasing customer demand diversity, and
production activities globalization, but also enormous and
heavy environmental challenges of global climate change
(e.g. greenhouse effect), rapid exhaustion of various non-
renewable resources (e.g. gas, oil, coal), and decreasing bio-
diversity.
Scheduling problems are widely discussed in the litera-

ture and two main approaches can be distinguished (Billaut,
Moukrim, and Sanlaville 2008):

• Classical deterministic methods, which consider that the
data are deterministic and that the machine environment
is relatively simple. Some traditional constraints are taken
into account (precedence constraints, release dates, due
dates, preemption, etc.). The criterion to optimize is of-
ten standard (makespan). A number of methods have

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

been proposed (exact methods, greedy algorithms, ap-
proximate methods, etc.), depending on the difficulty of
a particular problem. These kinds of studies are the most
common in the literature devoted to scheduling problems.

• On-linemethods. Sometimes, the algorithm does not have
access to all the data from the outset, the data become
available step by step, or ”on-line”. Different models may
be considered here. In some studies, the tasks that we
have to schedule are listed, and appear one by one. The
aim is to assign them to a resource and to specify a start
time for them. In other studies, the duration of the tasks
is not known in advance.

In both cases, the job-shop scheduling problem (JSP) has
been studied. It represents a particular case of scheduling
problems where there are some specific resources or ma-
chines which have to be used to carry out some tasks. Many
real life problems can be modeled as a job-shop scheduling
problem and can be applied in some variety of areas, such as
production scheduling in the industry, departure and arrival
times of logistic problems, the delivery times of orders in
a company, etc. Most of the solving techniques try to find
the optimality of the problem for minimizing the makespan,
tardiness, flow-time, etc.

Nowadays, the main objective of many companies and or-
ganizations is to improve profitability and competitiveness.
These improvements can be obtained with a good optimiza-
tion of resources allocation. But in the last years many com-
panies are not only facing complex and diverse economic
trends of shorter product life cycles, quick changing science
and technology, increasing customer demand diversity, and
production activities globalization, but also enormous and
heavy environmental challenges of global climate change
(e.g. greenhouse effect) (Mestl et al. 2005), rapid exhaus-
tion of various non-renewable resources (e.g. gas, oil, coal)
(Yusoff 2006), and decreasing biodiversity.

Recently some works have focused on minimizing the
energy consumption in scheduling problems (Mouzon and
Yildirim 2008)(Dai et al. 2013), mainly from the Operations
Research Community (Bruzzone et al. 2012), (Mouzon,
Yildirim, and Twomey 2007) and (Li, Yan, and Xing 2013).

In job-shop scheduling problem with voltage scaling, ma-
chines can consume different amount of energy to process
tasks at different speeds (Malakooti et al. 2013). By chang-
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ing the voltage level, the frequency at which a processor ex-
ecutes a task is adjusted, and processing speed changes as
a result. We focus our attention in a job-shop scheduling
problem with different speed machine (JSMS). It represents
an extension of the classical job-shop scheduling problem
(J ||Cmax according to classification scheme proposed in
(Blazewicz et al. 1986)), where each operation must be exe-
cuted in a machine at a determined speed with a determined
energy consumption (by a classical deterministic method).

Problem Description

Formally the job-shop scheduling problem with different
speed machine (JSMS) can be defined as follows. There
exist a set of n jobs {J1, . . . , Jn} and a set of m resources
or machines {R1, . . . , Rm}.
Each job Ji consists of a sequence of T tasks

(θi1, . . . , θiTi
). Each task θil has a single machine require-

ment Rθil and a start time stθil to be determined. The main
difference with the traditional job shop scheduling prob-
lem is related to each machine can work at different speeds.
Thus, each task θil is linked up to different durations (pθil1 ,
pθil2 ,...,pθilp) and their corresponding energy consumption
eθil1 , eθil2 ,...,eθilp used by the corresponding machine. Fig-
ure 1 shows the relationship between energy consumption
and processing time of each task in a machine. This curve
can be approximated by the equation 1:

