
	
	

Proceedings	 of	 the	 5th	 Workshop	 on	
Knowledge	 Engineering	 for	 Planning	 and	 Scheduling	

	
Edited	 By:	

Roman	 Barták,	 Simone	 Fratini,	 Lee	 McCluskey	 and	 Tiago	 Vaquero	
	

Portsmouth,	 New	 Hampshire,	 USA	 -‐	 June	 22,	 2014	

	

ICAPS
 2014

Organizing	 Committee	
Roman	 Barták	
Charles	 University,	 Czech	 Republic	
Simone	 Fratini	
European	 Space	 Agency,	 Germany	
Lee	 McCluskey	
University	 of	 Huddersfield,	 UK	
Tiago	 Vaquero	
University	 of	 Toronto,	 Canada	
	

Program	 Committee	
Roman	 Barták,	 Charles	 University,	 Czech	 Republic	
Daniel	 Borrajo,	 Universidad	 Carlos	 III	 de	 Madrid,	 Spain	 	
Adi	 Botea,	 IBM,	 Ireland	 	
Amedeo	 Cesta,	 ISTC-‐CNR,	 Italy	 	
Susana	 Fernández,	 Universidad	 Carlos	 III	 de	 Madrid,	 Spain	 	
Simone	 Fratini,	 European	 Space	 Agency,	 Germany	
Antonio	 Garrido,	 Universidad	 Politecnica	 de	 Valencia,	 Spain	 	
Arturo	 González-‐Ferrer,	 Universidad	 Carlos	 III	 de	 Madrid,	 Spain	 	
Felix	 Ingrand,	 LAAS-‐CNRS,	 France	 	
Lee	 McCluskey,	 University	 of	 Huddersfield,	 UK	
Ugur	 Kuter,	 SIFT,	 USA	 	
Julie	 Porteous,	 Teesside	 University,	 UK	 	
Kanna	 Rajan,	 MBARI,	 USA	 	
José	 Reinaldo	 Silva,	 University	 of	 São	 Paulo,	 Brazil	 	
Tiago	 Vaquero,	 University	 of	 Toronto,	 Canada	
Dimitris	 Vrakas,	 Aristotle	 University	 of	 Thessaloniki,	 Greece	 	
Gerhard	 Wickler,	 University	 of	 Edinburgh,	 Scotland	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

Foreword	
	
	
The	 KEPS	 2014	 workshop	 aims	 to	 promote	 research	 in	 the	 areas	 lying	 between	
planning	 &	 scheduling	 technology	 on	 the	 one	 side,	 and	 practical	 applications	 and	
problems	 on	 the	 other.	 Despite	 recent	 advances	 in	 the	 area,	 the	 performance	 of	
planning	 &	 scheduling	 systems	 is	 still	 dependent	 to	 a	 large	 extent	 on	 how	
problems	 and	 domains	 are	 formulated,	 resulting	 in	 the	 need	 for	 careful	 system	
fine-‐tuning.	 In	 particular,	 recent	 work	 with	 competition	 benchmark	 problems	
highlights	 the	 importance	 of	 the	 relation	 between	 how	 domain	 knowledge	 is	
engineered	 within	 a	 model,	 and	 the	 efficiency	 of	 planning	 engines	 when	 input	 with	
these	 models.	
	
Knowledge	 engineering	 for	 planning	 &	 scheduling	 covers	 a	 wide	 area,	 including	
the	 acquisition,	 formalization,	 design,	 validation	 and	 maintenance	 of	 domain	
models,	 and	 the	 selection	 and	 optimization	 of	 appropriate	 planning	 engines	 to	
work	 on	 them.	 Knowledge	 engineering	 processes	 impact	 directly	 on	 the	 success	 of	
real	 planning	 and	 scheduling	 applications.	 The	 importance	 of	 knowledge	
engineering	 techniques	 is	 clearly	 demonstrated	 by	 a	 performance	 gap	 between	
domain-‐independent	 planners	 and	 planners	 exploiting	 domain	 dependent	
knowledge.	
	
This	 year	 the	 set	 of	 accepted	 papers	 reproduced	 in	 these	 proceedings	 reflects	 the	
wide	 scope	 of	 knowledge	 engineering	 within	 the	 ICAPS	 area.	 	 There	 are	 papers	 on	
techniques	 in	 engineering	 real	 applications,	 such	 as	 in	 clinical	 rehabilitation,	 and	 in	
hypothesis	 generation	 in	 medical	 and	 network	 domains.	 Two	 papers	 consider	
plans	 -‐	 one	 to	 develop	 the	 means	 for	 estimating	 upper	 bounds	 of	 plan	 length	 from	
planning	 problems,	 and	 the	 other	 in	 optimizing	 solution	 plans	 by	 removing	
redundant	 actions	 within	 them.	 Problem	 transformation	 is	 an	 area	 which	 is	
growing	 in	 importance,	 and	 in	 these	 proceedings	 we	 have	 two	 papers	 on	 this	 issue,	
one	 looking	 at	 ways	 of	 decomposing	 very	 complex	 planning	 problems	 to	 expedite	
solutions,	 and	 another	 to	 compile	 problems	 with	 soft	 constraints	 into	 a	 form	
usable	 by	 mainstream	 planning	 engines.	 Finally,	 we	 have	 contributions	 on	
knowledge	 capture	 -‐	 one	 a	 review	 of	 automated	 domain	 model	 acquisition,	 and	 the	
other	 describing	 a	 new	 knowledge-‐based	 language	 designed	 to	 enable	 subject-‐
matter	 experts	 to	 formulate	 knowledge	 in	 planning	 applications.	
	
Roman Barták, Simone Fratini, Lee McCluskey, Tiago Vaquero
KEPS 2014 Organizers
June 2014
	 	

Table	 of	 Contents	
	
	
	
Mechanising	 Theoretical	 Upper	 Bounds	 in	 Planning	 ...	 1	
Mohammad	 Abdulaziz,	 Charles	 Gretton,	 Michael	 Norrish	
	
Applying	 Problem	 Decomposition	 to	 Extremely	 Large	 Planning	 Domains	 	 8	
Masataro	 Asai,	 Alex	 Fukunaga	
	
Eliminating	 All	 Redundant	 Actions	 from	 Plans	 Using	 SAT	 and	 MaxSAT	 	 16	
Tomáš	 Balyo,	 Lukáš	 Chrpa	
	
Planning	 with	 Preferences	 by	 Compiling	 Soft	 Always	 Goals	 into	 STRIPS	 with	 Action	
Costs	 ...	 23	
Luca	 Ceriani,	 Alfonso	 Emilio	 Gerevini	
	
Automated	 Knowledge	 Engineering	 Tools	 in	 Planning:	 State-‐of-‐the-‐art	 and	 Future	
Challenges	 ..	 31	
Rabia	 Jilani,	 Andrew	 Crampton,	 Diane	 Kitchin,	 Mauro	 Vallati	
	
Goal-‐directed	 Generation	 of	 Exercise	 Sets	 for	 Upper-‐Limb	 Rehabilitation	 	 38	
José	 C.	 Pulido,	 José	 C.	 González,	 Arturo	 González-‐Ferrer,	 Javier	 García,	 Fernando	 Fernández,	
Antonio	 Bandera,	 Pablo	 Bustos,	 Cristina	 Suárez	
	
Knowledge	 Engineering	 for	 Planning-‐Based	 Hypothesis	 Generation	 	 46	
Shirin	 Sohrabi,	 Octavian	 Udrea,	 Anton	 V.	 Riabov	
	
Creating	 Planning	 Domain	 Models	 in	 KEWI	 ...	 54	
Gerhard	 Wickler,	 Lukáš	 Chrpa	 ,	 Thomas	 Leo	 McCluskey	
	

Mechanising Theoretical Upper Bounds in Planning

Mohammad Abdulaziz and Charles Gretton and Michael Norrish ∗

Canberra Research Lab., NICTA
7 London Circuit, Canberra ACT 2601, Australia

{Mohammad.Abdulaziz, Charles.Gretton, Michael.Norrish}@nicta.com.au

Abstract

We examine the problem of computing upper bounds on
the lengths of plans. Tractable approaches to calculat-
ing such bounds are based on a decomposition of state-
variable dependency graphs (causal graphs). Our contri-
bution follows an existing formalisation of concepts in
that setting, reporting our efforts to mechanise bound-
ing inequalities in HOL. Our primary contribution is
to identify and repair an important error in the original
formalisation of bounds. We also develop novel bound-
ing results and compare them analytically with existing
bounds.

Introduction
This paper develops novel insights and approaches for rea-
soning about upper bounds on the lengths of plans. Formally,
an upper bound of N means that, if a plan exists, then an
optimal plan comprises no more than N steps. A variety of
applications for such upper bounds have been explored. If
an explicit state-based search encounters a state with upper
bound N and lower bound M—if a plan exists, it must be
at least of length M—then if N < M the state can safely
be pruned. Also, given a tight upper bound N , the plan ex-
istence problem can be reduced to a fixed-horizon reach-
ability problem—i.e., is there a plan of length less-than-
or-equal-to N? In that case the fixed-horizon problem can
be posed as a Boolean SAT(isfiability) problem (Kautz and
Selman 1996). More generally, planning problems can be
solved using SAT solvers given a query strategy that focuses
search effort at important horizon lengths (Rintanen 2004;
Streeter and Smith 2007). Tight horizon bounds provide fo-
cus in that setting. Lastly, in situations where no plan exists,
bounds have been used to identify a small subset of goal
facts that cannot be achieved together. Here, plan existence
for goal sets which admit short bounds are tested earliest,
so that non-existence can be established quickly using rela-
tively little search effort.

Our contributions follow (Rintanen and Gretton 2013),
which describes a general procedure for computing up-
per bounds based on state-variable dependency information.

∗NICTA is funded by the Australian Government through
the Department of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.

That approach yields useful bounds in problems that exhibit
a branching one-way dependency structure. A highlighted
example of that type of dependency occurs in the logistics
benchmark. To change the location of a package, vehicles
must be used. The locations of vehicles can be modified irre-
spective of the package locations, and indeed independently
of each other. In other words, each package has a one-way
dependency with vehicles and otherwise all objects can be
manipulated independently.

This work reports on our efforts so far to obtain mecha-
nized proofs of the correctness of versions of the headline
theorems from (Rintanen and Gretton 2013). Our work has
exposed a subtle yet important error in the original formal-
isation of bounds. We correct the original formalisation of
upper bounds and summarise the new proof of the bounds
from that work. The new proof employs a constructive tech-
nique, relying on a function which builds a plan of an appro-
priate length given an overly long input. Our new proof of
correctness is mechanised in the HOL interactive theorem
proving system (Slind and Norrish 2008). We provide links
to that mechanisation work which is hosted on github. Fi-
nally, we also develop novel inequalities which yield tighter
bounds than existing approaches.

Definitions and Notations
We formalise the planning problem and give definitions of
concepts related to computing bounds on solution lengths.
Our definitions are functionally equivalent to standard expo-
sitions of deterministic propositional planning. We include
two minor departures, used to decrease the verbosity of our
proofs. In particular, our formalisation supposes there is a
single goal-state, rather than a set of goal states. Also, we
allow any action to be executed at any state, supposing its
effects are only realised if its preconditions are satisfied at
the state from which it is executed.

Definition 1 (States and Actions). A planning problem is
defined in terms of states and actions:

1. We model states as finite maps from variables—i.e., state
characterizing propositions—to Booleans.

2. An action π is a pair of finite maps. Each of those maps
is from a subset of the problem variables to the Booleans.
The domain of each of these maps does not have to be
the same. The first component of the pair (p(π)) is the

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

1

precondition: each variable in the domain of the map must
have the specified value if the action is to affect any state
change.1 The second component of the pair (e(π)) is the
effect: each variable in the domain of the map takes on
the specified value in the resulting state. We say that a
variable is an action precondition if it is in the domain
of the precondition map, and similarly that it is an action
effect if it is in the domain of the effect map.

3. An action sequence π̇ is a list of actions. We use the nota-
tion π :: π̇ (a “cons”) to denote the sequence which has
π as its first element, followed by the actions in π̇, and []
to denote the empty sequence.

We will write concrete examples of states and actions as sets
of variables that are either bare (mapping to true), or over-
lined (mapping to false). For example, {x, y, z} is the state
where state variables x and z are true, and y is false.

We now use the above concepts to define a planning prob-
lem.

Definition 2 (Planning Problems). A problem Π is a 3-tuple
Π = 〈I, A,G〉, with I the initial state of the problem, G the
goal state and A a set of permitted actions. When writing
about the components of a problem Π, unless explicitly writ-
ten otherwise we will write I , A and G for Π.I etc., leaving
the Π implicit. We will write D for the domain of the initial
state; this is the domain of the problem.

Problem Π is valid if the goal has the same domain as
the initial state, and all actions refer exclusively to variables
that occur in that set. We only consider valid problems.

Naturally, a state s is valid with respect to a planning prob-
lem Π if its domain is the same as that of the initial state I .

Definition 3 (Action Execution). When an action π is exe-
cuted at state s, it causes a transition to a successor state.
If the precondition is not satisfied at s, the successor is sim-
ply s once more. Otherwise, the action effects hold at the
successor. We denote this operation exec(s, π). We lift that
definition to sequences of executions taking an action se-
quence π̇ as the second argument. So exec(s, π̇) denotes the
state resulting from successively applying each of π̇’s ac-
tions, starting with s.

Key concepts in formalising bounds in planning are those
of projection and dependency graph.

Definition 4 (Projection). Projecting an object (a state s, an
action π, a sequence of actions π̇ or a problem Π) on a vari-
able set vs refers to restricting the domain of the object or its
constituents to vs . We denote these operations as s�vs , π�vs ,
π̇�vs and Π�vs for a state, action, action sequence and prob-
lem respectively. Note that if an action sequence π̇ is pro-
jected in this way, it may come to include actions with empty
preconditions and/or effects, however, actions with empty ef-
fects are removed.

Definition 5 (Problem Dependency Graphs). The depen-
dency graph of a problem Π is a directed graph, written

1We use the word domain in the mathematical sense—i.e., the
set from which the function arguments are drawn. To avoid confu-
sion, we shall not use this term to refer to a PDDL model.

G, describing variable dependencies. This graph was con-
ceived under different guises in (Williams and Nayak 1997)
and (Bylander 1994), and is also commonly referred to as a
causal graph. That graph features one vertex for each vari-
able inD. An edge from v1 to v2 records that v2 is dependent
on v1. A variable v2 is dependent on v1 in a planning prob-
lem Π iff one of the following statements holds:

1. v1 is the same as v2.

2. There is an action π in A such that v1 is a precondition of
π and v2 is an effect of π.

3. There is an action π in A such that both v1 and v2 are
effects of π.

We write v1 → v2 if there is a directed arc from v1 to v2
in the dependency graph for Π. Also, when we illustrate a
dependency graph we do not draw arcs from a variable to
itself although it is dependent on itself.

We also lift the concept of dependency graphs and refer to
lifted dependency graphs (written Gvs) in which each vertex
represents a distinct set of problem variables. The vertices
(variable sets) in lifted graphs will partition the domain D
of the original problem.

Definition 6 (Variable Set Dependencies). An edge from
variable set vs1 to set vs2 records that vs2 is dependent on
vs1. A variable set vs2 is dependent on vs1 in a planning
problem Π (written vs1 → vs2) iff all of the following con-
ditions hold:

1. vs1 is disjoint from vs2.

2. There exist variables v1 ∈ vs1 and v2 ∈ vs2 such that
v1 → v2.

In revising previous work, we refer to the strongly con-
nected components (SCCs) of a dependency graph.

Definition 7 (Strongly Connected Component). An SCC of
G is a maximal subgraph in which there is a directed path
from each vertex to every other vertex. We write GS for the
lifted graph which has one vertex for each SCC inG, and an
edge from component (a variable set) vs1 to component vs2
iff vs1 → vs2. Note that GS will be a DAG.

Definition 8 (Leaves, Ancestors and Children). For any
DAG G, the set of leaves L(G) contains those vertices of
G from which there are no outgoing edges. We also write
AG(n) to denote the set of n’s ancestors inG. Alternatively,
AG(n) = {n0 | n0 ∈ G ∧ n0 →+ n}, where →+ is the
transitive closure of →.We also write CG(n) to denote the
set {n0 | n0 ∈ G ∧ n→ n0} which are the children of n in
G.

Finally, an important relation on lists (of actions) on
which our work relies is the scattered sublist2 relation:

Definition 9 (Scattered Sublists). List l1 is a scattered sub-
list of l2 (written l1 �· l2) if all the members of l1 occur in
the same order in l2.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

2

[] H
vs
π̇ = π̇�D−vs

πc :: π̇c H
vs
π :: π̇ =

{
π :: (π̇c H

vs
π̇) if π�vs = πc

πc :: π̇c H
vs
π̇ o/wise

Figure 1: The definition of the stitching function (H).

w

x y z

Figure 2: The dependency graph of the problem in Example
2.

Derivation of Upper Bounds
The main contribution of our work is the constructive proof
technique we use to derive plan-length bounds. Our ap-
proach is the outcome of an exercise in mechanising the
proofs of the results from (Rintanen and Gretton 2013) us-
ing the HOL interactive theorem proving system (Slind and
Norrish 2008)3. Working from first principles, that exercise
uncovered a subtle yet important error in the original formal-
isation of bounds.4 In detail, a plan-length bound was orig-
inally formulated as the maximum of the minimum length
executions between pairs of states. An important error be-
comes apparent in the usage of that bound, which follows
the algorithm of iterative plan refinement described orig-
inally in (Knoblock 1994). Summarising the error, earlier
work incorrectly assumed that an abstract plan satisfying
that bound could be refined into a complete plan for the
problem at hand. However, valid problems exist where no
minimum length executions in the abstract model can be re-
fined to create a valid plan. The key assumption is invalid
and thus a correction is needed. In what follows we describe
the error we discovered in (Rintanen and Gretton 2013),
correct that error, and then describe our proofs of important
bounding theorems.

Error
The headline result in (Rintanen and Gretton 2013) is de-
scribed using an upper bound function that was written us-

2Our “scattered sublist” is sometimes referred to as a “subse-
quence” in the computer science literature. In HOL we require a
distinct concept.

3The mechanised formalisation and proofs de-
scribed in this paper can be found online at
https://github.com/mabdula/planning/.

4We note that the algorithm and experimental results from (Rin-
tanen and Gretton 2013) are presumed correct: that part of the work
uses cardinality derived bounds rather than the bounding concept
presented in the original formalisation.

ing the ` symbol. Because we are treating both the erroneous
and repaired versions of the function in our work, we have
chosen to write `⊥ for the original erroneous version. We
use the subscript ⊥ symbol to emphasise that it leads to an
invalid result. Intuitively, `⊥ denotes a function which takes
a planning problem Π and returns the length of the longest
optimal execution between any two valid states in Π. We
now formally review the definition of `⊥, identifying and
explaining two errors. Following that, we shall repair that
definition in support of the upper bounds in (Rintanen and
Gretton 2013) . We write Π(s) for the set of finite lists of
actions in Π that reach s from I , S for the set of states in Π,
and |π̇| for the length of execution π̇.

Definition 10.

`⊥(Π) = max
s∈S

min
π̇∈Π(s)

|π̇|

A first negative consequence of the above definition
renders `⊥ unsuitable for making statements about upper
bounds. Specifically, `⊥ is not well-defined in situations
where there are no valid executions between I and a state
s—i.e., the function min has no well-defined output in that
situation. This issue was not dealt with adequately in (Rin-
tanen and Gretton 2013) . We illustrate this error with an
example.

Example 1. Consider the planning problem Π such that

Π = < I = {x, y, z}, A = {({x, y}, {z})}, G = {x, y, z} >

Now let s = {x, y, z} and s′ = {x, y, z}. These are two
valid states in Π but a transition from s to s′ is impossible.
So `⊥ is thus ill-defined for Π.

We can mitigate this ill-definedness by treating reachabil-
ity explicitly, as follows. We shall see in a moment how-
ever that the proposed correction is still insufficient. Let
Ȧ be the set of finite lists of actions in Π and Π(π̇, s) =

{π̇′|exec(s, π̇) = exec(s, π̇′) ∧ π̇′ ∈ Ȧ}, i.e., the set of exe-
cutions from s equivalent to π̇.

Definition 11.

`′⊥(Π) = max
s∈S,π̇∈Ȧ

min
π̇′∈Π(π̇,s)

|π̇|

This proposed modification to `′⊥ is insufficient to fix a
deeper error. A headline results from (Rintanen and Gretton
2013) states:

Not-A-Theorem 1. If the domain of Π is comprised of two
disjoint variable sets vs1 and vs2 satisfying vs2 6→ vs1, we
have:

`′⊥(Π) < (`′⊥(Π�vs1) + 1)(`′⊥(Π�vs2) + 1)

This inequality is invalid with respect to Definition 11
(and Definition 10), as follows.
Example 2. Consider the problem

Π =

〈 I = {w, x, y, z}

A =

{
a = (∅, {x}), b = ({x}, {x, y}),
c = ({x, y}, {x, y, z}), d = ({w}, {x, y, z})

}
G = {w, x, y, z}

〉

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

3

w x

v y z

Figure 3: Dependency graph of the problem in Example 3.

whose dependency graph is shown in Figure 2. Note that
here we include the starting and goal conditions, however
`′⊥ is independent of those. The domain is comprised of
two sets of variables S = {x, y, z}, which is an SCC, and
the set AGS

(S) = {{w}}. The evaluation of `′⊥(Π) gives
7, as this is the maximal length optimal execution. Specif-
ically, that maximal optimal execution is [a; b; a; c; a; b; a]
from {w, x, y, z} to {w, x, y, z}. Treating the abstract prob-
lems Π�S and Π�⋃AGS

(S), in each case we get a bound of
1. This violates Not-A-Theorem 1.

Mechanisation of Existing Bounds
In this section we provide a corrected definition of `. Adopt-
ing that new definition we describe our mechanised proof
of the inequality that featured in Not-A-Theorem 1. We also
develop novel bounds and compare them to the inequalities
suggested in (Rintanen and Gretton 2013) , showing that in
some cases our novel bounds dominate.

Our definition of ` mitigates the problem exhibited in the
definition by (Rintanen and Gretton 2013) by appealing to
Π�·(π̇, s) = {π̇′|exec(s, π̇) = exec(s, π̇′) ∧ π̇′ �· π̇} – i.e.,
the set of executions from s that are equivalent to π̇ and also
scattered sublists of π̇.
Definition 12.

`(Π) = max
s∈S,π̇∈Ȧ

min
π′∈Π�·(π̇,s)

|π̇|

It should be clear that `(Π) is a valid upper bound for
Π. Using ` we can first prove a corrected version of Not-A-
Theorem 1.
Theorem 1. If the domain of Π is comprised of two disjoint
variable sets vs1 and vs2 satisfying vs2 6→ vs1, we have:

`(Π) < (`(Π�vs1) + 1)(`(Π�vs2) + 1)

Proof. To prove Theorem 1 we use a construction which,
given any plan π̇ for Π violating the stated bound, produces
a shorter witness plan π̇′ satisfying that bound. The premise
vs2 6→ vs1 implies that actions with variables from vs2
in their effects—hereupon we shall call these vs2-actions—
never include vs1 variables in their effects. Also, because
vs1 and vs2 capture all problem variables, the effects of
vs1-actions after projection to the set vs1 are unchanged.
Our construction first takes the action sequence π̇�vs2 . Def-
inition 12 of ` provides a scattered sublist π̇′vs2 �· π̇�vs2
satisfying |π̇′vs2 | ≤ `(Π�vs2). Moreover, the definition of `
can guarantee that π̇′vs2 is equivalent, in terms of the execu-
tion outcome, to π̇�vs2 . The stitching function described in

S1

S2S3

Figure 4: An SCC graph with 3 SCCs.

Figure 1 is then used to remove the vs2-actions in π̇ whose
projections on vs2 are not in π̇′vs2 . Thus our construction
arrives at a plan π̇′′ = π̇′vs2 H

vs2
π̇ with at most `(Π�vs2) vs2-

actions. We are left to address the continuous lists of vs1-
actions in π̇′′, to ensure that in the constructed plan any such
list satisfies the bound `(Π�vs1). The method by which we
obtain π̇′′ guarantees that there are at most `(Π�vs2) + 1
such lists to address. The definition of ` provides that for
any abstract list of actions π̇�vs1 in Π�vs1 , there is a list that
achieves the same outcome of length at most `(Π�vs1). Our
construction is completed by replacing each continuous se-
quence of vs1-actions in π̇′′ with witnesses of appropriate
length (`(Π�vs1)).

The above construction can be illustrated using the fol-
lowing concrete example.
Example 3. Consider the valid problem

Π =

〈 I = {v, w, x, y, z}

A =

a = (∅, {x}), b = ({x}, {y}),
c = ({x}, {v}), d = ({x}, {w}),
e = ({y}, {v}), f = ({w, y}, {z}),
g = ({x}, {y, z})

G = {v, w, x, y, z}

〉

whose dependency graph is shown in Figure 3. The domain
of Π has a subset vs2 = {v, y, z} where vs2 is dependent
on the set vs1 = {w, x}, and vs1 is not dependent on vs2.

In Π, the actions b, c, e, f, g are vs2-actions, and a, d
are vs1-actions. A plan π̇ for Π is [a; a; b; c; d; d; e; f].
When the plan π̇ is projected on vs2 it becomes
[b�vs2 ; c�vs2 ; e�vs2 ; f�vs2], which is a plan for Π�vs2 . A
shorter plan, π̇c, for Π�vs2 is [b�vs2 ; f�vs2]. Since π̇c is a
scattered sublist of as�vs2 , we can use the stitching func-
tion to obtain a shorter plan for Π. In this case, π̇c H

vs2
π̇ is

[a; a; b; d; d; f]. The second step is to contract the pure vs1
segments which are [a; a] and [d; d], which are contracted to
[a] and [d] respectively. The final constructed witness for our
bound is the plan [a; b; d; f].

So far we have seen how to reason about problem bounds
by treating abstract subproblems separately. We now re-
view how subexponential bounds for planning problems are
achieved by exploiting branching one-way state-variable de-
pendencies. An example of that type of dependency struc-
ture is exhibited in Figure 4, where Si are sets of variables
each of which forms an SCC in the dependency graph, and
we have both S1 → S2 and S1 → S3. Recall, the latter
means that there is at least one edge from a variable in S1

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

4

S1 S2

S3 S4

Figure 5: An SCC graph with 4 SCCs.

to one in S2, and similarly between S1 and S3. Importantly,
Figure 4 gives S2 6→ S1 and S3 6→ S1, and there is no de-
pendency between any variables in S2 and S3. For bounding
optimal plan lengths, the following theorem was suggested
in (Rintanen and Gretton 2013) to exploit such structures.

Theorem 2. Following Definition 7,GS is the DAG of SCCs
from the dependency graph for a problem Π. The upper
bound `(Π) satisfies the following inequality:

`(Π) ≤ ΣS∈L(GS)`(Π�S∪(⋃AGS
(S))) (1)

In our work we have established sometimes superior
bounds by deviating from the above inequality. The theo-
rem that we mechanised can provide tighter bounds for some
specific dependency structures; and otherwise it does not
dominate and is not dominated by the bound provided by
the inequality in Theorem 2. Our theorem exploits planning
problems which are partitioned by two sets of state variables
that are not connected in the dependency graph.

Theorem 3. For a problem Π whose domain is partitioned
by vs1 and vs2 such that vs1 6→ vs2 and vs2 6→ vs1

`(Π) ≤ `(Π�vs1) + `(Π�vs2) (2)

Proof. The premises vs1 6→ vs2 and vs2 6→ vs1 implies that
vs2-actions have no variables from vs1 in their effects or
preconditions and vs1-actions have no vs2 variables in their
effects or preconditions. This implies that removing vs1-
actions from a plan does not affect the executability of vs2-
actions in that plan. This statement applies in the other direc-
tion also, in the case of vs2-action removal. Our construction
first takes the action sequence π̇�vs2 . Definition 12 of ` pro-
vides an action sequence π̇′vs2 scattered sublist π̇′vs2 �· π̇�vs2
satisfying |π̇′vs2 | ≤ `(Π�vs2). Moreover, the definition of `
guarantees that π̇′vs2 is equivalent, in terms of the execution
outcome, to π̇�vs2 . The stitching function described in Fig-
ure 1 is then used to remove the vs2-actions in π̇ whose pro-
jection on vs2 is not in π̇′vs2 . Thus our construction arrives
at a plan π̇′′ = π̇′vs2 H

vs2
π̇ whose execution outcome is the

same as π̇ but in which the number of vs2-action is at most
`(Π�vs2). The next step is to take π̇′′�vs1 . Then we obtain
π̇′vs1 , a shorter equivalent plan to π̇′′�vs1 , which has at most
`(Π�vs1) actions. Then stitching again we obtain the plan
π̇′vs1 H

vs1
π̇′′ which is a plan that has the same outcome as π̇′′

and accordingly π̇ but with at most `(Π�vs1) + `(Π�vs2) ac-
tions.

Comparison
In this section we compare different ways to decompose de-
pendency graphs based on the results we have so far, and
study the upper bounds thus obtained.

Case 1 Following Theorem 2, a bound on the problem in
Figure 4 is given by :

`(Π) ≤ `(Π�S2∪S1
) + `(Π�S3∪S1

) (3)

Because S2 6→ S1 and S3 6→ S1 hold, application of the
result from Theorem 1 is applicable:

`(Π) ≤ `(Π�S2
)`(Π�S1

) + `(Π�S2
) + `(Π�S3

)`(Π�S1
)

+`(Π�S3
) + 2`(Π�S1

)
(4)

Alternatively, since S2 ∪ S3 6→ S1 holds, Theorem 1 can
be used, as follows:

`(Π) ≤ `(Π�S2∪S3
)`(Π�S1

) + `(Π�S2∪S3
) + `(Π�S1

) (5)

Because S2 6→ S3 and S3 6→ S2 hold, thus application of
Theorem 3 is admissible, yielding:

`(Π) ≤ `(Π�S2
)`(Π�S1

) + `(Π�S3
)`(Π�S1

) + `(Π�S2
)

+`(Π�S3
) + `(Π�S1

)
(6)

The bound reached by the second approach is based on
our new results, and is the tightest.

Case 2 Decomposing the problem using our novel bounds
does not always lead to a better result. Consider the depen-
dency graph in Figure 5. A bound derived with Theorem 2
on a problem with such a dependency graph will be:

`(Π) ≤ `(Π�S3∪S1
) + `(Π�S4∪(S1∪S2)) (7)

Again, this bound can be decomposed further according
to Theorem 1:

`(Π) ≤ `(Π�S3
)`(Π�S1

) + `(Π�S3
) + `(Π�S1

)
+`(Π�S4

)(`(Π�S1∪S2
)) + `(Π�S4

)
+`(Π�S1∪S2

)
(8)

Application of Theorem 3 gives:

`(Π) ≤ `(Π�S3
)`(Π�S1

) + `(Π�S4
)(`(Π�S1

))
+`(Π�S4

)(`(Π�S2
)) + 2`(Π�S1

) + `(Π�S2
)

+`(Π�S3
) + `(Π�S4

)
(9)

Alternatively, decomposing the same dependency graph
using Theorem 1 and Theorem 3 will lead to a differ-
ent bound. Because in the dependency graph in Figure 5
(S3 ∪ S4) 6→ (S1 ∪ S2) holds, Theorem 1 is applicable as
follows:

`(Π) ≤ `(Π�S3∪S4
)`(Π�S1∪S2

)+`(Π�S3∪S4
)+`(Π�S1∪S2

)
(10)

This bound can be decomposed further using Theorem 3:

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

5

`(Π) ≤ `(Π�S3
)`(Π�S1

) + `(Π�S3
)`(Π�S2

)
+`(Π�S4

)`(Π�S1
) + `(Π�S4

)`(Π�S1
)

+`(Π�S1
) + `(Π�S2

) + `(Π�S3
) + (`(Π�S4

))
(11)

Neither of the bounds in Inequality 9 and Inequality 11
dominate. Specifically, the first bound has an extra `(Π�S1

)
term while the second one has an extra `(Π�S2

)`(Π�S3
)

term.

A Tighter Bound
In this section we present a conjecture and an informal
proof of it. To prove our conjecture we require the following
lemma:
Lemma 1. For a planning problem Π for which π̇ is a solu-
tion and for a node S (i.e. an SCC) in GS of Π, there exists
a plan π̇′ such that:
• n(S, π̇′) ≤ `(Π�S)(ΣC∈CGS

(S)n(C, π̇) + 1), where
n(vs, π̇) is the number of vs-actions in π̇, and
• π̇′ �· π̇, and
• ∀ S′ 6= S. n(S′, π̇) = n(S′, π̇′).

Proof. The proof of Lemma 1 is a constructive proof. Let π̇C
be a contiguous fragment of π̇ that has no

⋃
CGS

(S)-actions
in it. Then perform the following steps:

• By the definition of `, there must be a plan π̇S that
achieves the same execution result as π̇C�S , and satisfies
|π̇S | ≤ `(Π�S) and π̇S �· π̇C�S .
• Because D − S −

⋃
CGS

(S) 6→ S holds and using the
same argument used in the proof of Theorem 1, π̇′C(=
π̇S H

S
π̇C�D−

⋃
CGS

(S)) achieves the same D −
⋃
CGS

(S)

assignment as π̇C , and at the same time it is a sublist of
π̇C . Also, n(S, π̇′C) ≤ `(Π�S) holds.
• Finally, because π̇C has no

⋃
CGS

(S)-actions, no⋃
CGS

(S) variables change along the execution of π̇C
and accordingly any

⋃
CGS

(S) variables in preconditions
of actions in π̇C always have the same assignment. This
means that π̇′C H

D−
⋃
CGS

(S)
π̇C will achieve the same result

as π̇C , but with at most `(Π�S) S-actions.

Repeating the previous steps to each π̇C fragment in
π̇ yields an action sequence π̇′ that has at most
`(Π�S)(n(

⋃
CGS

(S), π̇) + 1) S-actions. Because π̇′ is the
result of consecutive applications of the stitching function,
it is a scattered sublist of π̇. Lastly, because during the pre-
vious steps, only S-actions were removed as necessary the
number of any other S′-actions in π̇′ is the same as their
number in π̇.

Corrolary 1. Let F (S, π̇) be a plan that results from
Lemma 1. We know then that:
• exec(s, π̇) = exec(s, F (S, π̇)), and
• n(S, F (S, π̇)) ≤ `(Π�S)(ΣC∈CGS

(S)n(C, π̇) + 1), and

• F (S, π̇) �· π̇, and
• ∀ S′ 6= S. n(S′, π̇) = n(S′, F (S, π̇)).

We now use Corollary 1 to prove the following theorem:

Theorem 4. For a planning problem Π, the bound on the
solution length for such a problem is

`(Π) ≤ ΣS∈GS
N(S) (12)

where N(S) = `(Π�S)(ΣC∈CGS
(S)N(C) + 1).

