
Proceedings of the 2nd Workshop on

Distributed and Multi-Agent Planning

Edited By:

Daniel Borrajo, Daniel L. Kovacs and .

Portsmouth, New Hampshire, USA - June 22, 2014

Organizing Committee
Daniel Borrajo

Universidad Carlos III de Madrid, Spain

Daniel L. Kovacs

Budapest University of Technology and Economics, Hungary

Program Committee
Ronen Brafman, Ben-Gurion University of the Negev, Israel
Bradley J. Clement, NASA Jet Propulsion Laboratory, USA
Amanda Coles, King's College London, UK
Tadeusz P. Dobrowiecki, Budapest University of Technology and Econonmics, Hungary
Naoki Fukuta, Shizuoka University, Japan
 , Technion, Israel Institute of Technology, Israel
Raz Nissim, Ben-Gurion University of the Negev, Israel
Eva Onaindia, Universidad P
Scott Sanner, National ICT Australia, NICTA, Australia
Matthijs Spaan, Delft University of Technology, Netherlands
Roni Stern, Harvard University, USA
Mathijs de Weerdt, Delft University of Technology, Netherlands
Shlomo Zilberstein, University of Massachusetts, Amherst, USA

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

i

Foreword

This volume compiles the scientific papers
accepted at DMAP’14, the 2nd Distributed

and Multi-Agent Planning workshop, held at
ICAPS 2014 in Portsmouth, New Hampshire,
USA, on June 22nd, 2014. This event follows up
the successful first edition of DMAP, held at
ICAPS 2013, and continues the tradition of the
"Multiagent Planning and Scheduling" workshop
series held at ICAPS 2005 and 2008, and the
joint AAMAS-ICAPS session on multi-agent
planning in 2010.

The aim of the workshop is to bring together the
multi-agent planning community, offering
researchers a forum to introduce and discuss their
works in the different subfields of this area that do
not have room in the main ICAPS conference.
Although, this year authors were given the
opportunity to introduce their works also in the
poster session of the main ICAPS conference.

Altogether 12 submissions were received from 6
different countries, 11 full papers and 1 short
position paper, matching the numbers of the first
edition of the workshop. These papers were
reviewed by a Program Committee composed of
13 members and coordinated by the 3 PC chairs.
As a result of the review process, all 11 full papers
were accepted and will be presented orally at the
workshop.

This year's papers cover many of topics of multi-
agent planning, such as heuristics, negotiation,
cooperation, beliefs, game theory, preference-
based planning, privacy-preservation and multi-
agent plan merging, among others. Therefore, the
workshop offers a wide view of the state-of-the-
art in multi-agent planning, fostering works that
have the potential to push this field forward.

We thank the members of the Program
Committee for their dedicated effort at reviewing
and ensuring the quality of the works presented
at DMAP’14. We also thank the chairs of the
ICAPS main conference for their continuous
support throughout the organization of this
workshop. Finally, we would like to thank our
authors and the multi-agent planning
community for submitting their work to
DMAP’14. Your research, collaboration and
active participation are critical to the success of
this workshop.

– Daniel Borrajo, Daniel L. Kovacs, Alejandro Torreño
 DMAP-2014 Chairs

Distributed and Multi-Agent Planning is a broad
field of growing interest within the planning and
scheduling community. However, its subfields
remain dispersed and uncoordinated. Most works
in this field are generally published in major AI
conferences, such as IJCAI, and AAAI, AAMAS
or ICAPS. Nevertheless, most of these approaches
are based or built upon planning and scheduling
technologies developed by the ICAPS community.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

ii

Table of Contents

Session 1

Distributed Heuristic Forward Search with Interacting Actions . 1
Ronen Brafman and Uri Zoran

Multiagent Planning by Iterative Negotiation over Distributed Planning Graphs 7
Jan Tozicka, Jan Jakubuv, Karel Durkota and Antonin Komenda

Temporal Multiagent Planning with Concurrent Action Constraints . 16
Matthew Crosby and Ron Petrick

Session 2

A Privacy-preserving Model for the Multi-agent Propositional Planning Problem 25
Andrea Bonisoli, Alfonso Gerevini, Alessandro Saetti and Ivan Serina

A Formal Analysis of Required Cooperation in Multi-agent Planning . 30
Yu Zhang and Subbarao Kambhampati

Plan Merging by Reuse for Multi-Agent Planning . 38
Nerea Luis and Daniel Borrajo

Session 3

Improving Uncoordinated Collaboration in Partially Observable Domains with
Imperfect Simultaneous Action Communication . 45

Aris Valtazanos and Mark Steedman

Closed-form Solutions to a Subclass of Continuous Stochastic Games via Symbolic
Dynamic Programming. 54

Shamin Kinathil, Scott Sanner and Nicolas Della Penna

Beliefs in Multiagent Planning: From One Agent to Many . 62
Filippos Kominis and Hector Geffner

Session 4

Multi-Agent Planning with Agent Preferences . 70
Jesús Virseda Jerez, Susana Fernández and Daniel Borrajo

Integrating individual preferences in multi-agent planning . 79
Alejandro Torreño, Eva Onaindia and Óscar Sapena

Author Index . 87

Keyword Index . 88

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

iii

Distributed Heuristic Forward Search for Multi-Agent Systems

Ronen Brafman and Uri Zoran
Ben-Gurion University of the Negev

Be’er Sheva, Israel
brafman,zoranu@cs.bgu.ac.il

Abstract

We consider possible extensions to MA-STRIPS and its algo-
rithms. Our focus is on modeling and planning with interact-
ing actions: we show how to extend Nissim and Brafman’s
multi-agent forward search algorithm to this setting. We also
discuss a few future challenges: task allocation problems and
finer-grained distinctions between actions and variables.

Introduction

There is a long tradition of work on multi-agent planning
for cooperative and non-cooperative agent teams involving
centralized and distributed algorithms, often using involved
models that model uncertainty, resources, and more (Szer,
Charpillet, and Zilberstein 2005), and much work on how
to coordinate local plans of agents or to allow agents
to plan locally under constraints (Cox and Durfee 2005;
Steenhuisen et al. 2006; ter Mors and Witteveen 2005). Re-
cently, Brafman and Domshlak (Brafman and Domshlak
2008) started exploring a more modest, minimalist model of
multi-agent planning using MA-STRIPS or similar language.
We shall refer to this as classical multi-agent planning. Al-
though originally this work was motivated by the goal of ex-
ploiting multi-agent structure within single-agent domains,
later work, such as (Nissim, Brafman, and Domshlak 2010;
Torreño, Onaindia, and Sapena 2012), used this framework
to study to distributed planning by a group of cooperating
agents, and in particular, privacy preserving algorithms that
allow agents to cooperate without revealing their private in-
formation.

MA-STRIPS extends STRIPS by associating each action
with an agent. This is probably the minimal extension pos-
sible to introduce elements of multi-agent systems. MA-
STRIPS took this minimalist approach for two reasons: First,
in order to be as similar to classical planning and understand
the essential difference from single-agent planning, allow-
ing us to import, as much as possible, some of the power-
ful techniques developed in classical single agent planning.
Second, in order to allow us to study multi-agent planning in
its simplest form, as it is often easier to formulate new ideas
within simple models. Unfortunately, MA-STRIPS does not

allow us to model a fundamental aspect of many multi-agent
systems: interacting actions.

Interacting actions are actions whose combined effect is
ill-defined or different from the union of effects of each ac-
tion, such as actions with conflicting effects. Such cases are
easily handled by disallowing concurrent actions. Indeed,
recent algorithms for classical multi-agent planning essen-
tially assuming that actions are performed at different time
points. Later on, one can try to parallelize plan execution
in order to reduce the plan’s execution time (makespan), by
allowing the concurrent non-interacting actions. A more in-
teresting case is that of actions with synergetic effects. For
example, a single agent may not be able to push a heavy box,
but two agents acting simultaneously can.

Interacting actions raise two issues: representation and
planning. Boutilier and Brafman (Boutilier and Brafman
2001) proposed a simple adaptation of STRIPS that can
express action interaction, and a non-privacy preserving
partial-order planning algorithm for such problems. It is
quite possible that the MA-POP algorithm (Torreño, On-
aindia, and Sapena 2012) could be extended to a privacy
preserving version for such problems by combining it with
the ideas of Boutilier and Brafman. However, in this paper
we explain how a simple change to the multi-agent forward
search (MAFS) schema of Nissim and Brafman (Nissim and
Brafman 2013a; 2012) can support this extension. MAFS
has two advantages over MA-POP: it is much faster, and it
can generate optimal plans when instantiated using A∗. We
note that a related method for representing joint actions was
described in (Kovacs 2012).

In addition to the issue of interacting actions, we also dis-
cuss two topics that come up in the context of MA-STRIPS

which we believe are interesting to explore. The first is the
definition of private and public variables and actions, and
the second is that of identical actions belonging to different
agents. The first issue can lead to more refined definitions,
and consequently, more efficient algorithms, while the latter
provides an opportunity to address the issue of task alloca-
tion with the simple MA-STRIPS model.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

1

Background

MA-STRIPS

A MA-STRIPS problem for a set of agents Φ = {ϕi}
k
i=1

is

given by a 4-tuple Π = 〈P, {Ai}
k
i=1

, I, G〉, where P is a
finite set of propositions, I ⊆ P and G ⊆ P encode the
initial state and goal, respectively, and for 1 ≤ i ≤ k, Ai

is the set of actions agent ϕi is capable of performing. Each
action a = 〈pre(a), eff(a)〉 is given by its preconditions and
effects. A plan is a solution to Π iff it is a solution to the un-
derlying STRIPS problem obtained by ignoring the identities
of the agent associated with each action. Since each action is
associated with an agent, a plan tells each agent what to do
and when. In different planning contexts, one might seeks
special types of solutions. For example, in the context of
planning games (Brafman et al. 2009), stable solutions are
sought. We focus on cooperative multi-agent systems, seek-
ing either a (standard) solution or a cost-optimal solution.

The partitioning of the actions to agents yields a distinc-
tion between private and public propositions and actions. A
private proposition of agent ϕ is required and affected only
by the actions of ϕ. An action is private if all its precondi-
tions and effects are private. All other actions are classified
as public. That is, ϕ’s private actions affect and are affected
only by ϕ’s actions, while its public actions may require or
affect the actions of other agents.

If privacy is not an issue, the distinction between pri-
vate and public actions is not essential, although it can be
exploited for computational gains (Brafman and Domshlak
2008). But in some settings, agents collaborate on a specific
task, yet prefer not to reveal private information about their
local state, their private actions, and their cost. We refer to
algorithms that plan without revealing this information as
privacy preserving . In a privacy-preserving algorithm the
only information available about an agent to others is its
set of public actions, projected onto public atoms. This can
be viewed as the interfaces between the agents. Information
about an agent’s private actions and private aspects of a pub-
lic action are known to the agent only.

Interacting Actions

To the best of our knowledge, Boutilier and Brafman’s work
(BB) (Boutilier and Brafman 2001) was the first extension
of STRIPS-like languages to address interacting actions, and
the first to propose a planner that can handle such domains.
Their extension to STRIPS is conceptually simple: in addi-
tion to a list of preconditions, add to the description of an
action a a concurrency condition that specifies which actions
must or must not be executed concurrently with a without af-
fecting a’s effects. Conditional effects are changed similarly,
allowing the effect condition to specify concurrent actions
that influence the conditional effect.

As an example, consider an action for lifting the side of
the table. If performed by two agents on both sides, objects
on the table will remain. But if performed by a single agent,
the objects will fall. Thus, the action of lifting the left side
of a table will have, beyond its regular preconditions and ef-
fects, a conditional effect with concurrent effect condition

that states that the action of lifting the right side is not per-
formed concurrently, and a conditional effect that objects on
the table are not longer on the table. Similarly, a table can
be moved only if both agents holding its side move in the
same direction. Thus, the action of moving the table north
by one agent will have a concurrency condition that requires
a move-north action by another agent. Naturally, that action
will have a precondition that that agent is actually holding
the table. A similar, third, example is box pushing – if the
box is heavy and one agent pushes it, it remains in place. If
two agents push it then it will move. Thus, the box move-
ment is a conditional effect with a concurrency condition
requiring another push action.