Tθil = 1 +
1

ln(1 + Eθ3il)
−

1

ln(1 + Eθil)
(1)

where T is the processing time and E in the energy con-
sumption of a task in a machine. It can be observed that if
the speed of a machine is high, the energy consumption in-
creases, but the processing time of the task decreases, mean-
while if the speed is low, the energy consumption decreases
and the processing time increases. For simplicity and with-
out loss of generality, we consider three different energy
consumptions and processing times for each task. Thus, we
can apply the former formula to the benchmarks presented in
the literature in order to obtain the optimal and energy aware
schedule. The original processing time of each task (value
1) is assigned to an energy consumption of 1 (regular speed).
If the processing time of a task is increased a 70%, the en-
ergy consumption is reduced a 20% (low speed). However,
if the processing time of a task is reduced 30%, the energy
consumption is increased 20% (high speed). Depending on
the specific problem, this curve can vary, and therefore the
proportion between processing time and energy consump-
tion can significantly change. In this paper, the processing
times are randomly selected by applying the expressions (6)
and (7).

A feasible schedule is a complete assignment of starting
times to tasks that satisfies the following constraints: (i)
the tasks of each job are sequentially scheduled, (ii) each
machine can process at most one task at any time, (iii) no
preemption is allowed. The objective is finding a feasible
schedule that minimizes the completion time of all the tasks
and the energy used.
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Figure 1: Relationship between energy consumption and
processing time

Energy Efficiency

Nowadays manufacturing enterprisers are not only facing
complex and diverse economic trends of shorter product life
cycles, quick changing science and technology, increasing
customer demand diversity, and production activities glob-
alization, but also enormous and heavy environmental chal-
lenges of global climate change (e.g. greenhouse effect),
rapid exhaustion of various non-renewable resources (e.g.
gas, oil, coal), and decreasing biodiversity. Statistical data
in 2009 shows the Germany industrial sector was responsi-
ble for approximately 47% of the total national electricity
consumption, and the corresponding amount of CO2 emis-
sions generated by this electricity summed up to 18%-20%
(BMWi 2009). Thus, manufacturing companies are respon-
sible for the environmental outcome and are forced to have
manufacturing systems that demonstrate major potential to
reduce environmental impacts (Duflou et al. 2012). Re-
cently, there has been growing interest in the development of
energy savings due to a sequence of serious environmental
impacts and rising energy costs. Research onminimizing the
energy consumption of manufacturing systems has focused
on three perspectives: the machine level, the product level,
and the manufacturing system level. From the machine-level
perspective, developing and designing more energy-efficient
machines and equipment to reduce the power and energy
demands of machine components is an important strategic
target for manufacturing companies (Li et al. 2011)(Neuge-
bauer et al. 2011). Unfortunately, previous studies show that
the share of energy demand for removal of metal material
compared to the share of energy needed to support various
functions of manufacturing systems is quite small (less than
30%) of total energy consumption (Dahmus and Gutowski
2004). From the product-level perspective, modeling em-
bodied product energy framework based on a product de-
sign viewpoint for energy reduction approach is beneficial to
support the improvements of product design and operational
decisions (Seow and Rahimifard 2011)(Weinert, Chiotellis,
and Seliger 2011). It requires strong commercial simulation
software to facilitate the analysis and evaluation of the em-