Proof. Again, our proof of this theorem follows a construc-
tive approach where we begin by assuming we have a solu-
tion π̇. The goal of the proof is to find a witness plan π̇′ such
that ∀ S ∈ GS . n(S, π̇′) ≤ N(S). We proceed by induction
on lS ,the list of nodes in GS , assuming that it is topologi-
cally sorted. As our graph is not empty, the base case is a
singleton list [S]. In this case the goal reduces to finding a
plan π̇0 such that n(S, π̇0) ≤ N(S) and π̇0 �· π̇. Since S
has no children (as it is the only node), N(S) = `(Π�S) and
accordingly the proof follows from the definition of `.

In the step case, we assume the result holds for any prob-
lem whose non-empty node list is the topologically sorted
lS . We then show that it also holds for Π, a problem whose
node list is S :: lS , where S has no parents (hence its posi-
tion at the start of the sorted list), and lS is non-empty. Since
the node list of Π�D−S is lS , the induction hypothesis ap-
plies. Accordingly, there is a solution π̇D−S for Π�D−S such
that π̇D−S �· π̇�D−S and ∀ K ∈ lS . n(K, π̇′) ≤ N(K).
Since S :: lS is topologically sorted, D − S 6→ S holds.
Therefore π̇′D−S = π̇D−S H

D−S
π̇ is a solution for Π (using

the same argument used in the proof of Theorem 1). Fur-
thermore, ∀K ∈ lS . n(K, π̇′D−S) ≤ N(K) and π̇′D−S �· π̇.
The last step in this proof is to apply F to (S, π̇′D−S) to get
the required witness. From Corollary 1 and because the op-
erators = and �· are transitive, we know that

• exec(s, π̇) = exec(s, F (S, π̇′D−S)), and

• n(S, F (S, π̇′D−S)) ≤ `(Π�S)(ΣC∈CGS
(S)n(C, π̇′D−S) +

1), and

• F (S, π̇′D−S) �· π̇, and

• ∀ K 6= S. n(K, π̇′D−S) = n(K,F (S, π̇′D−S)).

Since ∀ K ∈ lS . n(K, π̇′D−S) ≤ N(K) holds, then
n(S, F (S, π̇′D−S)) ≤ `(Π�S)(ΣC∈CGS

(S)N(C) is true.
Accordingly the plan demonstrating the needed bound is
F (S, π̇′D−S).

Bounds Obtained

Using Theorem 4, we can compute bounds that are tighter
than the ones obtained using Theorem 2 for the two depen-
dency graphs in Figure 4 and Figure 5. These bounds can be
obtained by computing N(S) for every SCC in the graph in
the reverse topological order of the SCCs and summing the
results.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

6

Case 1 For the dependency graph in Figure 4 we start
by computing N(S2) and N(S3) which are going to be
`(Π�S2

) and `(Π�S3
) because they both have no children.

Then we compute N(S1) which will be `(Π�S1
)`(Π�S2

) +
`(Π�S1

)`(Π�S3
) + `(Π�S1

). Accordingly and based on The-
orem 4 the bound on the problem is

`(Π) ≤ `(Π�S1
)`(Π�S2

) + `(Π�S1
)`(Π�S3

) + `(Π�S1
)

+`(Π�S2
) + `(Π�S3

)
(13)

This bound is tighter than the one obtained using Theorem 2
shown in Inequality 4.

Case 2 For the dependency graph in Figure 4 we start
by computing N(S3) and N(S4) which equal `(Π�S3

) and
`(Π�S4

), respectively, because they both have no children.
Then we compute N(S1) which will be `(Π�S1

)`(Π�S2
) +

`(Π�S1
). Finally we compute N(S2) which will be

`(Π�S2
)`(Π�S3

) + `(Π�S2
)`(Π�S4

) + `(Π�S2
). Accordingly

the bound on the problem is

`(Π) ≤ `(Π�S1
)`(Π�S3

) + `(Π�S2
)`(Π�S3

)
+`(Π�S2

)`(Π�S4
) + `(Π�S1

) + `(Π�S2
)

+`(Π�S3
) + `(Π�S4

)
(14)

This bound is tighter than the one obtained using Theorem 2
shown in Inequality 9.

Conclusion and Future Work
With this work, we believe we have launched a fruitful inter-
disciplinary collaboration between the fields of AI planning
and mechanised mathematical verification. From the interac-
tive theorem-proving community’s point of view, it is grati-
fying to be able to find and fix errors in the modern research
literature. Specifically, we found errors in the existing for-
malisation of bounds (errors that led to the statement of a
false theorem), corrected the errors with a revised definition
of the key notion, and then gave a mechanized proof of a key
result relating to the calculation of upper bounds.

For planning systems to be deployed in safety critical ap-
plications and for autonomous exploration of space, they
must not only be efficient, and conservative in their resource
consumption, but also correct. We have therefore found it
highly gratifying to be able to give the planning community
strong assurance of the correctness of the formalisation we
treated.

We have only scratched the surface so far. When a tight
bound for a planning problem is known, the most effective
technique for finding a plan is to reduce that problem to
SAT (Rintanen 2012). Proposed reductions are constructive,
in the sense that a plan can be constructed in linear time from
a satisfying assignment to a formula. A key recent advance
in the setting of planning-via-SAT has been the development
of compact SAT-representations of planning problems. Such
representations facilitate highly efficient plan search (Rinta-
nen 2012; Robinson et al. 2009). In future work, we would
like to verify the correctness of both the reductions to SAT,
and the algorithms that subsequently construct plans from a
satisfying assignment.

References
Bylander, T. 1994. The computational complexity of propo-
sitional strips planning. Artif. Intell. 69(1-2):165–204.
Kautz, H. A., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic and stochastic search. In Proc.
13th National Conf. on Artificial Intelligence, 1194–1201.
AAAI Press.
Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning. Artif. Intell. 68(2):243–302.
Rintanen, J., and Gretton, C. O. 2013. Computing upper
bounds on lengths of transition sequences. In IJCAI.
Rintanen, J. 2004. Evaluation strategies for planning as
satisfiability. In Proc. 16th European Conf. on Artificial In-
telligence, 682–687. IOS Press.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. Ar-
tif. Intell. 193:45–86.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2009.
SAT-based parallel planning using a split representation of
actions. In ICAPS.
Slind, K., and Norrish, M. 2008. A brief overview of HOL4.
In Theorem Proving in Higher Order Logics, volume 5170
of LNCS, 28–32. Springer.
Streeter, M. J., and Smith, S. F. 2007. Using decision proce-
dures efficiently for optimization. In Proc. 17th Intnl. Con-
ference on Automated Planning and Scheduling, 312–319.
AAAI Press.
Williams, B. C., and Nayak, P. P. 1997. A reactive plan-
ner for a model-based executive. In Proc. 15th Intnl. Joint
Conference on Artificial Intelligence, 1178–1185. Morgan
Kaufmann Publishers.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

7

Applying Problem Decomposition to Extremely Large Planning Domains

Masataro Asai and Alex Fukunaga
Department of General Systems Studies
Graduate School of Arts and Sciences

The University of Tokyo
guicho2.71828α©gmail.com, fukunagaα©idea.c.u-tokyo.ac.jp

Abstract

Despite the great improvement in the existing planning
technology, their ability is still limited if we try to solve
extremely large problems, e.g. whose state variables are
over 1000 times more than those in standard IPC bench-
mark problems. We propose a method that tries to re-
duce the problem size by decomposing a problem into
a set of cyclic planning problems. We categorized the
objects in a problem into groups, using Abstract Type
and Abstract Task. We then solve each subproblem per
group as a cyclic planning problem, which can be solved
efficiently with Steady State abstraction.

1 Introduction
Recent improvements in classical planning allowed planners
to solve larger and larger domains by modeling planning as
satisfiability and as heuristic search. However, even this is
not enough for large-scale problems such as manufacturing
domains which requires hundreds or thousands of objects to
be processed at once. Since STRIPS planning is PSPACE-
complete [Bylander, 1994], it is impractical to directly solve
such large problems with existing, search-based approaches.
Empirical study for this is proposed in [Helmert, Röger, and
others, 2008], addressing the same limitation in simple A∗
search with ”almost perfect” heuristic functions.

A recent study [Ochi et al., 2013] showed that although
standard domain-independent planners were capable of gen-
erating plans for assembling a single instance of a complex
product, generating plans for assembling multiple instances
of a product was quite challenging. For example, generat-
ing plans to assemble 4-6 instances of a relatively simple
product in a 2-arms cell assembly system pushed the limits
of State-of-the-Art domain-independent planners. However,
real-world CELL-ASSEMBLY applications require mass pro-
duction of hundreds/thousands of instances of a product.

As another example, consider the standard IPC bench-
mark Elevator domain, where the task is to efficiently trans-
port people between floors using several elevators. In the
IPC benchmark instances, the number of passengers is
around 7 times the number of elevators in the satisficing
track, and in the optimization track, the number of passen-
gers is comparable to the number of elevators. However, (as
we demonstrate in Sec. 4) a crowded elevator scenario where

the number of passengers is more than 40 times the num-
ber of elevators is beyond the capabilities of state-of-the-art
planners.

These are examples of domains where the problem in-
stances consist of sets of tasks that are basically indepen-
dent and decomposable, particularly if there is no optimal-
ity requirement. In the cell assembly domain, constructing
a single product is relatively easy. In the elevator domain,
transporting a single passenger from its initial location to its
destination is easy. While standard, search-based planners
struggle to find solutions to large-scale instances of these
domains, a human can easily come up with satisficing plans
for these problems by decomposing the problem.

In this paper, we propose an approach to decomposing
large-scale problems by identifying groups of easy subprob-
lems. In a CELL-ASSEMBLY domain where we are given a
large number of parts that must be assembled into a set of
products, our system extracts a set of abstract subproblems
where each subproblem corresponds to the assembly of a
single type of product. Similarly, in a large-scale elevator
domain, our system extracts a set of abstract subproblems
where each subproblem corresponds to loading N (generic)
people into an elevator on a particular floor FI and moving
them to their particular goal floor FG. In domains such as
cell assembly and elevator where there are no resource con-
straints, the original, large-scale problems can be solved by
sequencing solutions to the subproblems.

Our approach extends the previous work which identifies
“component abstractions” for the purpose of finding macro-
operators [Botea, Müller, and Schaeffer, 2004]. We identify
abstract tasks that consist of an abstract component, plus the
initial and goal propositions that are relevant to that com-
ponent. We show experimentally that this approach is capa-
ble of decomposing large-scale, CELL-ASSEMBLY problems
into a batch of orders that can be solved by a cyclic planner
such as the recently proposed system by [Asai and Fuku-
naga, 2014]. We also show that our system can be used to
decompose large-scale versions of some IPC benchmark do-
mains (Elevator, Woodworking, Rover, Barman) into more
tractable subproblems.

The rest of the paper is organized as follows. First, we ex-
plain our overall approach to decomposition-based solution
of large-scale problems (Sec. 2). We then explain the limita-
tion of existing cyclic planning model further. Next we de-

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

8

scribe the notion of abstract type and Abstract Component
originally came from [2004] and its extension (Attribute) in
Sec. 3.1. Then we describe the notion of abstract task in Sec.
3.2. Finally, we show experimental decomposition results of
extremely large PDDL domains, including both large CELL-
ASSEMBLY problems as well as very large instances of stan-
dard benchmark domains.

2 Background and Motivation:
Heterogeneous, Large-Scale, Repetitive

Problems
Current domain-independent planners can fail to find solu-
tions to large problems which are composed of smaller, easy
problems. Consider the standard Elevator domain, where the
task is to transport people between floors with a few eleva-
tors (with limited capacity). A small typical instance of the
elevator domain, with 3 floors (1F, 2F, 3F) and 1 elevator,
is drawn in the left side of Fig. 2. Problems of this scale
are easily solved by current domain-independent planners.
In the IPC benchmark instances, the number of passengers
is at most 7 times the number of elevators in the satisficing
track, and much fewer for the optimization track.

Now, consider the much larger instance drawn in the right
side of Fig. 2, which might represent what happens at a busy
office building when all but one of the elevators are shut
down for maintenance. Very large instances of the Elevator
problem similar to this can not be solved by current domain-
independent planners (as shown in Sec. 4). It is easy to un-
derstand why: For a standard, forward-search based planner,
the large elevator problem poses a serious challenge because
of an extremely high branching factor (whenever the eleva-
tor door is open) and a very deep search tree.

Figure 1: An usual and large Elevator problem instances

On the other hand, a human would have no trouble gener-
ating a plan to transport all the passengers to their destina-
tions. When faced with a large problem such as this, a hu-
man would not directly search the space of possible action
sequences (as current domain-independent planners do). In-
stead, he/she would notice that on each floor, the passengers
waiting on that floor can be divided into two groups, accord-
ing to their destination. For example, on the 3rd floor, there
are passengers who want to go to the 1st floor, and passen-
gers who want to go to the 2nd floor. If there are 3 floors,
there can be only 6 kinds of passengers there i.e. 1F → 2F ,
1F → 3F , 2F → 1F , 2F → 3F , 3F → 1F , 3F → 2F .
If the number of passengers is very large, one natural and
fairly efficient solution is a cyclic plan that first transports
as many passengers as possible from 1F to 2F, then from 2F
to 3F, then 3F to 1F, as many times as needed to transport
the 1F → 2F , 2F → 3F , and 3F → 1F passengers to
their destinations. Then we handle the remaining passengers

(1F → 3F , 3F → 2F , 2F → 1F) using a cycles of moves
from 1F to 3F, 3F to 2F, and 2F to 1F. More generally, if there
are F floors, the passengers on each floor can be partitioned
into at most F−1 groups, for a total of F (F−1) groups, and
a cyclic plan can be similarly constructed. While the cyclic
plan can be suboptimal (e.g., if the number of passengers in
each group is not equal), this is a reasonably efficient solu-
tion.

Other large-scale domains can be approached similarly. If
we focus on one type of object (passenger in the above
example), we can categorize them into groups, by the struc-
tural analysis of the initial state (the current floor) and the
goal condition (destination floor). This may significantly ab-
stract the basic structure of the domain especially when the
number of instances of the object increases faster than the
number of the groups does. Note that in our Elevator domain
example with 3 floors and 1 elevator, the maximum num-
ber of groups is 6, regardless of the number of passengers.
For a standard planner, increasing the number of passengers
makes the problem instance more difficult. However, for an
approach that seeks to identify subproblems that can be re-
peatedly solved using the same method, there is no marginal
increase in problem difficulty after a certain point, i.e., the
problem difficulty is “saturated”.

Furthermore, the interesting things we found is that we
can benefit from such categorization even in the standard
IPC benchmark problems generated by the official problem
generators. Although most subproblems do not form a cycle
because they are too different, some do share their structure
and can form the cycles.

2.1 Cyclic Planning for Homogeneous, Repetitive
Problems

To realize these ideas, we adopted a notion of “cyclic plan-
ning” and “steady state”.

Figure 2: An example of a start/goal state of a cycle, with
four products b1,b2,b3 and b4

Cyclic scheduling for robotic cell manufacturing systems,
has been studied extensively in the OR literature [Dawande
et al., 2005], and the general problem of cyclic scheduling
has been considered in the AI literature as well [Draper et
al., 1999]. This body of work focused on algorithms for gen-
erating effective cyclic schedules for specific domains, and
addresses the problem: Given the stages in a robotic assem-
bly system, compute an efficient schedule. Thus, the focus
was on efficient scheduling algorithms for particular assem-
bly scenarios.

Similarly, in a generic planning problem, a cyclic plan is a
sequence of actions that can be performed repeatedly, and a
cyclic planner can gain performance when a planning prob-
lem is reduced to a cyclic problem. For example, the most

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

9

common scenario in CELL-ASSEMBLY based manufacturing
plants are orders to make N instances of a particular prod-
uct. In a cyclic plan, the start and end states of the cycle
correspond to a “step forward” in an assembly line, where
partial products start at some location/machine, and at the
end of the cycle, (1) all of the partial products have advanced
forward in the assembly line (2) one completed product ex-
its the line, and (3) assembly of a new, partial product has
begun (See Fig. 2). Each start/end state is called a steady
state for a cyclic plan, which is modeled as a set of partially
grounded state variables, e.g., Si={(at bi+2 table), (at bi+1

painter), (painted bi+1), (at bi machine)}. The initial and end
state of the cyclic plan are Si and Si+1, respectively.

Recently, Asai and Fukunaga developed ACP, a system
which automatically formulates an efficient cyclic problem
structure from a PDDL problem for assembling a single in-
stance of a product [Asai and Fukunaga, 2014]. ACP takes
as input: (1) a PDDL domain model for assembling a sin-
gle product instance, (2) the type identifier associated with
the end product, (3) the number of instances of the product
to assemble, N , and (4) an initial state. Based only on this
input (i.e., without any additional annotation on the PDDL
domain), ACP generates a cyclic plan which starts at the ini-
tial state, then sets up and executes a cyclic assembly for N
instances of the product. If ACP can generate a cyclic plan
at all, then (because of its cyclic nature) an arbitrarily large
number of instances of the target object can be produced.

While ACP provides one solution for a class of homo-
geneous, repetitive problems as described above, it is not a
complete solution to the problem of automatically generat-
ing a cyclic formulation for repeated tasks. There are two
significant limitations:

First, ACP can not handle heterogeneous, repetitive prob-
lems, e.g., a manufacturing order to assemble N instances
of one product and M instances of another kind of product.
They may or may not share the parts and the jobs, e.g. both
kinds of products may require the painting but each requires
a different additional treatment.

Second, ACP assumes that all instances of objects are in-
distinguishable. This limitation can be best explained with
a concrete example: In the CELL-ASSEMBLY domain, the
task is to complete many products on an assembly line
with robot arms (Fig. 2). There are a number of assem-
bly tables and machines that perform specific jobs such
as painting a product or tightening a screw. In each as-
sembly table, various kinds of parts are attached to a
base, the core component of the product. For example, a
problem requires two kinds of parts, part-a,part-b,
to be attached to each one of base0,base1. The fi-
nal products look like base0/part-a/part-b and
base1/part-a/part-b . Note that in this example,
each part is not assumed to be associated with any specific
base. The two part-a ’s are treated as if they are sup-
plied as needed and each parts are indistinguishable. While
this is acceptable in many cases in the CELL-ASSEMBLY do-
main, the assumption of indistinguishable instances may not
be appropriate in other domains, and even in some CELL-
ASSEMBLY scenarios.

Consider a CELL-ASSEMBLY domain where each part is la-

(:objects b-0 b-1 - base

part-a-0 part-a-1 - part

part-b-1 part-b-1 - part ...)

(:init (part-base part-a-0 b-0)

(part-base part-a-1 b-1)

(part-base part-b-0 b-0)

(part-base part-b-1 b-1) ...)

Figure 3: CELL-ASSEMBLY with distinctly labeled parts.

beled and the problem specifies which specific part instance
is attached to which base. Fig. 3 describes such a problem
i.e. part-a-0 must be attached to b-0 specifically and so
on. Assuming the implementation of ACP system is based
on the plan analysis of a unit product, which is one of b-0
or b-1 in this case (let it be the former), then the produced
cyclic plan contains a parametrized base but also a static
part-a-0 object, which leads to inconsistency when we
substitute the parametrized base with b-1. It shows that
the information of the base objects is not sufficient in order
to unroll a cyclic plan: there is a lack of information about
the associations between the bases and the parts.

Therefore we need to automatically detect such structure
consisting of a core object and the associated objects. Once
we find this composite structure, we can treat it as an ab-
stract representation of a unit product. A cyclic plan for the
abstract structure can be generated, and when the cyclic plan
is “unrolled”, individual instances of the parts of the com-
posite object can be mapped to the cyclic plan.

3 Solving Large-Scale, Heterogeneous
Repetitive Problems by Decomposition

Given a large-scale problem such as a heterogeneous cell
assembly or large-scale Elevator problems described in the
previous sections, we can try to solve them by decomposing
them into subproblems that can be handled by existing ap-
proaches. Our overall approach consists of following 5 steps:

1. Divide the set of objects in a problem by extracting ab-
stract type [2004] information, based on the structural
analysis on the initial state. Instances of an abstract type
are called abstract components and a PDDL object is
allocated to each slot defined by abstract type.

2. Extract the initial state and the goal condition that is
related to each component. Together with a component,
they form an abstract task.

3. Compute the compatibility between tasks and catego-
rize the tasks into groups such that each task in a same
group share the same plan.

4. Solve each group of the same tasks as a cyclic plan-
ning problem. Each group can be solved separately. We
finally get a set of unrolled cyclic plans.

5. Interleave the solutions to the decomposed subprob-
lems. Unrolled plan of each group is interleaved,
treated like Abstract Actions in HTN terminology.

The remainder of the paper describes an approach for par-
titioning of a heterogeneous, repetitive problem into groups

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

10

of related, easier subproblems, i.e., steps 1-3 above. In par-
ticular, we describe a method for generating groups of sub-
problems that are identical when abstracted (and therefore,
only 1 instance from each group needs to be solved).

After the original problem has been partitioned, then Step
4 (solution of subproblems) depends on the partitioning re-
sults. If there are numerous instances of each type of sub-
problem, then a cyclic planner such as ACP can be applied
in order to generate an efficient plan for that group of sub-
problem. On the other hand, groups with a single instance
member can be solved using a standard planner.

The final step, combining the subproblem solutions into
a single plan for the original problem (Step 5) , is fu-
ture work. In problems with no (non-replenishable) resource
constraints such as the Elevator and CELL-ASSEMBLY do-
mains, a satisficing plan can be obtained by sequentially ex-
ecuting the plans for the subproblems (stiching the end state
of each subplan to the initial state of the next subplan may be
necessary). In cases where more efficient plans are desired,
or if there are resource constraints, combining the subplans
is a nontrivial problem which can be at least as difficult as
HTN planning. In such cases, our decomposition-based ap-
proach may not result in a feasible plan.

3.1 Component Abstraction and Attributes
Our method for identifying subproblems in large-scale,
repetitive problems is based on the component abstraction
method for macro generation by [Botea, Müller, and Scha-
effer, 2004]. In particular, we use only the first sets of com-
ponents and we extend their notion of an abstract type. This
section reviews the method for extracting abstract types in
[2004] and discusses the completeness of the approach.

Previous Work: Identifying Abstract Components [2004]
The basic idea is to build a static graph of the problem and
partition it into abstract components by seeding the com-
ponents with one node from the graph, and then iteratively
merging adjacent nodes and “growing” the component. Fig.
3.1 illustrates a possible static graph and some of its ab-
stract components. Each small circle represents the objects
appeared in Fig. 3, where ”b0” and ”pb0” is an abbreviation
of b-0 and part-b-0 etc. Each color and pattern of a node
implies its type: different colors suggest different types.

Figure 4: Example of a static graph and components

The static graph of a problem Π is an undirected graph

〈V,E〉, where nodes V are the objects in the problem and
the edges E is a set of static facts in the initial state. Static
facts are the facts (propositions) that are never added nor
removed by any of the actions and only possibly appear in
the preconditions. The graph may be unconnected.

Each component is a subgraph of the static graph. The
decomposition into components proceeds as follows:

1. First, a Seed Type is selected (e.g., randomly). In the
figure, base is selected as a seed type.

2. Next, all objects of the seed type in the static graph
are collected, and an abstract component is created for
each selected object. In the figure, the seed objects are
b0,b1,b2, and their corresponding abstract compo-
nents are (b0),(b1),(b2).

3. A fringe node is a node that is currently not part of any
components and adjacent to some node in a component.
If no fringe node exists, then it either restart the search
with another randomly-selected seed type and the rest
of the graph, or terminates if no seed type remains.

4. Select a set of fringe nodes simultaneously, choosing
a type and then selecting all fringe nodes of that type.
For example, if we choose a wave-patterned node pb0

for the white node b0 , then we simultaneously
choose pb1 for b1 and pb2 for b2 . The
selection order is not specified.

5. Merge the selected nodes into the component that they
are adjacent to, e.g., if we choose pb0 first, then the
components are updated from (b0),(b1),(b2) to
(b0 pb0),(b1 pb1),(b2 pb2).

6. At this point, check if the resulting components share
any part of the structure, and if so, discard all the fringe
nodes newly added in step 5. For example, extend-
ing the top-left AC0 by adding red simultaneously
causes top-right AC1 to include red, resulting in shar-
ing red. Since the objects merged in the step 5 are
red, green and blue, they are all excluded.

Towards a Systematic Search for the Best Abstraction
The original abstract type detection by Botea et al is a ran-
domized, greedy procedure. The seed type is randomly se-
lected in step 1 and step 3. In addition, in step 4, the type of
fringe nodes is selected arbitrarily (the selection order was
not specified in [2004].) While this kind of greedy algorithm
suits their goal of quickly extracting macro-operators, this is
not appropriate for our purpose (solving large problems by
decomposition) due to two reasons.

First, depending on the choices made regarding Seed Type
selection and fringe node type selection, we may fail to find
a component abstraction that includes any nodes other than
the seed node. In the case of macro abstraction, such a failure
is not necessarily fatal because the macro system is basically
a speedup mechanism, and even if a macro is not found, the
base-level planner may still be able to solve the problem.
On the other hand, our objective is to solve problems that
are completely beyond the reach of standard planners (with
hundreds of thousands of objects), so failure to find an ap-
propriate abstract component is equivalent to failure to solve
the problem at all.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

11

Second, there may be multiple possible component ab-
stractions for any static graph, and for our purpose (solving
very large problems by decomposition), it is not sufficient
to find any component abstraction. For example, consider
the integration of component abstraction into the ACP cyclic
planner. ACP extracts lock and owner predicates associated
with each object. A “good” component abstraction in this
context is one which results in the extraction of a large num-
ber of locks, which, in turn, results in efficient plans with
good parallel resource usage. Since locks are extracted for
each object and they are aggregated for each component
which contains the object, large components tends to have
a large number of locks in general.

It is straightforward to modify the abstract type detec-
tion algorithm to systematically enumerate and consider all
possible component abstractions that can be extracted from
a static graph. However, we don’t currently perform a full
enumeration. We run the abstract component detection algo-
rithm from a fresh initial state for all possible seed types. We
only use the first set of components that has been extended
from the first seed type given in the initial input. Thus, the al-
gorithm stops at step 3 if the fringe nodes exhausted. While
this is more systematic than the original algorithm by Botea
et al, the choice of fringe-node type is still arbitrary (simple
queue with no priority). The more systematic approach to
good abstract components (pruning the space of candidate
component abstractions) is future work.

Attributes Conceptually, an abstract component repre-
sents an inseparable groups of objects such as a name, arms
and legs of a human. The fact that an arm belongs to a person
is never removed or added (or it means the transplantation or
loss of the arm). Also, an arm does not belong to more than
one person (again except a few cases).

In contrast, some nodes in the static graph represent At-
tributes that belong to many groups of objects, e.g. hair
color, ethnicity, and gender are attributes that are shared
among people. We extend the abstract type detection algo-
rithm of [2004] above to identify such attributes. In Step 6
above, all nodes that prevented the extension are identified as
attributes, e.g., red,blue,green in Fig. 3.1. Attributes
are used in order to constrain the search for plan-compatible
abstract tasks, described below.

3.2 Abstract Task
We define an abstract task as a triple consisting of (1) an
abstract component AC, (2) a subset of propositions from
the initial states relevant to AC, and (3) a subset of goal
propositions relevant to AC.

In order to find (2) and (3), we collect the fluent facts
in the problem description. Fluent facts are the facts which
are not static. For each abstract component, we collect
all fluent facts in the initial and goal states which con-
tain one of the objects in AC in its parameters. For ex-
ample, the initial state in the PDDL model in Fig. 3
may include a fact (not-painted b0). It can be re-
moved by some actions like paint, so it is fluent. Since
(not-painted b0) has b0 in its argument, it is con-
sidered as one of the initial states of the top-left com-

ponent (AC0) in Fig. 3.1. Similarly, facts like (at b0
table1), (at pa0 tray-a) are the possible candi-
dates for the initial states of AC0. Likewise, the goal con-
dition of AC0 may be (at b0 exit),(is-painted
pa0 red),(assembled b0 pa0) etc.

After all the abstract tasks are identified, we check
the compatibility between the tasks. The compatibility is
checked via replacing the parameters in a plan with the ob-
jects in a component. This finally allows the objects to be
correctly categorized, as the people on each floor in Elevator
domain were divided into groups.

Plan-wise Compatibility of Tasks In order to define the
plan-wise compatibility of tasks, we first define a notion of
component plan and its compatibility.

Let X = {o0, o1 . . .} an abstract component. A compo-
nent plan of X is a result plan of component problem of
X . Let the original planning problem is Π = 〈D, O, I,G〉
where D is a domain, O is the set of objects and I,G is
the initial/goal condition. Also, Let Y be another compo-
nent. Then a component problem is a planning problem
ΠX = 〈D, OX , IX , GX〉 where:

OX =X ∪ {O \X 3 o | ∀Y 6= X; o 6∈ Y }
IX ={I 3 f | params (f) ∩ (O \OX) = ∅}
GX =goal (X)

The definition of OX specifies that it removes any objects
that belong to another component Y . Note that the objects
not included in any component remain as it is. IX specifies
that an initial condition is removed when it has a removed
object in its parameters list. GX is same as the goal condi-
tions of the abstract task of X .

We solve a component problem ΠX with a domain-
independent planner such as Fast Downward. However, in
some domains no solutions exist in ΠX due to the removed
objects and initial conditions. In such cases, we restore O
and I and re-run the planner on 〈D, O, I,GX〉. This is called
an Object Restoration. The computation of a component
plan is instantaneous in most cases, but large instances tend
to require more time and memory. As shown in the experi-
ments, we found that when a large number of unused objects
is restored in O, the PDDL→ SAS converter in Fast Down-
ward can become the bottleneck.

Solving component problem yields an component plan.
The component plans PX , PY are compatible if PX can be
used as a plan of Y by replacing the parameters i.e. if we
replace all references to the objects inX in PX with the cor-
responding objects in Y , then the modified (mapped) plan
P ′X is a valid plan of ΠY .

Finally, we define two tasks are plan-wise compatible
when the following conditions hold:

1. The components of the two tasks are of the same ab-
stract type.

2. The two tasks shares the same set of attributes.

3. The graph structure designated by their initial/goal con-
dition are isomorphic, just like abstract-type, e.g. if the
task of AC0 in Fig. 3.1 has an initial state (at b0

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

12

table1), then a compatible task of AC1 should also
contain (at b1 table1) in its initial state.

4. One of the component plans of the component problem
of each task are compatible.

We categorize the extracted abstract tasks according to
the plan-wise compatibility. However, solving the compo-
nent problems involves running a domain-independent plan-
ner, so computing component plans for every abstract task
should be avoided if possible. Thus, we use attributes (con-
dition 2 above) in order to filter the candidate pairs before
checking whether their component plans are compatible.

Categorizing a group of N elements based on a equality
function requiresO(N2) comparisons between the elements
in a naive implementation. However, in the IPC problems,
most tasks are not compatible, which means they end up in
many groups of only a single task in it. Clearly, a group of
one task requires no further categorization. A similar obser-
vation can be made regarding condition 3.

The use of attribute-based comparison greatly reduces
the number of pairs whose component plans need to be
compared. Consider three similar factory assembly tasks,
t1, t2, t3, that require painting of an object with different col-
ors (blue, red, green). Also, assume that the available colors
in each painting machine is limited e.g. machine m1 sup-
ports red only and m2 supports green and blue. Now the
plans for t1 and t2 are incompatible because they use the dif-
ferent machines. We can detect these incompatibilities with-
out spending all the effort of running a planner, getting a
mapped plan and validate it.

While we show experimentally that pre-categorization
according to attributes is highly effective (Sec. 4.2), this
method is subject to false-negatives, and can result in the
compatible pairs being discarded. Continuing the previous
example, plans for t2 and t3 is likely to be compatible be-
cause their plans use the same machine. However, once we
use the condition 2, it divides t2 and t3 into the different
groups because they use the different colors.

The number of calls to the underlying planner can also
be optimized. Since the compatibility is transitive (given the
condition 2 and 3. Proof omitted), we can check the compat-
ibility between Y and Z by instead just checking the com-
patibility between X and Z. Then we can reuse PX because
the compatibility check requires only the plan PX (and does
not require PZ).

4 Experimental Results
We evaluate abstract-task based problem decomposition on
the CELL-ASSEMBLY domain as well as large instances of
several IPC domains.

4.1 Categorization of CELL-ASSEMBLY Problems
We evaluated our decomposition method on both homo-
geneous and heterogeneous CELL-ASSEMBLY-EACHPARTS.
Both types of problems are defined on the same manufactur-
ing plant with the same tables and machines. However, the
latter processes two completely different kinds of products
at the same time. The results are shown in Fig. 5.

Figure 5: The categorization result of CELL-ASSEMBLY-
EACHPARTS 2a2b-mixed problems with seed base. Each
problem contains n 2a-tasks and the same n 2b-tasks, where
1 ≤ n ≤ 30. Each line represents one problem. The x-axis
represents the number of objects in each categorized group,
while the y-axis represents the total number of objects in the
groups of x objects. Therefore (x, y) = (15, 30) means there
are 2 groups of 15 components. For each problem, the tasks
are divided into 2 groups of n tasks, where each group rep-
resents 2a and 2b. This shows that our algorithm correctly
categorized two groups of tasks in each problem, despite the
combination of the mixed orders and the variation within
each group (Sec. 2.1).

On the homogeneous CELL-ASSEMBLY-EACHPARTS prob-
lems, our algorithm correctly identifies all component tasks
and labels them as plan-wise compatible. On the heteroge-
neous problems, it identifies that there are two kinds of tasks
and the objects are compatible within each group. (When we
say “heterogeneous x + y problem”, it contains x instances
of one product and y instances of another product.) Decom-
positions based on the seed types other than base was also
successful. The seed was part, and the detailed analysis
suggested that the same abstract type was detected from the
different seed types. Given this fact, we consider the exhaus-
tive attempts on all seed types are necessary.

4.2 Categorization results for IPC Domains
We also evaluate our decomposition method on several
IPC domains including Satellite (minimally modified, see
below), woodworking, openstacks, elevators, barman, and
rover. Satellite-typed is a typed variant of IPC2006 satel-
lite. While the original domain is already “typed” by the use
of 1-argument type predicates, we simply converted the type
predicates to standard, explicit PDDL type annotations. This
conversion has no effect on the structure of the domain or in-
stances. Although we performed this modification manually,
an automatic procedure such as TIM[Fox and Long, 1998]
could have been used instead. Very large problem instances
for the IPC domains were generated using either the scripts
that are found in IPC 2011 result archive 1 (for Woodworking,
Barman and ROVER), and our own generator for the rest.

First, in order to understand the limitations of current
State-of-the-Art planners, we run the current version of Fast
Downward2 using the “seq-sat-lama-2011” satisficing con-
figuration, which emulates the IPC2011 LAMA planner. The
maximum search time is limited to 6 hours, and memory
limit of 15[GB] on an Intel Xeon E5410@2.33GHz.

The table below shows the largest problem instances that
were solved. Stars (∗) mean it uses the generators and the

1svn://svn@pleiades.plg.inf.uc3m.es/ipc2011/data
2http://www.fast-downward.org

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

13

problems used in IPC. (In this table, we also summarized
the seed types which are used in the later categorization.)