Interacting Actions in MA-STRIPS

We see two possible ways of extending MA-STRIPS to ad-
dress interacting actions. The first involves adapting the syn-
tax of BB as is. In that case, what is being changed is the un-
derlying STRIPS language, and the extension of MA-STRIPS

is identical – requiring us to associate an agent with each
action. A second possibility is to move to a model that uses
joint actions. A joint-action is an action executed concur-
rently by two agents. Thus, lifting the table on one side is
an action, but also lifting the table on both sides. In this
case, there is no need to add concurrency conditions, and
we need only change MA-STRIPS to allow for associating a
set of agents with an action – the agents responsible for its
execution. We illustrate both options using the box-pushing
example.

BB: push(agent,box,location)

pre: at(agent,location) & at(box,location);

concurrency: push(agent’,box,location)

& agent’!= agent;

effect: NOT at(box,location).

Joint: push(agent1,agent2,box,location)

pre: at(agent1, location) & at(agent2,location)

& at(box,location);

effect: NOT at(box,location).

The advantage of the BB syntax is that it is explicit about
both positive and negative interactions, and allows us to
more efficiently parallelize non-interacting actions. If we use
the joint-actions approach, which essentially describes only
positive interactions, we shall have to assume that all ac-
tions have negative interactions, and must be executed se-
quentially, or provide some other mechanism for identifying
negative interactions.

Once we allow interacting actions, we examine if they im-
pact the definitions of public and private variables and ac-
tions. With BB’s syntax, actions remains associated with a
single agent, and so the definition is not affected. With the
joint-action syntax, if we view this as two copies of the same
action belonging to two agents, all its preconditions and ef-
fects to be public. This appear too liberal (privacy-wise) be-
cause, eventually, a joint action is executed by two agents
that simultaneously send an appropriate control signal.1 At

1Extending these ideas to more than two actions is simple.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

2

planning time, it is enough for each agent to know that the
other agent will be executing its part of the action at the right
time, and that might depend on the value of private precon-
ditions known to that agent, but not to the other agent. Thus
it is possible that some preconditions would be private to
one agent, whereas others would be private to the other –
as would be the case under the BB syntax. Consequently, a
more conservative semantics stipulates (as in the current se-
mantics):n a proposition is private to agent i if it is affected
or required only by an action in which agent i participates.
With this definition, we will have the same set of private
variables as in the BB case, for natural formulation of ac-
tions and joint actions.

An interesting observation is that, in principle, a joint ac-
tion can be private to the two agents. We discuss more re-
fined notions of privacy later on. For the time being, we will
consider all joint actions as public, and throughout the rest
of this paper, we will stick with the joint-action approach,
rather than BB, as it is simpler. We will also assume that the
set of agents with which a joint action is tagged is ordered,
which will help us to prevent multiple applications of the
same joint actions by different agents at the same state.

MA Forward Search with Interacting Actions

We now review and extend the MAFS algorithm of Nissim
and Brafman. See (Nissim and Brafman 2012; 2013a) for the
full details. MAFS is a distributed version of best-first search
– a similar version of A∗ exists, and can be extended sim-
ilarly. This algorithm maintains a separate search space for
each agent. Each agent maintains an open list of states that
are candidates for expansion and a closed list of already ex-
panded states. It expands the state with the minimal f value
in its open list. When an agent expands state s, it uses its
own operators only. This means two agents expanding the
same state will generate different successor states.

Since no agent expands all relevant search nodes, mes-
sages must be sent between agents, informing one agent of
open search nodes relevant to it expanded by another agent.
Agent ϕi characterizes state s as relevant to agent ϕj if ϕj

has a public operator whose public preconditions (the pre-
conditions ϕi is aware of) hold in s. In that case, Agent ϕi

will send s to Agent ϕj .

The messages sent between agents contain the full state
s, i.e., including both public and private variable values, as
well as the cost of the best plan from the initial state to s
found so far, and the sending agent’s heuristic estimate of
s. The private part of each state is encrypted by the relevant
agent. Since this private part is not affected by other agents’
actions, they can simply maintain this encrypted part as is.

When agent ϕ receives a state via a message, it checks
whether this state exists in its open or closed lists. If it does
not appear in these lists, it is inserted into the open list. If a
copy of this state with higher g value exists, its g value is up-
dated, and if it is in the closed list, it is reopened. Otherwise,
it is discarded. Whenever a received state is (re)inserted into
the open list, the agent computes its local h value for this
state, and then can choose between/combine the value it has
calculated and the h value in the received message. If both

heuristics are known to be admissible, for example, the agent
could choose the maximal of the two estimates.

Once an agent expands a solution state s, it sends s to all
agents and awaits their confirmation. For simplicity, and in
order to avoid deadlock, once an agent either broadcasts or
confirms a solution, it is not allowed to create a new solution.
If a solution is found by more than one agent, the one with
lower cost is chosen, and ties are broken by choosing the so-
lution of the agent having the lower ID. When the solution
is confirmed by all agents, the agent initiates the trace-back
of the solution plan. This is also a distributed process, which
involves all agents that perform some action in the optimal
plan. When the trace-back phase is done, a terminating mes-
sage is broadcasted and the solution is outputted.

MAFS With Interacting Actions

Algorithms 1-3 depict the MAFS algorithm for agent ϕi.
This algorithm supports interacting actions with minor mod-
ifications. The pseudo-code of the algorithms supporting
joint-actions is provided below. Unfortunately, although the
changes from the original algorithm (see (Nissim and Braf-
man 2013a)) are conceptually simple, the pseudo-code be-
comes much more complicated. Below we explain the basic
enhancements required to the original algorithm.

Algorithm 1 MAFS for agent ϕi

1: while did not receive true from a solution verification
procedure do

2: for all messages m in message queue do
3: process-message(m)
4: (s, a, joint)← extract-min(open list)
5: expand((s, a, joint))

Algorithm 2
process-message(m = 〈s, a, joint, gϕj

(s), hϕj
(s)〉)

1: if joint then
2: add (s, a, joint, gϕj

(s), hϕj
(s)) to open list

3: else if s is not in open or closed list or gϕi
(s) > gϕj

(s)
then

4: calculate hϕi
(s)

5: gϕi
(s)← gϕj

(s)
6: hϕi

(s)← max(hϕi
(s), hϕj

(s))
7: add (s, a, joint, gϕi

(s), hϕi
(s)) to open list

Imagine that a is an interacting action involving agents i
(the first agent) and j (the second agent). If at state s, the
public preconditions of a and those private to i are satisfied,
agent i will apply a and changing only the variables in s that
are private to it; yielding a new state s′, which is then sent
to agent j, only. The message contains a and a special flag
indicating it is the result of a joint action. Agent j examines
state s′. If the public preconditions of action a and the pre-
conditions private to j are satisfied in s′, agent j will apply
a, projected to its public variables and variables private to j,
to s′. It will now continue with the regular algorithm. If, on
the other hand, the preconditions of a that are private to j do
not hold in s′, (and therefore, in s), j will discard this state,
sending it to no one. These changes enforce the semantics

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

3

Algorithm 3 expand((s, a, joint, g, h))

1: if joint then
2: if a’s preconditions private to ϕi hold in s then
3: s′ = apply a, projected to ϕi, to s
4: Compute hϕi

(s′)
5: for all agents ϕj ∈ Φ do
6: if the last action leading to s was public and ϕj

has a public action for which all public precon-
ditions hold in s then

7: send (s′, a, f alse, g, hϕi
(s′)) to ϕj

8: if ¬ joint then
9: if s is a goal state then

10: broadcast s to all agents
11: initiate verification of s as a solution
12: return
13: else
14: for all agents ϕj ∈ Φ do
15: if the last action leading to s was public and ϕj

has a public action for which all public precon-
ditions hold in s then

16: send s to ϕj

17: for all non-joint actions a of ϕi applicable at s do
18: for all successors s′ generated by a do
19: update gϕi

(s′) and calculate hϕi
(s′)

20: if s′ is not in closed list or fϕi
(s′) is now

smaller than it was when s′ was moved to
closed list then

21: move (s′, a, f alse, gϕi
(s′), hϕi

(s′)) to
open list

22: for all joint actions a of ϕi applicable at s do
23: for all successors s′ generated by applying a

projected to ϕi’s private variables do
24: update gϕi

(s′) with a’s cost
25: send m = (s′, a, true, gϕi

(s′), hϕi
(s)) to

other agent taking part in a

of a joint action – a new state is formed only if the joint ac-
tion is truly applicable. They also preserve privacy, as only
the agent alters its private state and checks the validity of
private preconditions, which are known to it alone.

The situation is slightly more complicated given condi-
tional effects with private effect conditions and private con-
ditional effects. In that case, the above algorithm need to be
further modified, as the change in the public state and private
state depends on whether the effect condition holds, and the
agent i cannot know this ahead of time if the condition in-
volves private variables of agent j. Instead, we require two,
more complex messages. In the first message, agent i sends
state s and marks the conditional effects whose effect con-
dition are satisfied in s, as far as it knows (that is, excluding
conditions private to j). Now, if a is applicable, agent j can
apply a, projected to its private variables and the public vari-
ables. It sends the updated state s′ to agent i, noting which of
the conditional effects are applicable. Agent i now updates
s′ with the relevant changes to its private state.

Experimental Results

We implemented the MAFS algorithm with joint action
on the Nissim’s MAFD framework (Nissim and Brafman
2013b). Experiments were run on on an AMD Phenom 9550
2.2GHZ processor with multiple cores. Each agent executes
on a single core. MAFD is an extension of the FD planner to
MA-STRIPS. We used the optimal MAD-A* algorithm with
the merge and shrink heuristic (Helmert, Haslum, and Hoff-
mann 2008). As we are not aware of another planner that can
handle joint actions, we’re simply providing running times
and node expansion to get an idea of scalability.

Experiments were run on a box pushing domain and the
results appear in Table 1. The domain consists of a grid of
varying sizes, with a number of boxes that need to be pushed
by the agents from the initial position to their goal positions.
Small boxes can be pushed by a single agent, medium boxes
require two agents, and large boxes require three agents. We
show both the maximal time per agent and the combined
CPU time of all agents (in seconds). As can be seen, in-
creasing the number of boxes that require joint-actions to
handle, seems to lead to substantial increase in the number
of nodes expanded and generated, and a corresponding in-
crease in running time. We intend to run additional exper-
iments that attempt to better isolate the impact of joint vs.
non-joint actions on planning effort.

Open Issues for MA-STRIPS

Compilation. Is it possible to compile a domain with joint-
actions into a domain without joint actions so that existing
MA planners without compromising privacy?

Similar Actions and Task Allocations. When different
agents can achieve the same proposition, task allocation –
who should achieve this proposition – becomes an issue. A
special case is when agents have identical, or almost identi-
cal actions. Although MA-STRIPS associates one agent with
each action, the action set could contain multiple identical
actions with different ids, each associated with a different
agent, or actions with identical public parts, but different pri-
vate parts. A simple, intuitive example is that of two trucks
that can serve similar locations. Both can pickup or drop
a package in these same location, but their private precon-
ditions are different, each pertaining to the location of the
respective truck.

In that case, it may beneficial to artificially divide loca-
tions between the two agents, so that only one truck can ser-
vice each location. This results in many more private vari-
ables and actions, allowing for decoupled planning by the
agents. Indeed, if we consider the complexity of analysis of
Brafman and Domshlak (Brafman and Domshlak 2013), as
the set of public actions becomes smaller, the problem of co-
ordinating public aspects of plans becomes easier. The prac-
tical effect of having fewer public actions and more decou-
pled actions sets can be seen in Nissim et al. (Nissim, Apsel,
and Brafman 2012).