COPLAS 2014: 9th Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

43



bodied product energy. The results cannot be applied easily
in most manufacturing companies, especially in small- and
medium-size enterprises due to the enormous financial in-
vestments required. From the manufacturing system-level
perspective, thanks to decision models that support energy
savings, it is feasible to achieve a significant reduction in
energy consumption in manufacturing applications. In the
specialized literature about production scheduling, the key
production objectives for production decision models, such
as cost, time and quality have been widely discussed. How-
ever, decreasing energy consumption in manufacturing sys-
tems through production scheduling has been rather limited.
One of the most well-known research works is the work
of Mouzon et al.(Mouzon, Yildirim, and Twomey 2007),
who developed several algorithms and a multiple-objective
mathematical programming model to investigate the prob-
lem of scheduling jobs on a single CNC machine in order
to reduce energy consumption and total completion time.
They pointed out that there was a significant amount of
energy savings when non-bottleneck machines were turned
off until needed; the relevant share of savings in total en-
ergy consumption could add up to 80%. They also reported
that the inter-arrivals would be forecasted and therefore
more energy-efficient dispatching rules could be adopted
for scheduling. In further research, Mouzon and Yildirim
(Mouzon and Yildirim 2008) proposed a greedy random-
ized adaptive search algorithm to solve a multi-objective
optimization schedule that minimized the total energy con-
sumption and the total tardiness on a machine. Fang et al.
(Fang et al. 2011) provided a new mixed-integer linear pro-
gramming model for scheduling a classical flow shop that
combined the peak total power consumption and the asso-
ciated carbon footprint with the makespan. Yan et al. (Yan
and Li 2013) presented a multi-objective optimization ap-
proach based on weighted grey relational analysis and re-
sponse surface methodology. Bruzzone et al. (Bruzzone et
al. 2012) presented an energy-aware scheduling algorithm
based on a mixed-integer programming formulation to real-
ize energy savings for a given flexible flow shop that was
required to keep fixed original job assignment and sequenc-
ing. Although the majority of the research on production
scheduling has not considered energy-saving strategies com-
pletely, the efforts mentioned above provide a starting point
for exploring an energy-aware schedule optimization from
the viewpoint of energy consumption.

Modeling and Solving a JSMS as a Genetic

Algorithm

The more natural way to solve a traditional Jop-Shop
Scheduling Problem is to represent all variables and con-
straints related to jobs, tasks and machines (Garrido et al.
2000) (Huang and Liao 2008) in order to be solved by a
sound and completed search technique. The traditional ob-
jectives are to obtain solutions that minimize the typical ob-
jective functions presented in the literature (makespan, tar-
diness, completion time, etc). It is well-known that this
problem is NP-hard, so that optimal solutions can only be
achieved for small instances. However, few techniques have

been developed to minimize energy consumptions in these
problems. Only in the last few years, some researchers
have focused their attention in the machine level to solve
the scheduling problem by minimizing the energy consump-
tion (Dai et al. 2013). This requirement increases the com-
plexity of the problem so it is not possible to obtain optimal
solutions. This problem called job-shop scheduling prob-
lem with different speed machine (JSMS) must be solved by
heuristic and metaheuristic techniques in order to obtain op-
timized solutions, mainly in large instances. To this end, in
this paper we develop a genetic algorithm to solve the JSMS.
In the evaluations section, it can be observed that powerful
commercial techniqueswere not able to solve large instances
in a reasonable time; meanwhile small instances are solved
by both techniques with similar solution quality.
In this section we propose a Genetic Algorithm (GA) to

solve the job-shop scheduling problem with machines at dif-
ferent speeds (JSMS). Genetic Algorithms (GA) are adap-
tive methods which may be used to solve optimization prob-
lems (Beasley, Martin, and Bull 1993). They are based on
the genetic process of biological organisms. Over many gen-
erations, natural populations evolve according to the prin-
ciple of natural selection, i.e. survival of the fittest. At
each generation, every new individual (chromosome) corre-
sponds to a solution, that is, a schedule for the given JSMS
instance. Before a GA can be run, a suitable encoding (or
representation) of the problemmust be devised. The essence
of a GA is to encode a set of parameters (known as genes)
and to join them together in order to form a string of values
(chromosome). A fitness function is also required, which
assigns a figure of merit to each encoded solution. The
fitness of an individual depends on its chromosome and is
evaluated by the fitness function. During the run, parents
must be selected for reproduction and recombined to gener-
ate offspring. Parents are randomly selected from the popu-
lation, using a scheme which favors fitter individuals. Hav-
ing selected two parents (Procedure Select-Parents in Algo-
rithm 1, their chromosomes are combined, typically by us-
ing crossover and mutation mechanisms to generate better
offspring that means better solutions. The process is iterated
until a stopping criterion is satisfied.
Algorithm 1 shows the general steps of our GA. All func-

tions will be explained in detail to understand the behavior
of the algorithm.