Domains limit seed type
cell-assembly (single product, 14 bases) base,part
-eachparts (mixed products, 6+6 bases)
satellite-typed (17 satellites,39 instruments, direction

13 modes,310 directions)
IPC domains
woodworking∗ p86 (227 parts and x1.2 wood) part
openstacks (70 orders and products) order, product
elevators (4 slow&fast elevators, 40 floors, passenger

270 passengers, 10 floors/area)
barman-sat11∗ (4 ingredients, 93 shots and cocktails) shot,cocktail
rover∗ N/A (IPC problems were solved up to p40) objective

Table 1: Domains used in the evaluation.

Assuming that once a cyclic plan is generated, the
marginal cost of processing an additional product within a
group is almost zero, we can summarize the effect of cate-
gorization by comparing the number of components with the
number of groups of components. Fig. 6(1) shows the result.

The points on the line x = y in Fig. 6(1) shows that
we cannot get a meaningful categorization in some con-
figurations. The reason is twofold: Firstly, the choice of
seed was inappropriate. Indeed, in barman domain, cate-
gorization based on cocktail did not result in compo-
nents larger than the initial nodes, while that of shot did.
This is due to the greedy nature of the abstract type detec-
tion algorithm, as described in [Botea, Müller, and Schaef-
fer, 2004]. The same thing applies to the results of the other
seed types (though not shown here), such as the decomposi-
tion of CELL-ASSEMBLY-EACHPARTS based on arm, table,
job and so on. This indicates that restarting the search with
all seeds as described in Section 3.1 is required to ensure
that a meaningful categorization is found if one exists. Sec-
ondly, in OPENSTACKS, both seeds order and product
failed to get a meaningful information. In this case, the rea-
son is attributed to the domain’s characteristics itself i.e. it is
possible that the domain has no inherent meaningful catego-
rization.

Evaluation of the Optimization Methods Here we show
the effect of pre-categorization described in Sec. 3.2.
Though we are not able to include detailed results here, Fig.
6(2) shows the distribution of pre-categorization (based on
the conditions 1 to 3, Sec. 3.2). It shows that the number of
comparisons that are actually performed is far less than those
required by the naive method because most categorizations
are already done i.e. most tasks are already categorized into
groups of a few elements (1 or 2 elements).

We also compare the actual number of calls to the under-
lying planner with a naive implementation. In a naive im-
plementation, N components require N calls to the planner.
Fig. 6(3) shows that the evaluation was reduced by a factor
of 2. The results in all domains in Table 1 are shown at once.

Total Elapsed Time of the Categorization Elapsed time
is a key factor when our method is considered as a prepro-
cessing step for planning. We show the results in Fig. 6(4).

Unfortunately, some problems are found to take very long
time to compute the categorization due to the heavy object
restoration (Sec. 3.2). The figure clearly shows that the most
time-consuming (t ≈ 105) decompositions required the
component problems with object restoration 〈D, O, I,GX〉,
not by 〈D, OX , IX , GX〉. In Fig. 6(5), we show that the cur-
rent bottleneck in solving a restored problem is mainly the
PDDL→ SAS converter in Fast Downward. Addressing this
issue remains future work.

5 Related Works
The overall approach we are pursuing, which is to decom-
pose a large problem into relatively easy subproblems, is in-
spired by previous work on problem decomposition [Yang,
Bai, and Qiu, 1994] and Hierarchical Task Network (HTN)
planning [Erol, Hendler, and Nau, 1994]. In HTN, problem
decomposition is done by methods which describes how an
abstract-level task can be decomposed into the smaller sub-
tasks. It naturally supports the cyclic structure by allowing
self-recursive decomposition of compound tasks. Thus, de-
composition gives HTN strictly more expressivity than that
of classical planning [1994].

HTN differs from our approach in that methods are
mostly written by the human experts, while ours is based
on static problem analysis. However, sevaral approaches
has already been made for learning the methods automati-
cally. HTN-MAKER[Hogg, Munoz-Avila, and Kuter, 2008]
learns methods from existing plans built by experts and a
set of annotated tasks. The learning process works in a hi-
erarchical manner. Similarly, LIGHT[Nejati, Langley, and
Konik, 2006] system induces methods also from the expert
plan but by backward skill chaining from the goal.

Our approach is related to macro abstraction systems such
as Macro-FF [Botea et al., 2005], which automatically iden-
tifies reusable plan fragments, and in fact, the component
abstraction framework we extended was originally used by
Botea et al to identify macros [Botea, Müller, and Schaeffer,
2004]. Macro systems strive to provide a very general ab-
straction mechanism, but are typically limited to relatively
short macros (e.g., 2-step macros in Macro-FF). Our ap-
proach, on the other hand, focuses on identifying ‘very long
macros” (10-30 steps per cycle) corresponding to specific
abstract tasks.

Another related work is symmetry detection in [Fox and
Long, 1999]. It builds symmetry groups of objects and ac-
tions by exploiting the initial and goal condition in a given
problem. The symmetry is incrementally broken during the
search and the information is used to suppress the branching
factor, while our method is focused on the preprocessing be-
fore the actual search. Also, their work do not consider the
structure of objects, thus shares the similar aspects with our
previous approach described in Sec. 2.1.

6 Conclusions
This paper presents preliminary work on a decomposition-
based approach for solving large scale planning problems
with a repetitive structure in domains such as factory assem-
bly. We presented an overview of our decomposition-based

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

14

Figure 6: (1-5) The figures are given numbers from left to right. Results of all domains categorized using all seed types are
shown at once. Points from the different configuration have the different density. (1) The number of components vs the number
of categorized groups. (2) Number of comparisons for each problems. Our pre-categorization method significantly reduced
the number of comparisons necessary to categorize the tasks. (3) Number of evaluations for each problems. Our memoization
strategy significantly reduces the number of calls to the underlying planner by a factor of≈ 2. (4) Histogram of the total elapsed
time[sec], averaged in 0.2n ≤ log t ≤ 0.2(n + 1) for each integer n. (5) x-axis is a ratio of translate/(translate + preprocess
+ search) measured by time, while y-axis is measured by memory. We show the results from all the domains, regardless of
whether the object restoration has occured or not. It clearly shows that the search in a component problem is easy because of
the limited number of conditions in GX , and the computation is usually dominated by the translator.

approach, and described a novel method for automatically
detecting such a repeated structure, based on categorization
of objects in a problem. We showed experimentally that on
very large problem instances, our method is able to success-
fully decompose the problems into tasks that satisfy a par-
ticular compatibility criteria (plan-wise compatibility). We
showed that plan-wise compatibility can be found not only
in large instances of the factory assembly domain that is the
primary motivation for this line of work, but also in large
instances of IPC2011 domains.

In the overall approach to solving large-scale, heteroge-
neous repetitive problems outlined in Section 3, this paper
addresses Steps 1 and 3. Step 4 (cyclic planning) has already
been addressed in [Asai and Fukunaga, 2014]. The next step
is to address the remaining steps (2, 5), which would result
in a system that can fully automatically approach the prob-
lem of solving large-scale repetitive problems.

There are several directions for improving the decompo-
sition strategy proposed in this paper. First, as discussed
in Section 3.1, the abstract type detection algorithm should
be made more systematic, and a focused search for larger
components should be implemented. In addition, a smarter
object restoration strategy which minimize the number
of objects to be restored (Section 3.2) because currently
all objects and initial configurations are restored again in
〈D, O, I,GX〉, causing the underlying planner to be con-
fused by the unnecessarily large number of objects.

References
Asai, M., and Fukunaga, A. 2014. Fully automated cyclic plan-
ning for large-scale manufacturing domains. In ICAPS.

Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J. 2005.
Macro-ff: Improving ai planning with automatically learned
macro-operators. J. Artif. Intell. Res.(JAIR) 24:581–621.

Botea, A.; Müller, M.; and Schaeffer, J. 2004. Using compo-

nent abstraction for automatic generation of macro-actions. In
Proceedings of ICAPS, 181–190.
Bylander, T. 1994. The computational complexity of proposi-
tional strips planning. Artificial Intelligence 69(1):165–204.
Dawande, M.; Geismar, H. N.; Sethi, S. P.; and Sriskandarajah,
C. 2005. Sequencing and scheduling in robotic cells: Recent
developments. Journal of Scheduling 8(5):387–426.
Draper, D.; Jonsson, A.; Clements, D.; and Joslin, D. 1999.
Cyclic scheduling. In Proc. IJCAI.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. Htn planning: Com-
plexity and expressivity. In AAAI, volume 94, 1123–1128.
Fox, M., and Long, D. 1998. The automatic inference of state
invariants in TIM. Journal of Artificial Intelligence Research.
Fox, M., and Long, D. 1999. The detection and exploitation
of symmetry in planning problems. In IJCAI, volume 99, 956–
961.
Helmert, M.; Röger, G.; et al. 2008. How good is almost per-
fect?. In AAAI, volume 8, 944–949.
Hogg, C.; Munoz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning htns with minimal additional knowledge
engineering required. In AAAI, 950–956.
Nejati, N.; Langley, P.; and Konik, T. 2006. Learning hierar-
chical task networks by observation. In Proceedings of the 23rd
international conference on Machine learning, 665–672. ACM.
Ochi, K.; Fukunaga, A.; Kondo, C.; Maeda, M.; Hasegawa, F.;
and Kawano, Y. 2013. A steady-state model for automated se-
quence generation in a robotic assembly system. SPARK 2013.
Yang, Q.; Bai, S.; and Qiu, G. 1994. A framework for automatic
problem decomposition in planning. In AIPS, 347–352.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

15

Eliminating All Redundant Actions from Plans Using SAT and MaxSAT

Tomáš Balyo
Department of Theoretical Computer Science

and Mathematical Logic,
Faculty of Mathematics and Physics

Charles University in Prague
biotomas@gmail.com

Lukáš Chrpa
PARK Research Group

School of Computing and Engineering
University of Huddersfield

l.chrpa@hud.ac.uk

Abstract

Satisfiability (SAT) techniques are often successfully
used for solving planning problems. In this paper we
show, that SAT and maximum satisfiability (MaxSAT)
can be also used for post-processing optimization of
plans. We will restrict ourselves to improving plans by
removing redundant actions from them which is a spe-
cial case of plans optimization. There exist polynomial
algorithms for removing redundant actions, but none
of them can remove all such actions since guarantee-
ing that a plan does not contain redundant actions is
NP-complete. We introduce two new algorithms, based
on SAT and MaxSAT, which remove all redundant ac-
tions. The MaxSAT based algorithm additionally guar-
antees to remove a maximum set of redundant actions.
We test the described algorithms on plans obtained by
state-of-the-art planners on IPC 2011 benchmarks. The
proposed algorithms are very fast for these plans despite
the complexity results.

Introduction
Automated Planning is an important research area for its
good application potential (Ghallab, Nau, and Traverso
2004). With intelligent systems becoming ubiquitous there
is a need for planning systems to operate in almost real-time.
Sometimes it is necessary to provide a solution in a very lit-
tle time to avoid imminent danger (e.g damaging a robot)
and prevent significant financial losses. Satisficing planning
engines such as FF (Hoffmann and Nebel 2001), Fast Down-
ward (Helmert 2006) or LPG (Gerevini, Saetti, and Serina
2003) are often able to solve a given problem quickly, how-
ever, quality of solutions might be low. Optimal planning
engines, which guarantee the best quality solutions, often
struggle even on simple problems. Therefore, a reasonable
way how to improve the quality of the solutions produced
by satisficing planning engines is to use post-planning opti-
mization techniques.

In this paper we restrict ourselves to optimizing plans
by only removing redundant actions from them. Guarantee-
ing that a plan does not contain redundant actions is NP-
complete (Fink and Yang 1992). There are polynomial al-
gorithms, which remove most of the redundant actions, but
none of them removes all such actions. We propose two
new algorithms which are guaranteed to remove them all.

One uses satisfiability (SAT) solving, the other one relies on
maximum satisfiability (MaxSAT) solving. We compare our
algorithms with a heuristic algorithm on plans obtained by
state-of-the-art planners on IPC 2011 benchmarks.

Related Work
Various techniques have been proposed for post-planning
plan optimization. Westerberg and Levine (2001) proposed
a technique based on Genetic Programming, however, it is
not clear whether it is required to hand code optimization
policies for each domain as well as how much runtime is
needed for such a technique. Planning Neighborhood Graph
Search (Nakhost and Müller 2010) is a technique which ex-
pands a limited number of nodes around each state along
the plan and then by applying Dijsktra‘s algorithm finds a
better quality (shorter) plan. This technique is anytime since
we can iteratively increase the limit for expanded nodes in
order to find plans of better quality. AIRS (Estrem and Kreb-
sbach 2012) improves quality of plans by identifying subop-
timal subsequences of actions according to heuristic estima-
tion (a distance between given pairs of states). If the heuris-
tic indicates that states might be closer than they are, then
a more expensive (optimal) planning technique is used to
find a better sequence of actions connecting the given states.
A similar approach exists for optimizing parallel plans (Ba-
lyo, Barták, and Surynek 2012). A recent technique (Sid-
diqui and Haslum 2013) uses plan deordering into ‘blocks’
of partially ordered subplans which are then optimized. This
approach is efficient since it is able to optimize subplans
where actions might be placed far from each other in a totaly
ordered plan.

Determining and removing redundant actions from plans
is a specific sub-category of post-planning plan optimiza-
tion. An influential work (Fink and Yang 1992) defines four
categories of redundant actions and provides complexity re-
sults for each of the categories. One of the categories refers
to Greedily justified actions. A greedily justified action in
the plan is, informally said, such an action which if it and
actions dependent on it are removed from the plan, the plan
becomes invalid. Greedy justification is used in the Ac-
tion Elimination (AE) algorithm (Nakhost and Müller 2010)
which is discussed in detail later in the text. Another of
the categories refers to Perfectly Justified plans, plans in
which no redundant actions can be found. Minimal reduc-

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

16

tion of plans (Nakhost and Müller 2010) is a special case
of Perfectly Justified plans having minimal cost of the plan.
Both Perfect Justification and Minimal reduction are NP-
complete. Determining redundant pairs of inverse actions
(inverse actions are those that revert each other’s effects),
which aims to eliminate the most common type of redun-
dant actions in plans, has been also recently studied (Chrpa,
McCluskey, and Osborne 2012a; 2012b).

Preliminaries
In this section we give the basic definitions and properties
used in the rest of the paper.

Satisfiability
A Boolean variable is a variable with two possible values
True and False. A literal of a Boolean variable x is either x
or ¬x (positive or negative literal). A clause is a disjunction
(OR) of literals. A clause with only one literal is called a unit
clause and with two literals a binary clause. An implication
of the form x ⇒ (y1 ∨ · · · ∨ yk) is equivalent to the clause
(¬x ∨ y1 ∨ · · · ∨ yk). A conjunctive normal form (CNF)
formula is a conjunction (AND) of clauses. A truth assign-
ment φ of a formula F assigns a truth value to its variables.
The assignment φ satisfies a positive (negative) literal if it
assigns the value True (False) to its variable and φ satisfies
a clause if it satisfies any of its literals. Finally, φ satisfies
a CNF formula if it satisfies all of its clauses. A formula F
is said to be satisfiable if there is a truth assignment φ that
satisfies F . Such an assignment is called a satisfying assign-
ment. The satisfiability problem (SAT) is to find a satisfying
assignment of a given CNF formula or determine that it is
unsatisfiable.

Partial Maximum Satisfiability
A partial maximum satisfiability (PMaxSAT) formula is a
CNF formula consisting of two kinds of clauses called hard
and soft clauses. A PMaxSAT formula is satisfied under a
truth assignment φ if it satisfies all of its hard clauses.

The partial maximum satisfiability problem (PMaxSAT)
is to find a satisfying assignment φ for a given PMaxSAT
formula such that φ satisfies as many soft clauses as possi-
ble.

Planning
In this section we give the formal definitions related to
planning. We will use the multivalued SAS+ formalism
(Bäckström and Nebel 1995) instead of the classical STRIPS
formalism (Fikes and Nilsson 1971) based on propositional
logic.

A planning task Π in the SAS+ formalism is defined as a
tuple Π = {X,O, sI , sG} where
• X = {x1, . . . , xn} is a set of multivalued variables with

finite domains dom(xi).
• O is a set of actions (or operators). Each action a ∈ O

is a tuple (pre(a), eff(a)) where pre(a) is the set of pre-
conditions of a and eff(a) is the set of effects of a. Both
preconditions and effects are of the form xi = v where
v ∈ dom(xi).

• A state is a set of assignments to the state variables. Each
state variable has exactly one value assigned from its re-
spective domain. We denote by S the set of all states.
sI ∈ S is the initial state. sG is a partial assignment of
the state variables (not all variables have assigned values)
and a state s ∈ S is a goal state if sG ⊆ s.
An action a is applicable in the given state s if pre(a) ⊆

s. By s′ = apply(a, s) we denote the state after executing
the action a in the state s, where a is applicable in s. All
the assignments in s′ are the same as in s except for the as-
signments in eff(a) which replace the corresponding (same
variable) assignments in s.

A (sequential) planP of length k for a given planning task
Π is a sequence of actions P = {a1, . . . , ak} such that sG ⊆
apply(ak, apply(ak−1 . . . apply(a2, apply(a1, sI)) . . .)).
We will denote by |P | the length of the plan P .

Redundant Plans
A plan P for a planning task Π is called redundant if there is
a subsequence P ′ of P (|P ′| < |P |), such that P ′ is a valid
plan for Π. The actions in P that are not present in P ′ are
called redundant actions. A plan which is not redundant is
called a perfectly justified plan.

A plan P for a planning task Π is called an optimal plan
if there is no other plan P ′ for Π such that |P ′| < |P |. Note,
that a perfectly justified plan is not necessarily an optimal
plan. On the other hand, an optimal plan is always perfectly
justified.

Determining whether a plan is perfectly justified is NP-
complete (Fink and Yang 1992). Nevertheless, there are sev-
eral heuristic approaches, which can identify most of the
redundant actions in plans in polynomial time. One of the
most efficient of these approaches was introduced in (Fink
and Yang 1992) under the name Linear Greedy Justification.
It was reinvented in (Nakhost and Müller 2010) and called
Action Elimination. In this paper we use the latter name.

Action Elimination (see Figure 1) tests for each action if it
is greedily justified. An action is greedily justified if remov-
ing it and all the following actions that depend on it makes
the plan invalid. One such test runs in O(np) time, where
n = |P | and p is the maximum number of preconditions
and effects any action has. Every action in the plan is tested,
therefore Action Elimination runs in O(n2p) time.

There are plans, where Action Elimination cannot elim-
inate all redundant actions (Nakhost and Müller 2010). An
interesting question is how often this occurs for the plan-
ning domains used in the planning competitions (Coles et
al. 2012). To find out, first we need to design an algorithm
that always eliminates all redundant actions, i.e., find per-
fectly justified plans. As mentioned earlier, this problem is
NP-complete and therefore we find it reasonable to solve it
using a SAT reduction approach. In the next section we will
introduce a translation of this problem into SAT.

Satisfiability Encoding of Plan Redundancy
This section is devoted to introducing an algorithm, which
given a planning task Π and a valid plan P for Π, outputs a

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

17

ActionElimination (Π, P)
AE01 s := sI
AE02 i := 1
AE03 repeat
AE04 mark(ai)
AE05 s′ := s
AE06 for j := i+ 1 to |P | do
AE07 if applicable(aj , s′) then
AE08 s′ := apply(aj , s′)
AE09 else
AE10 mark(aj)
AE11 if goalSatisfied(s′) then
AE12 P := removeMarked(P)
AE13 else
AE14 unmarkAllActions()
AE15 s := apply(ai, s)
AE16 i := i+ 1
AE17 until i > |P |
AE18 return P

Figure 1: Pseudo-code of the Action Elimination algorithm
as presented in (Nakhost and Müller 2010).

CNF formula FΠ,P , such that FΠ,P is satisfiable if and only
if P is a redundant plan for Π.

We provide several definitions which are required to un-
derstand the concept of our approach. An action a is called
a supporting action for a condition c if c ∈ eff(a). An ac-
tion a is an opposing action of a condition c := xi = v
if xi = v′ ∈ eff(a) where v 6= v′. The rank of an action
a in a plan P is its order in the sequence P . We will de-
note by Opps(c, i, j) the set of ranks of opposing actions
of the condition c which have their rank between i and j
(i ≤ j). Similarly, by Supps(c, i) we will mean the set of
ranks of supporting actions of the condition c which have
ranks smaller than i.

In our encoding we will have two kinds of variables. First,
we will have one variable for each action in the plan P ,
which will represent whether the action is required for the
plan. We will say that ai = True if the i-th action of P (the
action with the rank i) is required. The second kind of vari-
ables will be option variables, their purpose and meaning is
described below.

The main idea of the translation is to encode the fact, that
if a certain condition ci is required to be true at some time i
in the plan, then one of the following must hold:

• The condition ci is true since the initial state and there is
no opposing action of ci with a rank smaller than i.

• There is a supporting action aj of ci with the rank j and
there is no opposing action of ci with the rank between j
and i.

These two kinds of properties represent the options for sat-
isfying ci. There is at most one option of the first kind and at
most |P | of the second kind. For each one of them we will
use a new option variable yc,i,k, which will be true if the
condition c at time i is satisfied using the k-th option.

Now we demonstrate how to encode the fact, that we re-
quire condition c to hold at time i. If c is in the initial state,
then the first option will be expressed using the following
conjunction of clauses.

Fc,i,0 =
∧

j∈Opps(c,0,i)

(¬yc,i,0 ∨ ¬aj)

These clauses are equivalent to the implications below. The
implications represent that if the given option is true, then
none of the opposing actions can be true.

(yc,i,0 ⇒ ¬aj);∀j ∈ Opps(c, 0, i)
For each supporting action aj (j ∈ Supps(c, i)) with rank
j we will introduce an option variable yc,i,j and add the fol-
lowing subformula.

Fc,i,j = (¬yc,i,j ∨ aj)
∧

k∈Opps(c,j,i)

(¬yc,i,j ∨ ¬ak)

These clauses are equivalent to the implications that if the
given option is true, then the given supporting action is true
and all the opposing actions located between them are false.
Finally, for the condition c to hold at time i we need to add
the following clause, which enforces at least one option vari-
able to be true.

Fc,i = (yc,i,0
∨

j∈Supps(c,i)

yc,i,j)

Using the encoding of the condition requirement it is now
easy to encode the dependencies of the actions from the in-
put plan and the goal conditions of the problem. For an ac-
tion ai with the rank i we will require that if this action vari-
able is true, then all of its preconditions must be true at time
i. For an action ai the following clauses will enforce, that
if the action variable is true, then all the preconditions must
hold.

Fai =
∧

c∈pre(ai)

(¬ai ∨ Fc,i) ∧ Fc,i,0
∧

j∈Supps(c,i)

Fc,i,j

We will need to add these clauses for each action in the plan.
Let us call these clauses FA.

FA =
∧
ai∈P

Fai

For the goal we will just require all the goal conditions to
be true in the end of the plan. Let n = |P |, then the goal
conditions are encoded using the following clauses.

FG =
∧
c∈sG

Fc,n ∧ Fc,n,0 ∧
j∈Supps(c,n)

Fc,n,j

The last clause we need to add is related to the redundancy

property of the plan. The following clause is satisfied if at
least one of the actions in the plan is omitted.

FR =

(∨
ai∈P

¬ai

)

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

18

Finally, the whole formula FΠ,P consists of the redun-
dancy clause, the goal clauses, and the action dependency
clauses for each action in P .

FΠ,P = FR ∧ FG ∧ FA

If the formula is satisfiable, we also want to use its sat-
isfying assignment to construct a new reduced plan. A plan
obtained using a truth assignment φ will be denoted as Pφ.
We define Pφ to be a subsequence of P such that the i-th
action of P is present in Pφ if and only if φ(ai) = True.

Lemma 1. An assignment φ satisfies FG ∧FA if and only if
Pφ is a valid plan for Π.

Proof. (sketch) A plan is valid if all the actions in it are ap-
plicable when they should be applied and the goal conditions
are satisfied in the end. We constructed the clauses of FG to
enforce that at least one option of satisfying each condition
will be true. The selected option will then force the required
action and none of its opposing actions to be in the plan. Us-
ing the same principles, the clauses in FA guarantee that if
an action is present in the plan, then all its preconditions will
hold when the action is applied.

Proposition 1. The formula FΠ,P is satisfiable if and only
if P is a redundant plan for Π.

Proof. The clause FR is satisfied by an assignment φ if and
only if at least one ai is false, i.e., not present in Pφ which
implies |Pφ| < |P |. Using the previous lemma, we can con-
clude, that the entire formula FΠ,P = FR ∧ FG ∧ FA is
satisfied of and only if there is a valid plan, which can be
obtained from P by omitting at least one of its actions.

Let us conclude this section by computing the following
upper bound on the size of the formula FΠ,P .

Proposition 2. Let p be the maximum number of precondi-
tions of any action in P ,g the number of goal conditions
of Π, and n = |P |. Then the formula FΠ,P has at most
n2p+ng+n variables and n3p+n2g+np+g+1 clauses,
from which n3p+ n2g are binary clauses.

Proof. The are n action variables. For each required condi-
tion we have at most n option variables, since there are at
most n supporting actions for any condition in the plan. We
will require at most (g + np) conditions for the g goal con-
ditions and the n actions with at most p preconditions each.
Therefore the total number of option variables is n(np+ g).

For the encoding of each condition at any time we use
at most n options. Each of these options are encoded us-
ing n binary clauses (the are at most n opposing actions for
any condition). Additionally we have one long clause saying
that at least one of the options must be true. We have np re-
quired conditions because of the actions and g for the goal
conditions. Therefore in total we have at most (np + g)n2

binary clauses and (np+ g) longer clauses related to condi-
tions. There is one additional long clause – the redundancy
clause.

Making Plans Perfectly Justified
In this section we describe how to use the encoding de-
scribed in the previous section to convert any given plan into
a perfectly justified plan.

The idea is very similar to the standard planning as SAT
approach (Kautz and Selman 1992), where we repeatedly
construct formulas and call a SAT solver until we find a plan.
In this case we start with a plan, and keep improving it by
SAT calls until it is perfectly justified.

RedundancyElimination (Π, P)
I1 FΠ,P := encodeRedundancy(Π, P)
I2 while isSatisfiable(FΠ,P) do
I3 φ := getSatAssignment(FΠ,P)
I4 P := Pφ
I5 FΠ,P := encodeRedundancy(Π, P)
I6 return P

Figure 2: Pseudo-code of the SAT based redundancy elimi-
nation algorithm. It returns a perfectly justified plan.

The algorithm’s pseudo-code is presented in Figure 2. It
uses a SAT solver to determine whether a plan is perfectly
justified or it can be improved. It can be improved if the
formula FΠ,P is satisfiable. In this case a new plan is con-
structed using the satisfying assignment. The while loop of
the algorithm runs at most |P | times, since every time at least
one action is removed from P (in practice several actions are
removed in each step).

The algorithm can be implemented in a more efficient
manner if we have access to an incremental SAT solver. We
need the simplest kind of incrementality – adding clauses.

IncrementalRedundancyElimination (Π, P)
II01 solver = new SatSolver
II02 solver.addClauses(encodeRedundancy(Π, P))
II03 while solver.isSatisfiable() do
II04 φ := solver.getSatAssignment()
II06 C :=

∨
{¬ai|ai ∈ Pφ}

II07 solver.addClause(C)
II08 foreach ai ∈ P do if φ(ai) = False then
II09 solver.addClause({¬ai})
II10 P := Pφ
II11 return P

Figure 3: Pseudo-code of the incremental SAT based redun-
dancy elimination algorithm.

The incremental algorithm is presented in Figure 3. It
adds a new clause C in each iteration of the while loop.
This clause is a redundancy clause for the actions remaining
in the current plan. It will enforce, that the next satisfying
assignment will remove at least one further action. The re-
dundancy clauses added in the previous iterations could be
removed, but it is not necessary. The algorithm also adds unit
clauses to enforce that the already eliminated actions cannot
be reintroduced.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

19

The algorithms presented in this section are guaranteed to
produce plans that are perfectly justified, i.e., it is not possi-
ble to remove any further actions from them. Nevertheless,
it might be the case, that if we had removed a different set
of redundant actions from the initial plan, we could have ar-
rived at a shorter perfectly justified plan. In other words, the
elimination of redundancy is not confluent. The following
example demonstrates this fact.

Example 1. Let us have a simple path planning scenario
on a graph with n vertices v1, . . . , vn and edges (vi, vi+1)
for each i < n and (vn, v1) to close the circle. We have one
agent traveling on the graph from v1 to vn. We have two
move actions for each edge (for both directions), in total 2n
move actions. The optimal plan for the agent is a one action
plan {move(v1, vn)}.

Let us assume that we are given the following plan
for redundancy elimination: {move(v1, vn), move(vn, v1),
move(v1, v2), move(v2, v3), . . ., move(vn−1, vn)}.

The plan can be made perfectly justified by either remov-
ing all but the first action (and obtaining the optimal plan)
or by removing the first two actions (ending up a with a plan
of n actions). Action elimination would remove the first two
actions, for the SAT algorithm we cannot tell which actions
would be removed, it depends on the satisfying assignment
the SAT solver returns.

The example shows us, that it matters very much in what
order we remove the actions and achieving perfect justifica-
tion does not necessarily mean we did a good job. What we
actually want is to remove as many actions as possible. How
to do this efficiently is described in the next section.

Maximum Redundancy Elimination
In the section we describe how to do the best possible re-
dundancy elimination for a plan. The problem of maximum
redundancy elimination (MRE) is to find a subsequence R
of redundant actions in a plan P , such that there is no other
subsequenceR′ of redundant actions which is longer thanR.
A similar notion (minimal reduction) was defined for plans
with actions costs (Nakhost and Müller 2010).

The plan resulting from MRE is always perfectly justified,
on the other hand a plan might be perfectly justified and at
the same time much longer than a plan obtained by MRE
(see Example 1).

The solution we propose for MRE is also based on our
redundancy encoding, but instead of a SAT solver we will
use a partial maximum satisfiability (PMaxSAT) solver. We
will construct a PMaxSAT formula, which is very similar to
the formula used for redundancy elimination.

A PMaxSAT formula consists of hard and soft clauses.
The hard clauses will be the clauses we used for redundancy
elimination without the redundancy clause FR.

HΠ,P = FG ∧ FA
The soft clauses will be unit clauses containing the negations
of the action variables.

SΠ,P =
∧
ai∈P

(¬ai)

The PMaxSAT solver will find an assignment φ that satisfies
all the hard clauses (which enforces the validity of the plan
Pφ due to Lemma 1) and satisfies as many soft clauses as
possible (which removes as many actions as possible).

MaximumRedundancyEliminaion (Π, P)
MR1 F := encodeMaximumRedundancy(Π, P)
MR2 φ := partialMaxSatSolver(F)
MR3 return Pφ

Figure 4: Pseudo-code of the maximum redundancy elimi-
nation algorithm.

The algorithm (Figure 4) is now very simple and straight-
forward. We just construct the formula and use a PMaxSAT
solver to obtain an optimal satisfying assignment. Using this
assignment we construct an improved plan the same way as
we did in the SAT based redundancy elimination algorithm.

Experimental Evaluation
In this section we present the results of our experimental
study regarding elimination of redundant actions from plans.
We implemented the Action Elimination algorithm as well
as the SAT and MaxSAT based algorithms and used plans
obtained by several planners for the problems of the Interna-
tional Planning Competition (Coles et al. 2012).

Experimental Settings
Since, our tools take input in the SAS+ format, we used
Helmert’s translation tool, which is a part of the Fast Down-
ward planning system (Helmert 2006), to translate the IPC
benchmark problems that are provided in PDDL.

To obtain the initial plans, we used the following state-of-
the-art planners: FastDownward (Helmert 2006), Metric FF
(Hoffmann 2003), and Madagascar (Rintanen 2013). Each
of these planners was configured to find plans as fast as pos-
sible and ignore plan quality.

We tested four redundancy elimination methods:
• Action Elimination (AE) is our own Java implementation

of the Action Elimination algorithm as displayed in Fig-
ure 1.

• Action Elimination + SAT (AE+S) is an algorithm that
first runs Action Elimination on the initial plan and in-
cremental SAT reduction (see Figure 3) on the result. We
used the incremental Java SAT solver Sat4j (Berre and
Parrain 2010).

• SAT Reduction (SAT) is using the incremental SAT reduc-
tion directly without using Action Elimination for prepro-
cessing (same as AE+S without AE).

• Maximum Elimination (MAX) is a Partial MaxSAT reduc-
tion based algorithm displayed in Figure 4. We imple-
mented the translation in Java and used the QMaxSAT
(Koshimura et al. 2012) state-of-the-art MaxSAT solver
written in C++ to solve the instances.

For each of these methods we measured the total runtime
and the total number of removed redundant actions for each
domain and planner.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

20

Table 1: Experimental results on the plans for the IPC 2011 domains found by the planners Fast Downward, Metric FF, and
Madagascar. The planners were run with a time limit of 10 minutes. The column ”#Plans” contains the number of plans found
and ”Length” represents the sum of their lengths. By ∆ALG and TALG we mean the total number of removed redundant actions
and the time in seconds it took for all plans for a given algorithm ALG. The algorithms are Action Elimination (AE), Action
Elimination followed by SAT reduction (AE+S), SAT reduction on the original plan (SAT), and maximum elimination using a
MaxSat solver (MAX).

Domain #Plans Length ∆AE TAE ∆AE+S TAE+S ∆SAT TSAT ∆MAX TMAX

M
et

ri
c

FF

elevators 20 4273 79 0,81 79 2,31 79 3,14 79 0,17
floortile 2 81 10 0,02 10 0,08 10 0,10 10 0,00
nomystery 5 107 0 0,01 0 0,16 0 0,17 0 0,00
parking 18 1546 124 0,18 124 1,13 124 1,60 124 0,03
pegsol 20 637 0 0,10 0 1,10 0 1,16 0 0,02
scanalyzer 18 571 30 0,06 30 0,78 30 0,88 30 0,01
sokoban 13 2504 6 0,39 6 2,34 6 2,52 6 0,36
tidybot 17 1136 144 0,17 144 0,92 144 1,66 144 0,04
transport 6 1329 164 0,34 164 0,82 164 2,15 165 0,25
visitall 3 1137 166 0,14 166 0,47 166 0,97 172 0,08
woodworking 19 1471 22 0,37 22 1,14 22 1,28 22 0,02

Fa
st

D
ow

nw
ar

d

barman 20 3749 528 0,52 582 3,44 596 7,18 629 0,44
elevators 20 4625 94 0,84 94 2,41 94 3,45 94 0,19
floortile 5 234 22 0,06 22 0,20 22 0,27 22 0,00
nomystery 13 451 0 0,05 0 0,47 0 0,48 0 0,00
parking 20 1494 4 0,17 4 1,21 4 1,26 4 0,03
pegsol 20 644 0 0,11 0 1,11 0 1,18 0 0,02
scanalyzer 20 823 26 0,10 26 1,16 26 1,33 26 0,03
sokoban 17 5094 244 0,62 458 5,25 458 8,39 460 1,84
tidybot 16 1046 64 0,14 64 0,91 64 1,28 64 0,03
transport 17 4059 289 0,65 289 1,64 289 2,93 290 0,20
visitall 20 28776 122 3,66 122 9,47 122 12,89 122 7,77
woodworking 20 1605 27 0,41 27 1,16 27 1,33 30 0,03

M
ad

ag
as

ca
r

barman 8 1785 303 0,25 303 1,59 303 3,53 318 0,30
elevators 20 11122 2848 1,46 3017 4,13 3021 17,62 3138 2,03
floortile 20 1722 30 0,39 30 1,05 30 1,32 30 0,03
nomystery 15 480 0 0,06 0 0,51 0 0,53 0 0,01
parking 18 1663 152 0,20 152 1,17 152 1,78 152 0,03
pegsol 19 603 0 0,09 0 1,06 0 1,10 0 0,01
scanalyzer 18 1417 232 0,24 232 0,88 232 1,61 236 0,05
sokoban 1 121 22 0,02 22 0,13 22 0,29 22 0,01
tidybot 16 1224 348 0,16 348 0,84 348 2,13 350 0,08
transport 4 1446 508 0,20 539 0,40 532 1,65 553 0,16
woodworking 20 1325 0 0,31 0 1,11 0 1,21 0 0,01

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

21

All the experiments were run on a computer with Intel
Core i7 960 CPU @ 3.20 GHz processor and 24 GB of mem-
ory. The planners had a time limit of 10 minutes to find the
initial plans. The benchmark problems are taken from the
satisficing track of IPC 2011 (Coles et al. 2012).