Of course, by restricting the behavior of agents, we are
potentially removing possible solutions, perhaps even all so-
lutions, and certainly optimal ones. While we conjecture that
the problem of finding such restrictions – which correspond

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

4

problem agents grid size Boxes (s,m,l) Expanded Generated Messages Max Time Total Time

Box1 2 1x3 3,0,0 90 167 29 0.04 0.08
Box2 2 1x3 2,1,0 134 344 126 0.08 0.016
Box3 2 1x6 2,2,0 114 311 105 0.03 0.06
Box4 2 4x4 3,1,0 71 291 66 0.04 0.08
Box5 2 6x6 0,2,0 97 353 97 0.13 0.26
Box6 2 6x6 0,4,0 31409 137797 31403 1.72 3.39
Box7 3 6x6 3,1,1 750901 3794933 1501760 29.92 88.65

Table 1: Performance of Joint-Actions Enhanced MAFS on Box Pushing Domain

in some sense to task allocation – is as hard as solving the
planning problem, we believe that the simple MA-STRIPS

framework provides an opportunity to study this question
both theoretically and practically.

Private Actions. Work on MA-STRIPS divides actions and
variables to two classes: private and public. As noted, the
more actions are private, the more we can decouple the prob-
lem. In task allocation, discussed above, we artificially in-
creases the set of private actions. We may be able to de-
couple farther by introducing finer grained distinctions and
exploiting them in planning algorithms. For example, some
actions are public to a limited set of agents. That is, if we
were to combine these agents to a single agent, the action
would become private. A hierarchical algorithms might be
able to exploit this structure by building a hierarchy of par-
titions into agents sets.

Another interesting option is to differentiate among
agents that require a variable between those that can and
cannot change its value. Thus, some public variables may be
”read-only public” because only one agent can change them,
although others may need them. This is, essentially, the dis-
tinction between preconditions and prevail conditions made
by the SAS+ formalism (Bäckström and Klein 1991). Thus,
some variables may be private to an agent, some may be pub-
lic, and some may be changeable only by that agent, making
them somewhere between private and public. Whether this
distinction can be useful either in practice or for a more re-
fined theoretical analysis is an open question.

Summary

We believe there is much merit in understanding fundamen-
tal issues by studying simple models of multi-agent plan-
ning. In this spirit, we tried to minimally extend MA-STRIPS

and, in particular, the MAFS schema, to address the prob-
lem of interacting actions and implemented our algorithm
within the MAFD platform developed by Raz Nissim. We
also discusses some other potential issues that can be ad-
dressed within the MA-STRIPS model: task allocation and
refined ideas of private/public actions and variables.

Acknowledgements: We thank the reviewers for their use-
ful comments. The authors are supported in part by by ISF
Grant 933/13. Brafman and Shimony are supported in part
by the Lynn and William Frankel Center for Computer Sci-
ence.

References

Bäckström, C., and Klein, I. 1991. Planning in polyno-
mial time: The SAS-PUBS class. Computational Intelli-
gence 7(3):181–197.

Boutilier, C., and Brafman, R. I. 2001. Planing with concur-
rent interacting actions. Journal of AI Research 14:105–136.

Brafman, R. I., and Domshlak, C. 2008. From one to
many: Planning for loosely coupled multi-agent systems. In
ICAPS, 28–35.

Brafman, R. I., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artif. Intell. 198:52–71.

Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz,
M. 2009. Planning games. In IJCAI, 73–78.

Cox, J. S., and Durfee, E. H. 2005. An efficient algorithm for
multiagent plan coordination. In AAMAS, 828–835. ACM.

Helmert, M.; Haslum, P.; and Hoffmann, J. 2008. Explicit-
state abstraction: A new method for generating heuristic
functions. In AAAI, 1547–1550.

Kovacs, D. L. 2012. A multi-agent extension of pddl3.1. In
3rd ICAPS Workshop on the International Planning Compe-
tition.

Nissim, R., and Brafman, R. I. 2012. Multi-agent a* for
parallel and distributed systems. In AAMAS, 1265–1266.

Nissim, R., and Brafman, R. I. 2013a. Distributed
heuristic forward search for multi-agent systems. CoRR
abs/1306.5858.

Nissim, R., and Brafman, R. I. 2013b. Distributed
heuristic forward search for multi-agent systems. CoRR
abs/1306.5858.

Nissim, R.; Apsel, U.; and Brafman, R. I. 2012. Tunneling
and decomposition-based state reduction for optimal plan-
ning. In ECAI, 624–629.

Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A
general, fully distributed multi-agent planning algorithm. In
AAMAS, 1323–1330.

Steenhuisen, J. R.; Witteveen, C.; ter Mors, A.; and Valk, J.
2006. Framework and complexity results for coordinating
non-cooperative planning agents. In MATES, 98–109.

Szer, D.; Charpillet, F.; and Zilberstein, S. 2005. Maa*: A
heuristic search algorithm for solving decentralized pomdps.
In UAI, 576–590.

ter Mors, A., and Witteveen, C. 2005. Coordinating self in-
terested autonomous planning agents. In BNAIC, 383–384.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

5

Torreño, A.; Onaindia, E.; and Sapena, O. 2012. An ap-
proach to multi-agent planning with incomplete informa-
tion. In ECAI, 762–767.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

6

Multiagent Planning by Iterative Negotiation
over Distributed Planning Graphs

Jan Tožička1, Jan Jakubův1, Karel Durkota1, Antonı́n Komenda2

1 Agent Technology Center, CTU in Prague
Prague, Czech Republic

2 Technion - Israel Institute of Technolog
Haifa, Israel

Abstract

Multiagent planning for cooperative agents in deterministic
environments intertwines synthesis and coordination of the
local plans of involved agents. Both of these processes re-
quire an underlying structure to describe synchronization of
the plans. A distributed planning graph can act as such a
structure, benefiting by its compact representation and effi-
cient building. In this paper, we propose a general negotiation
scheme for multiagent planning based on planning graphs.
The scheme is designed as independent on a particular local
plan synthesis approach.
To demonstrate the proposed principle, we have implemented
the negotiation scheme as an algorithm with a concrete tech-
nique for the local plan synthesis based on compilation of
the local planning problems to SAT problems. Results of the
negotiation further shape the SAT problems so that agents co-
ordinate their plans and avoid possible conflicts in an iterative
manner. The paper is concluded by showing a set of experi-
ments which demonstrate a trade-off between planning effi-
ciency (by means of time and communication) and increasing
amount of public information in the planning problem.

Introduction
Intelligent agents embodied in an environment have to be
able not only to selfishly push the world towards their own
goals but also to cooperate on common goals with their
neighbors and solve mutual conflicts if their plans interfere.
Multiagent planning, an umbrella term for such behavior,
deals with challenges both on (i) the synthesis of actions
into individual agents’ plans and on (ii) the coordination of
the agents’ plans in a shared environment. A generally us-
able approach to multiagent planning has to be able to deal
with a wide range of application domains without any fixed
domain-specific knowledge.

In such cases of domain-independent planning, the in-
put to the planning process does not contain only the initial
and goal conditions on the environment, but also description
of the problem domain. Such approaches allow the agents
to prepare plans flexibly according to their knowledge of
the environment mechanics. From the practical perspective,
domain-independent techniques can be reused in various cir-
cumstances, where the agents are required to plan.

In one of the most cited works on multiagent planning
(Durfee 1999), Durfee describes basics of possible coordi-
nation schemes for planning agents. From the taxonomy pre-
sented there, our approach falls into a distributed planning
of distributed plans which do not assume either the plan-
ning process or the resulting plan to be centralized. There
is a large amount of work dealing with another facets of
the coordination part of the problem, e.g. GPGP (Decker
and Lesser 1992), or TALPlanner (Doherty and Kvarnström
2001). In 2008, Brafman and Domshlak proposed multia-
gent planning in (Brafman and Domshlak 2008) which tar-
geted deterministic environments and was based on an ex-
tension of the classical planning model STRIPS (Fikes and
Nilsson 1971). The results of the paper showed that deter-
ministic domain-independent multiagent planning is not ex-
ponentially dependent on the number of agents in the com-
putational sense.

The approach we propose in this paper can be seen as a
merge and extension of two previous approaches. The first
one is from Zhang et al. presented in (Zhang, Nguyen, and
Kowalczyk 2007). The idea behind it is based on distribution
of a well-known structure—a planning graph—and compi-
lation of the planning problem into a DisCSP problem. The
other approach authored by Pellier in (Pellier 2010) is also
based on distributed planning graphs, however for the local
plan extraction each agent uses a centralized CSP solver and
the coordination of their plans is done by a backtracking ap-
proach resembling prioritized planning.

Our contribution in this work is threefold. Firstly, we
have generalized the predetermined coordination part (done
by Zhang at al. as DisCSP and Pellier as prioritized plan-
ning) by a decentralized approach based on novel negotia-
tion scheme. This negotiation scheme extends our scheme
published in (Tožička et al. 2014) by handling new types of
other agent responses. Secondly, we propose a way how to
supersede the Pellier’s CSP-based extraction of local plans
by compilation to SAT problems. And finally, we have de-
signed and implemented an extension of the planning graph
structure by state-of-the-art planning modeling approach
SAS+ (Huang, Chen, and Zhang 2012). We also experimen-
tally show a trade-off between planning efficiency (by means
of computation time and communication) and increasing
amount of public information in the planning problem.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

7

Planning Model
We consider a number of cooperative and coordinated
agents featuring distinct sets of capabilities (actions) which
concurrently plan and execute their local plans in order to
achieve a joint goal. The environment wherein the agents
act is classical with deterministic actions. The following for-
mal preliminaries compactly restate the MA-STRIPS prob-
lem (Brafman and Domshlak 2008) required for the follow-
ing sections.

This model, together with proofs of lemmas and theo-
rems, has been already published in (Tožička et al. 2014).
Nevertheless, we consider it necessary to repeat basic defi-
nitions and lemmas to make paper standalone.

Planning Problem
An MA-STRIPS planning problem Π is defined as a quadru-
ple Π = 〈P,A, I, G〉, where P is a set of propositions, A is
a set of agents α1, . . . , α|A|, I is an initial state and G is a
set of goals.

An action an agent can perform is a triple a =
〈apre, aadd, adel〉 of subsets of P , where apre is the set
of preconditions, aadd is the set of add effects, and adel
is the set of delete effects. We define functions pre(a),
add(a), and del(a) such that for any action a it holds a =
〈pre(a), add(a), del(a)〉. Moreover let eff(a) = add(a) ∪
del(a).

We identify an agent with its capabilities, that is, an agent
α = {a1, . . . , an} is characterized by a finite repertoire of
actions it can preform in the environment. Let AΠ denote the
set of all actions in a problem Π, that is, AΠ =

⋃
α∈A α. A

state s = {p1, . . . , pm} ⊆ P is a finite set of facts and we
say that pi’s hold in s.

Public and Internal Actions
MA-STRIPS problems distinguish between the public and
internal facts and actions. Let facts(a) = pre(a)∪ add(a)∪
del(a) and similarly facts(α) =

⋃
a∈α facts(a). An α-

internal and public subset of all facts P , denoted Pα-int and
P pub respectively, are subsets of P such that the following
hold.

P pub ⊇
⋃

α∈A

(
facts(α) ∩

⋃
β∈A\{α} facts(β)

)
Pα-int = facts(α) \ P pub

Set P pub contains all the facts that are used in actions of
at least two different agents. The set can possibly contain
also other facts, that is, some facts mentioned in actions of
one agent only. This definition of public facts differs from
other definitions in literature (Brafman and Domshlak 2008)
where P pub is defined using equality instead of superset
(⊇). Our definition, however, allows us to experiment with
extensions of the set of public facts and this is discussed
below in experiment section. We suppose that P pub is an ar-
bitrary but fixed set which satisfies the above condition. Set
Pα-int of α-internal facts contains facts mentioned only in
the actions of agent α, but possibly not all of them.