Chromosome encoding and decoding

In genetic algorithms, a chromosome represents a solution
in the search space. The first step in constructing the GA is
to define an appropriate genetic representation (coding). A
good representation is crucial because it significantly affects
all the subsequent steps of the GA. Many representations for
the JSP have been developed.
A chromosome is a permutation of the set of operations

that represents a tentative ordering to schedule them, each
one being represented by its job number. Figure 2 shows an
example of a job shop schedule with 3 jobs, where job 1 has
2 tasks, and both jobs 2 and 3 have 3 tasks. Each number in
the chromosome cell (3,2,1,3,1,2,2,3) represents the job of
the task. The first number ”3” represents the first task of the
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Algorithm 1: GeneticAlgorithm (JSMS, λ)

Begin
if (λ 6= 0 and λ 6= 1) then
Initial-Population(Population, Size,
Speed=Random(1,3));

else
if (λ = 0) then
Initial-Population(Population, Size, Speed=1);

else
Initial-Population(Population, Size, Speed=3);

end if
end if
Evaluate-Fitness(Population);
while (Stopping criterion is not fulfilled) do
Select-Parents(Population, Parent1, Parent2);
Crossover(Parent1,Parent2,Offspring);
mutation(Offspring,Offspring’);
Evaluate-Fitness(Offspring’);
Update-Population(Population,Offspring’);

end while
Report Best Schedule;
End
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Figure 2: Codification of a chromosome in a JSP

job 3. As it was shown in (Varela, Serrano, and Sierra 2005),
this encoding has a number of interesting properties for the
classic job-shop scheduling problem. For instance a random
assignment of values 1,2 and 3 generates a valid solution.

However, in the problem JSMS, the machine speed of
each task has to be represented, therefore a new value must
be added to each task in order to represent the machine
speed. So a valid chromosome is 2n length, where n is the
total number of tasks. Figure 3 shows the coding of a chro-
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Figure 3: Codification of a chromosome in a JSMS

mosome in JSMS. Such coding increases the former coding
for adding the speed at which each task is processed. Thus,
the first two digits 3 and 1 represent the first task of the job
3 is processed at speed 1. Again, a random assignment of
values to tasks and speed generates a valid solution. When
the chromosome representation is decoded each task starts
as soon as possible following the precedence and machine
constraints. With the machine speed representation, the pro-
cessing time of each task and energy consumption of the
machine can be calculated, and therefore the makespan and
total energy consumption.

Initial Population and Fitness

As we have pointed out before, each gene represents one
task of the problem and the next gene represents the speed
at which this task is processed. The position of each task
determines its dispatch order, in this genome/solution. The
initial chromosomes are obtained by a random permutation
of tasks. The machine speed for each gene is also randomly
generated among one of the possible speeds. Thus, the ini-
tial population is randomly generated, and it always gener-
ates feasible schedules (Procedure Initial-Population in Al-
gorithm 1). The population size was 200 individual for Ag-
netis instances and 400 for Watson instances. These values
were selected by testing different alternatives and selecting
the best results.

JSMS can be considered a multiobjective problem due to
the fact that the goal is to minimize the makespan and also
to minimize the energy consumption. However both objec-
tives are contrary so that minimize the makespan supposes
to increase the speed of machines, and viceversa. Thus, in
these problems no single optimal solution exists. Instead, a
set of efficient solutions are identified to compose the Pareto
front. Diverse techniques have been developed to solve mul-
tiple objective optimization problems. One of the most well-
known methods for solving multiple objective optimization
problems is the NormalizedWeighted Additive Utility Func-
tion (NWAUF), where multiple objectives are normalized
and added to form a utility function. NWAUF has been im-
plemented in wide range of multiple objective optimization
problems due to its simplicity and natural ability to identify
efficient solutions. Let fij be the ith objective function value
of alternative j. Then, the NWAUF for alternative j with k
objectives is defined as:
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Uj = w1f
′
1j + w2f

′
2j + ...+ wkf

′
kj (2)

where w1, w2, ..., wk are weights of importance and
f ′
1j , f

′
2j, ..., f

′
kj are normalized values of f1j , f2j, ..., fkj .