Experimental Results
The results of our experiments are displayed in Table 1. We
can immediately notice that the runtime of all of our meth-
ods is very low. None of the methods takes more than one
second on average for any of the plans. Note, that the run-
time of the MAX method is often the smallest contrary to
the fact, that it is the only one which guarantees eliminating
the maximum number of redundant actions (AE+S and SAT
only guarantee perfect justification).

Looking at the number of removed actions in Table 1
we can make several interesting observations. For exam-
ple, in the nomystery and pegsol domains no redundant ac-
tions were found in plans obtained by any planner and also
Madagascar’s plans for the woodworking domain were al-
ways perfectly justified. In the most cases the AE algorithm
provides perfectly justified plans (this is when the values of
∆AE and ∆AE+S are equal). The SAT method performs
better than AE+S on barman for Fast Downward and ele-
vators for Madagascar, but removes less actions on trans-
port for Madagascar. Although both methods reach perfect
justification, the results are different since removing redun-
dant actions is not confluent (see example 1). As expected,
the MAX method removes the highest (or equal) number of
actions in each case. It is strictly dominant for 11 planner
domain combinations. Considering the good runtime perfor-
mance of this method we can conclude, that MAX is the best
way of eliminating redundant actions.

Conclusions
In this paper, we have introduced a SAT encoding for the
problem of detecting redundant actions in plans and used it
to build two algorithms for plan optimization. One is based
on SAT solving and the other on partial MaxSAT solving.
Contrary to existing algorithms, both of our algorithms guar-
antee, that they output a plan with no redundant actions. Ad-
ditionally, the MaxSAT based algorithm always eliminates a
maximum set of redundant actions. According to our experi-
ments done on IPC benchmark problems with plans obtained
by state-of-the-art planners, our newly proposed algorithms
perform very well in practice.

Acknowledgments The research is supported by the
Czech Science Foundation under the contract P103/10/1287
and by the Grant Agency of Charles University under con-
tract no. 600112. This research was also supported by the
SVV project number 260 104.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
sas+ planning. Computational Intelligence 11:625–656.
Balyo, T.; Barták, R.; and Surynek, P. 2012. Shortening
plans by local re-planning. In Proceedings of ICTAI, 1022–
1028.

Berre, D. L., and Parrain, A. 2010. The sat4j library, release
2.2. JSAT 7(2-3):59–64.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012a. De-
termining redundant actions in sequential plans. In Proceed-
ings of ICTAI, 484–491.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012b. Op-
timizing plans through analysis of action dependencies and
independencies. In Proceedings of ICAPS, 338–342.
Coles, A. J.; Coles, A.; Olaya, A. G.; Celorrio, S. J.; López,
C. L.; Sanner, S.; and Yoon, S. 2012. A survey of the seventh
international planning competition. AI Magazine 33(1).
Estrem, S. J., and Krebsbach, K. D. 2012. Airs: Anytime
iterative refinement of a solution. In Proceedings of FLAIRS,
26–31.
Fikes, R., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artif. Intell. 2(3/4):189–208.
Fink, E., and Yang, Q. 1992. Formalizing plan justifications.
In In Proceedings of the Ninth Conference of the Canadian
Society for Computational Studies of Intelligence, 9–14.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research (JAIR) 20:239 –
290.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann Pub-
lishers.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating ”ignoring delete lists” to numeric state variables.
Journal Artificial Intelligence Research (JAIR) 20:291–341.
Kautz, H. A., and Selman, B. 1992. Planning as satisfiabil-
ity. In Proceedings of ECAI, 359–363.
Koshimura, M.; Zhang, T.; Fujita, H.; and Hasegawa, R.
2012. Qmaxsat: A partial max-sat solver. JSAT 8(1/2):95–
100.
Nakhost, H., and Müller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. In Proceedings of ICAPS, 121–128.
Rintanen, J. 2013. Planning as satisfiability: state of the art.
http://users.cecs.anu.edu.au/ jussi/satplan.html.
Siddiqui, F. H., and Haslum, P. 2013. Plan quality optimisa-
tion via block decomposition. In Proceedings of IJCAI.
Westerberg, C. H., and Levine, J. 2001. Optimising plans
using genetic programming. In Proceedings of ECP, 423–
428.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

22

Planning with Preferences by Compiling Soft Always Goals into
STRIPS with Action Costs

Luca Ceriani and Alfonso Emilio Gerevini∗
Department of Information Engineering, University of Brescia, Italy

luca.ceriani@unibs.it, alfonso.gerevini@unibs.it (∗corresponding author)

Abstract

We address the problem of planning with preferences in
propositional domains focusing on soft always goals (or con-
straints), a basic class of temporally extended goals useful to
express maintenance goals, safety conditions, or other desired
conditions that affect the quality of the solution plans. In-
spired by previous work of Keyder and Geffner on compiling
soft goals, we propose a compilation scheme for translating a
STRIPS problem with soft always constraints into an equiva-
lent STRIPS problem with action costs. This problem trans-
formation allows to solve propositional planning problems
enriched with soft always constraints (possibly extendable
also with soft goals) using several existing powerful planners,
that need to support only STRIPS and action costs. An ex-
perimental analysis presented in the paper demonstrates that
solving the compiled problems using existing STRIPS plan-
ners can be significantly more effective than solving the orig-
inal uncompiled problems using planners supporting soft al-
ways constraints, such as HPlan-P and MIPS-XXL, in terms
of satisfied always constraints and scalability.

Introduction
Planning with preferences, also called “over-subscription
planning” (e.g., (van den Briel et al. 2004; Do and Kamb-
hampati 2004; Smith 2004)), is a recent important area of
automated planning concerning the generation of plans for
problems involving soft goals or state-trajectory constraints,
that it is desired a solution plan satisfies, but that do not have
to be necessarily satisfied. The quality of a solution plan for
these problems depends on the soft goals and constraints that
are satisfied by the plan.

In the standard planning language PDDL3 (Gerevini et al.
2009), state-trajectory constraints are particular linear tem-
poral logic formulae expressing temporally extended goals
(Bacchus and Kabanza 1998; Baier and McIlraith 2006)
restricting the intermediate states reachable by the valid
plans. A basic class of state-trajectory constraints con-
sists of always constraints (or always goals) expressing that
a certain condition must hold in every state reached by
a valid plan.1 Adding always constraints to the standard
“achievement” goals of a problem (requiring the goals to

1In the literature, always constraints/goals are also called
“safety goals”, “maintenance goals”, “state invariants” or “state
constraints”.

hold at the end of the plan) is useful to express safety or
maintenance conditions (e.g., (Bacchus and Kabanza 1998;
Weld and Etzioni 1994)) as well as desired plan proper-
ties. Examples of such conditions are “whenever a build-
ing surveillance robot is outside a room, all the room doors
should be closed” or, in a logistics domain, “whenever a
truck is at a location, all goods the truck has to load from
that location have already been transported there” (for ad-
ditional examples see, e.g., (Bacchus and Kabanza 1998;
Gerevini et al. 2009; Weld and Etzioni 1994)).

In propositional planning, only few planners supporting
soft always constraints have been developed. The most
prominent of them is planner HPlan-P (Baier and McIlraith
2008), which won the “qualitative preference” track of the
5th International Planning Competition (IPC), focusing on
propositional planning with soft goals and state-trajectory
constraints expressed through PDDL3.

STRIPS extended with action costs is a simple lan-
guage for propositional planning that many existing power-
ful planners support, e.g., LPG (Gerevini, Saetti, and Se-
rina 2003), Metric-FF (Hoffmann 2003), Fast Downward
(Helmert 2006), and LAMA (Richter and Westphal 2010).
Handling action costs is a practically important, basic func-
tionality that was required in the satisficing tracks of the last
two IPCs. Keyder and Geffner (Keyder and Geffner 2009)
showed that any STRIPS problem with soft (achievement)
goals can be efficiently compiled into an equivalent STRIPS
problem with action costs.

Inspired by Keyder and Geffner’s work, we propose a
compilation scheme for translating a STRIPS problem with
soft always constraints into an equivalent STRIPS problem
with action costs. This problem transformation allows to
solve propositional planning problems enriched with soft al-
ways constraints (possibly extendable also with soft goals)
using several existing powerful planners.

A preliminary experimental analysis presented in this pa-
per shows that solving the compiled problems by LPG,
Metric-FF or LAMA can be significantly more effective than
solving the original uncompiled problems using planners
supporting soft always constraints, in terms of plan quality
(i.e., satisfied always constraints) and scalability.

Other approaches to compiling (soft) always constraints
have been proposed. The techniques proposed in (Edelkamp
2006; Edelkamp, Jabbar, and Nazih 2006; Baier and McIl-

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

23

raith 2008; Gerevini et al. 2009) use a language richer than
STRIPS, requiring conditional effects and numerical flu-
ents. Their compilation schemas are very different and
based on representing state-trajectory constraints through
automata encoded in the compiled problem. Two of these
schemas are implemented in planners HPlan-P and MIPS-
XXL (Edelkamp and Jabbar 2008). In the experimental
analysis of this work, we show that these planners perform
generally less efficiently than the compared STRIPS plan-
ners.

Another recent planner supporting soft always constraints
is LPRPG-P (Coles and Coles 2011), which is based on a hy-
brid heuristic using relaxed planning graphs and linear pro-
gramming. Differently from this system, the investigated
compilation approach has the advantage of allowing many
planners (using any heuristic for classical planning) to sup-
port always constraints, possibly in addition to compiled soft
goals.

The remainder of the paper is organised as follows. After
some background and definitions about STRIPS with action
costs and always constraints, we describe our compilation
method and its properties. Then we present some experi-
mental results and finally we give our conclusions.

STRIPS Planning with Action Costs and Soft
Always Constraints

This section describes the STRIPS model of planning with
action costs, introduces its extension with soft always con-
straints, and gives some auxiliary definitions used in the rest
of the paper.

A STRIPS problem is a tuple 〈F, I,O,G〉 where F is a
set of fluents, I ⊆ F and G ⊆ F are the initial state and
goal situation, and O is a set of actions or operators defined
over F as follows:

Definition 1. Given a set of fluents F , an operator o ∈ O is
a pair 〈Prec(o),Eff(o)〉, where Prec(o) is a sets of atomic
formulae over F and Eff(o) is a set of literals over F .
Eff(o)+ denotes the set of positive literals in Eff(o); Eff(o)−
denotes the set of negative literals in Eff(o).

An action sequence π = 〈a0, . . . , an〉 is applicable in
a planning problem P if the actions ai, i ∈ {0 . . . n},
are all in O and there exists a sequence of states
〈s0, . . . , sn+1〉 such that s0 = I , Prec(ai) ⊆ si and,
si+1 = si ∪ Eff(o)+ \ Eff(o)− for i ∈ {0 . . . n}. The appli-
cable action sequence π achieves a fluent g, if g ∈ sn+1 and
is a (valid) plan for P if it achieves each goal g ∈ G, which
we indicate with π |= G.

Definition 2. A STRIPS problem with action costs (AC) is
a tuple Pc = 〈F, I,O,G, c〉, where P = 〈F, I,O,G〉 is a
STRIPS problem and c is a function c : O → R+

0 , mapping
each operator o ∈ O to a non-negative real number.

The cost of a plan π for a problem Pc is given by:

c(π) =

|π|∑
i=0

c(ai)

where c(ai) denotes the cost of the ith action ai in π and |π|
is the length of π.

An always constraintA, also called always goal, is a tem-
porally extended goal expressing a condition that must hold
in the problem initial state and in every state of the sequence
of states produced by applying a valid plan π (Bacchus and
Kabanza 1998; Gerevini et al. 2009). If this is the case, we
say that π satisfiesA, and we indicate it with π |=a A. With-
out loss of generality, in the following we will assume that
the condition of an always constraint is expressed in CNF
form. For brevity, (soft) always constraints will be abbrevi-
ated with constraint or SAG (soft always goal).

Definition 3. A STRIPS problem with action costs
(AC) and soft always goals (SAG) is a tuple Pu =
〈F, I,O,G,AG, c, u〉 where:

• 〈F, I,O,G, c〉 is a STRIPS problem with action costs;
• AG = {A1, . . . , Ak | Ai CNF formula over F, i =

1 . . . n}
• u : AG → R+

0 , is an utility function mapping each al-
ways constraint Ai ∈ AG to its utility value over R+

o .

In the following, STRIPS with AC is denoted by
STRIPS+, and STRIPS with SAG by STRIPS+SAG. The
(soft) always constraints A in a STRIPS+SAG problem is
denoted with A = ag1 ∧ . . . ∧ agn, where each agi is a
clause of A formed by literals over F .

Definition 4. Let Pu be a STRIPS+SAG problem with a set
AG of always constraints. The utility of a plan π solving
Pu is the difference between the total utility obtained by the
plan and its cost:

u(π) =

 ∑
Ai∈AG:π|=aAi

u(Ai)

− c(π).

The definition of plan utility for STRIPS+SAG is simi-
lar to the one given for STRIPS+ with soft goals by Key-
der and Geffner (2009). A plan π with utility u(π) for a
STRIPS+SAG problem is optimal when no other plan π′ has
utility u(π′) > u(π). The last two IPCs featured tracks in
which the objective was to find optimal plans with respect to
the plan “net benefit” captured by the equation of Definition
4 applied to the utility of soft (end state) goals instead of soft
always constraints.

Definition 5. Given a clause ag = l1 ∨ . . . ∨ ln, the
set L(ag) = {li | li is a disjunct of ag} is an equiv-
alent set-based definition for ag and L(ag) = {¬li |
li is a disjunct of ag} is the literal-complement set of L(ag).

Definition 6. Given an operator o ∈ O of a STRIPS+SAG
problem, Z(o) is the set of literals defined as:

Z(o) = (Prec(o)\{p | ¬p ∈ Eff(o)−})∪Eff(o)+∪Eff(o)−.

Note that the literals in Z(o) hold in any reachable state
resulting from the execution of operator o.

In a STRIPS+SAG problem, we distinguish three types of
operators that are defined as follows.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

24

Definition 7. Given an operator o and a constraint A of a
STRIPS+SAG problem, o is a violation of A if there exists a
clause agi of A such that:

L(agi) ⊆ Z(o) ∧ L(agi) 6⊆ Prec(o).

If an operator violates a constraint, the constraint is false
in any state resulting from the application of the operator.
The set of constraints in a STRIPS+SAG problem that are
violated by an operator o is denoted with V (o).
Definition 8. Given an operator o and a constraint A of
a STRIPS+SAG problem, o is a threat for A if it is not a
violation and there exists a clause agi of A, such that:

L(agi)∩Z(o) 6= ∅∧L(agi)∩Z(o) = ∅∧L(agi) 6⊆ Prec(o).

A clause agi of A satisfying the condition of Definition 8
is a threatened clause of A. A threatened constraint (clause)
may be falsified by an operator depending on the state where
the operator is applied. The set of constraint threatened by
an operator o is denoted with T (o); the set of constraint
clauses threatened by o is denoted with TA(o). Note that
the last conjunct (L(agi) 6⊆ Prec(o)) in the conditions of
Definitions 7-8 avoid that an operator o is considered a vio-
lation/threat when its preconditions require agi to be already
violated in the state where it is applied. This can be use-
ful to optimize the compilation procedure, because it is not
necessary to treat o as a violation/threat if in the conditions
of Definitions 7-8 the first two conjuncts hold and the third
does not.
Definition 9. Given an operator o and a constraint A of a
STRIPS+SAG problem, o is a safe for A if for all clauses agi
of A the following condition holds:

L(agi) ∩ Z(o) 6= ∅ ∨ L(agi) ∩ Z(o) = ∅.

If an operator o of a STRIPS+SAG problem P is safe for
every always constraint of P , we say that the operator is safe
for P , and we write this property with Safe(o, P).

Compilation into STRIPS+
Given a STRIPS+SAG problem P , an equivalent STRIPS+
problem P ′ can be derived using a transformation method
inspired by (Keyder and Geffner 2009), with significant dif-
ferences in the compilation of the operators. For the sake of
simplicity we will assume that every always constraint of P
is satisfied in the problem initial state.2

The operator transformation schema mentioned in the fol-
lowing definition is described after the definition.
Definition 10. Given a STRIPS+SAG problem P =
〈F, I,O,G,AG, c, u〉, the compiled STRIPS+ problem of P
is P ′ = 〈F ′, I ′, O′, G′, c′〉, with:

2Let X be the set of constraints that are false in the initial state
s. If X is not empty, it can be handled, e.g., as follows: (a) the
original operator set is extended with a new operator oinit such
that Prec(oinit) = {FalseX}, Eff(oinit) = s and c(oinit) is the
sum of the utilities of the constraints in X; (b) s is then revised to
contain only FalseX; (c) the constraints in X are not processed by
the operator compilation scheme. Note that any valid plan is forced
to contain oinit as the first action.

• F ′ = F ∪ AV ∪ D ∪ C ′ ∪ C ′ ∪
{normal-mode, end-mode, pause};

• I ′ = I ∪ C ′ ∪ {normal-mode};
• G′ = G ∪ C ′;
• O′ = {collect(A), forgo(A) | A ∈ AG}∪{end}∪Ocomp;

• c′(o) =

u(A) if o = forgo(A)

c(o) if o ∈ O′′
c′′(o) if o ∈ OV ∪OT
0 otherwise

where:

• AV =
k⋃
i=1

{Ai-violated}, k = |AG|;

• D =
k⋃
i=1

{Ai-doneo1 , . . . , Ai-doneon}, k = |AG| and n

is the number of operators threatening or violating Ai;

• C ′ = {A′ | A ∈ AG};

• C ′ = {A′ | A′ ∈ C ′};

• collect(A) = 〈{end-mode,¬A-violated, A′}, {A′,¬A′}〉;

• forgo(A) = 〈{end-mode, A-violated, A′}, {A′,¬A′}〉;
• end = 〈{normal-mode}, {end-mode,¬normal-mode}〉;
• O′′ = {〈Pre(o) ∪ {normal-mode,¬pause},Eff(o)〉 | o ∈
O and Safe(o, P)};

• Ocomp = O′′ ∪OV ∪OT
• OV and OT are the sets of operators generated by the op-

erator transformation schema applied to the operators of
P that violate and threaten, respectively, a constraint of
P .3

• c′′(o) is the cost of an operator o in OV ∪ OT as defined
in the operator transformation schema.
As in (Keyder and Geffner 2009), for each A ∈ AG the

transformation of P into P ′ adds a dummy hard goal A′
to P ′ which can be achieved in two ways: with action col-
lect(A), that has cost 0 but requires A to be satisfied, i.e.
A-violated is false in the goal-state, or with action forgo(A),
that has cost equal to the utility of A and can be performed
when A is false or, equivalently, when A-violated is true.
Moreover, for each constraint exactly one of {collect(A),
forgo(A)} can appear in the plan, as both delete their shared
precondition A′, which no action makes true.

The remainder of this section presents the transformation
schema for the operators that threaten or violate a soft al-
ways constraint. (Note that safe operators are transformed
as described in Definition 10, forming operator set O′′.)
Threat operators are not trivial to compile because they may
violate a constraint in different ways, depending on which
planning state they are applied to. Each operator o such

3If an operator is both a violation and a threat, the generated
compiled operators are in OT only.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

25

that T (o) 6= ∅ is compiled into a set of new operators
(one for each threatened constraint). More specifically, let
T (o) = {A1, . . . , Am}, be the set of constraints threatened
by o. Operator o is compiled into a sequence of 2m oper-
ators OT (o) = {oA1

, oA1
, . . . , oAm

, oAm
} such that in any

state s where o can be applied violating a set of constraints
T (o)s ⊆ T (o), the sequence ωT (o) ofm operators inOT (o)
defined as follows can be applied:

ωT (o) = 〈o′A1
, . . . , o′Am

〉 (1)

where o′Ai
= oAi if o violatesAi when applied in s, o′Ai

= oAi

if o does not violate Ai when applied in s, and oAi and oAi

are mutually exclusive, for i ∈ {1 . . .m}. The cost c′′(ot)
of an operator ot ∈ OT (o) is defined as follows:

c′′(ot) =

{
c(o) if o ∈ {oA1

, oA1
}

0 otherwise
i.e., exactly one of the operators in ωT (the first) cost equal
to the cost of the original domain operator compiled into
OT (o), while the others have cost zero.

Before defining the operators forming OT (o) (and ωT (o))
for each threatening operator o, we introduce some notation
useful to simplify the presentation:
Definition 11. Given an operator o and a constraint clause
ag:
• NA(o)ag = {l ∈ L(ag) | ¬l ∈ (Eff(o)+ ∪ Eff(o)−)} is

the set of literals in L(ag) falsified by the effects of o;
• AA(o)ag = L(ag) \ NA(o)ag is the set of literals in
L(ag) not falsified by the application of o andAA(o)ag =
{¬l | l ∈ AA(o)ag} is the literal-complement set of
AA(o)ag .
For each operator o threatening a set of constraints

T (o) = {A1, . . . , Am}, the operators of OT (o) are defined
as follows.
• oA1

:

Prec(oA1) = Prec(o) ∪ {¬pause} ∪

{
⋃

ag ∈TA(o)

(l1 ∨ . . . ∨ lp) | {l1, . . . , lp} = AA1(o)ag}

Eff(oA1) = {A1-doneo, pause}
• oA1

:

Prec(oA1
) = Prec(o) ∪ {¬pause} ∪

{
∨

ag ∈TA(o)

(l1 ∧ . . . ∧ lq) | {l1, . . . , lq} = AA1(o)ag}

Eff(oA1
) = {A1-doneo, pause, A1-violated}

∀k ∈ [2 . . .m− 1]:
• oAk

:

Prec(oAk
) = {Ak−1-doneo, pause}∪

{
⋃

ag∈TA(o)

(l1 ∨ . . . ∨ lp) | {l1, . . . , lp} = AAk(o)ag}

Eff(oAk
) = {Ak-doneo,¬Ak−1-doneo}

• oAk
:

Prec(oAk
) = {Ak−1-doneo, pause}∪

{
∨

ag∈TA(o)

(l1,∧ . . . ∧ lq) | {l1, . . . , lq} = AAk(o)ag}

Eff(oAk
) = {Ak-doneo, Ak-violated,¬Ak−1-doneo}

if k = m:
• oAm :

Prec(oAm) = {
⋃

ag∈TA(o)

(l1 ∨ . . . ∨ lp) | {l1, . . . , lp} =

AAm(o)ag} ∪ {Am−1-doneo, pause}
Eff(oAm) = Eff(o) ∪ {¬Am−1-doneo,¬pause}
• oAm

:

Prec(oAm
) = {

∨
ag∈TA(o)

(l1,∧ . . . ∧ lq) | {l1, . . . , lq} =

AAm(o)ag} ∪ {Am−1-doneo, pause}
Eff(oAm

) = Eff(o) ∪ {¬Am−1-doneo, Am-violated,¬pause}.
The operators of T (o) can be applied only in a sequence
ωT (o) defined above. The preconditions of any operator oAi

in ωT (o) require AAi(o)ag to hold in the state where ωT (o)

is applied for at least one ag ∈ TAi
(o). If this happens, then

oAi
∈ ωT (o) and constraint Ai is violated by ωT (o). Predi-

cate Ai-violated is made true by oAi
and is never falsified.

After the end action is applied, Ai-violated serves as a pre-
condition of the operator forgo(Ai) that has cost equal to the
utility of Ai. The Ai-doneo predicates force the planner to
strictly follow the order in ωT (o), avoiding repetitions. Once
the planner starts sequence ωT (o) for some o, no other oper-
ator o′ 6∈ OT (o) is enabled before the application of ωT (o) is
completed. Predicate pause serves to this purpose, and only
the last action in the sequence can falsify it.

Each domain operator o violating a constraint (V (o) 6= ∅)
must be compiled as well. However, the compilation schema
for o is simpler than the one shown above for a threaten-
ing operator. It is sufficient to add to the effects of o an
A-violated predicate for each constraint A ∈ V (o). If such a
modified operator is applied, all the constraints it violates are
falsified (making their violated-predicates true) and corre-
sponding forgo actions must later be selected by the planner
for every plan achieving the goals. Notice that an operator
o can simultaneously be a violation and a threat of differ-
ent sets of constraints. If an operator o threatening a set of
constraints also violates a constraint A, effect A-violated is
added to the first pair of operators (oA1

, oA1
) in OT (A). The

cost c′′(ov) of an operator ov derived by compiling an origi-
nal operator o that violates a constraint (and does not threat
any other constraint) is the the same cost c(o) of o.

In the compilation of a threatening operator o, its precon-
ditions can be extended by disjunctions of literals. Such
disjunctions can be simplified by performing (unit) reso-
lution over the augmented set of preconditions, discharg-
ing the operator if the empty close is generated. Moreover,

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

26

since negation and disjunction are not allowed in STRIPS, a
further standard “ADL-to-STRIPS” translation (Gazen and
Knoblock 1997) can be executed to complete the procedure
and generate a STRIPS+ problem.

Compilation Properties
Let P ′ be the STRIPS+ problem derived by compiling a
STRIPS+SAG problem P . All plans π′ solving P ′ have the
form π′ = 〈π′′, end, π′′′〉, where the prefix π′′ is formed
by operators of P , ω-sequences of compiled operators as
defined in (1), and compiled constraint violating operators
of P . Each sequence ωT (o) in π′ corresponds to the applica-
tion of an operator o ∈ O of P in an equivalent solution plan
π for P . The two problems P and P ′ are equivalent in the
sense that there is a correspondence between the plans for
P and P ′, and corresponding plans are ranked in the same
way by the utility functions of P and P ′. More formally, the
following propositions about P and P ′ can be proved:

Proposition 1 (Correspondence between plans). For an ap-
plicable action sequence π in P , let π′ = 〈π′′, end, π′′′〉 be
any sequence of actions of P ′ derived as follows: the prefix-
plan π′′ denotes any sequence of operators of P ′ obtained
by replacing each operator o of π threatening the constraints
in T (o) by a sequence ωT (o) of |T (o)| operators in OT (o);
the suffix-plan π′′′ denotes any permutation of collect(A)
and forgo(A) operators, for every always constraint A of
P , when π |= A and π 6|= A respectively. Then:

π is a plan for P ⇐⇒ π′ is a plan forP ′.

Proof. (Sketch) The proof is similar to the one for Proposi-
tion 1 in (Keyder and Geffner 2009). The main difference
concerns the treatment of the compiled operator sequences
in π′′, which are not present in the transformation of Keyder
and Geffner to compile soft goals into STRIPS+. To han-
dle them, it suffices to show that (i) the state resulting from
the application of any sequence ωT (o) to the state where it is
applied in π′′ is the same as the one that would be obtained
by applying o to s, with the only exception of the auxiliary
A-doneo, A-violated and pause predicates, and (ii) π′′′ is
analogous to the plan extension π′′ in the structure of the
plans solving the compiled problems defined by the prob-
lem transformation for STRIPS+ with soft goals described
in (Keyder and Geffner 2009).

Proposition 2 (Correspondence between utilities and costs).
Let π1 and π2 be two plans for P, and let π′1 and π′2 be trans-
formations of π1 and π2, respectively, derived as described
in Proposition 1. Then:

u(π1) > u(π2) ⇐⇒ c(π′1) < c(π′2).

Proof. The proof is the same as the one for Proposition 2 in
(Keyder and Geffner 2009).

Proposition 3 (Equivalence). Let π be a plan for P , and π′
be a plan for P ′ derived by transforming π as described in
Proposition 1. Then:

πis an optimal plan for P ⇐⇒ π′is an optimal plan forP ′.

Proof. Direct from Propositions 1–2.

Concerning the complexity of the proposed compilation,
we have the following bound on the length of the solutions
of the compiled problems:

Proposition 4. For every solution plan π of a STRIPS+SAG
problem P with n soft always constraints, there exists a so-
lution π′ of the compiled problem P ′ of P such that |π′| =∑|π|
j=1(max(1, ki)) +n+ 1 ≤ |π| ∗n+n+ 1 = O(|π| ∗n),

where ki ≤ n is the number of constraints threatened by the
i-th operator of π.

Proof. (Sketch) Plan π′ has three parts: π′′, action end, π′′′.
The first, π′′, is formed by the safe operators of π and an
ωT (o) sequence for each threatening operator o in π. The
length of ωT (o) is the number of constraints violated by o.
The third part, π′′′, is a sequence of n collect and forgo ac-
tions.

Experimental Analysis
In order to test the effectiveness of the approach, we im-
plemented the proposed compilation scheme and compared
the performance of some STRIPS planners and two plan-
ners supporting SAGs, HPlan-P and MIPS-XXL (Edelkamp,
Jabbar, and Nazih 2006; Edelkamp and Jabbar 2008) (in the
following abbreviated with MIPS). We considered the five
domains, and corresponding test problems involving always
constraints, of the “qualitative preference” track of IPC5
(Gerevini et al. 2009). Here we focus our presentation on
three of them, Rovers, TPP and Trucks (for the other
two, Openstack and Storage, HPlan-P and the com-
pared STRIPS planners perform similarly).

For each problem, all original IPC5 SAGs were kept,
while all simple soft goals and other soft temporally ex-
tended goals were removed. Additional domain-specific
SAGs were added to the problems in order to make them
more challenging. Concerning these additional SAGs, in
Trucks it is requested that 50% of the packages should
be delivered by half of the originally specified deadline (us-
ing discrete levels of time). In Rovers, each rover should
always avoid a specified set of locations (given a rover T, a
way-point is considered forbidden for T if it is not mentioned
in any original IPC5 preference regarding T); moreover, we
used SAGs to specify the preference that at least one rover
store remains empty in every state reached by a plan. Fi-
nally, in TPP SAGs are used to request that each type of
goods should be carried by a specific truck, which has to
buy the total goal quantity of the good and unload it visiting
a deposit no more than once. The association between goods
and trucks is randomly decided. For each STRIPS+SAG test
problem, the utility value of every SAG is one, and the cost
of every domain action is zero. The CPU-time limit for each
run of each tested planner was 30 minutes.

Table 1 shows results obtained by running HPlan-P and
MIPS over the considered STRIPS+SAG problems, and
planners LPG (Gerevini, Saetti, and Serina 2003), Metric-FF
(Hoffmann 2003) and LAMA (Richter and Westphal 2010)
over the equivalent compiled test problems. Concerning

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

27

Rovers
LPG Metric-FF LAMA HPlan-P MIPS-XXL

MV RA/TA ∆ length MV RA/TA ∆ length MV RA/TA ∆ length MV RA MV RA
P01 (1) 0 17/20 1,18 0 11/14 1,27 0 19/23 1,21 0 18 0 8
P02 (2) 0 12/17 1,42 0 15/18 1,20 0 17/21 1,24 0 26 0 10
P03 (4) 0 14/21 1,50 0 15/21 1,40 0 20/27 1,35 0 32 0 11
P04 (4) 0 9/16 1,78 0 9/16 1,78 0 11/18 1,64 0 65 0 9
P05 (4) 0 15/26 1,73 0 24/33 1,38 0 23/32 1,39 0 132 0 23
P06 (4) 2 40/52 1,30 2 39/51 1,31 2 38/50 1,32 2 287 4 37
P07 (5) 0 21/32 1,52 0 18/29 1,61 1 21/32 1,52 0 49 0 19
P08 (6) 0 31/43 1,39 2 26/38 1,46 0 26/38 1,46 0 64 0 27
P09 (6) 0 35/41 1,17 0 37/43 1,16 1 36/42 1,17 ? ? 0 35
P10 (6) 0 39/54 1,38 0 37/52 1,41 0 38/53 1,39 0 161 0 37
P11 (6) 0 36/51 1,42 2 35/51 1,46 1 36/51 1,42 ? ? ? ?
P12 (6) 0 24/30 1,25 1 19/25 1,32 0 21/27 1,29 0 33 0 20
P13 (6) 0 40/66 1,65 0 45/60 1,33 0 46/62 1,35 0 1936 ? ?
P14 (6) 0 35/41 1,17 0 31/37 1,19 0 46/50 1,09 ? ? 0 32
P15 (6) 0 46/52 1,13 1 45/51 1,13 0 52/58 1,12 ? ? ? ?
P16 (6) 0 40/65 1,63 1 47/62 1,32 0 46/61 1,33 ? ? ? ?
P17 (8) 0 40/65 1,63 0 52/60 1,15 0 51/59 1,16 ? ? ? ?
P18 (8) 0 50/66 1,32 0 42/58 1,38 0 47/63 1,34 ? ? ? ?
P19 (8) 0 80/88 1,10 2 84/91 1,08 2 76/84 1,11 ? ? ? ?
P20 (10) 0 102/112 1,10 0 91/101 1,11 1 96/107 1,11 ? ? ? ?

TPP
LPG Metric-FF LAMA HPlan-P MIPS-XXL

MV RA/TA ∆ length MV RA/TA ∆ length MV RA/TA ∆ length MV RA MV RA
P01 (2) 0 15/22 1,47 2 18/22 1,22 0 13/18 1,38 0 18 0 9
P02 (6) 1 13/20 1,54 1 17/24 1,41 0 15/23 1,53 0 22 0 16
P03 (8) 1 17/27 1,59 3 21/40 1,90 0 17/28 1,65 0 24 0 21
P04 (8) 1 42/51 1,21 3 38/49 1,29 0 30/41 1,37 0 57 0 34
P05 (14) 3 68/88 1,29 4 51/77 1,51 3 50/68 1,36 1 73 ? ?
P06 (14) 2 40/58 1,45 5 40/60 1,50 3 35/49 1,40 2 78 0 46
P07 (14) 2 33/50 1,52 4 36/56 1,56 3 29/47 1,62 2 75 ? ?
P08 (16) 2 72/95 1,32 6 42/68 1,62 4 46/68 1,48 2 87 ? ?
P09 (22) 6 57/87 1,53 7 65/98 1,51 6 69/89 1,29 7 141 ? ?
P10 (42) 10 51/92 1,80 6 76/152 2 8 42/84 2 3 135 ? ?
P11 (42) 11 77/121 1,57 10 70/163 2,33 7 79/111 1,41 5 211 ? ?
P12 (45) 14 143/212 1,48 11 88/182 2,07 9 76/124 1,63 8 269 ? ?
P13 (57) 19 75/135 1,80 16 62/131 2,11 11 60/125 2,08 29 501 ? ?
P14 (54) 22 93/155 1,67 19 84/149 1,77 9 83/137 1,65 30 401 ? ?
P15 (57) ? ?/? ? 23 108/186 1,72 11 113/171 1,51 ? ? ? ?
P16 (60) 19 117/175 1,50 25 106/184 1,74 13 113/174 1,54 ? ? ? ?
P17 (69) 19 116/205 1,77 ? ?/? ? 14 97/189 1,95 ? ? ? ?
P18 (72) ? ?/? ? 26 117/221 1,89 16 103/208 2,02 ? ? ? ?
P19 (72) ? ?/? ? 28 110/206 1,87 12 106/194 1,83 ? ? ? ?
P20 (75) ? ?/? ? 25 145/267 1,84 19 125/215 1,72 ? ? ? ?