The set Pα of facts relevant for a single agent α is defined
as Pα = Pα-int ∪P pub. The projection aS of an action a to

a set of facts S is a restriction of a containing only facts from
S, that is, aS = 〈pre(a) ∩ S, add(a) ∩ S, del(a) ∩ S〉. The
projection aα of action a to agent α is defined as a(Pα) and
the public projection apub of action a is defined as a(Ppub).

The set αpub of public actions of agent α is defined as
αpub = {a | a ∈ α, eff(apub) 6= ∅} and the set αint of
internal actions of agent α as αint = α\αpub. The set Apub

Π

of all public actions of problem Π is defined as Apub
Π =⋃

α∈A α
pub. AαΠ the set of all actions known by agent α is

then AαΠ = αint ∪ {aα|a ∈ Apub
Π }.

In the rest of this paper we consider only problems Π
where all the propositions from the goal state G are public,
that is, G ⊆ P pub which is common in literature (Nissim
and Brafman 2012)1. Moreover we suppose that two differ-
ent agents do not execute the same action, that is, we sup-
pose that the sets αi’s are pairwise disjoint (Brafman and
Domshlak 2008).

Plans, Solutions, and Projections
The projection Πα of a problem Π to agent α is a classical
STRIPS problem defined as follows.

Πα = 〈Pα,AαΠ, I ∩ Pα, G〉
Given an MA-STRIPS problem Π, a plan π =
〈a1, . . . , ak〉 is a sequence of actions from AΠ. A plan π
defines an order in which actions are to be executed by their
unique owner agents. It is supposed that independent actions
can be executed in parallel. A plan π is called a solution of
Π if a sequential execution of the actions from π by their
respective owners transforms the initial state I to a subset of
the goalG. Let sol(Π) denote the set of all solutions of prob-
lem Π. We use π[i] to denote ai, that is, the action from the
plan at position i. Moreover π[i . . . j] where i ≤ j denotes
the plan subsequence 〈ai, . . . , aj〉.

The projection πS of a plan π = 〈a1, . . . , ak〉 is computed
from π by projecting each action ai to S and by subsequent
removal of empty projections. Formally we define

π
S7−→ πS def⇐⇒ πS = 〈aS

1 , . . . , a
S
k〉 |A

S
Π ,

where the restriction |AS
Π creates a subsequence containing

only actions of AS
Π. Note that different plans can have the

same projection. The public plan projection πpub is defined
as π(Apub

Π) and the plan projection πα to agent α is defined
as π(Pα). A plan is called public w.r.t. Π if ai ∈ Apub

Π for all
i.

Extensible Plans
The following defines (α)-internally extensible plans which
are plans that can be transformed to a solution by inserting
only internal actions into it.
Definition 1. Let Π be MA-STRIPS problem and let π be
a plan public w.r.t. Π. We say that the public plan π is α-
internally extensible if

∃π′ ∈ sol(Πα) : π′
pub7−→ π

1This condition can be weakened, but we stick to it as it simpli-
fies this paper.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

8

We say that the public plan π is internally extensible if

∃π′ ∈ sol(Π) : π′
pub7−→ π

The following lemma states that a solution of problem Π
can be obtained composing partial α-internally extensible
plans of all the involved agents.

Lemma 1. Let Π be MA-STRIPS problem and let π be a
plan public w.r.t. Π. A plan π is α-internally extensible for
every agent α that owns some action from π if and only if π
is internally extensible.

Similarly to the Definition 1 the following defines a pub-
licly extensible plan which can be transformed to a solution
by inserting both public and internal actions into it.

Definition 2. Let Π be given. We say that a plan π is pub-
licly extensible if there exists a plan π′ which is internally
extensible and such that π is a subsequence of π′.

Plan Domains
The following defines a plan domainD which is a key struc-
ture used in our algorithms. A domain D is a set of plans
with operations defined as follows.

D 	 π = D \ {π}
D ⊕ 〈a, t〉 = {π ∈ D|π[t] = a}
D 	 〈a, t〉 = D \ (D ⊕ 〈a, t〉)

Moreover let Dlmax denote the set of all plans of length lmax.
In our algorithms presented in the following sections we

suppose that we have a classical planner which computes a
solution of a given classical planning problem which is in
a given domain D, that is, that we have an effective proce-
dure that selects a solution from a given domain. We work
with plan domains defined as sets of plans to abstract from
a concrete implementation and to simplify presentation of
the algorithms in the following sections. A plan domain D
can be seen as an abstract data structure which supports the
above three operations and whose semantics is defined using
aforementioned sets of plans. Our effective implementation
of plan domains uses planning graphs and a SAT solver. We
encode the search for a plan in a planning graph as a SAT in-
stance and operations on domain D then add additional con-
ditions to the SAT instance so that the search is restricted to
D. The implementation is further described below.

OperationD	π simply removes π from the domain. Op-
erationD⊕〈a, t〉 restricts the domain so that it contains only
those plans which contain action a at position t. Finally, op-
erationD	〈a, t〉 does exactly the opposite, that is, it restricts
the domain so that it contains only those plans which do not
contain action a at position t.

Confirmation Scheme
In this section we present a multiagent planning algorithm
which effectively iterates over all plans in order to find in-
ternally extensible solution. This confirmation algorithm can
also be seen as a skeleton which is further elaborated in next
section. The confirmation algorithm provides a sound and
complete multiagent planning algorithm (see Theorem 2).

Algorithm 1: Multiagent planning algorithm with itera-
tive deepening.

input: multiagent planning problem Π
output: a solution π of Π when solution exists
Function MultiPlanIterative(Π) is

lmax ← 1
loop

π ← MultiPlan(Π, lmax)
if π 6= ∅ then

return π
end
lmax ← lmax + 1

end
end

Procedure MultiplanIterative from Algorithm 1 is
the main entry point of our algorithms, both in this and
the following sections. This procedure is initially executed
by one of the agents called initiator. It takes a problem
Π as the only argument and it iteratively calls procedure
MultiPlan(Π, lmax) to find a solution of Π of length lmax,
increasing lmax by one on a failure. In this way we ensure
completeness of our algorithm because we enumerate the
infinite set of all plans in a way that does not miss any so-
lution. To simplify the presentation, we restrict our research
only to those problems Π which actually have a solution.

Algorithm 2: MultiPlan(Π, lmax) in the confirmation
scheme. Method SinglePlan(Π,D) returns a plan from
domain D solving problem Π or ∅ if there is no such
plan. Constructor PlanDomain constructs a plan domain
with a given semantics. Method AskAllAgents(πpub)
asks all agents mentioned in the plan whether they con-
sider the public projection of this plan to be internally
extensible and returns OK if all agents reply YES.

input: problem Π and a maximum plan length lmax

output: a solution π of Π when solution exists
Function MultiPlan(Π, lmax) is
D ← new PlanDomain({π : |π| = lmax})
loop

π ← SinglePlan(Π,D)
if π = ∅ then

return ∅
end
reply ← AskAllAgents(πpub)
if reply = OK then

return π
end
D ← D 	 π

end
end

Algorithm 2 presents implementation of MultiPlan in
the confirmation algorithm. Operator PlanDomain con-

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

9

structs a planning domain with semantics described by its
argument. We suppose that SinglePlan(Π,D) implements
a sound and complete classical planner which returns a
solution of Πα within a given domain D where α corre-
spond to the agent executing the task. Moreover we sup-
pose that SinglePlan always terminates and that it returns
∅ when there is no solution. Our effective implementation of
SinglePlan is described in local plan extraction section.

Initially, we create a domain that contains all the plans of
length lmax. Then we invoke SinglePlan to obtain a solu-
tion of Πα denoted as π. Afterwards, we ask all involved
agents whether or not the public projection πpub is inter-
nally extensible. To answer this question, each agent invokes
SinglePlan for a problem considering only actions from
πpub together with its internal actions while using a plan
domain to describe possible partial solutions. When the an-
swers from all of the agents are affirmative then π is returned
as a result. Otherwise π is excluded from domain D and
SinglePlan is called to compute a different solution.

The following states that the plan returned by the confir-
mation algorithm is internally extensible to a solution of Π
(soundness), and that the algorithm finds internally extensi-
ble solution when there is one (completeness). It is easy to
construct a solution of Π given an internally extensible plan.
Theorem 2. Algorithm MultiplanIterative (Alg. 1)
with confirmation procedure MultiPlan (Alg. 2) is sound
and complete.

Iterative Negotiation Scheme
A drawback of the confirmation scheme from the previous
section is that it requires an initiator agent to find a plan
which is internally extensible to a problem solution. It means
that the other agents, called participants, can insert only
their internal actions into the plan and this can be too lim-
iting. Our iterative negotiation algorithm from this section
tries to overcome this drawback by attempting to correct
a publicly extensible plan to a solution. Hence we distin-
guish the following cases depending on a result π returned
by SinglePlan.
CASE-I – π is an internally extensible plan – all partici-

pants can extend the plan adding internal actions only.
CASE-II – π is a publicly extensible plan – all partici-

pants can extend the plan but some can require another
public action to be performed prior to their action.

CASE-III – Otherwise – negotiation fails, the initiator
restricts the domain D and replans.
The confirmation algorithm handles only situations de-

scribed in CASE-I. Plans of CASE-II are handled as
CASE-III, that is, the search for an internally extensi-
ble plan continues in a restricted domain. The following
subsections describe improved handling of CASE-I and
CASE-II in the iterative negotiation algorithm.

Handling of Internally Extensible Plans
Handling of CASE-I in the iterative negotiation algorithm
is presented in Algorithm 3. One of the agents, called ini-
tiator, starts the negotiation. Other agents are called partici-

Algorithm 3: MultiPlan(Π, lmax) in iterative negoti-
ation scheme: Systematic search through all possible
plans with backtracking (confirming actions from the be-
ginning of the plan). Procedure AskAgent(α, π) queries
agent α how it rates the plan π. It returns CASE-I if it
is prefix of some internally extensible plan, otherwise re-
turns CASE-II if it is prefix of some publicly extensible
plan, otherwise it returns CASE-III.

input: problem Π and a maximum plan length lmax

output: a solution π of Π when it exists, ∅ otherwise
Function MultiPlan(Π, lmax) is
Dlmax ← new PlanDomain({π : |π| = lmax})
π ← SinglePlan(Π,Dlmax)

πX ← CorrectPlan(π, 1,Π,Dlmax)

return πX

end
input: plan π, index of first action that can be changed l,
problem Π and the domain D
output: a solution π of Π when it exists, ∅ otherwise
Function CorrectPlan(π, l,Π,D) is

repeat
α← OwnerOf(π[l])

reply ← AskAgent(α, (π[1 . . . l])pub)
switch reply do

case CASE-I
if |π| = l then

return π
end
πX←
CorrectPlan(π, l+ 1,Π,D⊕〈π[l], l〉)
if πX 6= ∅ then

return πX

end
end
case CASE-II

/* Do nothing for now,
will be handled by
Algorithm 4. */

end
otherwise (CASE-III)

/* Do nothing. Subplan
π[1 . . . l] is not prefix of
any solution. */

end
endsw
D ← D 	 〈π[l], l〉
π ← SinglePlan(Π,D)

until π = ∅
return ∅

end

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

10

Tr
uc

k
A Truck B

Airplane 1 Airplane 2

City A City B

Airport BAirport A

Package A Package B

Repair Kit

Figure 1: Logistics problem. Two packages need to be trans-
ported as shown by dashed arrows. Each of four vehicles
can transport objects only between a pair of neighboring lo-
cations. In one analyzed variant, the TruckB is broken and
it thus requires be fixed using the RepairKit before it can
move anywhere.

pants. The initiator selects its local solution from the initial
domain Dlmax a tries to correct it to an internally extensible
solution of a given problem. Procedure CorrectPlan iter-
ates over the actions from π a tries to confirm the actions one
by one, by asking the action owner to confirm action posi-
tion. If the answer of AskAgent is CASE-I then it contin-
ues to query the next action. Otherwise the initiator remem-
bers that this action can not be performed at specified po-
sition (under assumption that previously confirmed actions
precede) and tries to find a different plan where this action
is not required, while the previous actions in the plan remain
the same. The following example illustrates Algorithm 3.
Example 1. Let us demonstrate our algorithms on a simple
logistics problem illustrated by Figure 1. They are two pack-
ages located at two airports. The goal is to transport them
to distant cities. In order to achieve this goal, it is necessary
to transport each package to the second airport by a plane
and then to load it onto the truck and move it to the target
city.