By normalizing different objectives, all objectives are eval-
uated in the same scale. Weights show decision maker’s

preference for each objective where,
∑k

i=1 wi = 1 and
0 ≤ wi ≤ 1 for i = 1, ..., k. Using this utility function,
the multiple objective optimizations can now be solved as a
single objective optimization problem.
The definition of fitness function is just the reciprocal

of the objective function value. The objective is to find a
solution that minimizes the multi-objective makespan and
energy consumption. Following NWAUF rules, our fitness
function F (i) (3) is a convex combination between the nor-
malized values of makespan and energy consumption of so-
lution i.

F (i) = λ∗NormMakespan(i)+(1−λ)∗NormEnergy(i)
(3)

NormMakespan(i) =
Makespan(i)

MaxMakespan
(4)

NormEnergy(i) =
SumEnergy(i)

MaxEnergy
(5)

where λ ∈ [0, 1]. NormMakespan (4) is the makespan
divided by the maximum makespan value in a genetic
algorithm execution when the λ value is equal to 0
(MaxMakespan). MaxMakespan values can be found
in the benchmark section of our webpage1. NormEnergy
(5) is calculated by summing the energy used in the ex-
ecution of all the tasks, divided the maximum energy
(MaxEnergy). MaxEnergy is the sum of the energy
needed to execute all tasks at top speed.
Once the λ parameter is set for the fitness function ((3),

the initial population can be generated in a specific way.
Thus, for λ = 0, the objective function is only focused
to reduce the energy consumption (F = NormEnergy),
so the initial population can be randomly generated to or-
der the tasks, but the corresponding speeds are fixing to the
lowest value (see Figure 4a). In the same way, if λ = 1,
the objective function is only focused to reduce makespan
(F = NormMakespan), so the initial population can also
be randomly generated to order the tasks, but the corre-
sponding speeds are fixing to the highest value (see Figure
4b). for λ ∈]0, 1[, the speed of each task can be appropri-
ately generated.

Crossover operator

For chromosomemating, our GA uses a (Job, Energy)-based
Order Crossover. Thus, given two parents, a set of pairs (job,
energy) of a random job is selected from the first parent and
copied in the same position to the offspring. Afterwards, the
set of pairs (job, energy) of the remaining jobs are translated
from the second parent to the offspring in the same order

1http://gps.webs.upv.es/jobshop/
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Figure 4: Initial population for λ = 0 and λ = 1

(Procedure CrossOver in Algorithm 1). We clarify how this
technique works in the next example. Let us consider the
following two parents (see Figure 5:
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Figure 5: Two parents for the crossover operator

If the selected subset of jobs from the first parent just in-
cludes the job 3 (dark genes in Figure 5), the generated off-
spring is showed in Figure 6.
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Figure 6: Offspring for the crossover operator

Hence, this technique maintains for a machine a subse-
quence of operations in the same order as they are in Parent
1 and the remaining ones in the same order as they appear in
Parent 2. The crossover is applied in a dual way, so two par-
ents generate two offspring (parent 1-parent 2) and (parent
2- parent 1). Parent couples are selected shuffling popula-
tion and choosing each couple two by two, so all individual
will be selected but only some couples will be crossed in
accordance to crossover probability.

Mutation operator

The two offsprings generated with crossover operation can
be also mutated in accordance to the mutation probability
(Procedure Mutation in Algorithm 1). Two pair (task, en-
ergy) position of chromosome child are randomly chosen
(position ”a” and position ”b”), where ”a” must be lower
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than ”b”. Pairs between ”a” and ”b” are shuffled ran-
domly, also in each gene machine speed values are randomly
changed. In this step, the speeds of the machines in tasks are
also randomly modified.
Finally, tournament replacement among every couple of

parents and their offspring is done to obtain the next gener-
ation (Procedure Update-Population in Algorithm 1).