Trucks
LPG Metric-FF LAMA HPlan-P MIPS-XXL

MV RA/TA ∆ length MV RA/TA ∆ length MV RA/TA ∆ length MV RA MV RA
P01 (4) 0 17/22 1,29 0 17/22 1,29 0 17/23 1,35 0 17 3 17
P02 (10) 7 19/30 1,58 9 19/30 1,58 5 23/32 1,39 8 20 5 20
P03 (12) 6 26/39 1,50 11 25/39 1,56 6 25/39 1,56 9 25 8 23
P04 (15) 8 28/44 1,57 13 28/45 1,61 7 30/47 1,57 10 30 ? ?
P05 (17) 9 19/48 2,53 15 43/63 1,47 8 28/48 1,71 12 35 ? ?
P06 (20) 12 38/62 1,63 16 37/61 1,65 9 40/63 1,58 ? ? ? ?
P07 (36) ? ?/? ? 27 37/77 2,08 18 44/76 1,73 ? ? ? ?
P08 (35) 24 42/82 1,95 31 47/87 1,85 20 49/89 1,82 ? ? ? ?
P09 (38) 26 46/89 1,93 29 47/89 1,89 24 51/94 1,84 ? ? ? ?
P10 (42) ? ?/? ? 34 54/102 1,89 26 59/107 1,81 ? ? ? ?
P11 (45) ? ?/? ? 35 57/107 1,88 27 60/111 1,85 ? ? ? ?
P12 (49) 34 61/115 1,89 35 60/116 1,93 28 65/121 1,86 ? ? ? ?
P13 (52) ? ?/? ? 36 64/123 1,92 30 69/128 1,86 ? ? ? ?
P14 (56) ? ?/? ? 42 69/131 1,90 33 71/135 1,90 ? ? ? ?
P15 (59) ? ?/? ? 43 73/140 1,92 34 77/144 1,87 ? ? ? ?
P16 (81) ? ?/? ? 65 77/166 2,16 55 88/177 2,01 ? ? ? ?
P17 (85) ? ?/? ? 69 73/174 2,38 59 88/184 2,09 ? ? ? ?
P18 (90) ? ?/? ? 71 82/180 2,20 34 77/144 1,87 ? ? ? ?
P19 (94) ? ?/? ? 74 82/177 2,16 63 96/200 2,08 ? ? ? ?
P20 (99) ? ?/? ? ? ?/? ? 55 55/177 3,22 ? ? ? ?

Table 1: Performance comparison about solving uncompiled and compiled STRIPS+SAG problems. MV: metric value of a
plan indicating the number of unsatisfied SAGs; TA: total number of plan actions; RA: number of real plan actions; ∆ length:
increment factor (TA

RA) in plan length between the plans of the original and compiled problems. ?: unsolved problem. Values in
brackets are total numbers of SAGs in the corresponding problems.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

28

HPlan-P and MIPS, in the discussion of the results we fo-
cus on HPlan-P since, as shown in Table 1, HPlan-P solves
more problems and performs generally better than MIPS in
terms of satisfied constraints (although, when MIPS solves
a problem, it tends to perform better than HPlan-P in terms
of plan length).

In general, we observe that HPlan-P solves many less
problems, and no one of the largest/hardest ones, indicat-
ing that the compilation into STRIPS+ is a more scalable
approach. For Rovers, the quality of the plans generated
by the considered STRIPS planners is close or equal to the
optimal: LPG shows the best results finding optimal solu-
tions for all test problems (problem p6 has two SAGs that
cannot be satisfied). For TPP, HPlan-P solves less problems
than the compared STRIPS planners (and no one of the six
largest problems), although in some cases it generates plans
with slightly better quality in terms of satisfied SAGs. For
Trucks, HPlan-P can solve only five of the twenty prob-
lems, and the quality of its plans in terms of satisfied SAGs
is worse than the quality of the solutions computed for the
compiled problems by planners LPG and LAMA.4

Concerning plan length, for each generated plan, Table
Trucks indicates the total number of actions (TA) and
the number of “real actions” (RA). Given a plan π′ =
〈π′′, end, π′′′〉 for a compiled problem, an equivalent plan
for the original STRIPS+SAG problem P can be derived
from π′′ by simply replacing each ω-sequence with the cor-
responding operator of P . Even if in our experiments the
cost function ignores domain action costs and plan length
(every original domain action has cost zero), it is interesting
to observe that very often HPlan-P generates solutions that
are much longer than the ones produced by solving the com-
piled problems. This also holds when comparison is done
considering the total number of plan actions instead of only
the real actions.

Finally, the results about plan length in the table indi-
cate that, for the considered benchmarks, in practice the
plan length increase for the solution plans of the compiled
problems is relatively modest. From the data in column “∆
length”, we can see that the factor incrementing plan length
ranges between 1.08 to 3.2, and on average over all domains
and planners it is 1.6. Specifically, for Rovers it ranges be-
tween 1.08 (with Metric-FF) and 1.78 (with Metric-FF and
LPG), for TPP between 1.21 (LPG) and 2.33 (Metric-FF),
and for Trucks between 1.29 (Metric-FF and LPG) and
3.2 (LAMA).

Conclusions
We have presented a compilation approach to handle soft al-
ways constraints in propositional planning. The proposed
compilation scheme uses only STRIPS and action costs,
which makes it usable by many existing powerful planners.

4Note that, while the metric values (MV) of their plans are high,
indicating that many SAGs are not satisfied, for the Trucks prob-
lems we estimate that the optimal solutions can satisfy at most from
1/5 to 1/3 of the specified SAGs. (Exact optimal bounds are un-
known; the planners we used could not find better solutions even
when running for a longer time).

A preliminary experimental analysis investigating the effec-
tiveness of the approach shows good behaviour in terms of
scalability and quality of the generated plans.

In addition to a deeper experimental analysis, current and
future work concerns the compilation of other types of soft
and hard state-trajectory constraints. It is worth noting that
the proposed compilation can be trivially adapted to compile
hard always constraints by just omitting the inclusion of (a)
the forgo actions in the compiled problem, which forces the
planner to reach the goal state with all always constraints of
the problem satisfied by the plan, and (b) the oAi

operators
(i = 1 . . .m) generated by the compilation of each opera-
tor o threatening a set of constraints A1, . . . , Am. An ex-
perimental analysis to evaluate our compilation scheme for
dealing with hard always constraints is ongoing. Prelimi-
nary results are encouraging.

Acknoledgments
We would like to thank Simone Quaresmini for his help with
the implementation of the compilation scheme.

References
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals. Annals of Mathematics and Artificial
Intelligence 22(1-2):5–27.
Baier, J., and McIlraith, S. 2006. Planning with first-order
temporally extended goals using heuristic search. In Pro-
ceedings of 21st National Conference on Artificial Intelli-
gence AAAI’06.
Baier, F. B., and McIlraith, S. A. 2008. A heuristic search
approach to planning with temporally extended preferences.
In Proceedings of 20th International Joint Conference on
Artificial Intelligence (IJCAI).
Coles, A. J., and Coles, A. 2011. LPRPG-P: Relaxed plan
heuristics for planning with preferences. In Proceedings of
21st Internaltional Conference on Automated Planning and
Scheduling (ICAPS’11).
Do, M. B., and Kambhampati, S. 2004. Partial satisfaction
(over-subscription) planning as heuristic search. In Proceed-
ings of 5th International Conference on Knowledge Based
Computer Systems (KBCS’04).
Edelkamp, S., and Jabbar, S. 2008. MIPS-XXL: Fea-
turing external shortest path search for sequential opti-
mal plans and external branch-and-bound for optimal net-
benefit. In 6th International Planning Competition Booklet
(ICAPS’08).
Edelkamp, S.; Jabbar, S.; and Nazih, M. 2006. Large-scale
optimal pddl3 planning with MIPS-XXL. In 5th Interna-
tional Planning Competition Booklet (ICAPS’06).
Edelkamp, S. 2006. On the compilation of plan constraints
and preferences. In Proceedings of 16th International Con-
ference of Automated Planning and Scheduling (ICAPS’06),
374–377.
Gazen, C. B., and Knoblock, C. A. 1997. Combining the ex-
pressiveness of UCPOP with the efficiency of Graphplan. In

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

29

Steel, S., and Alami, R., eds., Recent Advances in AI Plan-
ning: 4th European Conference on Planning, ECP’97. New
York: Springer-Verlag.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth
international planning competition: pddl3 and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5-
6):619–668.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research (JAIR) 20:239–
290.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating ”ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research 20(1):291–341.
Keyder, E., and Geffner, H. 2009. Soft goals can be
compiled away. Journal of Artificial Intelligence Research
(JAIR) 36:547–556.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39(1):127–177.
Smith, D. E. 2004. Choosing objectives in over-subscription
planning. In Proceedings of 14th Internaltiona Conference
on Automated Planning and Scheduling (ICAPS’04).
van den Briel, M.; Sanchez, R.; Do, M. B.; and Kambham-
pati, S. 2004. Effective approaches for partial satisfaction
(over-subscription) planning. In Proceedings of 19th Na-
tional Conference on Artificial Intelligence (AAAI’04).
Weld, D., and Etzioni, O. 1994. The first law of robotics (a
call to arms). In Proceedings of 12th National Conference
on Artificial Intelligence AAAI’94, 1042–1047.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

30

Automated Knowledge Engineering Tools in Planning: State-of-the-art and Future
Challenges

Rabia Jilani and Andrew Crampton and Diane Kitchin and Mauro Vallati
School of Computing and Engineering

University of Huddersfield
United Kingdom

{U1270695, a.crampton, d.kitchin, m.vallati}@hud.ac.uk

Abstract

Intelligent agents must have a model of the dynamics of the
domain in which they act. Models can be encoded by human
experts or, as required by autonomous systems, automatically
acquired from observation. At the state of the art, there exist
several systems for automated acquisition of planning domain
models.
In this paper we present a brief overview of the automated tools
that can be exploited to induce planning domain models. While
reviewing the literature on the existing tools for Knowledge
Engineering (KE), we do a comparative analysis of them. The
analysis is based on a set of criteria. The aim of the analysis
is to give insights into the strengths and weaknesses of the
considered systems, and to provide input for new, forthcoming
research on KE tools in order to address future challenges in
the automated KE area.

Introduction
Both knowledge acquisition and knowledge engineering for
AI planning systems are essential to improve their effective-
ness and to expand the application focus in practice. The im-
provement process includes the study of planning application
requirements, creating a model that explains the domain, and
testing it with suitable planning engines to get a final product
which consists of a domain model. Domain models can be en-
coded by human experts or automatically learned through the
observation of some existing plans (behaviours). Encoding a
domain model from observations is a very complex and time-
consuming task, even for domain experts. Various approaches
have been used to learn domain models from plans. This is of
increasing importance: domain independent planners are now
being used in a wide range of applications, but they should
be able to refine their knowledge of the world in order to be
exploited also in autonomous systems. Automated planners
require action models described using languages such as the
Planning Domain Definition Language (PDDL) (Mcdermott
et al. 1998).

There have been reviews of existing knowledge engineer-
ing tools and techniques for AI Planning (Vaquero, Silva, and
Beck 2011; Shah et al. 2013). Vaquero et al. (2011) provided
a review of tools and methods that address the challenges
encountered in each phase of a design process. Their work
covers all the steps of the design cycles, and is focused on
tools that can be exploited by human experts for encoding

domain models. Shah et al. (2013) explored the deployment
of automated planning to assist in the development of domain
models for different real-world applications.

Currently, there is no published comparison research on
KE tools for AI planning that automatically encode a domain
model from observing plan traces. In this paper, we compare
and analyse different state-of-the-art, automated KE tools
that automatically discover action models from a set of suc-
cessfully observed plans. Our special focus is to analyse the
design issues of automated KE systems, the extent of learn-
ing that can take place, the inputs that systems require and
the competency in the output domain model which systems
induce for dealing with complex real problems. We evalu-
ate nine different KE tools against the following criteria: (i)
Input Requirements (ii) Provided Output (iii) Language (iv)
Noise in Plans (v) Refinement (vi) Operational Efficiency
(vii) User Experience, and (viii) Availability. By evaluating
state-of-the-art tools we can gain insight into the quality and
efficiency of systems for encoding domain models, and better
understand the improvements needed in the design of future
supporting tools.

The rest of this paper is organised as follows. We first pro-
vide an overview of existing automated KE tools for support-
ing the task of encoding planning domain models. Then we
discuss the criteria that are used for comparing the different
encoding methods. Finally, we summarise some guidelines
for future tools.

The State of the Art
In this section we provide an overview of KE tools that can
be used for automatically producing planning domain models
from existing plans or sequences of actions.

Opmaker
Opmaker (McCluskey, Richardson, and Simpson 2002) is a
method for inducing primitive and hierarchical actions from
examples, in order to reduce the human time needed for
describing low level details related to operators’ pre- and
post-conditions.

Opmaker is an algorithm for inducing parameterized, hier-
archical operator descriptions from example sequences and
declarative domain knowledge (object hierarchy, object de-
scriptions, etc.)

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

31

Figure 1: A screen shot of Opmaker.

The user has to specify an action and identify associated
objects as being affected or unaffected by the action. The
system uses static domain knowledge, the initial and goal
states and a planning sequence as input. Using this knowl-
edge, it first deduces possible state-change pathways and then
uses them to induce the needed actions. These actions can
then be learned or regenerated and improved according to
requirement.

Opmaker extends GIPO, an integrated package for the con-
struction of domain models, using a graphical user interface
(Simpson, Kitchin, and McCluskey 2007). Figure 1 shows a
screen shot of the graphical user interface.

SLAF
The SLAF (Simultaneous Learning and Filtering) algo-
rithm (Shahaf and Amir 2006) learns action models in par-
tially observable domains. As inputs, SLAF includes specifi-
cations of fluents, as well as partial observations of interme-
diate states between action executions. The pre-conditions
and effects that this system generates in output includes im-
plicit objects and unspecified relationships between objects
through the use of action schema language.
As output the system learns action models (pre-conditions
and effects) that also include conditional effects through a
sequence of executed actions and partial observations. The ac-
tion schema from this algorithm can be used in deterministic
domains which involve many actions, relations and objects.
This algorithm uses a Direct Acyclic Graph representation of
the formula. The results from this algorithm can be used in
deterministic domains which involve many actions, relations
and objects.

ARMS
ARMS (Action-Relation Modelling System) (Yang, Wu, and
Jiang 2007) is a tool for learning action schema from ob-
served plans with partial information. It is a system for auto-
matically discovering action models from a set of observed
plans where the intermediate states are either unknown or
only partially known. To learn action schema, ARMS gathers

knowledge on the statistical distribution of frequent sets of
actions in the example plans. It then forms a weighted propo-
sitional satisfiability (weighted SAT) problem and resolves it
using a weighted MAX-SAT solver. ARMS operates in two
phases, where it first applies a frequent set mining algorithm
to find the frequent subsets of plans that share a common set
of parameters. It then applies a SAT algorithm for finding a
consistent assignment of preconditions and effects.

ARMS needs partial intermediate states in addition to ob-
served plan traces as input. The action model learnt from
ARMS is not guaranteed to be completely correct, as the
domain model induced is based on guesses with a minimal
logical action model. This is why it can only serve as an ad-
ditional component for the knowledge editors which provide
advice for human users, such as GIPO (Simpson, Kitchin, and
McCluskey 2007), and not as an independent, autonomous
agent.

Opmaker2

Opmaker2 (an extension of Opmaker) (McCluskey et al.
2009) is a knowledge acquisition and formulation tool, which
inputs a partial domain model and a training sequence, and
outputs a set of PDDL operator schema including heuristics
that can be used to make plan generation more efficient. It fol-
lows on from the original Opmaker idea. Its aims are similar
to systems such as ARMS in that it supports the automated
acquisition of a set of operator schema that can be used as
input to an automated planning engine. Opmaker2 determines
its own intermediate states of objects by tracking the chang-
ing states of each object in a training example sequence and
making use of partial domain knowledge provided with input.
Opmaker2 calls it the DetermineState procedure. The output
from DetermineState is a map of states for each object in the
example sequence. Parameterized operator schema are gener-
ated after applying the Opmaker algorithm for generalization
of object references collected from example sequences.

LOCM

LOCM (Learning Object Centred Models) (Cresswell, Mc-
Cluskey, and West 2013) is significantly different from other
systems that learn action schema from examples. It requires
only a set of valid plans as input to produce the required
action schema as output. Valid plans should be formatted in
a specific way; an example is given in Figure 2. LOCM is
based on the assumption that the output domain model can
be represented in an object-centred representation (Cresswell,
McCluskey, and West 2013). Using an object-centred repre-
sentation, LOCM outputs a set of parameterized Finite State
Machines (FSMs) where each FSM represents the behaviour
of each object in the learnt action schema. Such FSMs are
then exploited in order to identify pre- and post-conditions
of the domain operators. Although LOCM requires no back-
ground information, it usually requires many plan traces for
synthesizing meaningful domain models. Moreover, LOCM
is not able to automatically identify and encode static predi-
cates.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

32

sequence task(1, [unstack(b8, b9),
stack(b8, b10), pick-up(b7), stack(b7,
b8), unstack(b9, b1), put-down(b9),
unstack(b1, b3), stack(b1, b9),
unstack(b3, b2), stack(b3, b6),
pick-up(b5), stack(b5, b3), unstack(b7,
b8), stack(b7, b2), unstack(b8, b10),
stack(b8, b7), pick-up(b10), stack(b10,
b5)], ,).

Figure 2: An example of a blocksworld plan formatted as
required by LOCM.

LOCM2

LOCM2 (Learning Object Centred Models 2) (Cresswell and
Gregory 2011) followed on from the LOCM idea. Experi-
ments have revealed that there are many examples that have
no model in the representation used by LOCM. A common
feature of domains which produce this issue is one where
objects can have multiple aspects of their behaviour, and so
they need multiple FSMs to represent each object’s behaviour.
LOCM2 generalizes the domain induction of LOCM by al-
lowing multiple parameterised state machines to represent
a single object, with each FSM characterised by a set of
transitions. This enables a varied range of domain models
to be fully learned. LOCM2 uses a transition-centred rep-
resentation instead of the state-centred representation used
by LOCM. The current LOCM and LOCM2 systems gather
only the dynamic properties of a planning domain and not
the static information. While domains used in planning also
depend on static information, research is being carried out to
fill that gap and make these systems able to induce both the
dynamic and the static parts of domain models.

LSO-NIO

The system LSO-NIO (Learning STRIPS Operators from
Noisy and Incomplete Observations) (Mourão et al. 2012)
has been designed for allowing an autonomous agent to ac-
quire domain models from its raw experience in the real
world. In such environments, the agent’s observation can be
noisy (incorrect actions) and incomplete (missing actions).
In order to acquire a complete STRIPS (Fikes and Nilsson
1972) domain model, the system requires a partial model,
which describes objects’ attributes and relations, and opera-
tors’ names.

LSO-NIO exploits a two-staged approach. As a first stage,
LSO-NIO learns action models by constructing a set of kernel
classifiers, which are able to deal with noise and partial ob-
servability. The resulting models are “implicit” in the learnt
parameters of the classifiers (Mourão, Petrick, and Steedman
2010). The implicit models act as a noise-free and fully ob-
servable source of information for the subsequent step, in
which explicit action rules are extracted. The final output
of LSO-NIO is a STRIPS domain model, ready to use for
domain-independent planners.

RIM
RIM (Refining Incomplete Planning Domain Models) (Zhuo,
Nguyen, and Kambhampati 2013) is a system designed for
situations where a planning agent has an incomplete model
which it needs to refine through learning. This method takes
as input an incomplete model (with missing pre-conditions
and effects in the actions), and a set of plans that are known
to be correct. By executing given plan traces and precon-
ditions/effects of the given incomplete model, it develops
constraints and uses a MAX-SAT framework for learning
the domain model (Zhuo et al. 2010). It outputs a “refined”
model that not only captures additional precondition/effect
knowledge about the given actions, but also “macro actions”.
A macro-action can be defined as a set of actions applied at
a single time, that can quickly reach a goal at less depth in
the search tree and thus problems which take a long time to
solve might become solvable quickly.

In the first phase, it looks for candidate macros found
from the plan traces, and in the second phase it learns pre-
condition/effect models both for the primitive actions and the
macro actions. Finally it uses the refined model to plan. The
running time of this system increases polynomially with the
number of input plan traces.

In the RIM paper the authors provide a comparison be-
tween RIM and ARMS by solving 50 different planning
problems; through action models, refined and induced by the
two systems. RIM uses both plans and incomplete domain
models to induce a complete domain model but ARMS uses
plans only, so to keep both systems’ output on the same scale,
RIM induces action models (used for comparison) based on
plan traces only.

Figure 3: Comparison between RIM and ARMS (Zhuo,
Nguyen, and Kambhampati 2013).

The average length of a plan is 18 when using action
models learnt by ARMS; while the average length of plans
(to the same problems as solved by ARMS) is 21. This is
when using preferences of macro-operators learnt by RIM.
Figure 3 shows a comparison of three different domains; the
correctness of RIM is better than ARMS, as RIM also learns
macro-operators and it uses macros to increase the accuracy
of plans generated with the refined system.

AMAN
AMAN (Action-Model Acquisition from Noisy plan traces)
(Zhuo and Kambhampati 2013) was designed to create do-
main models in situations where there is little or no possibil-

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

33

ity of collecting correct training data (plans). Usually, noisy
plan traces are easier and cheaper to collect. An action is
considered to be noisy if it is mistakenly observed.

AMAN works as follows. It builds a graphical model to
capture the relations between actions (in plan traces) and
states, and then learns the parameters of the graphical model.
After that, AMAN generates a set of action models according
to the learnt parameters. Specifically, AMAN first exploits
the observed noisy plan traces to predict correct plan traces
and the domain model based on the graphical model, and
then executes the correct plan traces to calculate the reward
of the predicted correct plan traces according to a predefined
reward function. Then, AMAN updates the predicted plan
traces and domain model based on the reward. It iteratively
performs the above-mentioned steps until a given number of
iterations is reached. Finally, the predicted domain model is
provided.

In the AMAN paper, a comparison of AMAN and ARMS
(Yang, Wu, and Jiang 2007) on noiseless inputs is provided.

Criteria for Evaluating Tools
We have identified several criteria that are useful for evalu-
ating the existing KE automated tools for inducing domain
models. Such criteria have been designed for investigating
the KE tools’ functionality from different perspectives: input,
output, efficiency, availability and usability.

Input Requirements:
What inputs are required by a system to refine/induce a par-
tial or full domain model? Input to the learning process could
be training plans, observations, constraints, initial and goal
states, predicates, and in some systems a partial domain
model (with missing pre-conditions and effects in the ac-
tions).

Provided Output:
What is the extent of learning that the system can do?

Language:
What language does the system support to produce the output
domain model? e.g. PDDL, STRIPS, and OCL etc.

Noise in Plans:
Is the tool able to deal with noise in plans? Noise in plans
can be either incomplete plan traces (i.e., missing actions) or
noisy actions. An action in a plan is considered to be noisy if
it is incorrectly observed.

Refinement:
Does the tool refine existing domain models or does it build
domain models from scratch?

Operational Efficiency:
How efficiently are the models produced? In general terms,
the efficiency of a system could be seen as the ratio between
input given to the system to do the learning process and the
output domain model that we get as a result of learning.

User Experience:

Is the system/tool designed for inexperienced/beginner level
planning users? Do users need to have a good knowledge of
the system output language?

Availability and Usage:

Is the system available for open use? Does the system provide
a user manual?

Tools Evaluation
In this section all the KE tools introduced in this paper are
evaluated against the outlined criteria. Table 1 shows an
overview of the comparison.

Inputs Requirements

The input to RIM, LOCM, LOCM2 and ARMS is a correct
sequence of actions (training data in the form of plan traces),
where each action in a plan is stated as a name and a list of
objects that the action refers to. For some domains which
require static knowledge, there is a need to mention static pre-
conditions for the domain to be learnt; as LOCM and LOCM2
cannot learn static aspects of the domain. RIM in addition to
a correct action sequence also requires an incomplete domain
model (with missing pre-conditions and effects in the actions)
as an input. ARMS makes use of background knowledge as
input, comprising types, relations and initial and goal states
to learn the domain model.

In comparison Opmaker2 learns from a single, valid exam-
ple plan but also requires a partial domain model (declarative
knowledge of objects hierarchy, descriptions, etc) as input.

AMAN and LSO-NIO, these systems learn from noisy
(incorrect actions) and incomplete (missing actions) observa-
tions of real-world domains. Just like Opmaker2, LSO-NIO
also requires a partial domain model, which describes objects
(and their attributes and relations) as well as the name of
the operators. The inputs to SLAF include specifications of
fluents, as well as partial observations of intermediate states
between action executions.

Provided Output

ARMS, Opmaker2, LOCM, LOCM2, LSO-NIO and RIM,
the output of these systems is a complete domain model. In
addition, LOCM also displays a graphical view of the finite
state machines, based on which the object behaviour in the
output model is learnt. To increase the efficiency of plans
generated, Opmaker2 also includes heuristics while RIM also
learns macro operators.

SLAF, as output the system learns an action model (pre-
conditions and effects) that also includes conditional effects
through a sequence of executed actions and partial observa-
tions.

Given a set of noisy action plans, AMAN generates multi-
ple (candidate) domain models. To capture domain physics it
produces a graphical model and learns its parameters.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

34

Language
The domain model (also called domain description or action
model) is the description of the objects, structure, states, goals
and dynamics of the domain of planning (McCluskey et al.
2009).

LOCM, LOCM2 and ARMS are able to provide a PDDL
domain model representation. RIM, AMAN and LSO-NIO
can handle the STRIPS subset of PDDL. Opmaker and
Opmaker2 use a higher level language called Object Cen-
tred Language (OCL) (McCluskey, Liu, and Simpson 2003;
McCluskey and Porteous 1997) for domain modelling. Their
output is an OCL domain model, but Opmaker can exploit
the GIPO tool to translate the generated models into PDDL.
Finally, SLAF System is able to exploit several languages
to represent action schemas; starting from the most basic
language SL, and then there is SL-V and SL-H (Shahaf and
Amir 2006). Such languages are not usually supported by
domain-independent planners.

Noise in Plans
Most of the existing KE tools require valid plans. AMAN
and LSO-NIO are the systems that can deal with noisy plan
traces. Moreover, LSO-NIO is also able to handle incomplete
plan traces. On the other hand, also LAMP (Zhuo et al. 2010),
on which RIM is based, is able to exploit partial plan traces,
in which some actions are missing.

Refinement
Most existing work on learning planning models learns a
complete new domain model. The only tool among all those
reviewed in the paper that is able to refine an existing domain
model is RIM. RIM takes in correct plan traces as well as
an incomplete domain model (with missing pre-conditions
and effects in the actions), to refine it by capturing required
pre-condition/effects.

On the other hand, since Opmaker, Opmaker2, LSO-NIO
and SLAF require as input part of the domain knowledge, to
some extent they are actually refining the provided knowl-
edge.

Operational Efficiency
The efficiency of a system could be seen as the ratio between
the input given to the system for the learning process and the
output domain model we get as a result of learning. As shown
in the review of the considered tools, all systems have differ-
ent and useful motivations behind their development. Given
their relevant features of input requirements and learning
extent, we can say that the system needing the least input as-
sistance and which induces the most complete domain model
is the most efficient one. On such a scale the AMAN, LOCM
and LOCM2 approaches have the best performance. In order
to provide a complete domain model they require only some
plan traces (sequence of actions). Based on strong assump-
tions they output the solver-ready domain model. Similarly
ARMS, though requiring richer inputs, outputs a solution
which is optimal; in that it checks error and redundancy rates
in the domain model and reduces them. In contrast Opmaker2
learns from a single example together with a partial domain

model, and for output it not only produces a domain model,
but also includes heuristics that can be used to make plan
generation through the domain model more efficient.

User Experience
By experience we mean to evaluate how far the system/tool
is designed for use by inexperienced/beginner level planning
users. Most of these systems are built with the motivation
to open up planning engines to general use. Opmaker is
incorporated into GIPO as an action induction system, as
GIPO is an integrated package for the construction of domain
models in the form of a graphical user interface. It is used
both as a research platform and in education. It has been used
to support the teaching of artificial intelligence (AI) planning
to students with a low-experience level (Simpson, Kitchin,
and McCluskey 2007).

The other systems are being used as standalone systems,
they do not provide a GUI, and require the guidance of plan-
ning experts for usage. Certain systems also require separate
formats for providing inputs, e.g., LOCM requires input plan
traces in Prolog while many major planning engines use
PDDL as a planning language. So the conversion from PDDL
to Prolog is a time consuming task and requires experienced
users.

Availability and Usage
Very few systems are available on-line and open to download
and practice. No systems provide documentation that make
usage easy for beginners - except GIPO (Opmaker).

Guidelines and Recommendations
We will now discuss the guidelines and recommendations
that we have derived from our review and assessment of the
nine different state-of-the-art automated KE tools.
To create or refine an already existing domain model requires
many plan examples and sometimes other inputs such as full
or partial knowledge about predicates, initial, intermediate
and goal states, and sometimes a partial domain model. One
major concern at this stage is the way plan traces can be
collected. There are three general ways to collect example
plans. The first is when plans are generated through goal ori-
ented solutions, the second through random walks and thirdly
through observation of the environment by a human or by an
agent. Goal oriented plan solutions are generally expensive in
that a tool or a planner is needed to generate a large enough
number of correct plans to be used by the system. To do this
one must also have a pre-existing domain model. Observation
by an agent has a high chance that noise will be introduced
in the plan collection; which can clearly affect the learning
process. Currently most working systems assume the input
knowledge to be correct and consequently not suitable for
real-world applications. To increase potential utility, systems
should be able to show equal robustness to noise.
Another issue is the expressiveness of the output domain
model. Observing the output of the current automated learn-
ing systems, there is a need to extend their development so
that they can also learn metric domains that include durative
actions, action costs and other resources. In other words, the

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

35

Criteria AMAN ARMS LOCM LOCM2 LSO-NIO Opmaker Opmaker2 RIM SLAF
Inputs NP BK,P P P PDM,NP PDM,P PDM,P PDM,P Pr,IS
Outputs DM DM DM DM DM DM DM,H RDM DM
Language STRIPS PDDL PDDL PDDL STRIPS OCL OCL STRIPS SL
Noise + − − − + − − − −
Refinement − − − − − − − + −
Efficiency + i + + i − i − −
Experience − − − − − + + − −
Availability − − − − − − − − −

Table 1: Comparison of KE Tools. P: Plan traces; BK: Background Knowledge; PDM: Partial Domain Model; Pr: Predicates; IS:
Intermediate States; NP: Noisy Plans; DM: Domain Model; RDM: Refined Domain Model; H: Heuristics. Where available, +, i
(intermediate) or − give a qualitative evaluation w.r.t. the corresponding metric.

systems should broaden the scope of domain model genera-
tion to produce more expressive versions of PDDL that can
be applied to a greater range of real-world problems.
Systems which learn only from plan traces could make the
output domain model more intelligible and useful by assign-
ing meaningful names to all learnt fluents/predicates.
To enhance the potential utility of the induced domain in the
real-world, error and redundancy checks should be performed
in order to enhance the effectiveness of plans generated by
planning engines using these domains.
To make learning systems more accessible and open to use
by research students and the scientific community, these sys-
tems should be available on-line, and include a GUI and user
manual for ease of use by non-planning experts. A significant
extension would be to create a consistent interface across all
systems for specifying inputs. Having to convert PDDL plans
into Prolog, for example, is likely to inhibit the uptake of
automated KE tools by non-experts rather than encourage it.

Conclusion
In order to encourage the exploitation of Automated Planning
in autonomous systems, techniques for the automatic acquisi-
tion of domain models are of fundamental importance. Pro-
viding robust and expressive automated KE tools for domain
model acquisition, that can be easily used by non-planning
experts, will better promote the application of planning in
real-world environments; particularly in applications where
the actual domain model is unclear and/or too complex to
design manually.

In this paper we have presented the state-of-the-art of
Knowledge Engineering tools for the automatic acquisition
of planning domain models. We proposed and used a set of
criteria consisting of: input requirements, output, efficiency,
supported language, ability to handle noisy plans, ability to
refine existing models, user experience and availability. We
observed that different tools require very different inputs
and, usually, are designed for experienced users. We high-
lighted the weaknesses of existing methods and tools and we
discussed the need for PDDL-inspired development in the
design of future tool support.

Future work will include an experimental comparison,
based on a case-study. We are also interested in improving
existing KE tools for overcoming the major weaknesses that

this review has highlighted.