Let’s suppose that all the facts describing the location of
the packages are public and all other facts are internal. Let’s
also suppose that the agent AirplaneA decides to solve
this task and starts the planning process. In the first run of
planning process, it creates a plan that seems to solve the
problem. An example of such a plan follows:

1. load(AirplaneB, PackageB, AirportB)
2. unload(AirplaneB, PackageB, AirportA)
3. load(AirplaneA, PackageA, AirportA)
4. fly(AirplaneA, AirportA, AirportB)
5. unload(AirplaneA, PackageA, AirportB)
6. load(TruckA, PackageB, AirportA)
7. load(TruckB, PackageA, AirportB)
8. unload(TruckA, PackageB, CityA)
9. unload(TruckB, PackageA, CityB)

Now, the AirplaneA verifies that all the agents, that
are required to perform some action in the plan, can really
perform the requested action. Agent AirplaneA first asks
AirplaneB to load PackageB at AirportB at time 1.
This is directly possible and thus the AirplaneB replies

with CASE-I. AirplaneA then queries AirplaneBwith
first two actions. AirplaneB cannot perform the unload
action immediately after the load action, nevertheless it is
required to insert only one internal action fly to create a
valid plan that can be prefix of some solution. Therefore,
AirplaneB replies with CASE-I again.

Similarly, the negotiation continues action by action to
the end of the plan and then agent AirplaneA can confirm
that the plan is internally extensible.

Handling of Publicly Extensible Plans
It is a more complex problem to detect whether a plan is pub-
licly extensible and then to convert it into a internally exten-
sible plan. In this case, the initiator α creates a plan solving
Πα which misses some public actions required by some par-
ticipant to allow him to cooperate on this plan. When the par-
ticipant is queried with a plan containing such an action, it
replies with CASE-II as demonstrated by Example 2. Then
initiator asks him for a list of missing required public action.
These actions are inserted into the original plan by the initia-
tor and they have to be confirmed by owner agents. They can
contain actions that cannot be performed – then the initiator
asks the participant for some alternative plan that would al-
low him to perform required action. Additionally, the actions
returned by the participant can also contain actions owned
by another participant. These actions of another participant
need again to be verified.

In the CASE-II, the plan extension is searched in depth-
first manner and thus it can yield in infinite cycle in some
cases. Therefore, there has to be some limitation to stop
the deepening. It can be limited by the number of plan ex-
tensions ’◦reqActs◦’ or by the maximal length of π′ (e.g.
|π′| ≤ 2 · lmax).

Algorithm 4: If the participant marks the plan
as publicly extensible (CASE-II), the initiator
asks him for missing public actions using method
askRequiredActions(α). These actions are then
inserted into the current plan π.

case CASE-II
while (reqActs ← askRequiredActions(α)) 6= ∅
do

π′ ← π[1 . . . (l − 1)] ◦ reqActs ◦ π[l . . .]
D′ ← {π0 ∈
D| π0[1 . . . (l − 1)] ◦ reqActs ◦ π0[l . . .]}
πX←CorrectPlan(π′, l,Π,D′)
if πX 6= ∅ then

return πX

end
end

end

Example 2. Let’s extend the previous example by
TruckA’s internal state that it has broken engine and thus
it cannot perform action unload requiring internal ac-
tion move unless it is fixed. In order to perform the move

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

11

action it has to fixEngine using the RepairKit. The
RepairKit is placed at CityB and thus it has to be trans-
ported by TruckB and a plane to the AirportA (location
where TruckA is placed). There is no reason why the ini-
tiator would plan to move the RepairKit2

When broken truck TruckA is asked to to fulfill action
unload at time 8, it creates plan containing following ac-
tions (apart from the action specified by the request):

8. load(TruckB, RepairKit, CityB)
9. unload(TruckB, RepairKit, AirportB)
10. load(AirplaneA, RepairKit, AirportB)
11. unload(AirplaneA, RepairKit, AirportA)
12. fixEngine(TruckA, RepairKit, AirportA)
13. move(TruckA, CityA)
14. unload(TruckA, PackageB, CityA)

First four actions are public actions that need to be per-
formed by other agents before the TruckA can fix its engine
and move to destination where it will unload the package.
Therefore, the reply is CASE-II with a subplan containing
these four public actions. Initiator will insert this subplan
into his plan and continues the negotiation.

Obviously, this approach can change publicly extensible
plan into an internally extensible plan only if it is possible
to insert required public actions immediately before the ac-
tion which requires them. In some domains, this does not
have to be true, and the publicly extensibly plan can re-
quire some public action to be inserted before some other
already planned action. Nevertheless, this problem does not
reduce the completeness of proposed algorithm, because the
required action will be planned later by the initiator once it
tries all other possible plans having that part of the plan fixed
(this situation is handled similarly by Algorithm 3).

From theory to practice
We have implemented the algorithms described in the previ-
ous sections taking advantage of several existing techniques
and systems. A overall scheme of the architecture of our
planner is sketched at Figure 2. An input problem Π de-
scribed in PDDL is translated into SAS using Translator
script which is a part of Fast Downward3 system. Our Multi-
SAS script then splits SAS representation of the problem Π
into agents’ projections Πα using user provided selection of
public facts P pub. Each agent can then compute its local
planning graph up to level lmax where lmax is always in-
creased by one on failure. Each planning graph represents
a set of plans including all solutions if any exists. We then
encode the search for a local solution in a planning graph
into a SAT instance and we use MiniSat4 solver to find a
solution to the problem Πα.

2Actions moving with the RepairKit are part of the domain
Dlmax (for some lmax) but let’s suppose that we have a planner that
prefers NOOPs to moving some object which is not required by the
goal. Nevertheless, initiator uses complete method and thus it will
come to the solution soon or later.

3http://www.fast-downward.org/
4http://minisat.se/

PDDL

SAS

Translator

MA-SAS

Multi-SAS

Planning Graph

GraphPlan

SAT

SAT Output

MiniSat

Solution

Figure 2: Architecture of the planner.

It is crucial to use suitable representation of plan domain
D to allow effective implementation of all operators and
function used in our algorithms under reasonable memory
requirements. Direct listing of all the plans is obviously un-
feasible. We have chosen to use planning graphs represented
as SAT problems. In following sections we define multiagent
planning graphs and describe (i) how to encode the search
for a solution in a planning graph into a SAT instance and
(ii) how the SAT instance is altered so that it encodes the
search for a solution in a restricted domain. We conclude
with a discussion of possible algorithm improvements.

Agent Planning Graphs
Agent planning graphs (APGs) stem from the classical plan-
ning graphs. Building distributed planning graphs was pre-
viously studied with focus on distribution of the Graphplan
algorithm (Pellier 2010). Multiagent planning graphs were
also studied recently in its relaxed form (Torreño, Onaindia,
and Sapena 2012)[removed for review].

An APG is a directed, labeled and layered graph Gα =
(P ∪A,E) of one particular agent α for a local agent’s plan-
ning task. As in a classical planning graph, the nodes of the
graph represent propositions P and actions A. The arcs E
represent linkup of propositions and actions.

In more detail, an i-th proposition layer and action layer
will be denoted as Pi and Ai respectively. The layers alter-
nate, so that (P0, A0, P1, A1, . . . , An−1, Pn) and all layers
Pi ⊆ P and all layersAi ⊆ A. The first proposition layer P0

contains nodes labeled by propositions of the agent’s projec-
tion of the initial state: P0 = I ∩ Pα.

Each action layer contains action nodes for all applica-
ble actions of the agent α in a state represented by the pre-
vious fact layer and external projections of other agents’
public actions reachable in the same layer Ai = {a|a ∈
AαΠ, pre(a) ⊆ Pi}. In all successive fact layers, the nodes
copy the previous fact layer according to the frame axiom
and transforms the facts by actions in the previous action
layer: Pi = Pi−1 ∪ {p|p ∈ add(a), a ∈ Ai−1}.

Additionally, there is defined relation between pairs of ac-

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

12

tions and pairs of facts called mutexes. It is constructed dur-
ing the creation of the planning graph using specific rules
described in (Ghallab, Nau, and Traverso 2004). Whenever
two actions or facts are in mutex, it means that they cannot
be achieved simultaneously.

In our implementation the APG is built until all the facts
of the goal are supported and there is no mutex between
them. Then we add layers as described by Algorithm 1.

Local Plan Extraction
Initial domain Dlmax for a Planning graph containing lmax

layers in SAT representation contains a variable for each:

• action at each PG layer (including the noop actions) indi-
cating whether the action is activated (i.e. part of the plan)

• fact at each PG layer indicating whether this atom is sup-
ported by some active action

Then it contains a formula for each:

• mutex, assuring that two mutexed actions must not be ac-
tivated at the same time

• precondition of each action to ensure that it will be true if
the action is activated

• fact, because it has to be supported by some active action
to be true

• fact of initial state, to set it to true

• fact of goal state to require it to be true in a solution

Operations on D are then defined as follows:

D ⊕ 〈a, l〉 – a variable representing action a at layer l is
required to be true (new formula added to the SAT repre-
sentation)

D 	 〈a, l〉 – a variable representing action a at layer l is
required to be false (new formula added to the SAT repre-
sentation)

SinglePlan(Π,D) – a SAT solver is used to find a solution
to the problem Π

Moreover, it is necessary to define how participant agent
should handle a query from the initiator AskAgent(α, π).
As described in caption of Algorithm 3, this query asks par-
ticipant to assess the category the plan π – whether it is a
prefix of internally, or publicly extensible plan. The partici-
pant first tries whether the provided plan is internally exten-
sible, while it knows that the π[1...(|π| − 1)] is internally
extensible. Participant also stores information about inter-
nal actions that had to be inserted into this plan in order to
mark it as internally extensible. It first match this subplan
together with this information to its own planning graph Gα.
Then, in first iteration, it tries whether the action π[|π|] can
directly follow previous actions by forcing this action to be
used at appropriate layer. If it is not possible it tries this ac-
tion at another layer allowing only internal action to be in-
serted in created gap. This continues until some limit (lmax).
If this process did not succeed then we know that this plan is
not internally extensible. Similar procedure is used to detect
publicly extensible plans.

Improvements
The described algorithm and its implementation can be im-
proved in several ways. We use planning graph to create ini-
tial set of plans Dlmax . It can contain several actions at one
layer, that are independent and can be executed in parallel.
The initiator can query these actions in parallel. If all agents
reply CASE-I then the initiator can continue with next ac-
tion. If some agent replies CASE-III, the whole layer of
action is forbidden in domainD and new plan has to be gen-
erated. If some agents reply CASE-II, their required action
can be added into the plan in any order. It is also possible
to only add actions required by one agent and continue with
algorithm, because once it reaches the queried action again
other agents will probably reply CASE-III again and then
other required actions will be injected into the plan.

A participant replying with CASE-III can also take the
initiative and continue the negotiation instead of the original
initiator. This can be easily implemented in the case when
only one agent is queried at a time. In the case of parallel
queries, it is necessary to handle commitments of agents to
different initiators to not promise excluding actions.

Experiments
For our experiments, we have used the Tool Problem
(Tožička et al. 2014) that allows us to smoothly change an
amount of public and internal actions between two extreme
cases: (i) there is no internal action and (ii) there are as
many internal actions as possible (implied by the equal sign
in the definition of P pub). Case (i) allows the initiator to
construct a correct plan immediately without any communi-
cation, while case (ii) might require some negotiation. An
advantage of case (ii) is, however, that initiator’s plan is not
so complex and contains less actions.