Evaluation

In this section we evaluate the behavior of our GA against
a successful and well-known commercial solver IBM ILOG
CPLEX CP Optimizer tool 12.5 (CP optimizer) (IBM 2012).
It is a commercial solver embedding powerful constraint
propagation techniques and a self-adapting large neighbor-
hood search method dedicated to scheduling (Laborie 2009).
This solver is expected to be very efficient for a variety of
scheduling problems as it is pointed in (IBM 2007), in par-
ticular when the cumulative demand for resources exceeds
their availability as it happens.
These algorithms have been evaluated with extended

benchmarks of the typical job-shop scheduling problem.
The extension has been focused on assigning different
speeds and durations to each task (as we pointed out in sec-
tion 3). The extension with machines working at different
speeds have been implemented considering that each task is
executed by a machine and it has different optional modes
where each represents the duration of the task and an asso-
ciated energy consumption (Salido et al. 2013).
To this end, we extend the benchmarks proposed in (Ag-

netis et al. 2011) and (Watson et al. 1999) because to the
best of our knowledge there not exist benchmarks for job-
shop scheduling problems that incorporate different speeds
and energy consumptions. All instances are characterized
by the number of jobs (j), the number of machines (m), the
maximum number of tasks by job (vmax) and the range of
processing times (p). In Agnetis instances, j is set to 3 and
these can be represented as m vmax p, and the number of
operators was not considered in this study, so we fixed it to
the number of machines.
The authors consider two types of instances: small and

large Agnetis instances:

• j = 3;m = 3, 5, 7; vmax = 5, 7, 10; p = [1, 10], [1, 50], [1,
100]

• j = 3; m = 3; vmax = 20, 25, 30; p = [1, 50], [1, 100], [1,
200]

In Watson instances follow the same characterized, but in
this case the variable that changes is the number of jobs (j):

• j = 50, 100, 200;m = 20; vmax = 20; p = [1, 100]

For each type of instance we work with 10 instances so
the results presented in this section are always the averages
value. We have modeled the instances to be solved by the
CP Optimizer. We have also extended the original instances
to add three different energy consumptions (e1, e2, e3) to
each task according to three processing times (pt1, pt2, pt3),
where pt1 is equal to the value of processing time in the
original instances. pt2 and pt3 were calculated following

the expressions (6) and (7), respectively (Salido et al. 2013).
These instances can be found in the web page2.

pt2=Max(maxdur∗0.1+pt1,Rand(1.25∗pt1,2.25∗pt1)) (6)

pt3=Max(maxdur∗0.1+pt2,Rand(1.25∗pt2,2.25∗pt2)) (7)

The valuemaxdur represents the maximum duration of a
task for the corresponding instance and the expression rand
represents a random value between both expressions. Simi-
lar expressions were developed to calculate the energy con-
sumption represented in expressions (8, 9, 10).

e1=Rand(pt1,3∗pt1)) (8)

e2=Max(1,Min(e1−maxdur∗0.1,Rand(0.25∗e1,0.75∗e1)) (9)

e3=Max(1,Min(e2−maxdur∗0.1,Rand(0.25∗e2,0.75∗e2)) (10)

Following these expressions the processing times of
pt1, pt2, pt3 increase as the energy consumption e1, e2, e3
decrease (see section 3). For example, give an instance with
5 tasks per job, three triplets are represented for each task:
the id of the task, the energy used and the processing time
(< id, e, pt >):

< id, e3, pt3 >,< id, e2, pt2 >,< id, e1, pt1 >

< 1, 14, 14 >,< 1, 16, 10 >,< 1, 19, 7 >,

...