References
Cresswell, S., and Gregory, P. 2011. Generalised domain
model acquisition from action traces. In Proceedings of The
21th International Conference on Automated Planning &
Scheduling (ICAPS-11).
Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using locm. The Knowl-
edge Engineering Review 28(02):195–213.
Fikes, R. E., and Nilsson, N. J. 1972. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3):189–208.
McCluskey, T. L., and Porteous, J. M. 1997. Engineering
and compiling planning domain models to promote validity
and efficiency. Artificial Intelligence 95(1):1–65.
McCluskey, T. L.; Cresswell, S.; Richardson, N. E.; and West,
M. M. 2009. Automated acquisition of action knowledge. In
Proceedings of the International Conference on Agents and
Artificial Intelligence (ICAART), 93–100.
McCluskey, T.; Liu, D.; and Simpson, R. M. 2003. Gipo
ii: Htn planning in a tool-supported knowledge engineering
environment. In Proceedings of the Thirteenth International
Conference on Automated Planning and Scheduling (ICAPS
2003), volume 3, 92–101.
McCluskey, T. L.; Richardson, N. E.; and Simpson, R. M.
2002. An interactive method for inducing operator descrip-
tions. In Proceedings of the Sixth International Conference
on Artificial Intelligence Planning Systems, 121–130.
Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language. Technical report,
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.
Mourão, K.; Zettlemoyer, L. S.; Mark, R. P.; and Steedman.
2012. Learning strips operators from noisy and incomplete
observations. In Proceedings of the Twenty Eighth Con-
ference on Uncertainty in Artificial Intelligence (UAI-12),
614–623.
Mourão, K.; Petrick, R. P. A.; and Steedman, M. 2010.
Learning action effects in partially observable domains. In

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

36

Proceedings of the 19th European Conference on Artificial
Intelligence (ECAI-10), 973–974.
Shah, M.; Chrpa, L.; Jimoh, F.; Kitchin, D.; McCluskey, T.;
Parkinson, S.; and Vallati, M. 2013. Knowledge engineering
tools in planning: State-of-the-art and future challenges. In
Proceedings of the Knowledge Engineering for Planning and
Scheduling workshop (KEPS).
Shahaf, D., and Amir, E. 2006. Learning partially observable
action schemas. In The Twenty-First National Conference
on Artificial Intelligence and the Eighteenth Innovative Ap-
plications of Artificial Intelligence Conference (AAAI-06),
913–919.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. 2007.
Planning domain definition using gipo. The Knowledge En-
gineering Review 22(02):117–134.
Vaquero, T. S.; Silva, J. R.; and Beck, J. C. 2011. A brief
review of tools and methods for knowledge engineering for
planning & scheduling. In Proceedings of the Knowledge
Engineering for Planning and Scheduling workshop (KEPS).
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted max-sat. Artificial
Intelligence 171(2-3):107–143.
Zhuo, H. H., and Kambhampati, S. 2013. Action-model
acquisition from noisy plan traces. In Proceedings of the
Twenty-Third International Joint Conference on Artificial
Intelligence (IJCAI-13), 2444–2450. AAAI Press.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence 174(18):1540 – 1569.
Zhuo, H. H.; Nguyen, T.; and Kambhampati, S. 2013. Refin-
ing incomplete planning domain models through plan traces.
In Proceedings of the Twenty-Third International Joint Con-
ference on Artificial Intelligence, 2451–2457. AAAI Press.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

37

Goal-directed Generation of Exercise Sets for Upper-Limb Rehabilitation
José C. Pulido, José C. González, Arturo González-Ferrer, Javier Garcı́a, Fernando Fernández

Planning and Learning Group, Departamento de Informática
Universidad Carlos III de Madrid

{jcpulido,josgonza,artgonza,fjgpolo,ffernand}@inf.uc3m.es

Antonio Bandera
Dpto. de Tecnologı́a Electrónica

Universidad de Málaga
ajbandera@uma.es

Pablo Bustos
Robolab

Universidad de Extremadura
pbustos@unex.es

Cristina Suárez
Grupo de Innovación Tecnológica
Hospital Virgen del Rocio, Sevilla

cristina.suarez.exts@juntadeandalucia.es

Abstract

A rehabilitation therapy usually derives from general
goals set by the medical expert, who requests the pa-
tient to attend sessions during a certain time period in
order to help him regaining mobility, strength and/or
flexibility. The therapist must transform these general
goals manually into a set of exercises distributed over
different rehabilitation sessions that compose the com-
plete therapy plan, taking into account the patient clin-
ical conditions and a predetermined session and ther-
apy time. This becomes a hard task and might lead to
rigid schedules which not always accomplish the de-
sired achievement level of therapeutic objectives estab-
lished by the physician and could have a negative im-
pact on the patients’ engagement in the therapy. Classi-
cal and Hierarchical Task Network planning approaches
have been used in this paper to compare the modelling
and results of both domain formulations for the auto-
matic generation of therapy plans for patients suffering
obstetric brachial plexus palsy, in response to a given
set of therapeutic objectives.

Introduction
Clinical Decision Support Systems (CDSS) have been de-
veloped in the last decades to facilitate many tasks of physi-
cians, like helping them in implementing Clinical Practice
Guidelines (CPGs) through ad-hoc computer-interpretable
models (Peleg 2013). In some cases, it might happen that
the protocol to treat a patient condition is not so clear, and
the procedure to design the treatment pathway depends di-
rectly on a set of expected therapeutic objectives that the
patient should achieve. In this case, guidelines can only give
high-level recommendations on what combination of thera-
pies to establish for a patient condition, but it still may re-
quire higher effort for the physician to deal with the con-
figuration of the most appropriate combination of steps to
maximize the expected outcome, for example according to a
standard scale. This is the case of rehabilitation therapies for
obstetric brachial plexus palsy (OBPP), the condition where
this paper is scoped. OBPP is a serious injury that causes a
loss of movement or weakness of the affected upper-limb. It
is caused when the collection of nerves around the shoul-
der are damaged during the birth. In order to design the
OBPP rehabilitation stage in the Virgen del Rocı́o Univer-

sity Hospital (Seville, Spain)1, a set of therapeutic objec-
tives is established after the anamnesis stage, according to
the evaluated conditions of the patient. Taking these objec-
tives into consideration, sequential, time-limited sessions of
exercises that aim to achieve those goals have to be designed
by the medical experts. The patients will carry out the re-
habilitation sessions with periodic evaluations to check if
they are progressing and achieving the expected outcome.
Their progress along the therapy is measured using the Goal
Attainment Scale (GAS) (Turner-Stokes 2009). In this sce-
nario, physicians need to design combinations of exercises
that contribute in a quantitatively measureable way to one
or several therapeutic objectives, that might conflict among
them, and that might have time, order, intensity or difficulty
constraints in order to be selected.

This paper proposes to model the design of rehabilita-
tion therapies by means of Automated Planning, which pro-
vides an automatic method to support physicians in the de-
sign of these sessions. After their clinical feasibility valida-
tion, the generated therapy plan could be projected into a
programmable humanoid robotic platform that will serve as
training assistant to patients, as expected in the THERAPIST
project (Calderita et al. 2013). To achieve this goal, three
main steps have been performed and described in this
manuscript. Firstly, a domain analysis and specification have
been performed with the help of physicians and therapists
at Virgen del Rocı́o Hospital, as described in the following
section. Then, we have studied how to formalize the domain
with two different automated planning approaches: classi-
cal STRIPS planning and Hierarchical Task Network (HTN)
Planning (Ghallab, Nau, and Traverso 2004; Erol, Hendler,
and Nau 1994). Finally, we have performed an initial em-
pirical, qualitative evaluation of such models with concrete
planners to check their capabilities, including an extended
discussion to highlight their strengths and weaknesses.

Related Work
There has been some work in the automatic generation of
therapy plans or treatments. (Ahmed et al. 2010) present
a system for the automatic generation of treatments in can-
cer patients. The system is concerned with the correct se-
lection of the geometry and intensity of the irradiation to

1http://www.huvr.es (accessed May 20, 2014).

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

38

produce the best dose distribution. In (Morignot et al. 2010)
authors use also Automated Planning for generating sce-
narios helping handicapped people. In (Fdez-Olivares et
al. 2011; González-Ferrer et al. 2013) authors used a plan-
ning algorithm able to generate oncology treatment plans,
and transforming Asbru computer-interpretable guidelines
of the Hodgkin disease protocol, which include temporal
constraints difficult to schedule manually by physicians.
(Schimmelpfeng, Helber, and Kasper 2012) present a mixed-
integer linear programming (MILP) approach to determine
appointments for patients of rehab hospitals. However, they
do not plan the specific exercises within each session to
achieve some predetermined goals according to the require-
ments of the patient as detailed in our work.

Domain Analysis and Specification
There are three main actors involved in the therapeutic pro-
tocol: the therapist, the medical expert and the patient. The
therapy plan is composed of sessions, each one composed of
different exercises. The medical expert determines the num-
ber of sessions of the therapy and some constraints to pre-
vent the training of certain groups of exercises depending on
the patient profile. This expert also decides which general
therapeutic objectives, out of five, should be trained during a
rehabilitation therapy: bimanual, fine unimanual, coarse uni-
manual activities, arm positioning or hand positioning activ-
ities.

The main goal of the therapist is to help the patient to per-
form the rehabilitation sessions while evaluating the patient
evolution. When planning a therapy session, the therapist se-
lects the exercises which, according to his experience, are
better to fulfill the therapeutic objectives in a fixed amount
of time. The hospital that participates in our project follows
general guidelines of the available exercises categorized ac-
cording to affected body sites, where each group trains a
certain patient capability. The therapist is also free to use
his creativity to improvise new exercises in order to better
accomplish the goals imposed by the medical expert. A rea-
sonable session might be organized as follows: the initial
exercises serve as warming up, the most intense exercises
are performed in the central part of the session and the final
exercises as cool-down phase.

The evolution of the patient is evaluated using the GAS
scale (Turner-Stokes 2009). Depending on the results, the
medical expert can change some therapy features, for exam-
ple removing a therapeutic objective or adding another one.
This system has little flexibility because it does not allow
to reduce or increase the priority of the objectives by some
degree. The selected exercises in a session depend greatly
in the intuition of the therapist. These exercises could not
be the most appropriate to achieve the therapeutic objectives
and, at the end of the therapy, some of these objectives could
not be completely fulfilled, putting at risk the rehabilitation
success.

Having different exercises for each therapeutic objective
is convenient because using an assorted exercise set may en-
rich the therapy quality. However, selecting the adequate ex-
ercises according to the therapeutic objectives, observing the
patient profile constraints and assuring the variability of the

sessions, is a time-consuming task for therapists. It causes
that the therapist often do not care about finding the suitable
set of exercises, so the trained sessions are usually repeti-
tive. This may reduce the engagement of the patient in the
therapy.

Model, Constraints and Requirements
Finding a plan of exercises for each session while taking
into account all the requirements set by the medical expert
is a search task which can be solved with Automated Plan-
ning. A database with exercises of different characteristics is
available for the system to be developed. This database pro-
vides metrics to guarantee that the planned therapy fulfills all
the requirements of the medical expert. To increase the flex-
ibility when selecting exercises, the therapeutic objectives
variables are graded with four adequacy values, {0,1,2,3},
as used in the mentioned GAS scale. These values will con-
tribute to reach the therapeutic objectives cumulative levels
(TOCL) established for a session. The system will provide
the planned sessions to the therapist, that only needs to vali-
date them. Of course, he can ultimately decide to change any
exercise, if he considers it as not appropriate.

Next we show the constraints and requirements followed
to plan the exercises that will be included in the rehabilita-
tion sessions.

Goals
• Total number of sessions.
• Minimum and maximum duration of each session.
• The defined TOCL thresholds.

Exercise characteristics
• Duration (in minutes).
• Adequacy level for each therapeutic objective.
• Intensity value is associated to the average heart rate while

performing the exercise.
• Difficulty for a certain patient to perform the exercise.

This variable could be updated by the therapist after each
session, if needed.

• Each exercise belongs to a group of exercises. These
groups are related to the capabilities that patients need to
perform the exercise, possibly restricted by their clinical
conditions.
The next constraints are considered in order to guarantee

the medical requirements and the variability of the sessions:

Basic constraints
• Each session must have three phases in the following or-

der: warm-up, training and cool-down.
• The duration of each phase and each session must be in-

side a predefined range.

Variability constraints
• The repetition of a certain exercise in the same session is

not allowed.
• The exercise distribution should be assorted throughout

the sessions.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

39

Patient-related constraints
• Avoiding a certain group (e.g elbow flexion) or a set of

exercises (e.g. those too much intense or difficult) could
be required because of patient conditions.

• Select certain types of exercises. For instance, if the pa-
tient suffers “Upper Erb OBPP”, recommend only exer-
cises for shoulder abduction, external rotation of shoulder
and elbow flexion; if he suffers “Extended Erb OBP”, add
wrist flexion as well.

• Within a session, limit the cumulative intensity or diffi-
culty to a given value.

With this information, the automated planner can find a
suitable therapy plan if there are enough exercises in the
database. In case that the available exercises are not enough,
the automated planner will ask the therapist that it needs to
learn a new exercise with a suggested value for some charac-
teristics. For example, in a session plan, the planner can sug-
gest the execution (and learning) of a new exercise with ade-
quate level of 2 for bimanual activities. The planner assumes
that the learnt exercise is performed by the patient and uses
the minimum estimated values to compute the calculations
for the plan. When the therapist stores the new exercise in
the database, it can have higher adequacy levels for the ther-
apeutic objectives, guaranteeing that the plan will continue
being valid. In future sessions, the previously learnt exer-
cises can be reused, minimizing the need of further learning
actions and helping the therapist to fill the database with a
set of useful exercises. After a session, the therapist can up-
date the difficulty values of the exercises for a patient, if
needed. The medical expert can also modify the goals with
the results of the GAS scale evaluation. This updates can
cause a replanning of the remaining sessions, if the previ-
ously planned therapy is no longer valid.

Methods
We propose the use of Automated Planning techniques
(Ghallab, Nau, and Traverso 2004) to plan the exercises
that will belong to each session. Automated Planning is an
Artificial Intelligence (AI) technique that is used to find
a plan of actions while respecting the model constraints.
We have tested two different paradigms: classical STRIPS
planning and Hierarchical Task Network (HTN) planning.
In classical planning, given a model composed of an ini-
tial state, possible actions that have preconditions to be ful-
filled, effects over the state and a set of goals that have
to be accomplished in the final state, a planner is able
to generate valid plans of actions to achieve the speci-
fied goals. HTN Planning (Erol, Hendler, and Nau 1994;
Nau et al. 2003) is based a hierarchy of composed tasks and
primitive actions. Composed tasks are high-level tasks that
can be decomposed using methods that have to fulfill a pre-
condition to be selected and applied, while primitive actions
are modelled as in classical planning.

In order to check the viability and to measure the suitabil-
ity and performance of each automated planning paradigm,
two different knowledge engineers of our group addressed
the presented problem using two concrete AI planners: Cost-
based Planner (CBP) (Fuentetaja, Borrajo, and López 2010)

for the classical paradigm and JSHOP2 (Nau et al. 2003) for
the hierarchical one. Subsequent meetings with other group
experts were carried out to discuss modelling approaches
and results. We describe next these two models.

Classical Planning
The proposed domain for this planning model is based
mainly in fluents and action costs, introduced in PDDL
2.1 (Fox and Long 2003). These requirements have yet a
lack of support from many of the most current planners, but
in this domain they are specially useful to operate directly
with the quantitative values of the therapeutic objectives.
CBP planner supports these characteristics and its search
method is guided by a selection of actions extracted from
a relaxed planning graph. Also, they are useful to control
the session length, add specific variability restrictions and to
establish a dynamic preference for certain actions. The most
important design criterion that we followed in the classical
model is that each individual session has to fulfill always
the therapeutic objectives while observing the time duration
constrains. A secondary criterion consists in forcing the vari-
ability among the therapy sessions to avoid monotony and
improve the treatment engagement. This domain also has the
possibility to “plan the learning” of new exercises with some
suggested attributes to be executed in a session if there are
not enough exercises in the database. This learning mech-
anism is explained in more detail in a later subsection. To
clarify the further explanation, we show a plan for just one
session in Figure 1. A full therapy plan will have every ses-
sion planned, addressing all the dependencies among them.

0: (SESSION-START)
1: (WARMUP-PHASE)
2: (WARMUP-DATABASE-EXERCISE E0)
3: (TRAINING-PHASE)
4: (TRAINING-DATABASE-EXERCISE E11)
5: (TRAINING-DATABASE-EXERCISE E12)
6: (TRAINING-DATABASE-EXERCISE E10)
7: (TRAINING-DATABASE-EXERCISE E9)
8: (LEARN-TRAINING-EXERCISE O_SPATIAL_HAND A_MEDIUM

D_LONG I_INTENSE)
9: (COOLDOWN-PHASE)
10: (COOLDOWN-DATABASE-EXERCISE E15)
11: (SESSION-END)

Figure 1: Output plan for one session.

Planning Problem
Goals The medical expert is in charge of determining the
characteristics of the therapy. Firstly, he decides the total
number of sessions and the minimum and maximum dura-
tions of each phase. This data is stored in the initialization
part of the PDDL problem to serve as a common background
for all sessions. There are other two important tasks for this
expert: choose restrictions depending on the patient’s profile
and determine the amount of training for each therapeutic
objective in each session. These are done using PDDL goals.

There is a fluent for each therapeutic objective to accu-
mulate all the corresponding adequacy values of the planned
exercises in a session. These can be defined as the amount
of training for a certain therapeutic objective (the aforemen-
tioned TOCL values). An objective will be achieved if it is

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

40

trained enough, so it is sufficient to assign a goal with a
lower threshold for each objective to be trained. As an ex-
ample, for a 30 minutes session:
(>= (TOCL t_bimanual) 15)
(>= (TOCL t_unimanual_fine) 7)
(>= (TOCL t_spatial_arm) 7)

Numeric goals in PDDL permit a great flexibility to con-
figure the range of desired values for each fluent at the end
of each session. It could be also possible to establish an up-
per limit for each objective (less or equal condition) or even
avoid the training of a certain objective (equals to zero), but
this has less medical sense because these values are just a
form to represent the priority of the therapeutic objectives
and they do not need to be directly related with the intensity
of the exercises, for which there is a different fluent.

Exercise Database The database contains all the stored
exercises. It is fully managed by the therapist, adding ex-
ercises when the system suggests it with learning actions or
when the therapist finds it convenient. This information ob-
serves all the characteristics of the exercises mentioned in
previous sections. The difficulty value of each exercise is
stored in the patient’s profile, but to simplify we consider
that they are loaded in the PDDL problem file before the
planning task. To assure the variability constraints, there are
two additional fluents representing the session number and
the position of the exercise in the the last session where it
appeared. Each exercise has a predicate to be able to appear
in the warm-up, training or cool-down phase.

The system assumes that the information of the database
is coherent, so the therapist has to be sure that the exercises
are correct when he adds them. For example, warm-up ex-
ercises should not be too intense. With these considerations,
the session plan will start with soft intensity, followed by
an intense training phase and ending with softer exercises
again. Below there is an example of a generic therapeutic
exercise (e7) modelled in PDDL:
(e_phase e7 p_training)
(e_group e7 g_arm_independence)
(= (e_last_session e7) 2)
(= (e_last_position e7) 4)
(= (e_intensity e7) 48)
(= (e_difficulty e7) 39)
(= (e_duration e7) 4)
(= (e_adequacy e7 t_bimanual) 0)
(= (e_adequacy e7 t_unimanual_fine) 3)
(= (e_adequacy e7 t_unimanual_coarse) 0)
(= (e_adequacy e7 t_spatial_arm) 1)
(= (e_adequacy e7 t_spatial_hand) 0)

Planning Domain
Actions All actions are strongly based in fluents, having
numeric preconditions and action costs. There are two stan-
dard action types: to control the session flow and to add ex-
ercises from the database.

Flow control actions allow moving among warming up,
training and cooling down phases or determining the start
and end of a session. When the minimum time for a phase
has been reached, it is possible to move to the next phase or
to finish the session.

The basic way to add exercises to a session is through ac-
tions which select them from the database. They check that
there is available time in the current phase and constraints
like the maximum cumulative intensity. Only exercises for

the current phase can be selected. To assure variability there
are two restrictions modelled as preconditions in the PDDL
domain:

• The exercise cannot be used in the last three sessions.

• In the training phase, an exercise cannot be trained in the
same position as in the last session in which it appeared.2

Learning Exercises Learning actions helps the therapist
to add new useful exercises to the database as the system
is being used. When the system has difficulties to find a
valid plan, it can ask the therapist to provide a new exercise
to continue planning. Our hypothesis states that the bigger
the database is, the less new learnings will be needed. It is
preferable to use exercises in the database instead of learn-
ing new ones, but is not necessary to explore all the possible
combinations before trying a learning action. This has been
controlled using a higher action cost. The planner tries to
minimize the total cost of the plan, so learning actions tend
to be used few times.

To increase variability, the action cost will be higher when
the new exercise allows reaching the problem goals faster. In
this way, longer and less adequate exercises are preferred for
the main target.

Planning Strategy
Classical planning has to deal with a major problem in this
domain. Plan only one session is somewhat relatively easy,
but a real therapy is composed of about 20 sessions. The first
approximation was to plan the full therapy, generating plans
which contain more than 250 actions. Planning multiple ses-
sions in one run causes a non-linear complexity increase be-
cause there are dependencies among them. The planner has
to do backtracking if the selected exercises for a session are
not valid. The problem appears when the planner goes back
further than needed, maybe many valid sessions, forcing to
replan these sessions again to find a valid alternative for a
later one. A smaller backtracking of just a few actions could
solve the situation allowing reordering of the exercises, se-
lecting others or planning the learning of a new one to con-
tinue onward.

We use a divide and conquer strategy to plan each session
individually taking into account the dependencies of one an-
other. In particular, the planner is called one time for each
session that we want to plan. Each time that the planner re-
turns a plan, it is parsed to determine all the database and
learnt exercises planned. For the next session, a new prob-
lem file is generated to update the predicates and functions
of the exercises of the last session planned, and add the new
learnt exercises to the database. Then, the planner is exe-
cuted again with the problem file for the next session. So for
each session, a PDDL problem file is generated with the new
exercises and updates of the database exercises. The exper-
iments showed that this strategy is much faster than plan-
ning all the sessions in one run, without affecting the quality

2For warm-up and cool-down phases the condition is not appli-
cable because a long exercise can reach by itself the minimum time
of the phase and cannot be reordered (e.g. in the warm-up phase,
such exercise will always appear in the first position).

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

41

1 2 3 4 5 6 7 8
1 e0 e9 e11 e12 e10 e7 e15

2 e4 e2 e5 e6 L L L e13

3 e1 e3 e8 L L L L e16

4 L L L L L L e17

5 e0 e11 e12 e10 e9 L e15

6 e4 e2 e6 L19 e7 e5 L20 e13

7 e1 e3 L24 e8 L23 L22 e16

8 L25 L26 L30 L27 L28 L29 e17

9 e0 e12 e10 L31 e11 e9 e15
10 e4 e2 L19 L20 e6 e7 e13

11 e1 e3 L22 L23 L24 e8 e16

12 L L25 L26 L29 L30 L27 L28 e17

13 e0 e10 L21 e12 e9 e11 e15

14 e4 e2 e7 e6 L20 L19 e13

15 e1 e3 L24 e8 L22 L23 e16

16 L25 L27 L31 L26 e5 L29 L30 e17

17 e0 e11 e12 L28 e10 e9 e15

18 L32 e4 e2 L19 e6 L20 e7 e13

19 e1 e3 L22 L23 L24 e8 e16

20 L25 L26 e5 L29 L30 e17

Se
ss
io
n
s

Planned exercises

Table 1: Therapy plan with few exercises in the database.
An “e” or “L” with a number represents an exercise stored
in the database (initial or learnt, respectively). A single “L”
represents the learning and execution of a new exercise.

of the plans. The capacity to learn new exercises gives to
the sessions some locality properties that can be exploited to
avoid time-consuming backtracking among sessions.

Empirical Evaluation
We used the CBP automated planner (Fuentetaja, Borrajo,
and López 2010) because it was specially designed to work
with action costs, so its heuristics reduce the total number of
new learned actions. In Table 1 there is an example of a ther-
apy with 20 sessions. The database starts with a controlled
set of exercises: 5 warm-up, 8 training and 5 cool-down ex-
ercises.

In session 1, the planner only uses exercises from the
database because they are useful to reach the TOCL thresh-
olds. In sessions 2 and 3, it needs to learn due to variability
constraints. In session 4, almost all the exercises has been
used in the last three sessions, so it has to continue learning
new ones. In session 5, the planner can use the set of exer-
cises of session 1 again, but it varies the order of the training
phase because the exercises cannot appear in the same posi-
tion as the last time. In the following sessions, the learnt ex-
ercises are reused because they continue being useful to ful-
fill the goals, so more learning actions are not needed. Note
that the planned sessions are very different among them.

The new learnings in session 5 and 12 show that learn-
ing actions are not completely prohibited, so it is not needed
to explore all the combinations in the database before using
a learning action. Also, we only use the first plan returned
by CBP. This planner can improve the plans iteratively if it
has time, but the first plan returned is good enough to see
how the system works. With this configuration, the planning

time usually does not take more than five minutes. In the ini-
tial experimentation, we observed that the principal aspects
that increase planning time are the number of learned actions
needed and the TOCL thresholds.

HTN Planning
The automatic generation of therapies is a problem that can
also be managed in a hierarchical way, where the top of
the pyramid contains a task representing the whole therapy,
which is divided into sessions and each session comprises a
set of exercises, as shown in Figure 2. The session structure
is given by the hierarchical and order relationships repre-
sented in the HTN decomposition. This approach aims to
provide an easily extendible and configurable model, where
human expert knowledge can be included at any time.

generate-therapy

generate-session new
therapy

new
session

finish
therapy

 finish
session generate-exercises

fill-warmup-exercises fill-training-exercises fill-cooldown-exercises

add

exercise
learn

exercise

add
exercise

learn
exercise

add

exercise
learn

exercise

Figure 2: Hierarchical Task Network model schema.

Planning Problem
Goals As shown in Figure 2, the goal of the Hierarchical
Task Network is the root level of the tree (generate-therapy).
This general task comprises three arguments: number of ses-
sions to plan, duration interval for each session and patient
identifier. This task can be refined using the HTN decompo-
sition methods until a set of primitive actions completes the
plan, which should reach the TOCLs. These TOCLs are also
modelled as numeric predicates in the problem description.
Furthermore, with the aim to parametrize the search (time
and possible exercises in a phase or session), a set of predi-
cates is also included.

Exercise Database The exercise database has been mod-
elled similarly to how it has been described for the classical
planning approach. The only difference is purely technical
due to the representation language of the HTN planner used
for evaluation, described later.

Planning Domain
The HTN planning domain is organized as shown in Fig-
ure 2, where a set of exercises is generated for a number
of sessions. This behaviour is modelled as a recursive task

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

42

(generate-session) which receives the current session num-
ber and the total number of sessions as parameters. This cur-
rent session number (?csn) is used as identifier by the plan-
ning domain and increased to generate new sessions.
(:method (generate-session ?csn ?tsn)
;main
((call <= ?csn ?tsn))

((!new-session ?csn ?tsn)
(generate-exercises ?csn)
(generate-session (call + ?csn 1) ?tsn))

;stop
((call > ?csn ?tsn))

nil
)

Each session is divided into three phases modelled as
lower-level tasks: warm-up phase, training phase and cool-
down phase. The system must distinguish which exercises
are appropriate for each phase depending on its features, and
decides if learning a new exercise is required during plan-
ning time.

Axioms Axioms allow to infer new predicates from the
evaluation of a logical expression (abductive inference).
We have defined axioms to control the time intervals of
phases and to manage which exercises are more appropri-
ate for that phase according to the parameters specified in
the planning problem. For example, (cooldown-time) and
(cooldown-exercise) in Figure 3 are calls to axioms.

Each session begins and ends with less intense and dif-
ficult exercises and the middle of the session consists of
greater intensity and difficulty exercises. The expectation
for each session (comprising three phases) is that the values
of intensity and difficulty follow a Gaussian distribution, as
shown later in the empirical evaluation (see Figure 4). Us-
ing axioms throughout the planning domain simplifies the
modelling process of this requirement.

Tasks and Methods Methods are used to refine compound
tasks into lower-level tasks or primitive actions. These meth-
ods have a precondition that needs to be fulfilled in order to
be applied. In our model, we have used five tasks:

1. (generate-therapy) has a unique method with empty pre-
condition that uses a total-order decomposition to call the
lower-level task (generate-session).

2. (generate-session) is modelled as a recursive task that has
a method to call lower-level task (generate-exercises) and
a “nil” method that stops when the number of sessions
required is reached.

3. (generate-exercises) has a unique method with empty pre-
condition that calls a total-ordered sequence of lower-
level tasks (one for each phase).

4. (fill-phase-exercises) are modelled with three methods.
The first one checks a) that the current time is within
the phase time interval, b) that the exercise is suitable for
the phase and c) that the exercise selected has not been
already included in the ongoing generated session plan.
Figure 3 shows a high-level description of how the (fill-
cooldown-exercises) task has been modelled. The first
method uses a “sort-by” function that drives the planner
in the order in which the variable bindings will be evalu-
ated for the method precondition. This “sort-by” function
calculates an heuristic value (?ht), modelled as follows:

htex =

nobjectives∑
i=1

(
1

di
2 + 1

− extimes used

numsessions
) (1)

where di, for each therapeutic objective i, is the distance
(a minus operation) between the current cumulative level
(if the exercise would be included) to the desired TOCL
for the planned session. So, the function rewards exercises
whose contribution minimizes the distance to the frontier
solution. The last part of the equation penalizes the num-
ber of times an exercise has been previously used.
The second method is applied when all the possible exer-
cises have been already included in a session, so there is
no available exercises to add. In this case a new exercise
needs to be acquired (“learn” action) from the therapist.
Exercises will be added taking into account the heuris-
tic and recursive calls to (fill-cooldown-exercises) and it
will be carried out till the preconditions fails. In this last
case, the third method precondition is evaluated (TOCL
reached within the maximum session time specified); if it
is fulfilled, the plan is valid. Otherwise the planner will do
backtracking to check other exercise sets, until this condi-
tion is reached.

Primitive Actions We use dummy actions to delimit start
and end of sessions and therapy (see Figure 2). The action to
add an exercise updates the current session time (adding the
exercise duration) and the current cumulative level for the
therapeutic objectives in that session. It also updates the sta-
tus of the exercise to “used” and the counter of times used.
At the time of writing this paper, the “learn” action estab-
lishes fixed values for the exercise attributes. Improving this
behaviour is subject of future work.

;; Receives the session number

(:method (fill-cooldown-exercises ?csn)

 (:sort-by ?ht >

 ((e-target1 ?e ?et1)

 (current-acc t1 ?csn ?ct1a)

 (baseline t1 ?t1bl)

 ...

 (assign ?d1 (call - ?t1bl (call + ?et1 ?ct1a)))

 ...

 (assign ?h1 (call / 1 (call + (call * ?d1 ?d1) 1)))

 ...

 (e-used ?e ?n-used) (t-session-number ?tsn)

 (assign ?ht (call - (call + ?h1 ... ?h5) (call / ?n-used ?tsn)))

 ...

 (cooldown-time ?cst ?minST ?maxST)

 (cooldown-exercise ?e ?minST ?maxST)

 (not (used ?e ?csn))))

 ((!add-ex ?e cool-down)

 (fill-cooldown-exercises ?csn))

 (forall (?e) ((exercise ?e)) (used ?e ?csn))

 ((!learn))

 ((current-session-time ?csn ?cst)

 (session-max-time ?csn ?maxST)

 (call <= ?cst ?maxST)

 (current-acc t1 ?csn ?ct1a) (TOCL t1 ?t1bl) (call >= ?ct1a ?t1bl)

 ...

 ((!finish-session ?csn)))

Precondition 1

Actions and task calls

Precondition 3

Actions and task calls

2

M
et

ho
d

1
M

et
ho

d
3

Task definition

M
et

ho
d

2

Actions and task calls

Precondition 2

Figure 3: JSHOP2 code for the task to include a set of exer-
cises in the cool-down phase of a session.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

43

Planning Strategy
Our hypothesis states that a well modelled hierarchical rep-
resentation of the domain knowledge, along with parameters
to drive the search appropriately, could generate successful
solutions with a improved quality. In other words, we look
for a parametrized design to provide a flexible configura-
tion to the physicians. Moreover, in order to reflect the med-
ical criteria in the resulting plan, the heuristic function is in
charge of the exercises selection. As explained before, this
function is also used to penalize the most repetitive exercises
reducing the heuristic value, but this does not avoid the oc-
currence of the same exercise throughout sessions. That is
why we consider the variability as soft constraint.

The HTN approach can search towards reaching general
therapeutic objectives that imply interactions among ses-
sions. These interactions can occur due to a) the exercise
distribution of previous ongoing planned sessions that could
affect to future ones, b) the TOCLs of subsequent sessions
can be updated by the plan of earlier sessions and c) chas-
ing possible distributions (eg. time, intensity, TOCLs) for
the whole therapy predefined by physicians. This is the mo-
tivation to propose a recursive model in order to generate
multiple sessions. The HTN approach preserves the capabil-
ity of backtracking through past sessions without mediation
of an external program.

Empirical Evaluation
We have used the SHOP2 HTN language (Nau et al. 2003)
for modelling the planning domain and JSHOP23 to test the
plan generation. The SHOP2 language is provided with a
great expressiveness that allows axiomatic inference, sym-
bolic and numerical computation, call to external programs
and use of conditional quantifiers, to name some features.

In order to evaluate the behaviour of the hierarchical do-
main, a set of 72 exercises are included in the planning prob-
lem. This experiment has been carried out with the follow-
ing configuration: 30 sessions to generate, 25-30 minutes per
session, 20% of the total session time is assigned to each
warm-up and cool-down phases and the remainder 60% is
for training phase. The established intervals to consider an
exercise as a candidate for each phase are: warm-up intensity
[0-30], warm-up difficulty [0-20], training intensity [30-50],
training difficulty [30-50], cool-down intensity [0-20] and
cool-down difficulty [0-30]. It is assumed that an exercise
could be considered as warm-up and cool-down according to
their values. The effects of the exercise distribution is shown
in Figure 4, where an approximate Gaussian distribution of
the intensity and difficulty within the phases is achieved.

Discussion and Conclusions
To conclude this manuscript we have created a qualitative
comparison of the two approaches that highlight the main
topics addressed. Table 2 represents a summary of this com-
parison. Some further take-home messages are described
next. Firstly, this work provides an original model based on
numeric values of a new kind of problem which is useful

3It uses a planning compilation technique to synthesize domain-
dependent planners from SHOP2 domain descriptions.

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11
Average Exercise Set (for 30 sessions)

Intensity
Difficulty

Figure 4: Represents the average values of the intensity
and difficulty for 30 generated sessions. Along the differ-
ent phases (warm-up, training and cool-down), the achieved
progress is represented by these Gaussian distributions.

to compare capabilities and behaviour among different au-
tomated planners. Secondly, we think that more flexibility
for the user seems to be available in the HTN model, where
more complex expert knowledge could be represented eas-
ily, however costs and preferences used in classical planning
are very suitable for this problem. Third, with regard to how
to achieve variability while trying to fulfil our requirements,
we noted that the sort-by function used in JSHOP2 needs to
arrange and order many bindings before the task decomposi-
tion is applied, which may affect its performance. This could
possibly be improved by modelling the heuristic function
using a java comparator function, as offered by JSHOP2.
Fourth, the divide and conquer strategy used in the classi-
cal approach eliminates the backtracking to previous ses-
sions to improve the planning time. On the other hand, the
HTN model can generate plans using backtracking among
sessions to solve their interactions. Finally, CBP does not
use heuristics for fluents, which could be very helpful for
this domain to reduce the planning time. OPTIC (Benton,
Coles, and Coles 2012) provides this kind of heuristics, so
it could be a future option to explore. With regard to tem-
poral constraints, if more complex ones would be needed,
the temporal representation provided by PDDL2.1 could be
handled through planners like OPTIC (Benton, Coles, and
Coles 2012) or the HTN planner SIADEX (Castillo et al.
2006). In the case of HTN, it would be interesting to explore
new preference-based planning approaches.

To sum up, we have presented two ways to reach plans
driven by general therapeutic objectives modelled numeri-
cally. We plan to do a better quantitative comparison in terms
of performance, addressing the issues previously discussed.

Acknowledgements
This work has been partially granted by the Spanish Ministe-
rio de Economı́a y Competitividad (MINECO) funds under
coordinated project no. TIN2012-38079-C03-01, TIN2012-
38079-C03-02 and TIN2012-38079-C03-03, and FEDER
INNTERCONECTA ADAPTA 2012. We also are grateful
to the medical team of the Virgen del Rocı́o University Hos-
pital for their participation.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

44

Constraints, Requirements Classical Planning HTN Planning
Assuring Variability

• Avoids repeating exercises in the same session.
• Avoids repeating an exercise in the last three sessions.
• In the training phase, an exercise cannot be planned in the same

position than in the last occurrence.