We have focused on the following three criteria: (1) num-
ber of SAT solver invocations by an initiator and partic-
ipants, (2) the complexity of communication between the
initiator and the participants (number of positive and nega-
tive responses), and (3) time complexity. We have measured
these criteria as a function of the publicness of a problem,
where the publicness is a number between 0 and 100 de-
fined as # public actions

all actions ∗ 100. All our experiments have been
carried out on CPU Intel Core-Duo 1.4GHz.

Tool Problem
In the Tool Problem, the goal requires that each of N agents
performs its doGoal action. Nevertheless, in order to per-
form this action, agent need to useTool first. Then, there
is an agent that provides the tools (handTool). This agent
will be in the role of initiator. Initial state is that none of the
agents has its tool and initiator has all of them. Goal state is
that all tools have been used by actions doGoal.

In this problem, minimal publicness is 66.6% – all par-
ticipants’ actions doGoal have to be public because facts
contained in goal are public and these actions have them as
their effects; Initiator’s actions handTool also have to be
public because some of their effects are required by some
other agents’ actions; and actions useTool are internal.
The maximal possible publicness is 100% when all actions

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

13

are public. In our experiments we continuously change the
visibility of useTool actions and thus the publicness of the
whole problem.

Results
Let us present results for the Tool Problem where N = 5.
Each publicness settings was run 20 times. Another exper-
iments for N = 3 and 4 yield similar results. All results
are presented as a function of publicness of the problem (X-
axis).

SAT Solver Invocations Figure 3 shows that with the in-
creasing publicness the number of initiator’s and partici-
pants’ SAT Solver invocations decrease. The reason for it is
that the more actions are available to the initiator the easier it
is to find a local plan that all participants mark as internally
extensible. In an extreme case, when all actions are public,
the initiator performs only one SAT solver invocations and
finds an internally extensible plan immediately.

0

300

600

900

1200

1500

1800

65 70 75 80 85 90 95 100

#
S
A
T
S
o
lv
e
r
in
v
o
ca
ti
o
n
s

publicness [%]

initiator
participant

Figure 3: Average initiator’s and participants’ SAT Solver
invocations depending on the problem publicness.

Number of CASE-I and CASE-III Replies The num-
ber of participants’ CASE-I and CASE-III replies de-
pending on the problem publicness is shown in Figure 4.
It can be seen that in case of the minimal publicness (66%),
the initiator creates many plans that participants reply with
CASE-III. Note that the number of CASE-I replies first
increases and then decreases with growing publicness. That
is caused by the increase of relative number of CASE-I
replies because a plan for one agent (whose actions are pub-
lic) is correct, while the whole number of generated plans
does not decrease significantly.

Time Complexity An average time of finding the solution
depending on the amount of publicness is shown in Figure 5.
Note that in the case of publicness of 66%, less time is re-
quired than in the case of publicness of 73%, although there
are more SAT solver invocations in total. That is because the
SAT problem is more constrained and it often does not have
any solution, which can be often proved very easily by the
SAT solver.

0

100

200

300

400

500

65 70 75 80 85 90 95 100

#
re

p
lie

s

publicness [%]

participants' CASE-I replies
participants' CASE-III replies

Figure 4: Average CASE-I and CASE-III replies depend-
ing on the problem publicness.

Figure 5: Amount of time required to solve the problem de-
pending on the problem publicness.

Final remarks
The planning technique we proposed is carried out by a
group of cooperative planning agents. Initially, each agent
awaits a relevant part of a deterministic planning domain
and a problem. After receiving the inputs, the agents firstly
prepare their own local planning graphs based on the parts
of the problem they have. Secondly, the agents use their in-
dividual SAT solvers to extract a local solution from their
planning graphs. And finally, they negotiate actions from
other agents to help them and not to interfere with the other
agents by additional constraining of the SAT solving pro-
cesses, forming a negotiation loop. If all the agents find a
local plan and the plans provide all the requested goals with-
out any conflicts, the planning process ends. Otherwise, the
negotiation process continues until a solution is found.

Acknowledgements
This research was supported by the Czech Science Founda-
tion (grant no. 13-22125S) and by a Technion fellowship.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

14

References
Brafman, R., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Pro-
ceedings of ICAPS’08, volume 8, 28–35.
Decker, K., and Lesser, V. 1992. Generalizing the Partial
Global Planning Algorithm. International Journal on Intel-
ligent Cooperative Information Systems 1(2):319–346.
Doherty, P., and Kvarnström, J. 2001. Talplanner: A tempo-
ral logic-based planner. AI Magazine 22(3):95–102.
Durfee, E. H. 1999. Distributed problem solving and plan-
ning. In Weiß, G., ed., A Modern Approach to Distributed
Artificial Intelligence. San Francisco, CA: The MIT Press.
chapter 3.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
In Proceedings of the 2nd International Joint Conference on
Artificial Intelligence, 608–620.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.
Huang, R.; Chen, Y.; and Zhang, W. 2012. Sas+ planning as
satisfiability. J. Artif. Intell. Res. (JAIR) 43:293–328.
Nissim, R., and Brafman, R. I. 2012. Multi-agent A* for par-
allel and distributed systems. In Proceedings of AAMAS’12,
1265–1266.
Pellier, D. 2010. Distributed planning through graph merg-
ing. In Filipe, J.; Fred, A. L. N.; and Sharp, B., eds., ICAART
(2), 128–134. INSTICC Press.
Torreño, A.; Onaindia, E.; and Sapena, O. 2012. An ap-
proach to multi-agent planning with incomplete informa-
tion. In ECAI, 762–767.
Tožička, J.; Jakubův, J.; Durkota, K.; Komenda, A.; and
Pěchouček, M. 2014. Multiagent planning supported by
plan diversity metrics and landmark actions. In International
Conference on Agents and Artificial Intelligence (ICAART).
Zhang, J. F.; Nguyen, X. T.; and Kowalczyk, R. 2007.
Graph-based multiagent replanning algorithm. In Proceed-
ings of the 6th international joint conference on Autonomous
agents and multiagent systems, AAMAS ’07, 122:1–122:8.
New York, NY, USA: ACM.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

15

Temporal Multiagent Planning with Concurrent Action Constraints

Matthew Crosby and Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, Scotland, UK

m.crosby@ed.ac.uk, rpetrick@inf.ed.ac.uk

Abstract

This paper investigates how centralised, cooperative, multi-
agent planning problems with concurrent action constraints
and heterogeneous agents can be encoded with some minor
additions to PDDL, and how such encoded domains can be
solved via a translation to temporal planning. Concurrency
constraints are encoded on affordances (object-action tuples)
and determine the conditions under which a particular ob-
ject can (or must) be utilised concurrently. The effectiveness
of the approach is evaluated on the Vehicles testing domain
and on a new Warehouse domain, which is inspired by a
real-world warehouse problem in which a centralised mission
planner must find a concurrent plan for a fleet of robots in a
manufacturing plant. The approach is shown to be promising,
with the potential to support future work in the area.

Introduction
Planning in multiagent domains with concurrent actions—
especially with complex concurrent action constraints—is
not an easy task. With any meaningful number of agents and
actions, the number of possible joint actions makes any di-
rect planning approach infeasible. Furthermore, an efficient
method for representing concurrency constraints is required
as they are defined over the whole joint action space.

In previous approaches, concurrent action constraints
are often defined on actions or unground action schema
(Boutilier and Brafman 2001). While this technique pro-
vides a natural encoding method that specifies which actions
can be performed simultaneously, it also leads to difficulties
when dealing with problems that contain many objects that,
while similar, have different concurrency properties. (For
example, vehicles might carry different numbers of passen-
gers, and doors might permit different numbers of agents to
simultaneously pass through.) In domains such as these, it is
useful to define concurrency constraints on the objects of the
domain instead, leaving the features of PDDL that efficiently
encode unground action schema untouched.

Given an encoding of concurrency constraints, the next
task is to find plans that satisfy them. In this work, we con-
sider an object-action representation of concurrency con-
straints and show that our encoding gives rise to an efficient

translation into a temporal planning problem for which a so-
lution is guaranteed to respect the concurrency constraints.
The translation adds numeric fluents to the domain that keep
track of which objects are being used, and also ensures that
agents only perform one action at a time. We also show that,
perhaps surprisingly, temporal planners can then be used to
solve such problems in a reasonable time, even though there
is no a priori reason to believe that they will be effective on
the type of domains created by the translation process.

The motivating application for this work is a mission plan-
ning scenario for a fleet of heterogeneous robots in an as-
sembly factory.1 In this domain, the fleet of robots must
navigate a factory floor and complete various picking and
depalletising tasks in order to obtain a selection of parts as
required for a kit. While one robot may be able to pick small,
delicate objects, another may only be able to handle large,
heavy objects. A centralised mission planner is in charge of
finding and distributing plans for the robot fleet. As such, we
treat this problem as an instance of centralised, completely
cooperative, concurrent multiagent planning.

The capabilities of the robots are encoded in terms of
robot skills (Bøgh et al. 2012), which are modelled at a level
of abstraction above the robot control layer. Skill composi-
tion is traditionally done by hand, to create skill sequences
that allow the robot to perform composite tasks. While this
approach is satisfactory for controlled environments, by au-
tomating this process the robot will be better equipped to op-
erate in continually-changing environments where the exact
goals to be achieved are not necessarily known beforehand.

We model this domain as a classical planning problem,
with additional concurrency constraints and agent action
sets. The process of action execution is discretised into time
steps with each action given an integer expected execution
time. Currently, we only try to find a plan that assumes that
the execution times are correct; we do not focus on methods
for agent communication or the partial-order planning that
would be required to deal with unknown execution times
(Brenner 2003). In this work, plan synthesis and coordina-
tion are performed simultaneously so that a plan is generated
both to achieve the goals and obey any concurrency con-
straints defined on the problem. Uncertainty about the envi-

1This work forms part of the EU STAMINA project. See
http://stamina-robot.eu/ for more information.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

16

ronment, and also about action execution success and dura-
tion, which are important features of the real-world problem,
are left to future work and are not addressed in this paper.

The rest of this paper is structured as follows. We begin by
discussing related work, broken down into four key topics:
multiagent planning, temporal planning, robot skills, and af-
fordances. The Warehouse domain is then introduced in or-
der to motivate the approach taken in this paper. The details
of the encoding are then presented, followed by the transla-
tion to temporal planning. Finally, we present the results of
running a temporal planner on the translated domains, and
conclude with a discussion of future work.

Related Work
We begin by discussing four strands of related work that are
relevant to this paper: multiagent planning with concurrent
actions, temporal planning, robot skills, and affordances.

Multiagent Planning with Concurrent Actions
As mentioned above, previous work on concurrent action
constraints used the STRIPS (Fikes and Nilsson 1971) repre-
sentation of actions, modified to include a concurrent action
list describing the restrictions on the actions that could (or
could not) be executed concurrently (Boutilier and Brafman
2001). This approach improved on previous work involving
action interleaving which could not deal with truly concur-
rent interference effects. The work also showed how partial-
order planning techniques could be used to solve such prob-
lems without the need for the introduction of an explicit no-
tion of time. The proposed algorithm was not empirically
evaluated but the work suggested that an interesting exten-
sion would be to utilise newer planning algorithms and tech-
niques in solving such problems. Our work begins to do this,
using a different encoding of constraints.

Previous work has also suggested encoding constraints on
resources to specify which objects in the domain prohibit
concurrent access (Knoblock 1994). We extend this idea to
include resources which require concurrent access, and to
include the possibility of resources that prohibit or require
simultaneous access. While prior work has been interested in
using the resource definitions to schedule concurrent actions
to reduce overall plan execution time, we are more interested
in encoding domains with inherent joint-action restrictions
and planning over these restrictions.

Other relevant work considers joint actions in strate-
gic multiagent planning (Jonsson and Rovatsos 2011). This
work assumes the existence of an admissibility function that
indicates which joint actions are possible, but does not dis-
cuss the details of such an encoding, instead simply assum-
ing that an efficient encoding can be found depending on
the features of a domain. A best-response planning (BRP)
approach is introduced, that can find stable solutions to a
certain class of planning problems called congestion games.
Best response planning is well suited to plan refinement once
a suitable starting plan has been found, but in our domains
it is hard to find a suitable starting plan as this requires con-
current coordination from all the agents.