< 15, 3, 6 >,< 15, 5, 4 >,< 15, 6, 3 >,

Comparative study between CP Optimizer and GA

CP and GA techniques try to minimize the multiobjective
makespan and energy consumption. The weight of each ob-
jective can be changed by λ parameter, following the ex-
pression (3). To compare both techniques, they have been
executed in a Intel Core2 Quad CPU Q9550, 2.83GHz and
4Gb Ram computer with Ubuntu 12.04 Operating system.
The small Agnetis instances were executed during 5 sec-
onds and the large Agnetis and Watson instances had a 100
seconds time-out. The next tables present the most impor-
tant parameter to be analyzed: λ ∈ [0, 1] that represents the
weight given to makespan and energy consumption, MK is
the makespan, En is the energy consumption, and F is the
fitness function. The objective is to obtain the lowest value
of F.

Table 1 shows the results for two small Agnetis instances,
the smallest (3 5 10) and the largest (7 10 100) of this
group. The results for the instances 3 5 10 show that the
F value was equal or almost equal in both CP Optimizer and
GA. Furthermore, there were small differences in all λ val-
ues for instance 7 10 100. These results show that both al-
gorithms maintained the same behavior for small instances
(the difference is in the fourth decimal).

In large Agnetis instances, the results were also similar for
all the instances. Table 2 shows the results for the instances
3 25 100 as an example. The difference of F value between
CP Optimizer and GA was almost in the third decimal is
most cases. It must be taken into account that for λ = 0.6
or λ = 0.6, the F value of our GA was lower than in CP

COPLAS 2014: 9th Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

47



3 5 10 7 10 100

CP Optimizer Genetic CP Optimizer Genetic

λ Mk En F Mk En F Mk En F Mk En F

0 71.4 84.4 0.553762 65.8 84.4 0.553762 1088.4 1571.4 0.533616 1006.3 1571.4 0.533616

0.1 65.2 84.5 0.556581 65.2 84.5 0.556581 999.3 1572.6 0.540932 999.3 1572.6 0.540931

0.2 64.4 84.7 0.558703 64.4 84.7 0.558703 987.2 1576.5 0.547508 987.2 1576.5 0.547509

0.3 63.2 85.2 0.559422 63.2 85.2 0.559422 922.2 1613.3 0.550868 926.9 1610 0.551018

0.4 59.7 88.1 0.557816 59.7 88.1 0.557816 885.9 1649.2 0.550650 891 1642.9 0.550638

0.5 53.9 94.3 0.547187 54.2 93.9 0.547270 838.8 1716 0.545249 847.5 1704.8 0.545938

0.6 48.4 104.2 0.529935 48.9 103.2 0.529687 779.1 1859.3 0.535095 782.4 1845.7 0.535361

0.7 45.3 111.9 0.500419 45 112.7 0.500130 708.5 2068.4 0.511331 703.9 2099.5 0.512783

0.8 42.2 123.4 0.461368 42.2 123.5 0.461509 651.8 2346 0.475184 642.4 2418.9 0.475810

0.9 41 133.2 0.414361 41 133.7 0.414712 626 2560.7 0.428228 626 2573.3 0.428603

1 41 143.1 0.363050 41 145.3 0.363050 625.9 2664.1 0.378956 625.9 2773.4 0.378956