• Avoids repeating exercises in the same session.
• Heuristic sort-by function penalized for exercises that occur re-

peatedly.

Phase Selection PDDL predicate relating each exercise to its corresponding phase. Axioms limiting the exercise selection whose minimum and maxi-
mum duration, intensity and difficulty can be defined by physicians
for each phase.

Phase Time Intervals It is parametrized through the minimum and maximum duration for
each phase, which is assigned by the medical expert.

Time is parametrized through axioms according to accumulated
percentage of total time for each phase (eg. 0.2, 0.7, 1.0).

Learning new exercise Suggests which attribute values should have a new learnt exercise,
preferring exercises which can improve the session variability.

It does not suggest the minimum values yet, but it is already mod-
elled as a new HTN method that can add new exercises during plan-
ning time.

Achieving Goals
• The automated planner has to achieve the TOCL thresholds

which are the goals established in the planning problem, while
observing all the constraints set by the physician.

• Minimizes the total cost of the plan, where learning a new exer-
cise has more cost than use one from the database.

• Total-order hierarchical network expressing the three phases.
TOCLs and expected session time should be reached, otherwise
backtracking occurs to find a suitable exercise set.

• Driving exercise selection through a sort-by function (see de-
scription above).

Planning Multiple Sessions Divide and conquer strategy which calls the planner one time per
session, improving planification time without affecting the quality
of the plan thanks to the learning actions.

HTN Planning is done as usual in one run, doing backtracking when
exercise sets dont reach expected goals.

Table 2: Qualitative comparison of Classical and HTN approaches for the presented problem.

References
Ahmed, S.; Gozbasi, O.; Savelsbergh, M. W. P.; Crocker, I.;
Fox, T.; and Schreibmann, E. 2010. An automated intensity-
modulated radiation therapy planning system. INFORMS
Journal on Computing 22(4):568–583.
Benton, J.; Coles, A. J.; and Coles, A. I. 2012. Tempo-
ral planning with preferences and time-dependent continu-
ous costs. In Proceedings of the Twenty Second Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-12).
Calderita, L.; Bustos, P.; Suarez Mejias, C.; Fernandez, F.;
and Bandera, A. 2013. Therapist: Towards an autonomous
socially interactive robot for motor and neurorehabilitation
therapies for children. In 7th International Conference on
PervasiveHealth, 374–377.
Castillo, L. A.; Fernández-Olivares, J.; Garcia-Perez, O.;
and Palao, F. 2006. Efficiently handling temporal knowl-
edge in an htn planner. In ICAPS, 63–72.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In AAAI, volume 94, 1123–
1128.
Fdez-Olivares, J.; Castillo, L. A.; Cózar, J. A.; and Garcı́a-
Pérez, Ó. 2011. Supporting clinical processes and decisions
by hierarchical planning and scheduling. Computational In-
telligence 27(1):103–122.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. J. Artif.
Intell. Res.(JAIR) 20:61–124.
Fuentetaja, R.; Borrajo, D.; and López, C. L. 2010. A look-

ahead B&B search for cost-based planning. In Current Top-
ics in Artificial Intelligence. Springer. 201–211.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning: theory & practice. Elsevier.
González-Ferrer, A.; Ten Teije, A.; Fdez-Olivares, J.; and
Milian, K. 2013. Automated generation of patient-
tailored electronic care pathways by translating computer-
interpretable guidelines into hierarchical task networks. Ar-
tificial Intelligence in Medicine 57(2):91–109.
Morignot, P.; Soury, M.; Leroux, C.; Vorobieva, H.; and
Hède, P. 2010. Generating scenarios for a mobile robot
with an arm: Case study: Assistance for handicapped per-
sons. In Proceedings of 11th International Conference on
Control Automation Robotics & Vision, 976–981. IEEE.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN plan-
ning system. J. Artif. Intell. Res.(JAIR) 20:379–404.
Peleg, M. 2013. Computer-interpretable clinical guidelines:
A methodological review. Journal of Biomedical Informat-
ics 46(4):744–763.
Schimmelpfeng, K.; Helber, S.; and Kasper, S. 2012. Deci-
sion support for rehabilitation hospital scheduling. OR spec-
trum 34(2):461–489.
Turner-Stokes, L. 2009. Goal attainment scaling (GAS)
in rehabilitation: a practical guide. Clinical rehabilitation
23(4):362–70.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

45

Knowledge Engineering for Planning-Based Hypothesis Generation

Shirin Sohrabi Octavian Udrea Anton V. Riabov
IBM T.J. Watson Research Center

PO Box 704, Yorktown Heights, NY 10598, USA
{ssohrab, oudrea, riabov}@us.ibm.com

Abstract

In this paper, we address the knowledge engineering prob-
lems for hypothesis generation motivated by applications that
require timely exploration of hypotheses under unreliable ob-
servations. We looked at two applications: malware detection
and intensive care delivery. In intensive care, the goal is to
generate plausible hypotheses about the condition of the pa-
tient from clinical observations and further refine these hy-
potheses to create a recovery plan for the patient. Similarly,
preventing malware spread within a corporate network in-
volves generating hypotheses from network traffic data and
selecting preventive actions. To this end, building on the al-
ready established characterization and use of AI planning for
similar problems, we propose use of planning for the hypoth-
esis generation problem. However, to deal with uncertainty,
incomplete model description and unreliable observations,
we need to use a planner capable of generating multiple high-
quality plans. To capture the model description we propose a
language called LTS++ and a web-based tool that enables the
specification of the LTS++ model and a set of observations.
We also proposed a 9-step process that helps provide guid-
ance to the domain expert in specifying the LTS++ model.
The hypotheses are then generated by running a planner on
the translated LTS++ model and the provided trace. The hy-
potheses can be visualized and shown to the analyst or can be
further investigated automatically.

Introduction
Several application scenarios require the construction of hy-
potheses presenting alternative explanation of a sequence of
possibly unreliable observations. For example, the evolution
of the state of the patient over time in an Intensive Care Unit
(ICU) of a hospital can be inferred from a variety of mea-
surements. Similarly, observations from network traffic can
indicate possible malware. The hypotheses, represented as
a sequence of changes in patient state, aim to present an
explanation for these observations, while providing deeper
insight into the actual underlying causes for these observa-
tions, helping to make decisions about further testing, treat-
ment or other actions.

Expert judgment is the primary method used for generat-
ing hypotheses and evaluating their plausibility. Automated
methods have been proposed, to assist the expert, and help
improve accuracy and scalability. Notably, model-based di-
agnosis methods can determine whether observations can be

explained by a model (e.g., (Cassandras and Lafortune 1999;
Sampath et al. 1995)). Recently, several researchers have
proposed use of automated planning technology to address
several related class of problems including diagnosis (e.g.,
(Sohrabi, Baier, and McIlraith 2010; Haslum and Grastien
2011)), plan recognition (Ramı́rez and Geffner 2009), and
finding excuses (Göbelbecker et al. 2010). These problems
share a common goal of finding a sequence of actions that
can explain the set of observations given the model-based
description of the system. However, most of the existing lit-
erature make an assumption that the observations are all per-
fectly reliable and should be explainable by the system de-
scription, otherwise no solution exists for the given problem.
But that is not true in general. For example, even though ob-
servations resulting from the analysis of network data can
be unreliable, we would still like to explain as many obser-
vations as possible with respect to our model; as a further
complication, we cannot assume the model is complete.

In 2011, Sohrabi et al. established a relationship between
generating explanations, a more general form of diagno-
sis, and a planning problem (Sohrabi, Baier, and McIlraith
2011). Recently, we extend this work to address unreliable
observations and showed how to generate multiple high-
quality plans or the plausible hypotheses. (Sohrabi, Udrea,
and Riabov 2013)1. In this paper, we address knowledge en-
gineering problems of capturing the domain knowledge.

To capture the model description we propose a language
called LTS++, derived from LTS (Labeled Transition Sys-
tem) (Magee and Kramer 2006) for defining models for
hypothesis generation, and associating observation types.
LTS++ is less expressive than the general Planning Domain
Definition Language (PDDL) specification of a planning
problem (McDermott 1998). However, in our experience,
the domain expert finds writing an LTS++ language much
simpler than PDDL. To further help the domain expert, we
also proposed a process that helps provide guidance in spec-
ifying the LTS++ model. Additionally, we developed a web-
based tool that enables the specification of the LTS++ model
and a set of observations. Our tool features syntax highlight-
ing, error detection, and visualization of the state transition

1We include the description of our approach to hypothesis gen-
eration from that prior work, but LTS++ and our tools for knowl-
edge engineering have not been previously described.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

46

Infec&on(

ByEmail(ByNeighbor(ByDownload(

CC_Rendezvous(
ByDomain
Name(ByIRC(ByNeighbor(ByP2P(

Exploit(

ClickFraud(

DataExfil(DDoS(

FastFlux(

Spam(

Crawling(PortScanned(

Executable|
BlacklistedDomain(

BlacklistedDomain|
HighNXVolume|
LowPopularityDomain(

IncreasedIRC(ConnectedToInfected(IPwoDNS(IncreasedAdTraffic(

HighSessionLen|(
HighSessionBytes(

ManyReqTo
Domain(

DNSRegistra&ons(

IncreasedOutEmail|(
EmailUnknownDest(

Executable|
BlacklistedDomain|
HighNXVolume|
LowPopularityDomain(
|IncreasedAdTraffic|(
HighSessionBytes|
HighSessionLen(

Highrisk(Icudeath(

Discharged(Pa2entNoLead(

Infec2on(

Infarc2on(

DCI(

Lowrisk(

Unadmi<ed(

HRVL|LabTestBacteria+|SIRS3|SIRS4(HH1|HH2|An2bioAdmin|SIRS0|SIRS1(

Pa2entLeK(

AngiogramDCI+|CTScanDCI+|HRVL|ClinicalObs+(

AngiogramInfarct+(
|CTScanInfarct+(
|PupilDilated(

FlatVitals(

HRVL|ECGNoisy(

HRVL|SIRS3|SIRS4|
LeadFixed|HH2|HH3|
HH4|An2bioAdmin(

Figure 1 (a): Malware detection Figure 1 (b): Intensive care

graph. The hypotheses are then generated by running a plan-
ner on the translated LTS++ model and the provided obser-
vation trace. The hypotheses can be visualized and shown to
the analyst or can be further investigated automatically.

In the rest of the paper, we will first describe our two
application examples in detail. We then describe the archi-
tecture of our automated hypothesis exploration problem
in which hypothesis generation plays a key role. Then we
describe the relationship between planning and hypothesis
generation, which facilitates the use of planning technology.
We show our initial experimental results in using planning.
We then describe our LTS++ language, the creation process,
LTS++ IDE, and show several example problems.

Application Description
In this section we introduce two example applications that
illustrate our approach: intensive care delivery and malware
detection. A key characteristic of these applications is that
the true state of monitored patients, network hosts, or other
entities, while essential for timely detection and prevention
of critical conditions, is not directly observable. Instead, we
must analyze the sequence of available observations to re-
construct the state. To make this possible, our approach re-
lies on a model of the entity consisting of states, transitions
between states, and many-to-many correspondence between
states and observations. In the following sections we will
describe how these models can be created by the domain ex-
perts and encoded in our LTS++ language.

Figure 1 shows state transition systems of intensive case
and malware detection. The rounded rectangles are states.
The states are associated with a type, good or bad, and drawn
in blue or red respectively. The callouts are observations as-
sociated with these states. Note that the observations are ob-
tained by analyzing raw data gathered through sensors.

In Figure 1 (a), the bad state correspond to malware life-
cycle, such as the host becoming infected with malware, the
bot’s rendezvous with a Command and Control (C&C) ma-
chine (botmaster), and a number of exploits – uses of the
bot for malicious activity. Each of the states can be achieved
in many ways, depending on the type and capabilities of
the malware. For example, the CC Rendezvous state can be
achieved by attempting to contact an Internet domain, or
via Internet Relay Chat (IRC) on a dedicated channel. The
good state in Figure 1 (a) corresponds to a “normal” life-
cycle of a web crawler compressed into a single state. Note
that crawler behavior can also generate a subset of the ob-

servations that malware may generate. The callouts are the
observations associated with states. For example, the ob-
servation HighNXVolume is an observation associated with
the ByDomainName state that corresponds to an abnormally
high number of domain does not exist responses for Domain
Name System (DNS) queries; such an observation may indi-
cate that the bot and its botmaster are using a domain name
generation algorithm, and the bot is testing generated do-
main names trying to find its master.

In Figure 1 (b), the bad states correspond to critical states
of a patient such as Infection, DCI, or Highrisk. The good
states are the non-critical states. Upon admission the pa-
tient is either in Lowrisk or in Highrisk. From a Highrisk
state, they may get to the Infection, Infarction, or the DCI
state. From Lowrisk they may get to the Highrisk state or
be Discharged from ICU. The patient enters Icudeath from
Infection, Infarction, or DCI state. The patient’s condition
may improve; hence the patient’s state may move back to
the Lowrisk state from for example the Infection state. The
observations are measured based on the raw data captured
by patient monitoring devices (e.g., the patient’s blood pres-
sure, heat rate, temperature) as well as other measurements
and computations provided by doctors and nurses. For ex-
ample, given the patient’s heart rate, their blood pressure,
and their temperature, which are measured continuously,
their SIRS score can be computed, producing an integer be-
tween 0 to 4. Similarly, a result of CT Scan, or a lab test will
indicate other possible observations about the patient.

While the complexity of the analysis involved to obtain
one observation can vary, it is important to note that obser-
vations are by nature unreliable:

The set of observations will be incomplete. Operational
constraints will prevent us running in-depth analysis on all
of the data all the time. However, all observations are typi-
cally time stamped, and hence totally ordered.

Observations may be ambiguous. This is depicted in Fig-
ure 1, where for instance contacting a blacklisted domain
may be evidence of malware activity, or maybe a crawler
that reaches such a domain during normal navigation. Simi-
larly, Heart Rate Variability Low (HRVL) may be explained
by many states such as DCI or Highrisk or Infection.

Not all observations will be explainable. There are several
reasons while some observations may remain unexplained:
(i) observations are (sometimes weak) indicators of a behav-
ior, rather than authoritative measurements; (ii) the model
description is by necessity incomplete, unless we are able to

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

47

design a perfect model; (iii) in the case of malware detec-
tion, malware could try to confuse detectors by either hiding
in normal traffic patterns or originating extra traffic.

For Figure 1 (a) one can consider the following two ob-
servations for a host: (o1) a download from a blacklisted do-
main and (o2) an increase in traffic with ad servers. Note
that according to Figure 1 (a), this sequence could be ex-
plained by two hypotheses: (a) a crawler or (b) infection by
downloading from a blacklisted domain, a C&C rendezvous
which we were unable to observe, and an exploit involv-
ing click fraud. In such a setting, it is normal to believe (a)
is more plausible than (b) since we have no evidence of a
C&C rendezvous taking place. However, take the sequence
(o1) followed by (o3) an increase in IRC traffic followed by
(o2). In this case, it is reasonable to believe that the pres-
ence of malware – as indicated by the C&C rendezvous on
IRC – is more likely than crawling, since crawlers do not
use IRC. The crawling hypothesis cannot be completely dis-
carded since it may well be that a crawler program is running
in background, while a human user is using IRC to chat.

Consider the following observation sequence for the
model in Figure 1 (b): HH3, HRVL. This denotes a patient
with a Hunt and Hess (a grading system used to classify the
severity of subarachnoid hemorrhage) score of 3, followed
by HRVL. Since HRVL is an ambiguous observation – i.e.,
can be indicative of multiple states –, equally plausible hy-
potheses may be:

Unadmitted→ Highrisk or
Unadmitted→ Highrisk→ PatientNoLead or
Unadmitted→ Highrisk→ Infarction or
Unadmitted→ Highrisk→ DCI.

Note, although the current state of the patient is unknown,
the generated hypotheses indicate that it is one of Highrisk,
PatientNoLead, Infarction or DCI.

Given a sequence of observations and the model, the hy-
pothesis generation task infers a number of plausible hy-
potheses about the evolution of the entity. Practically, we
have to analyze multiple hypotheses about an entity because
the state transition model may be incomplete or the obser-
vations may be unreliable. The result of our automated tech-
nique can then be presented to a network administrator (or to
a doctor) or to an automated system for further investigation
and testing. Next, we will describe briefly all the necessary
components for hypothesis exploration.

Architecture
Our work on automated exploration of hypotheses focuses
on the Hypothesis Generation, which is part of a larger auto-
mated data analysis system that includes sensors, actuators,
multiple analytic platforms and a Tactical Planner. Tactical
Planner, for the purpose of this paper, should be viewed as a
component responsible for execution of certain strategic ac-
tions and it can be implemented using, for example, a clas-
sical planner to compose analytics (Bouillet et al. 2009). A
high-level overview of the complete system architecture is
shown in Figure 2. All components of the architecture, with
the exception of application-specific analytics, sensors, and
actuators, are designed to be reused without modification in
a variety of application domains.

Analytic Platform(s)

Sensors Actuators

Offline
Analytics

Strategic Planner

Hypothesis Generator Tactical Planner

Online
Analytics

Entities

World

Data Store

Figure 2: System architecture

The system receives input from Sensors, and Analytics
translate sensor data to observations. The Hypothesis Gen-
erator interprets the observations received from analytics,
and generates hypotheses about the state of Entities in the
World. Depending on application domain, the entities may
correspond to patients in a hospital, or to computers con-
nected to a corporate network, or other kinds of objects of
interest. The Strategic Planner evaluates these hypotheses
and initiates preventive or testing actions in response. Some
of the testing actions can be implemented as additional pro-
cessing of data, setting new goals for the Tactical Planner,
which composes and deploys analytics across multiple Ana-
lytic Platforms. A Hadoop cluster, for example, can be used
as an analytic platform for offline analysis of historical data
accumulated in one or more Data Stores. Alternatively, a
Stream Computing cluster can be used for fast online analy-
sis of new data received from the sensors.

Preventive actions, as well as some of the testing actions,
are dispatched to Actuators. There is no expectation that ev-
ery actuation request will succeed, or always happen instan-
taneously. Actuation in a hospital setting can involve dis-
patching alerts to doctors, or lab test recommendations.

Hypothesis Generation via Planning
In this section, we define the hypothesis generation problem
and describe its relationship to planning. We also provide
experimental evaluation that supports the premise of using
planning for generating multiple plausible hypotheses. In the
next section, we will describe how the planning model can
be captured using the LTS++ language which we translate to
a planning problem. Our tool, LTS++ hypothesis generator,
then uses a planning to compute plausible hypothesis and
present them to the user.

Following our recent work (Sohrabi, Udrea, and Riabov
2013), a dynamical system is defined as Σ = (F,A, I),
where F is a finite set of fluent symbols, A is a set of ac-
tions with preconditions and effects that describes actions
that account for the possible transitions of the state of the
entity (e.g., patient or host) as well as the discard action that
addresses unreliable observations by allowing observations
to be unexplained, and I is a clause over F that defines the
initial state. The instances of the discard action add tran-
sitions to the system that account for leaving an observa-
tion unexplained. The added transitions ensure that we took
all observations into account, but an instance of the discard

Hand-crafted 10 states 50 states 100 states
Observations % Solved Time % Solved Time % Solved Time % Solved Time

5 100% 2.49 70% 0.98 80% 5.61 30% 14.21
10 100% 2.83 90% 2.04 50% 25.09 30% 52.63
20 90% 12.31 70% 24.46 - - - -
40 70% 3.92 40% 81.11 - - - -
60 60% 6.19 - - - - - -
80 50% 8.19 - - - - - -
100 60% 11.73 10% 10.87 - - - -
120 70% 20.35 20% 15.66 - - - -

Table 1: The percentage of problems where the ground truth was generated, and the average time spent for LAMA.

action for a particular observation o indicates that o is not
explained. Actions can be over both “good” and “bad” be-
haviors. This maps to “good” and “bad” states of the entity,
different from a system state (i.e., set of fluents over F).

An observation formula ϕ is a sequence of fluents in F we
refer to as trace. Given a trace ϕ, and the system description
Σ, a hypothesis α is a sequence of actions in A such that α
satisfies ϕ in the system Σ. We also define a notion of plau-
sibility of a hypothesis. Given a set of observations, there are
many possible hypotheses, but some could be stated as more
plausible than others. For example, since observations are
not reliable, the hypothesis α can explain a subset of obser-
vations by including instances of the discard action. How-
ever, we can indicate that a hypothesis that includes the min-
imum number of discard actions is more plausible. In addi-
tion, observations can be ambiguous: they can be explained
by instances of “good” actions as well as “bad” actions. Sim-
ilar to the diagnosis problem, a more plausible hypothesis
ideally has the minimum number of “bad” or “faulty” ac-
tions. More formally, given a system Σ and two hypotheses
α and α′ we assume that we can have a reflexive and transi-
tive plausibility relation �, where α � α′ indicates that α is
at least as plausible as α′.

The hypothesis generation problem is then defined as
P = (F,A′, I, ϕ) where A′ is the set A with the addition of
positive action costs that accounts for the plausibility rela-
tion �. A hypothesis is a plan for P, and the most plausible
hypothesis is the minimum cost plan. That is, if α and α′

are two hypotheses, where α is more plausible than α′, then
cost(α) < cost(α′). Therefore, the most plausible hypothe-
sis is the minimum cost plan.

While some class of plausibility relation can be ex-
pressed as Planning Domain Definition Language (PDDL3)
(Gerevini et al. 2009) preferences, cost-based planners are
(currently) more advanced than PDDL3-based planners, and
so the technique proposed by Keyder and Geffner 2009 can
be used to compile preferences into costs, enabling the use
of cost-based planners instead.

Computing Plausible Hypotheses
To address uncertainty, the unreliability of observations and
incomplete model description, we must generate multiple
high-quality (or low-cost) plans that correspond to a set of
plausible hypothesis. To this end, we adapt our implemen-
tation of hypothesis generation from (Sohrabi, Udrea, and
Riabov 2013). We encode the plausibility notion as actions
costs. In particular, we assign a high cost to the discard ac-
tion in order to encourage explaining more observations. In

addition, we assign a higher cost to all instances of the ac-
tions that represent “bad” behaviors than those that repre-
sent “good” behaviors. Furthermore, shorter/simpler plans
are assumed to be more plausible. To address observations,
we similarly compile them away in our encoding following
a technique proposed in (Haslum and Grastien 2011).

The planning problem is described in PDDL. We used one
fixed PDDL encoding of the domain, but varied the prob-
lem for each problem description, which we generate auto-
matically in our experiments. We also developed a replan-
ning process around LAMA (Richter and Westphal 2010) to
generate multiple high-quality (or low-cost) plans that cor-
respond to a set of plausible hypothesis. The replanning pro-
cess works in such a way that after each round, the planning
problem is updated to disallow finding the same set of plans
in future runs of LAMA. This process continues until a time
limit is reached and then all found plans are sorted by cost
and shown to the user by our tool.

Experimental Evaluation
The experiments we describe in this section help evaluate
the response time and the accuracy of our approach. In par-
ticular, these experiments show promise of our approach in
terms of using planning. This experiments were reported in
(Sohrabi, Udrea, and Riabov 2013). We evaluated perfor-
mance by using both a hand-crafted description of the mal-
ware detection problem and a set of automatically generated
state transition systems with 60% bad and 40% good states.

To evaluate performance, we introduce the notion of
ground truth. In all experiments, the problem instances are
generated by constructing a ground truth trace by traversing
the lifecycle graph (similar to Figure 1 (a)) in a random walk,
adding with small probability, missing and inconsistent ob-
servations. We then measure performance by comparing the
generated hypotheses with the ground truth, and consider a
problem solved for our purposes if the ground truth appears
among the generated hypotheses.

For each size of the problem, we have generated 10 prob-
lem instances, and the measurements we present are aver-
ages. The measurements were done on a dual-core 3 GHz
Intel Xeon processor and 8 GB memory, running 64-bit Red-
Hat Linux. We used a 300 seconds time limit.

Table 1 summarizes the result. The rows and the columns
indicate the problem size, measured by the number of obser-
vations and the number of states. The hand-crafted column,
is the example shown in Figure 1 (a), which has 18 states.
The generated problems consisted of 10, 50 and 100 states.
The % Solved column shows the percentage of problems

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

49

© 2014 IBM Corporation – All Rights Reserved

Step 6:
Identify
Initial
State

Step 3: Identify
Observations

Step 2:
Identify
States

Step 4: Identify
Transitions
Between States

Step 1:
Identify
the Entity

Step 5: Identify
Relationship
between States
& Observations

Step 7:
Identify
State
Types

Step 9:
Test

Step 8:
Code &
Debug

Figure 3: Process for LTS++ model creation

where the ground truth was among the generated plans. The
Time column shows the average time it took from the be-
ginning of iterations to find the ground truth solution for the
solved problems. The dash entries indicate that the ground
truth was not found within the time limit.

The results show that planning can be used successfully to
generate hypotheses for malware detection, even in the pres-
ence of unreliable observations, especially for smaller size
problems. The correct hypothesis was generated in most ex-
periments with up to 10 observations. However, in some of
the larger instances LAMA could not find any plans. More-
over, in the smaller size problems, more replanning rounds is
done within the time limit and hence more distinct plans are
generated which increases the chance of finding the ground
truth. The results for the hand-crafted malware example also
suggest that the problems arising in practice may be easier
than randomly generated ones, which had more state transi-
tions and higher branching factor.

We believe that LAMA would have had a better chance
of detecting the ground truth trace if instead of finding a
set of high-quality plans it could have generated the top k
plans, where k could be determined based on a particular
scenario. In future work, we plan to evaluate our approach
using a planner capable of finding top k plans. Nevertheless,
the experiments support our findings, namely, that the use of
planning is promising.

LTS++ Model
To help new users, we have built a web-based tool for gen-
erating hypotheses and developing state transition models,
which we use in our experiments and applications. In par-
ticular, we have designed a language called LTS++, derived
from LTS (Labeled Transition System) (Magee and Kramer
2006), for defining models for hypothesis generation, and
associating observation types with states. In this section, we
describe a process that the user or the domain expert might
undergo in order to define an LTS++ model. We will also
describe the LTS++ IDE and the LTS++ syntax.

Steps in Creating an LTS++ Model
Figure 3 shows a 9-step creation process for an LTS++
model. The arrows are intended to indicate the most typical
transitions between steps: transitions that are not shown are
not prohibited. This process is meant to help provide guid-
ance to the new users in developing an LTS++ model. In this
section, we will go over the first 7 steps.

In step 1, the user needs to identify the entity. This may
depend on the objective of the hypothesis generator, the
available data, and the available actions. For example, in the

© 2014 IBM Corporation – All Rights Reserved 8

Figure 4: LTS++ IDE

malware detection problem, the entity is the host, while in
the intensive care delivery problem the entity is the patient.
In step 2, the domain expert identifies the states of the entity.
As we saw in the application section, the states of patient for
example could be for example DCI, Infection, and Highrisk.
Since the state transition model is manually specified and
contains a fixed set of observation types, while potentially
trying to model an open world with an unlimited number of
possible states and observations, the model can be incom-
plete at any time, and may not support precise explanations
for all observation sequences. To address this on the mod-
eling side, and provide feedback to model designers about
states that may need to be added, we have introduced a hier-
archical decomposition of states. In some configurations, the
algorithm allows designating a subset of the state transition
system as a hyperstate. In this case, if a transition through
one or several states of the hyperstate is required, but no spe-
cific observation is associated with the transition, the hyper-
state itself is included as part of the hypothesis, indicating
that the model may have a missing state within the hyper-
state, and that state in turn may need a new observation type
associated with it. In the malware detection problem, the In-
fection, Exploit, CC rendezvous are the hyperstates.

The user needs to identify a set of observations for the
particular problem; this is done in step 3. The available data,
the entity, and the identified states may help define and re-
strict the space of observations. In step 4, the domain expert
has to find out all possible transitions between states. This
may be a tedious task, depending on the number of states.
However, one can use hyperstates to help manage these tran-
sitions. Any transition of the hyper states is carried out to its
substates. In step 5, the user has to associate observations to
states. This associations is shown in Figure 1 using the green
callouts. In step 6, one can optionally designate a state as the
starting state. The domain expert can also create a separate
starting state that indicates a one of notation by transition-
ing to multiple states. For example, in the malware detection

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

50

© 2014 IBM Corporation – All Rights Reserved 7 IBM and Customer Confidential

Figure 5: LTS++ model for malware detection

24 IBM and Customer Confidential

Figure 6: LTS++ model for the intensive care

problem, the starting state “start” indicates a “one of” nota-
tion as it transitions to both Infection and Crawling.

In step 7, the user can specify state types which indicate
that some states are more plausible than the others. State
types are related to the “good” vs. “bad” behaviors and they
influence the ranking between hypotheses. For example, the
hypothesis that the host is crawling is more plausible than it
being infected, given the same trace, which can be explained
by both hypotheses.

LTS++ IDE
LTS++ IDE is a web-based tool that helps users create plan-
ning problems by describing LTS++ models and generate
hypotheses. LTS++ IDE consists of an LTS++ editor, graph-
ical view of the transition system, specification of the trace,
and generation of hypotheses. The tool automatically gen-
erates planning problems from the LTS++ specification and
entered trace. The generated hypotheses are the result of run-
ning a planner and presenting the result from top-most plau-
sible hypothesis to the least plausible hypothesis.

Figure 4 shows the LTS++ IDE. The top part is the LTS++
language editor which allows syntax highlighting and the
bottom part is the automatically generated transition graph.
The transition graph can be very useful for debugging pur-
poses. LTS++ IDE also features error detection with re-
spect to the LTS++ syntax. The errors and warning signs
are shown below the text editor. They too can be used for
debugging the model creation as part of step 8.

Figure 5 and 6 shows the LTS++ model for the malware
detection and intensive care applications from Figure 1 re-

spectively. The states are shown in blue with hyperstates
specified in all caps. The observations are specified within
the curly brackets and are shown in green. You can specify
multiple observations by using space or comma between ob-
servations (see line 6). The state types are specified within
angle brackets (see line 2). The transitions between states
are specified using arrows. Each transition needs to be spec-
ified within a hyperstate. Multiple transitions between states
within a hyperstate can be specified using the vertical bar.
The default state type is specified in line 1 and the starting
state is specified in the last line.

Generating Hypotheses via LTS++ IDE
In this section, we will first explain how observations can be
entered into the LTS++ IDE and then we will go through a
number of examples for both of our applications, and explain
how to interpret the generated results. This is the final step
of the LTS++ model creation (i.e., step 9, testing).

Observations can be entered by clicking on the “Next: edit
trace” from the LTS++ IDE main page shown in Figure 4.
Figure 7 (a) shows an example where the first observation
is selected to be a download of an executable, and the sec-
ond observation is now being selected from the drop-down
menu. Once the trace selection is complete, the hypotheses
can be generated by clicking on “Generate hypotheses”. The
hypotheses are presented to the user 10 per page, and users
can navigate through these pages. The next 10 hypotheses
are generated once the user clicks on the “Next page”. Note,
the trace editor is intended mainly for testing purposes, and

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

51

© 2014 IBM Corporation – All Rights Reserved 18 IBM and Customer Confidential

20

Figure 7 (a): Entering a trace Figure 7 (b): Malware example 1

39 IBM and Customer Confidential

27 IBM and Customer Confidential

Figure 7 (c): Malware example 2 Figure 7 (d): Intensive care example 1

32 IBM and Customer Confidential

30 IBM and Customer Confidential

Figure 7 (e): Intensive care example 2 Figure 7 (f): Intensive care example 3

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

52

in operation the system will read observations automatically
from an input queue.

Figure 7 (b-f) show sample example runs for the malware
and intensive care examples; these results are automatically
generated by our tool. Each hypothesis is shown as a se-
quence of states matched to observed event sequence (via
green dashed lines). The observations that are explained by
a state are shown in green ovals, and unexplained observa-
tions are shown in purple. The arrows between the obser-
vations show the sequence of observations in the trace. The
states shown in red as before are the bad states and good
states are drawn in blue. Each hypothesis is associated with
a cost. The lower the cost value, the more plausible is the
hypothesis.

Figure 7 (b) shows the top 3 generated hypotheses for the
trace selected in Figure 7 (a). Our first hypothesis explained
both observations. The second hypothesis, almost as plausi-
ble, shows infection followed by the CC state. The third hy-
pothesis leaves the second observation unexplained. In some
instances, hypotheses include states that are not linked to
any observation. For example, the CC, CC Domain, cc p2p
are the unobserved states in the non-crawling hypotheses in
Figure 7 (c). Figure 7 (d) shows the automated generated re-
sults (the top-4) for an ambiguous observation HRVL. The
result of more specific, less ambiguous observation traces
are shown in Figure 7 (e,f).

Summary and Discussion
In this paper, we address the knowledge engineering prob-
lem of hypothesis generation motivated by two applications:
malware detection and intensive care delivery. To this end,
we proposed a modeling language called LTS++ and a web-
based tool that enables the specification of a model using
the LTS++ language. We also proposed a 9-step process that
helps provide guidance to the domain expert in specifying
the LTS++ model. Our tool, LTS++ IDE, features syntax
highlighting, error detection, and visualization of the state
transition graph. The hypotheses are generated by running
a planner capable of generating multiple high-quality plans
for the translated LTS++ model and the provided trace. The
hypotheses can be visualized and shown to the analyst (doc-
tor or network administrator), or can be further investigated
automatically via the Strategic Planner (see the Architecture
Section) to run testing or preventive actions.

In terms of evaluation of our model, we have worked with
users outside of our group to develop different LTS++ mod-
els in different domains. The feedback we received from
them is positive and helped us improve our tool and the
creation process. Particularly, one of models developed this
way is now used within a larger application.

Our approach in using planning is related to several ap-
proaches in the diagnosis literature in which the use of plan-
ners as well as SAT solvers is explored (e.g., (Grastien et
al. 2007; Sohrabi, Baier, and McIlraith 2010)). In particu-
lar, the work on applying planning for the intelligent alarm
processing application is most relevant (Bauer et al. 2011;
Haslum and Grastien 2011). The authors have considered
the case where they can encounter unexplainable observa-
tions, but have not provided a formal description of what

these unexplainable observations represent or how the plan-
ning framework can model them. In this work we address
this, as well provide tools for domain experts and introduce
a simple language that can be used instead of PDDL.