Temporal Planning
Temporal planning capabilities were introduced with PDDL
2.1 (Fox and Long 2003) and allow for the modelling of
durative actions and the formulation of concurrent plans.
In temporal planning problems, time is modelled explicitly,
making temporal planning a natural fit for dealing with mul-
tiagent planning problems with concurrent actions. How-
ever, since (Brenner 2003) the approach has not been very
prevalent in the recent multiagent planning literature.

In this paper we make use of POPF2 (Coles et al. 2010), a
forward chaining partial-order planner which can find con-
current plans with low makespans. POPF2 was chosen be-
cause of its good performance—it was the runner-up in the
temporal track of the 2011 International Planning Competi-
tion (Coles et al. 2012)—and because it has the capability to
cope with all the constructs used in our translation.

Robot Skills
The encoding developed in this paper is motivated by the no-
tion of robot skills (Bøgh et al. 2012), which have recently
been proposed as an effective abstraction of the complex
tasks that a robot can perform, and a tool for bridging the gap
between low-level robot control and high-level planning.

In the taxonomy of robot skills, robot capabilities are sep-
arated into a three-level hierarchy consisting of motion prim-
itives, skills and tasks. Motion primitives are the basic mo-
tion commands of the robot, at the lowest level of the hierar-
chy. Above this are robot skills, which represent the higher-
level capabilities of the robot, which may require the use
of many motion primitives. At the highest level are tasks,
which can be scheduled without the need for specific robot
control knowledge. It is at this level that planning occurs.

While the long-term goal of this work is to use automated
methods for encoding planning actions from a description of
robot skills, for this paper we hand-code each robot skill as
a planning action, and then add separate skill distributions
and concurrency constraints to the domain.

Affordances
Finally, we briefly consider the use of affordances in the re-
lated literature. The idea of an affordance can be traced back
to Gibson (1977) and is a well-known concept in the robotics
community and associated fields (see, e.g., (Duchon, War-
ren, and Kaelbling 1998; Lewis and Simó 2001; Steedman
2002; Sahin et al. 2007; Krüger et al. 2011), among others).
For the purpose of this work, an affordance can be thought
of as the capacity of an object to be utilised in a certain man-
ner. We believe that affordances are an important component
for encoding more complex concurrency constraints, and is a
useful representational tool for building multiagent planning
encodings. Affordances are discussed in more detail below
in the context of encoding concurrency constraints.

The Warehouse Domain
We now describe the Warehouse domain, which models a
problem in which a centralised mission planner is tasked
with finding a concurrent plan for a heterogeneous robot
fleet, working towards the shared goal of collecting sets of

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

17

B1 B2 B3

P1 P2 P3

Robot Side Human Side

Pallets

Bins

R1

R2

R3

R4
R5

P4

B4

Conveyor for Kits

W
orkbench

Figure 1: A depiction of the Warehouse domain. Some of
the robots are only allowed on the robot side of the factory
while others can navigate safely amongst humans. The aim
is to pick given objects and place them in the correct kits
which are located on the workbench and accessible to all
robots. Once completed, the kits are carried to the conveyor
and sent off for use in the manufacturing process.

parts (called kits) for use in a manufacturing plant. As men-
tioned above, the robots have a built-in representation of
‘skills’ which abstracts away from their low-level sensori-
motor commands, and which denotes the capabilities that
can be used to derive actions for planning purposes.

There are many different levels of abstraction at which
the Warehouse domain can be modelled. For this initial in-
vestigation, we chose to focus on the features of concurrency
constraints and heterogeneous agents, to test the feasibility
of our encoding and of using temporal planning. This means
that there are many factors that we do not cover that will
nevertheless be important in a completely accurate repre-
sentation of the real-world problem, including incomplete
domain knowledge, action failure, and dynamic goals.

An example Warehouse problem is shown in Figure 1,
which depicts the robots’ operating environment. The goal
of the domain is to assemble certain kits: collections of ob-
jects required for later use in the manufacturing process. The
output should be a joint plan in which kits are put together
efficiently and for which all the concurrency constraints are
met so that, for example, no two agents attempt to access the
same bin, pallet, or kit simultaneously.

The warehouse has been artificially split into two sections,
one in which robots must navigate alongside humans, and
the other in which only robots are allowed. Depending on
the robot type, a robot may either be confined to the robot
side or also allowed to work on the human side. A list of
the skills that the each robot possesses, along with the time
taken to perform each skill, is shown in Table 1. We assume
that time can be discretised and that the actions always take
the modelled time. In future extensions of this work, we will
likely need to find partial-order plans that are robust to ac-
tions failing or taking longer than expected.

The pallets, found at the top of Figure 1, contain items that

Skill Time Robots with Skill
navigate-robot-side 2 R1, R2

navigate-human-side 3 R3, R4, R5

pick-heavy 1 R1, R2, R3

pick-delicate 1 R1, R3, R4, R5

depalletise 1 R1, R3, R4

add-to-kit 1 R1, R2, R3, R4, R5

deliver-kit 1 R3, R4, R5

Table 1: Table showing the skills in the domain, their esti-
mated duration, and the robots that can perform each skill.

a robot can obtain if it has the depalletise skill. The bins at
the bottom contain items that a robot can obtain if it can per-
form the requisite picking skill, either pick delicate or
pick heavy, depending on the item in the bin. The com-
plexities of robot navigation, and the picking, depalletising,
and kitting processes are completely abstracted away by the
robot skills formulation of our model, and assumed to be
dealt with by low-level robot control processes.

While under completion, kits are placed on a workbench,
accessible to all robots, but only one at a time. A finished kit
must be carried to the conveyor, which requires two robots
to carry the box simultaneously. While this last constraint is
not part of the real-world problem, it is used to explore the
ability of our approach to deal with concurrent coordination.
The Vehicles domain presented later includes actions that
require up to ten agents to coordinate concurrently.

Modelling and Encoding
This section discusses our method for encoding domains
with properties such as those exhibited by the Warehouse
domain. Our encoding is based on adding concurrency
constraints to domains written in ordinary (non-temporal)
PDDL (McDermott 2000). The features of the domains we
would like to model include:

Multiagent Concurrent Actions: The domain contains
multiple agents that execute their plans concurrently.

Cooperative Centralised Planning: The agents share the
goal and a centralised mission planner plans for all agents.

Classical Planning Assumptions: All actions are deter-
ministic, and there is complete domain knowledge with a
fixed initial state and a known goal state (or set of states).

Agent Action Sets: Agents have different capabilities, the
actions in the domain are split amongst the agents.

Concurrent Action Constraints: There are constraints
over which actions can (or must) be performed simulta-
neously.

The problem that we are modelling is MA-STRIPS
(Brafman and Domshlak 2008) (a multiagent extension of
STRIPS) with the addition of concurrency constraints. More
formally, we define a multiagent planning problem as a tuple
Π = 〈N,P, {Ai}ni=1, I, G, c〉, where:

• N = {1, . . . , n} is the set of agents,

• P is the finite set of propositions of the domain,

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

18

• I ⊆ P encodes the initial state,

• G ⊆ P encodes the goal conditions,

• each Ai is agent i’s action set, and

• c : A1× . . .×An → {0, 1} specifies whether a particular
joint action is valid under the concurrency constraints.

An action ai ∈ Ai has standard STRIPS syntax and se-
mantics with ai = 〈pre(a), add(a), del(a)〉 containing pre-
conditions, add effects, and delete effects. A joint action ā =
(a1, . . . , an) is a member of the set A = A1× . . .×An. For
joint action ā, pre(ā) =

⋃
i pre(ai), del(ā) =

⋃
i del(ai),

and add(ā) =
⋃

i add(ai). Joint action ā is applicable in
state s if and only if del(ā) ∩ add(ā) = ∅, c(ā) = 1 (i.e., ā
satisfies the concurrency constraints), and pre(ā) holds in s.
The application of a joint action updates the combined add
and delete effects as in standard STRIPS.

A plan π = [ā1, . . . , āk] is a sequence of joint actions
such that ā1 is applicable in the initial state I , and each sub-
sequent joint action is applicable in the state resulting from
the application of the previous action. It is assumed that each
action set contains a no-op action with empty precondition
and effects that can be used to align agents’ plans.

As the domain of c is exponential in the number of agents,
explicitly defining it (or even the set of joint actions) is
not a practical approach. We therefore introduce an efficient
method for encoding concurrency constraints by adding a
construct to the PDDL problem file. A similar method is
used to encode agent action sets for heterogeneous agents.

Encoding Agent Action Sets
We assume that the domain file contains a type agent
which contains every member of N and no other objects.
We also assume that each action has at least one parame-
ter of type agent. A new construct, capabilities, is
defined in the PDDL problem file which has the following
(EBNF) syntax:

(:capabilities <cap-def>+)
<cap-def> ::= (<agent-name> <action-name>+)

where agent-name is a name of one of the agents, and
action-name is a name of an action defined in the do-
main file. The intended interpretation is that the agent de-
noted by agent-name is capable of performing only the
actions that appear in the list. In other words, the capabili-
ties definition contains an agent and a list of action names
that the agent can perform.

For example, for the Warehouse domain we would have:
(:capabilities

(R1 navigate-robot-side pick-heavy
pick-delicate depalletise add-to-kit)

(R2 ...)
...

)

Using this method, it is possible to encode actions at the
domain level without having to worry about which agents
can perform each action in a particular problem instance.2

2As there are many problems for which some (or all) agents can
perform all actions we assume that a missing capabilities definition

Encoding Concurrency Constraints
At first glance, it may seem that concurrency constraints
should be defined along with action specifications, since
they constrain which actions can be performed concurrently.
However, considering the type of domains we would like to
encode, it makes more sense to associate constraints with
objects. In particular, a standard action schema may have
different concurrency constraints depending on the size,
shape, or capacity of the object that it is ground to. (For ex-
ample, consider a domain with multiple types of vehicles, or
network connections of varying bandwidth.)

While the next obvious step might be to define concur-
rency constraints directly on the objects themselves, in the
general case, this is not expressive enough. For instance,
consider the case of an object that can be used in multiple
different ways: a door might only be passed through by a
single agent at a time, yet can be simultaneously painted by
multiple agents. There are countless possible examples of
different ways an object can be used, all of which potentially
affect concurrency constraints. We call these different ways
an object can be used its affordances.

Affordances are clearly related to combinations of objects
and actions, but the exact details of this relationship are not
obvious. A further complication comes from the fact that an
affordance of an object may be associated with multiple ac-
tions. For example, a claw hammer may have the associated
actions of bash nail and extract nail. However, in
terms of a planning problem we may only want to constrain
the higher level affordance of the hammer to be used as tool.

In order to deal with the preceding cases we define con-
straints over object-action tuples. Each tuple consists of an
object and a list of actions that can be thought of as utilis-
ing the object for a particular affordance. This way an object
can have multiple affordances (when it appears in different
constraints with different lists of actions) and an affordance
can be utilised by multiple actions (an action list is used).

We encode concurrency constraints as follows:
(:concurrencies <conc>+)
<conc> ::=

(<obj-name> <act-name>+ <min> <max>)

where obj-name is an object from the problem definition,
act-name is an action name from the domain file in which
obj-name appears in a possible grounding, and min and
max are positive integers with max ≥ min. The intended in-
terpretation of the concurrency constraints is that ‘not more
than max and at least min agents can simultaneously utilise
object o via the actions in the action list’. A concurrency
constraint of (o act 1 n) therefore effectively provides
no constraint on the object o.

We expect that all objects of a particular type share in
their relevant affordances stipulating that if a concurrency
constraint exists for object o of type t with action list ā,
then a concurrency constraint exists with action list ā for
each object of type t. This can be easily achieved by adding
‘dummy’ affordances withmin = 1 andmax = n. We then

means that all agents are capable of performing every action in
the domain. We also assume that any agents not included in the
capabilities definition have the ability to perform all actions.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

19

define the affordances of the domain as each pair (type, ac-
tion list) for which a ground object of that type appears with
that action list in the concurrencies specification.