Table 1: Results of Small Agnetis Instances

3 25 100

CP Optimizer Genetic

λ Mk En F Mk En F

0 3160 3827.1 0.533532 3096 3829 0.533805

0.1 2768.1 3827.6 0.537461 2781.7 3827.9 0.537786

0.2 2719.3 3842.5 0.540966 2764.8 3845.5 0.543204

0.3 2597.9 3904.6 0.542188 2657.3 3920.2 0.547324

0.4 2480.7 4005.8 0.540172 2495.3 4068.7 0.546693

0.5 2342 4181.6 0.533724 2317.1 4257.3 0.536410

0.6 2147 4548.6 0.520427 2118.3 4617.4 0.520423

0.7 1935.5 5075.6 0.492575 1943.7 5097.4 0.494838

0.8 1806.2 5666 0.456913 1791.4 5726.2 0.456512

0.9 1725.9 6251.3 0.408634 1732.2 6311 0.410335

1 1673.4 6732.2 0.346046 1711.8 6797.2 0.353841

Table 2: Results of Large Agnetis Instances

CP Optimizer Genetic

λ F 50 F 100 F 200 F 50 F 100 F 200

0 0.53408 0.53061 0.77288 0.610346 0.63776 0.68297

0.1 0.55899 0.56114 No Sol. 0.63994 0.66249 0.69391

0.2 0.58329 0.59138 No Sol. 0.65530 0.68276 0.71923

0.3 0.60836 0.62144 No Sol. 0.66789 0.69951 0.73313

0.4 0.63038 0.65117 No Sol. 0.67253 0.70370 0.73440

0.5 0.65334 0.68317 No Sol. 0.66715 0.69871 0.73288

0.6 0.66936 0.69793 No Sol. 0.65396 0.69041 0.72827

0.7 0.65937 0.69234 No Sol. 0.63458 0.67832 0.72394

0.8 0.64346 0.68051 No Sol. 0.61773 0.66570 0.71953

0.9 0.63197 0.66429 No Sol. 0.59558 0.65161 0.7136

1 0.52675 0.63500 0.69452 0.57309 0.64023 0.70732

Table 3: Results of Watson Instances

Optimizer. This is due to the fact that the initial population,
for λ ≈ 1 is composed of high value of speed (3).
Table 3 shows the F values for Watson instances. In Ag-

netis instances, the maximum number of operations is 90 in

2http://gps.webs.upv.es/jobshop/

instances 3 30 p. However, in Watson instances, the number
of operations is ranged between 1000 (j=50 and vmax=20)
and 4000 operations (j=200 and vmax=20). Therefore Wat-
son instances are much larger than Agnetis instances. It can
be observed that both algorithms were able to solve all in-
stances with 50 and 100 jobs. The results for these instances
were better for CP Optimizer for λ values lower than 0.6,
meanwhile or GA had better results for λ ∈ [0.6, 0.9[. Fig-
ure 7 shows the average F value of 50 and 100 jobs for Wat-
son instances. It can be observed that although both algo-
rithms have similar behavior, GA is most focused on mini-
mizing makespan (highest value for λ = 0.4) meanwhile CP
Optimizer is most focused on minimizing energy consump-
tion (highest value for λ = 0.6).

However for instances of 200 jobs, CP Optimizer was
unable to solve almost all instances ranged for λ ∈]0, 1[.
This means CP Optimizer is not able to solve large-scale in-
stances in a reasonable time so metaheuristic techniques are
needed to obtain optimized solutions in a given time.
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Figure 7: Average F value (F 50 and F 100) for Watson in-
stances
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Conclusions and Further Works

Many real life problems can be modeled as a job-shop
scheduling problem in which machines can consume differ-
ent amounts of energy to process tasks at different rates. It
represents an extension of the classical job-shop scheduling
problem, where each operation has to be executed by one
machine and this machine has the possibility to work at dif-
ferent speeds. In this paper, we present a genetic algorithm
to model and solve this problem. The inclusion of energy
consumption in the chromosome gives us the opportunity to
guide the search toward an optimized solution in an efficient
way. A comparative study was carried out to analyze the be-
havior of our genetic algorithm against a well-known solver:
IBM ILOG CPLEX CP Optimizer. The evaluation shows
that our Genetic Algorithm had a similar behavior than CP
Optimizer for small instances. However, for large instances,
CP Optimizer was unable to solve them in the given time
meanwhile our GA could solve all instances with the same
optimality degree. Thus, our technique can be useful to be
applied in large scale scheduling problems.
As conclusion, different solutions can be achieved to this

problem, so given a makespan threshold, a solution that min-
imize energy consumption can be obtained and viceversa,
given a energy consumption threshold, a solution that mini-
mize makespan can be obtained. This represents an interest-
ing trade-off for researchers in the area.
In further works, we will add a local search technique

to improve the obtained solutions. This technique can be
added inside the GA and also as a postprocess by increas-
ing the speed of the latest tasks responsible of the makespan
value. Furthermore, we will analyze the robustness of the
obtained schedules due to the fact that energy-aware solu-
tions are considered more robust that makespan-optimized
solutions (Salido et al. 2013).
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