References
Bauer, A.; Botea, A.; Grastien, A.; Haslum, P.; and Rintanen, J.
2011. Alarm processing with model-based diagnosis of discrete
event systems. In Proceedings of the 22nd International Workshop
on Principles of Diagnosis (DX), 52–59.
Bouillet, E.; Feblowitz, M.; Feng, H.; Ranganathan, A.; Riabov,
A.; Udrea, O.; and Liu, Z. 2009. Mario: middleware for assembly
and deployment of multi-platform flow-based applications. In Pro-
ceedings of the 10th ACM/IFIP/USENIX International Conference
on Middleware (Middleware), 26:1–26:7.
Cassandras, C., and Lafortune, S. 1999. Introduction to discrete
event systems. Kluwer Academic Publishers.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Dimopoulos,
Y. 2009. Deterministic planning in the 5th international planning
competition: PDDL3 and experimental evaluation of the planners.
Artificial Intelligence 173(5-6):619–668.
Göbelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and Nebel,
B. 2010. Coming up with good excuses: What to do when no plan
can be found. In Proceedings of the 20th International Conference
on Automated Planning and Scheduling (ICAPS), 81–88.
Grastien, A.; Anbulagan; Rintanen, J.; and Kelareva, E. 2007. Di-
agnosis of discrete-event systems using satisfiability algorithms. In
Proceedings of the 22nd National Conference on Artificial Intelli-
gence (AAAI), 305–310.
Haslum, P., and Grastien, A. 2011. Diagnosis as planning: Two
case studies. In International Scheduling and Planning Applica-
tions woRKshop (SPARK), 27–44.
Keyder, E., and Geffner, H. 2009. Soft Goals Can Be Compiled
Away. Journal of Artificial Intelligence Research 36:547–556.
Magee, J., and Kramer, J. 2006. Concurrency - state models and
Java programs (2. ed.). Wiley.
McDermott, D. V. 1998. PDDL — The Planning Domain Defini-
tion Language. Technical Report TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control.
Ramı́rez, M., and Geffner, H. 2009. Plan recognition as planning.
In Proceedings of the 21st International Joint Conference on Arti-
ficial Intelligence (IJCAI), 1778–1783.
Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding
cost-based anytime planning with landmarks. Journal of Artificial
Intelligence Research 39:127–177.
Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; and
Teneketzis, D. 1995. Diagnosability of discrete-event systems.
IEEE Transactions on Automatic Control 40(9):1555–1575.
Sohrabi, S.; Baier, J.; and McIlraith, S. 2010. Diagnosis as planning
revisited. In Proceedings of the 12th International Conference on
the Principles of Knowledge Representation and Reasoning (KR),
26–36.
Sohrabi, S.; Baier, J.; and McIlraith, S. 2011. Preferred explana-
tions: Theory and generation via planning. In Proceedings of the
25th National Conference on Artificial Intelligence (AAAI), 261–
267.
Sohrabi, S.; Udrea, O.; and Riabov, A. 2013. Hypothesis explo-
ration for malware detection using planning. In Proceedings of the
27th National Conference on Artificial Intelligence (AAAI), 883–
889.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

53

Creating Planning Domain Models in KEWI

Gerhard Wickler
Artificial Intelligence Applications Institute

School of Informatics
University of Edinburgh

g.wickler@ed.ac.uk

Lukáš Chrpa and Thomas Leo McCluskey
PARK Research Group

School of Computing and Engineering
University of Huddersfield

{l.chrpa, t.l.mccluskey}@hud.ac.uk

Abstract

This paper reports on progress towards a tool for the
representation of shared, procedural and declarative
knowledge whose aim is to be used for various func-
tions to do with the automation of a complex process
control application - primarily to guide the response
phase during an emergency situation, but also for sup-
porting normal automated operation.
The tool is a Knowledge Engineering Web Interface
called KEWI. The focus of the paper is on the concep-
tual model used to represent the declarative and proce-
dural knowledge. The model consists of three layers: an
ontology, a model of basic actions, and more complex
methods. It is this structured conceptual model that fa-
cilitates knowledge engineering. We are aiming to eval-
uate the use of a central knowledge model for a range of
planning-related functions, where the parts of the model
are automatically assembled e.g. into PDDL for opera-
tional use.

Introduction
Domain-independent planning has grown significantly in re-
cent years mainly thanks to the International Planning Com-
petition (IPC). Besides many advanced planning engines,
PDDL, a de-facto standard language family for describing
planning domain and problem models, has been developed.
However, encoding domain and problem models in PDDL
requires a lot of specific expertise and thus it is very chal-
lenging for a non-expert to use planning engines in applica-
tions.

This paper concerns the use of AI planning technology in
an organisation where (i) non-planning experts are required
to encode knowledge (ii) the knowledge base is to be used
for more than one planning and scheduling task (iii) it is
maintained by several personnel over a long period of time,
and (iv) it may have a range of potentially unanticipated uses
in the future. The first concern has been a major obstacle
to using AI-based, formal representations, in that the exper-
tise required to produce such representations has normally
been acquired and encoded by planning experts (e.g. as in
NASA’s applications (Ai-Chang et al. 2004)). The other con-
cerns are often not covered in the planning literature: in real
applications the knowledge encoding is a valuable, general
asset, and one that requires a much richer conceptual rep-

resentation than, for example is accorded by planner-input
languages such as PDDL.

We present here a Knowledge Engineering method using
a Web Interface aimed at AI Planning, called KEWI. The
primary idea behind KEWI then is to ease this formaliza-
tion of procedural knowledge, allowing domain experts to
encode their knowledge themselves, rather than knowledge
engineers having to elicit the knowledge before they formal-
ize it into a representation. A number of frameworks ex-
ist that support the formalization of planning knowledge in
shared web-based systems. Usually, such frameworks build
on existing Web 2.0 technologies such as a wiki. A wiki that
supports procedural knowledge is available at wikihow.com,
but the knowledge remains essentially informal. A system
that uses a similar approach, namely, representing procedu-
ral knowledge in a wiki is CoScripter (Leshed et al. 2008).
However, their representation is not based on AI planning
and thus does not support the automated composition of pro-
cedures. More recently, an AI-based representation has been
used in OpenVCE (Wickler, Tate, and Hansberger 2013).

As far as we are aware, very few collaborative, domain-
expert-usable, knowledge acquisition interfaces are avail-
able that are aimed at supporting the harvesting of planning
knowledge within a rich language for use in a number of
planning-related applications. After initial acquisition, the
validation, verification, maintenance and evolution of such
such knowledge is of prime importance, as the knowledge
base is a valuable asset to an organisation.

Related Work
There have been several attempts to create general, user-
friendly development environments for planning domain
models, but they tend to be limited in the expressiveness
of their underlying formalism. The Graphical Interface for
Planning with Objects (GIPO) (Simpson, Kitchin, and Mc-
Cluskey 2007) is based on object-centred languages OCL
and OCLh. These formal languages exploit the idea that a
set of possible states of objects are defined first, before ac-
tion (operator) definition (McCluskey and Kitchin 1998).
This gives the concept of a world state consisting of a set
of states of objects, satisfying given constraints. GIPO uses
a number of consistency checks such as if the object’s class
hierarchy is consistent, object state descriptions satisfy in-
variants, predicate structures and action schema are mutu-

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

54

ally consistent and task specifications are consistent with the
domain model. Such consistency checking guarantees that
some types of errors can be prevented, in contrast to ad-hoc
methods such as hand crafting.

itSIMPLE (Vaquero et al. 2012) provides a graphical en-
vironment that enables knowledge engineers to model plan-
ning domain models by using the Unified Modelling Lan-
guage (UML). Object classes, predicates, action schema are
modelled by UML diagrams allowing users to ‘visualize’
domain models which makes the modelling process easier.
itSimple incorporates a model checking tool based on Petri
Nets that are used to check invariants or analyze dynamic
aspects of the domain models such as deadlocks.

The Extensible Universal Remote Operations Planning
Architecture (EUROPA) (Barreiro et al. 2012), is an inte-
grated platform for AI planning and scheduling, constraint
programming and optimisation. This platform is designed to
handle complex real-world problems, and the platform has
been used in some of NASA’s missions. EUROPA supports
two representation languages, NDDL and ANML (Smith,
Frank, and Cushing 2008), however, PDDL is not supported.

Besides these tools, it is also good to mention
VIZ (Vodráz̆ka and Chrpa 2010), a simplistic tool inspired
by itSimple, and PDDL Studio (Plch et al. 2012), an editor
which provides users a support by, for instance, identifying
syntax errors or highlighting components of PDDL.

In the field of Knowledge Engineering, methodologies
have been developed which centre on the creation of a pre-
cise, declarative and detailed model of the area of knowl-
edge to be engineered, in contrast to earlier expert systems
approaches which appeared to focus on the “transfer” ex-
pertise at a more superficial level. This “expertise model”
contains a mix of knowledge about the “problem solving
method” needed within the application and the declarative
knowledge about the application. Often a key rationale for
knowledge engineering is to create declarative representa-
tions of an area to act as a formalised part of some require-
ments, making explicit what hitherto has been implicit in
code, or explicit but in documents. Knowledge Engineer-
ing modelling frameworks arose out of this, such as Com-
monKads (Schreiber et al. 1999), which were based on a
deep modelling of an area of expertise, and emphasising
a lifecycle of this model. The “knowledge model” within
CommonKADS, which contains a formal encoding of task
knowledge, such as problem statement(s), as well as domain
knowledge, is similar to the kind of knowledge captured in
KEWI. Unlike KEWI however, this model was expected to
be created by knowledge engineers rather than domain ex-
perts and users.

Conceptual Model of KEWI
KEWI is a tool for encoding domain knowledge mainly
by experts in the application area rather than AI planning
experts. The key idea behind KEWI is to provide a user-
friendly environment as well as a language which is easier to
follow, especially for users who are not AI planning experts.
A high-level architecture of KEWI is depicted in Figure 1.
Encoded knowledge can be exported into the domain and
problem description in PDDL on which standard planning

Figure 1: An architecture of KEWI.

engines can be applied, and retrieved plans can be imported
back to KEWI. Hence, the user does not have to understand,
or even be aware, of any PDDL encodings.

A language in which domain knowledge is encoded in
KEWI has three parts, which are explained in the following
subsections. First, a domain ontology is defined. The do-
main ontology consists of definition of classes of objects,
hierarchies of classes and relations between objects. Sec-
ond, action types, concretely action name, preconditions and
effects, are defined. Third, methods which introduce addi-
tional ordering constraints between actions, are defined.

Ontology: Concepts, Relations and Properties
Ontological elements are usually divided into concepts and
instances. Typically, the concepts are defined in a planning
domain whereas the instances are defined in a planning prob-
lem. Since our focus for KEWI is on planning domains we
shall mostly deal with concepts here.

Concepts A concept is represented by a unique symbol in
KEWI. The formal definition of a concept is given by its
super-class symbol and by a set of role constraints that de-
fine how instances of the concept may be related to other
concepts. In KEWI, the definition of a concept also includes
other, informal elements that are not used for formal rea-
soning. However, the knowledge engineering value of such
informal elements must not be underestimated, much like
the comments in programming often are vital for code to be
understandable.

Definition 1 (KEWI Concept). A concept C in KEWI is a
pair 〈Csup, R〉, where:

• Csup is the direct super-concept of C and
• R is a set of role constraints of the form 〈r, n, C ′〉 where r

is a symbolic role name,C ′ is a concept (denoting the role
filler type), and n is a range [nmin, nmax] constraining
the number of different instances to play that role.

We assume that there exists a unique root concept often
referred to as object or thing that acts as the implicit super-
concept for those concepts that do not have an explicit super-
concept defined in the same planing domain. Thus, a concept
C may be defined as 〈4, R〉, meaning its super concept is
implicit. This implicit super-concept has no role constraints
attached.

For example, in the Dock Worker Robot (DWR) domain,
the concepts container and pallet could be defined
with the super-concept stackable, whereas the concept

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

55

crane could be defined as a root concept with no super-
concept (implicitly:4). A role constraint can be used to de-
fine that a crane can hold at most one container as follows:
〈holds, [0, 1], container〉.

Since super-concepts are also concepts, we can write a
concept C as 〈〈〈4, Rn〉, . . . , R2〉, R1〉. Then we can re-
fer to all the role constraints associated with C as R∗ =
Rn ∪ . . . ∪ R2 ∪ R1, that is, the role constraints that ap-
pear in the definition of C, the role constraints in its di-
rect super-concept, the role constraints in its super-concepts
super-concept, etc.

The reason for introducing this simple ontology of con-
cepts is that we can now constrain the set of possible world
states based on the role constraints. States are defined as sets
of ground, first-order atoms over some function-free lan-
guageL. This language shall contain symbols to denote each
instance of a concept defined in the ontology (c1, . . . , cL)
where the type function τ maps each instance ci to its type
C, a concept in the ontology. The relation symbols of L are
defined through the role constraints.

Definition 2 (Relations in L). Let 〈r, n, C ′〉 be a role con-
straint of some concept C. Then the first-order language L
that can be used to write ground atoms in a state contains a
binary relation C.r ⊆ C × C ′.

In what follows we shall extend the language to include
further relation symbols, but for now these relations defined
by the ontology are all the relations that may occur in a state.
The reason why the relation name is a combination of the
concept and the role is simply to disambiguate between roles
of the same name but defined in different concepts. Where
all role names are unique the concept may be omitted.

We can now define what it means for a state to be valid
with respect to an ontology defined as a set of KEWI con-
cepts. Essentially, for a state to be valid, every instance men-
tioned in the state must respect all the role constraints associ-
ated with the concepts to which the instance belongs. Since
role constraints are constraints on the number of possible
role fillers we need to be able to count these.

Definition 3 (Role Fillers). Let s be a state, that is, a set
of ground atoms over objects c1, . . . , cL using the relations
in L. Let 〈r, n, C ′〉 be a role constraint of some concept C.
Then we define valss(C.r, ci) = {cf |C.r(ci, cf) ∈ s}, ci ∈
C, cf ∈ C ′, that is, the set of all constants that play role r
for ci in s.

Definition 4 (Valid State). Let C be a KEWI concept. Then
a state s is valid if, for any instance ci of C and any
role constraint 〈r, n, C ′〉 of C or one of its (direct and in-
direct) super-concepts, the number of ground atoms a =
C.r(ci, ∗) must be in the range [nmin, nmax], i.e. nmin ≤
|valss(C.r, ci)| ≤ nmax.

Thus, a concept definition defines a set of role constraints
which can be interpreted as relations in a world state. The
numeric range defines how many ground instances we may
find in a valid state. This is the core of the ontological model
used in KEWI.

For example, let k1 be a crane and ca be a
container. Then a state may contain a ground atom

crane.holds(k1,ca). If a state contains this atom, it may
not contain another one using the same relation and k1 as
the first argument.

Relations While the relations defined through the con-
cepts in KEWI provide a strong ontological underpinning
for the representation, there are often situations where other
relations are more natural, e.g. to relate more than two con-
cepts to each other, or where a relation does not belong to
a concept. In this case relations can be defined by declaring
number and types (concepts) of the expected arguments.
Definition 5 (Relations in L). A relation may be defined by
a role constraint as described above, or it may be a relation
symbol followed by an appropriate number of constants. The
signature of a relation R is defined as C1 × . . .×CR where
Ci defines the type of the ith argument.

A valid state may contain any number of ground instances
of these relations. As long as the types of the constants in
the ground atoms agree with the signature of the relation,
the state that contains this atom may be valid.

Properties In reality, we distinguish three different types
of role constraints: related classes for defining arbitrary re-
lations between concepts, related parts which can be used to
define a “part-of” hierarchy between concepts, and proper-
ties which relate instances to property values.

The first two are equivalent in the sense that they relate
objects to each other. However, properties usually relate val-
ues to objects, e.g. an object may be of a given colour. While
it often makes sense to distinguish all individual instances of
a concept, this is not true for properties. While the paint that
covers one container may not be the same paint that covers
another, the colour may be the same. To allow for the repre-
sentations of properties in KEWI, we allow for the definition
of properties with enumerated values.
Definition 6 (Properties). A property P is defined as a set
of constant values {p1, . . . , pP }.

It is easy to see that the above definitions relating to
role constraints and other relations can be extended to allow
properties in place of concepts and property values in place
of instances. A minor caveat is that property values are usu-
ally defined as part of a planning domain, whereas instances
are usually given in a planning problem.

Action Types
Action types in KEWI are specified using an operator name
with typed arguments, a set of preconditions, and a set of
effects. This high-level conceptualization of action types is
of course very common in AI planning formalisms. KEWI’s
representation is closely linked with the ontology, however.
This will enable a number of features that allow for a more
concise representation, allowing to reduce the redundancy
contained in many PDDL planning domains.

Object References In many action representations it is
necessary to introduce one variable for each object that is
somehow involved in the execution of an action. This vari-
able is declared as one of the typed arguments of the action
type. The variable can then be used in the preconditions and

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

56

effects to consistently refer to the same objects and express
conditions on this object.

Sometimes, an action type may need to refer to specific
constants in its preconditions or effects. In this case, the
unique symbol can be used to identify a specific instance.
In the example above, k1 was used to refer to a crane and
ca to refer to a container. In most planning domains, opera-
tor definitions do not refer to specific objects, but constants
may be used as values of properties.

In addition to variables and constants, KEWI also allows
a limited set of function terms to be used to refer to objects
in an action type’s preconditions and effects. Not surpris-
ingly, this is closely linked with the ontology, specifically
with the role constraints that specify a maximum of one in
their range.

Definition 7 (Function Terms). Let 〈r, n, C ′〉 be a role con-
straint of some concept C where nmax = 1. Then we shall
permit the use of function terms of the form C.r(t) in pre-
conditions and effects, where t can again be an arbitrary
term (constant, variable, or function term) of type C ′.

Let s be a valid state, that is, a set of ground atoms over
objects c1, . . . , cL using the relations inL. Then the constant
represented by the function term C.r(ci) is:

• cj if valss(C.r, ci) = {cj}, or
• nothing (⊥) if valss(C.r, ci) = ∅.

Note that the set valss(C.r, ci) can contain at most one
element in any valid state. If it contains an element, this el-
ement is the value of the function term. Otherwise a new
symbol that must not be one of the constants c1, . . . , cL will
be used to denote that the function term has no value. This
new constant nothing may also be used in preconditions
as described below.

The basic idea behind function terms is that they allow the
knowledge representation to be more concise; it is no longer
necessary to introduce a variable for each object. Also, this
style of representation may be more natural, e.g. to refer to
the container held by a crane as crane.holds(k1) mean-
ing “whatever crane k1 holds”, where the role constraint
tells us this must be a container. As a side effect, the gen-
eration of a fully ground planning problem could be sim-
pler,given the potentially reduced number of action parame-
ters.

Interestingly, a step in this direction was already proposed
in PDDL 1, in which some variables were declared as pa-
rameters and others as “local” variables inside an operator.
However, with no numeric constraints on role fillers or any
other type of relation, it is difficult to make use of such vari-
ables in a consistent way. Similarly, state-variable represen-
tations exploit the uniqueness of a value. However, this was
restricted to the case where nmin and nmax both must be
one.

Condition Types The atomic expressions that can be used
in preconditions and effects can be divided into two cat-
egories. Firstly, there are the explicitly defined relations.
These are identical in meaning and use to PDDL and thus,
there is no need to discuss these further. Secondly, there are
the relations based on role constraints which have the same

form as such atoms in states, except that they need not be
ground.

Definition 8 (Satisfied Atoms). Let s be a valid state over
objects c1, . . . , cL. Then a ground atom a is satisfied in s
(denoted s |= a) if and only if:

• a is of the form C.r(ci, cj) and a ∈ s, or
• a is of the form R(ci1 , . . . , ciR) and a ∈ s, or
• a is of the form C.r(ci,⊥) and valss(C.r, ci) = ∅.

The first two cases are in line with the standard semantics,
whereas the the last case is new and lets us express that no
role filler for a given instance exists in a given state. Note
that the semantics of atoms that use the symbol nothing
in any other place than as a role filler are never satisfied in
any state.

The above definition can now be used to define when an
action is applicable in a state.

Definition 9 (Action Applicability). Let s be a valid state
and act be an action, i.e. a ground instance of an action type
with atomic preconditions p1, . . . , pa. Then act is applicable
in s if and only if every precondition is satisfied in s: ∀p ∈
p1, . . . , pa : s |= p.

This concludes the semantics of atoms used in precondi-
tions. Atoms used in effects describe how the state of the
world changes when an action is applied. This is usually de-
scribed by the state transition function γ : S×A→ S, i.e. it
maps a state and an applicable action to a new state. Essen-
tially, γ modifies the given state by deleting some atoms and
adding some others. Which atoms are deleted and which are
added depends on the effects of the action. If the action is
not applicable the function is undefined.

Definition 10 (Effect Atoms). Let s be a valid state and act
be an action that is applicable in s. Then the successor state
γ(s, a) is computed by:

1. deleting all the atoms that are declared as negative effects
of the action,

2. for every positive effect C.r(ci, cj) for role constraint
〈r, n, C ′〉 with n = [nmin, 1], if C.r(ci, ck) ∈ s delete
this atom, and

3. add all the atoms that are declared as positive effects of
the action.

Following this definition allows for a declaration of ac-
tions using arbitrary relations and state-variables that may
have at most one value. The ontology, more specifically the
numeric role constraints can be used to distinguish the two
cases.

The symbol nothing is not allowed in effects in KEWI.
Of course, it would be easy to define the semantics of such
a construct as one that retracts all such atoms from the state.
However, we have chosen not to go this way in KEWI for
two reasons. Firstly, this construct would severely restrict
the number of planners that can handle this mass retraction,
although it may be possible to express this as a universally
quantified effect. Secondly, it is not clear what an example
of such an action would be in practise.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

57

Methods
The definition of methods in KEWI is not yet finished. As
the framework is at least partially application-driven, we
may need to further refine the conceptual framework out-
lined (but not fully defined) below.

The approach adopted in KEWI follows standard HTN
planning concepts: a method describes how a larger task can
be broken down in into smaller tasks which, together, ac-
complish the larger task.

A method is defined by a method name with some pa-
rameters. The name usually suggests how something is to
be done and the parameters have the same function as in
action types; they are the objects that are used or manipu-
lated during the instantiation of a method. Next, a method
must declare the task that is accomplished by the method.
This is defined by a task name usually describing what is
to be done, and again some parameters. For primitive tasks,
the task name will be equal to the name of an action type,
in which case no further refinement is required. For non-
primitive tasks, a method also includes a set of subtasks.
In KEWI, the ordering constraints between subtasks are de-
clared with the subtask, rather than as a separate component
of the method. This is simply to aid readablility and does not
change the expressiveness.

In addition, to these standard components, KEWI allows
the specification of high-level effects and subgoal-subtasks.
The aim here is to allow for a representation that supports
flat, PDDL-like planning domains as well as hierarchical
planning domains.

When a method declares that it achieves a high-level ef-
fect, then every decomposition of this method must result
in an action sequence which will achieve the high-level ef-
fect after the last action of the sequence has been completed.
This could allow a planner to use a method as if it was an ac-
tion in a backward search. An alternative view is that such a
method functions as a macro action type in the domain.

A method may also include subtasks that are effectively
subgoals. For example, the subtask “achieve C.r(ci, cj)”
may be used to state that at the corresponding point in the
subtask the condition C.r(ci, cj) must hold in the state. The
idea being that a planner may revert to flat planning (such
as state-space search) to find actions to be inserted into the
plan at this point, until the subgoal is achieved.

This mixed approach is not new and has been used in
practical planners like O-Plan (Currie and Tate 1991). How-
ever, the semantics has not been formally defined for this
approach, something we shall attempt in future work.

Export to PDDL
Given that most modern planners accept planning domains
and problems in PDDL syntax as their input, one of the
goals for KEWI was to provide a mechanism that exports
the knowledge in KEWI to PDDL. Of course, this will not
include the HTN methods as PDDL does not support hierar-
chical planning formalisms.

Function Terms The first construct that must be removed
from KEWI’s representation are the function terms that may

be used to refer to objects. In PDDL’s preconditions and ef-
fects only variables (or symbols) may be used to refer to
objects. The following function can be used to eliminate a
function term of the form C.r(t) that occurs in an action
type O’s preconditions or effects.

function eliminate-fterms(C.r(t), O)
if is-fterm(t) then

eliminate-fterms(t, O)
v ← get-variable(C.r(t), O)
replace every C.r(t) in O by v

The function first tests whether the argument to the given
function term is itself a function term. If this the case, it has
to be eliminated first. This guarantees that, for the remainder
of the function t is either a variable or a symbol. We then use
the function “get-variable” to identify a suitable variable that
can replace the function term. Technically, this function may
return a symbol, but the treatment is identical, which is why
we shall not distinguish these cases here. The identification
of a suitable variable then works as follows.
function get-variable(C.r(v), O)

for every positive precondition p of O do
if p = C.r(v, v′) then

if is-fterm(v′) then
eliminate-fterms(v′, O)

return v′
retrieve 〈r, n, C ′〉 from C
add new parameter v′ of type C ′ to O
add new precondition C.r(v, v′) to O
return v′

This function first searches for an existing, positive pre-
condition that identifies a value for the function. Since func-
tion terms may only be used for constraints that have at most
one value, there can only be at most one such precondition.
If such a precondition exists, its role filler (v′, a variable or
a symbol) may be used as the result. If no such precondition
can be found, the function will create a new one and add it
to the operator. To this end, a new parameter must be added
to the action type, and to know the type of the variable we
need to retrieve the role filler type from the role constraint.
In practise, we also use the type name to generate a suitable
variable name. Then a new precondition can be added that
effectively binds the function to the role filler. And finally,
the new variable may be returned.

Handling nothing The next construct that needs to be
eliminated from the KEWI representation is any precondi-
tion that uses the role filler nothing. Note that this symbol
does not occur in states and thus cannot be bound in tradi-
tional PDDL semantics. Simply adding this symbol to the
state is not an option since other preconditions that require a
specific value could then be unified with this state atom. For
example, if we had an explicit atom that stated holds(k1,
nothing) in our state, then the precondition holds(?k,
?c) of the load action type would be unifiable with this
atom. An inequality precondition may solve this problem,

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

58

but only if the planner can correctly handle inequalities. The
alternative approach we have implemented in KEWI is de-
scribed in the following algorithm.

function eliminate-nothing(O)
for every precondition p = C.r(v,⊥) do

replace p with C.r. ⊥ (v)
if O has an effect e = C.r(v, v′)

add another effect ¬C.r. ⊥ (v)

The basic idea behind this approach is to use a new pred-
icate to keep track of state-variables that have no values in
a state. This is the purpose of the new predicate “C.r. ⊥”,
indicating the role r of concept C has no filler for the given
argument. This is a common approach in knowledge engi-
neering for planning domains. For example, in the classic
blocks world we find a “holds” relation for when a block is
being held, and a predicate “hand-empty” for when no block
is held.

The algorithm above uses this technique to replace all pre-
conditions that have nothing as a role filler with a differ-
ent precondition that expresses the non-existence of the role
filler. To maintain this condition, it will also be necessary
to modify the effects accordingly. This is done by adding
the negation of this new predicate to corresponding existing
effects.

Since this is pseudo code, the algorithm actually omits a
few details, e.g. the declaration of the new predicate in the
corresponding section of the PDDL domain, and the fact that
the planning problem also needs to be modified to account
for the new predicate. Both is fairly straight forward to im-
plement.

State-Variable Updates Finally, the cases in which the
value of a state-variable is simply changed needs to be han-
dled. The approach we have adopted here is identical to the
approach described in (Ghallab, Nau, and Traverso 2004).
That is, when an effect assigns a new value to a state vari-
able, e.g. C.r(v, vnew), we need to add a precondition to
get the old value, e.g. C.r(v, vold), and then we can use
this value in a new negative effect to retract the old value:
¬C.r(v, vold).

Example
In this section we shall look at a single operator taken from
the DWR domain and compare its representation in PDDL
as defined in (Ghallab, Nau, and Traverso 2004) with the
equivalent operator in KEWI. Note that this comparison
does not include the representation of the underlying ontol-
ogy, which is rather trivial in the case of the PDDL version
of the domain. However, there is one fundamental difference
in the two ontologies, namely, that the PDDL version uses
just one symbol pallet to denote all the pallets which are
at the bottom of each pile. We consider this epistemologi-
cally inadequate. To avoid this discussion, we shall look at
the move operator here, which does not interact with piles of
containers directly, and therefore this ontological difference
does not show up. In the PDDL version, the operator looks
as follows:

(:action move
:parameters
(?r - robot ?from ?to - location)

:precondition (and
(adjacent ?from ?to)
(at ?r ?from)
(not (occupied ?to)))

:effect (and
(at ?r ?to)
(not (occupied ?from))
(occupied ?to)
(not (at ?r ?from))))

The move operator takes three arguments: the robot to be
moved and the two locations involved. There are three pre-
conditions expressing that applicability of this operator de-
pends on the two locations being adjacent, the robot initially
being at the location from which the action takes place, and
the destination location currently not being occupied. Note
that the latter is a negative precondition which cannot be
handled by all planners. The effects come in pairs and are
somewhat redundant. The robot being at the destination of
course implies that this location is now occupied. Similarly,
the location that has just been vacated by the robot is now
not occupied and the robot is not at that location.

The equivalent operator in KEWI exploits some of the
features described above. However, it is important to note
that the user interface does not provide a text editor that can
be used to modify a PDDL-like representation. Instead, it
consists of a web-form with fields for the various compo-
nents that define an action type. For comparison, we have
printed the internal KEWI representation in a Lisp-like syn-
tax, which looks as follows:

(:action-type move
(:arguments ((?robot robot)
(?from location) (?to location)))

(:precondition (and
(:relation adjacent
(?from ?to))

(:constr location.occupied-by
(?from ?robot))

(:constr location.occupied-by
(?to nothing))))

(:effect (and
(:constr location.occupied-by
(?to ?robot))

(:constr :not location.occupied-by
(?from ?robot)))))

The KEWI version of this operator also requires three pa-
rameters. This is because none of the parameters is uniquely
implied by any of the others. However, this is the only action
in the DWR domain for which this is the case. All actions
involving a crane have the location of the crane as another
parameter, which would not be required in the KEWI ver-
sion. The number of preconditions is not reduced either in
this case. However, the KEWI version of the operator does
not require a negative precondition since it exploits onto-
logical knowledge about the occupancy of locations. Thus,
this precondition can be reformulated using the nothing

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

59

symbol. The biggest difference between the two representa-
tions is in the effects, where KEWI only requires one effect
for each of the pairs listed above. Again, this is due to the
ontology that can be exploited, specifically to the fact that
location can only be occupied by one robot at a time. Not
having to represent such redundant effects reduces the risk
of knowledge engineers forgetting to list such effects. Note
that the second effect is negative, but could perhaps be ex-
pressed more elegantly by using the nothing symbol as
in the preconditions. This is not permitted in the syntax at
present.

Evaluation
This work is being carried out with an industrial partner with
significant experience in control and automation as well as
simulation, and we are using a real application of knowledge
acquisition and engineering in their area of expertise. The
development of KEWI is in fact work in progress, and its
evaluation is ongoing, and being done in several ways: (i) An
expert engineer from the industrial partner is using KEWI,
in parallel with the developers, to build up a knowledge base
of knowledge about artefacts, operations, procedures etc. in
their domain. (ii) We have created a hand-crafted PDDL
domain and problem descriptions of part of the partner’s
domain and for the same problem area we have generated
PDDL automatically from a tool inside KEWI. We are in
the process of comparing the two methods and the PDDL
produced. An interface to a simulation system is being de-
veloped which will help in this aspect. (iii) We are working
with another planning project in the same application, which
aims to produce natural language explanations and argumen-
tation supporting plans. In the future we believe to combine
KEWI with this work, in order that (consistent with involv-
ing the user in model creation) the user will be able to better
validate the planning operation.

Conclusions
In this paper we have introduced a knowledge engineering
tool for building planning domain models, and given a for-
mal account of parts of its structure and tools. Its characteris-
tics are that (i) it has a user-friendly interface which is simple
enough to support domain experts in encoding knowledge
(ii) it is designed so that it can be used to acquire a range
of knowledge, with links to operation via automated trans-
lators that create PDDL domain models (iii) it is designed
to enable a groups of users to capture, store and maintain
knowledge over a period of time, to enable the possibility of
knowledge reuse.

Acknowledgements

The research was funded by the UK EPSRC Au-
tonomous and Intelligent Systems Programme (grant no.
EP/J011991/1). The University of Edinburgh and research
sponsors are authorized to reproduce and distribute reprints
and online copies for their purposes notwithstanding any
copyright annotation hereon.

References
Ai-Chang, M.; Bresina, J. L.; Charest, L.; Chase, A.; jung
Hsu, J. C.; Jónsson, A. K.; Kanefsky, B.; Morris, P. H.;
Rajan, K.; Yglesias, J.; Chafin, B. G.; Dias, W. C.; and
Maldague, P. F. 2004. Mapgen: Mixed-initiative planning
and scheduling for the mars exploration rover mission. IEEE
Intelligent Systems 19(1):8–12.
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; and Smith,
T. 2012. EUROPA: A platform for AI planning, scheduling,
constraint programming, and optimization. In 4th Interna-
tional Competition on Knowledge Engineering for Planning
and Scheduling (ICKEPS).
Currie, K., and Tate, A. 1991. O-Plan: The open planning
architeture. Artificial Intelligence 52:49–86.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning. Morgan Kaufmann.
Leshed, G.; Haber, E. M.; Matthews, T.; and Lau, T. A.
2008. Coscripter: automating & sharing how-to knowledge
in the enterprise. In CHI, 1719–1728.
McCluskey, T. L., and Kitchin, D. E. 1998. A tool-supported
approach to engineering HTN planning models. In In Pro-
ceedings of 10th IEEE International Conference on Tools
with Artificial Intelligence.
Plch, T.; Chomut, M.; Brom, C.; and Barták, R. 2012. In-
spect, edit and debug PDDL documents: Simply and effi-
ciently with PDDL studio. ICAPS12 System Demonstration
4.
Schreiber, G.; Akkermans, H.; Anjewierden, A.; de Hoog,
R.; Shadbolt, N.; de Velde, W. V.; and Wielinga, B. J.
1999. Knowledge Engineering and Management: The Com-
monKADS Methodology. Cambridge, Mass.: MIT Press,
2nd ed. edition.
Simpson, R.; Kitchin, D. E.; and McCluskey, T. 2007. Plan-
ning domain definition using gipo. Knowledge Engineering
Review 22(2):117–134.
Smith, D. E.; Frank, J.; and Cushing, W. 2008. The anml
language. Proceedings of ICAPS-08.
Vaquero, T. S.; Tonaco, R.; Costa, G.; Tonidandel, F.; Silva,
J. R.; and Beck, J. C. 2012. itSIMPLE4.0: Enhancing
the modeling experience of planning problems. In Sys-
tem Demonstration – Proceedings of the 22nd International
Conference on Automated Planning & Scheduling (ICAPS-
12).
Vodráz̆ka, J., and Chrpa, L. 2010. Visual design of planning
domains. In KEPS 2010: Workshop on Knowledge Engi-
neering for Planning and Scheduling.
Wickler, G.; Tate, A.; and Hansberger, J. 2013. Using shared
procedural knowledge for virtual collaboration support in
emergency response. IEEE Intelligent Systems 28(4):9–17.

Proceedings of the 5th Workshop on Knowledge Engineering for Planning and Scheduling

60

	KEPS
	Table of Contents
	papers
	Mechanising Theoretical Upper Bounds in Planning
	Applying Problem Decomposition to Extremely Large Planning Domains
	Eliminating All Redundant Actions from Plans Using SAT and MaxSAT
	Planning with Preferences by Compiling Soft Always Goals into STRIPS with Action Costs
	Automated Knowledge Engineering Tools in Planning: State-of-the-art and Future Challenges
	Goal-directed Generation of Exercise Sets for Upper-Limb Rehabilitation
	Knowledge Engineering for Planning-Based Hypothesis Generation
	Creating Planning Domain Models in KEWI