The following example shows a selection of concurrency
constraints for the Warehouse domain:

(:concurrencies
(bin1 pick-delicate pick-heavy 1 1)
(pallet1 depalletise 1 1)
(kit1 deliver-kit 2 2)
...

)

In particular, it specifies that if a pick-delicate or
pick-heavy action is applied to bin1 then no other agent
can concurrently perform a pick action on bin1. It also
says that the action deliver-kit, when ground to kit1,
must be performed by exactly two agents concurrently. More
complicated concurrency constraints will be discussed in the
evaluation section when we look at the Vehicles domain.

It should be noted that there are certain nuances to defin-
ing concurrency constraints in this way. Concurrency con-
straints specify constraints on the simultaneous execution of
actions, not facts about what can be true over any state in the
world. So, for example, modelling that two robots cannot be
in the same location should be part of the domain definition
as it is a fact about which possible states are allowed.

Translation to Temporal Planning
At this point, we have a domain written in classical single-
agent PDDL, with concurrency constraints and capability
definitions added to the problem file. The next step is to try
and find a plan that obeys the intended semantics of the capa-
bilities and concurrency constraints. To do this, we translate
our encoded domains into PDDL 2.1 with durative actions
and numeric fluents, for use with a temporal planner.

Pseudocode for the translation is shown in Algorithm 1,
which is split into three steps: adding capabilities, translat-
ing to durative actions and adding concurrency constraints.
Along with the introduced encoding, the translation assumes
that the domain definition includes an agent type and there
are at least two objects of this type, each action has an asso-
ciated duration and all objects in the domain are typed.

Adding Capabilities
Adding capabilities is straightforward and does not require
any temporal constructs and as such is performed before the
translation to durative actions. For each action act that ap-
pears in the capabilities definition, a new (can-act ?a
- agent) predicate is added to the list of predicates. Then,
each action that appears gains an additional precondition
(can-act ?x) for each parameter ?x of type agent. This
precondition ensures that any agent the action is ground to
has capability of performing the action. Finally, for each
agent a defined as capable of performing act, the static
proposition (can-act a) is added to the initial state.

If an action does not appear in the capabilities, then it does
not get modified, which means that it can be ground to any
agent and therefore any agent may perform the action. If no
capabilities are defined, then nothing is changed in this step
and it is possible for all agents to perform each action.

Algorithm 1: Translate to temporal planning problem.
Input : PDDL domain and problem files (dfile, pfile)
Output: PDDL temporal problem and domain files
// Add Capabilities

1 foreach act in :capabilities do
2 dfile.predicates.add(can-act ?a - agent)
3 foreach predicate ?a of act of type agent do
4 dfile.act.addprecondition(can-act ?a)
5 foreach agent in :capabilities containing act do
6 pfile.init.add(can-act agent)
// Translate to durative actions

7 dfile.requirements.add(:fluents)
8 dfile.predicates.add(free ?a - agent)
9 foreach act in dfile with duration d do

10 action← durative-action
11 act.add(= ?duration d)
12 precondition← condition
13 foreach condition in act do
14 condition← (at start (condition))
15 foreach effect in act do
16 if effect is positive then
17 effect← (at end (effect))
18 else
19 effect← (at start (effect))
20 foreach agent parameter ?a in act do
21 act.conditions.add(at start(free ?a))
22 act.effects.add(at start(not (free?a)))
23 act.effects.add(at end(free ?a))

// Add concurrency constraints
24 foreach affordance with type t and action list ā do
25 dfile.functions.add(using-t-ā ?o - t)
26 dfile.funcitons.add(min-t-ā ?o - t)
27 dfile.functions.add(max-t-ā ?o - t)
28 foreach act in ā do
29 if max > 1 then
30 copy act to new act-join
31 act-join.con.add(at start (> (using-t-ā ?o) 0))
32 act-join.eff.add(at start (increase (using-t–ā ?o)

1))
33 act.con.add(at start (= (using-t–ā ?o) 0))
34 act.con.add(at end (>= (using-t-ā ?o) (min-t-ā ?o)))
35 act.con.add(at end (<= (using-t-ā ?o) (min-t-ā ?o)))
36 act.eff.add(at start(increase (using-t-ā ?o) 1))
37 act.eff.add(at end(assign (using-t-ā ?o) 0))
38 act← act-start
39 foreach concurrency constraint (o, ā,min,max) do
40 pfile.init.add(= (using-t-ā o) 0)
41 pfile.init.add(= (min-t-ā o) min)
42 pfile.init.add(= (max-t-ā o) max)

Translating to Durative Actions

The next step of the algorithm is to translate all actions into
durative actions for use in temporal planning. This step also
adds a predicate (free ?a) that is used to make sure that
each agent only ever performs a single action at a time. This
predicate is removed whenever an agent starts an action and
is only replaced on completion of the action (lines 20–23 in
Algorithm 1). Action durations equal to those specified for
each action are also added at this stage.

By convention, we assume that all preconditions are

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

20

required to be met at the beginning of the durative ac-
tion, and they are therefore all changed to (at start
(condition)). We set negative effects to be updated at
the beginning of an action while positive effects occur on
completion of the action. While it is certainly possible to de-
sign a domain for which this is a non-natural interpretation,
it works well for the domains we have used and we assume
that the domain creator is aware of this fact.

Adding Concurrency Constraints
The final part of the algorithm (lines 24–42) is the most in-
volved and requires the addition of new actions and fluents.
For each action, the translation creates at most two new tem-
poral actions, ‘action–start’ and ‘action–join’. For each dif-
ferent affordance, three new functions must be added to the
domain: using, min, and max. The first of these is updated
by the corresponding actions to show how many agents are
currently utilising a constrained affordance. The latter two
are used to ensure that the number of agents that simultane-
ously use a constrained affordance is between the minimum
and maximum specified for that resource.

The first part of the translation shown in Algorithm 1
(lines 30–32) involves the creation of the new ‘join’ action
for each action that appears in a concurrency constraint with
max > 1. The additional elements for the join action will
be explained after we have discussed the ‘start’ action. It ap-
pears first in the algorithm only because it is built from a
copy of the unmodified start action.

To each start action, the following is added to the condi-
tion for each constrained parameter ?p:

(at start (= (using-p-ā ?p) 0))
(at end (>= (using-p-ā ?p) (min-p-ā ?p)))
(at end (<= (using-p-ā ?p) (max-p-ā ?p)))

This means a joint action can only be started if there are cur-
rently no agents already engaged in it, and by the end of the
action the number of agents engaged with the related object
is between the maximum and minimum values. The follow-
ing is added to the effects for each constrained parameter:

(at start (increase (using-p-ā ?p) 1))
(at end (assign (using-p-ā ?p) 0))

This updates the number of agents utilising the relevant af-
fordance of ?p and then resets it once the action is complete.

The join actions are simpler. To each join action the fol-
lowing is added to the condition:

(at start (> (using-p-ā ?p) 0))

This ensures that a join action can only be performed if the
start action is currently initiated. The following is added to
the actions effects:

(at start (increase (using-p-ā ?p) 1))

which is simply the same counter used in the start action.
Putting this all together, we end up with a start action for

each constrained action and a join action only for actions
that have concurrency constraints that allow multiple agents
(i.e., max ≥ 2). There is no ‘end’ action needed as the con-
ditions of the start action ensure that the correct number
of agents are performing the action by the time it has fin-
ished. When run with a temporal planner, a joint action is

formed from all actions scheduled at a particular time step.
It is possible, for actions with long durations, that the join
action does not appear in the same timestep as the start ac-
tion (which violates the intended interpretation). However,
the planner used in this work, POPF2, always schedules join
actions immediately after start actions as it attempts to min-
imise makespan, making the above translation sufficient.

Optimisations

While the previous algorithm creates a functionally correct
domain, there are many optimisations that can be performed
based on the type of concurrency constraints that exist in the
problem. We introduce a few of them here and then examine
their effects on planning in the evaluation section below.

Actions that require two agents to perform them simulta-
neously can be encoded directly with two agent parameters,
and by including the condition (not (= ?a1 ?a2)) to
ensure that the parameters cannot be ground to the same
agent. However, this is not good practice in the general
case (where n agents are required to perform the action) as,
firstly, it requires (n(n + 1))/2 inequality clauses and, sec-
ondly, this method does not allow the grounding of actions
to objects with different types of concurrency constraints.
If a concurrency constraint of (o a 2 2) appears for all
groundings of an affordance, instead of following the algo-
rithm, we use the equality definition just mentioned.

It is also possible to optimise the translation for con-
currency constraints of the form (o a 1 1). These con-
straints are quite common, as there are many objects that
can only be used by one agent at a time. Notice that the
constraint (o a 1 1) is similar to the constraint that each
agent may only perform one action at a time, which can be
encoded using a (free ?a) predicate. The same method
can be used for objects, with a (free-o ?o) predicate
in place of the agent one. A final small optimisation can be
applied when an action appears in each agent’s capabilities
list. In this case, the associated (can-act ?a) predicate
does not need to be added to the domain (i.e., lines 2-5 in
Algorithm 1 can be skipped).

Evaluation
This section presents the results of running a temporal plan-
ner on the translated domains. A python script was writ-
ten to perform the translations, including the optimisations
mentioned above.3 The planner we chose for this work was
POPF2 (Coles et al. 2010), since it has the capability to cope
with all the constructs used in the translation, and also to
produce plans that attempt to minimise makespan. POPF2
was also the best planner in IPC11 at dealing with tem-
poral problems with inbuilt concurrencies. All experiments
were run on the same machine with 48GB of memory and a
2.66GHz processor. Experiments were allowed to run until
a plan was found or an out of memory error was reported.

3Available for download at
http://homepages.inf.ed.ac.uk/mcrosby1.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

21

Small Medium Large
Kits time(s) span time(s) span time(s) span

1 0.02 21 0.03 12 0.14 8
2 0.78 49 1.15 32 0.93 18
3 8.01 87 9.71 53 74.5 24
4 30.7 105 37.5 62 – –
5 106 139 133 76 – –

Table 2: Table showing the time in seconds and makespan of
the first plan found by POPF2 for different domain sizes and
number of kits/goals.

Warehouse
This section presents an evaluation of the Warehouse do-
main. The first aim was to ensure that the planner could
indeed solve problems of the scale we are likely to deal
with in real-world settings. Three problem instances were
created—small, medium and large—with medium having
the same setup as depicted in Figure 1 and the robot capa-
bilities shown in Table 1. The small domain involved just
the right-hand side of Figure 1, with three robots, two bins
(one containing a delicate item and one containing a heavy
item), and two pallets. The only robots left were R3, R4,
and R5, which had the same skills as in the previous do-
main. The large domain contains ten robots, eight pallets,
and eight bins. The five new robots added were given the
same skills as those for R1 to R5, respectively, and the new
pallets and bins were spread evenly across the two sides.

Table 2 shows how the planner performed over the differ-
ent sizes of domains as the number of kits that needed to be
delivered was changed. The goals were to deliver from one
to five kits, each containing five separate parts. The goals
were kept the same across the problems so that they could
be compared directly in terms of time and makespan.

In the medium and large problems, the extra robots mean
that more actions can be scheduled simultaneously so that
the makespan can potentially be lower to achieve the same
goals. It was unknown as to whether the fact that the problem
was easier (due to more available robots) or that the problem
was harder (due to a massively increased state space) would
dominate the results. While being almost twice the size, the
medium domain was solved in times that were not much
slower than the small domain, showing that, perhaps sur-
prisingly, increasing the number number of agents capable
of performing tasks can somewhat counteract the increase
in domain size. As can be seen from the table, the number of
kits had a large effect on the planning times while increasing
the number of robots and bins had a lesser effect.

While the final two large problems were unsolvable, the
planner performed much better than expected given the
number of joint actions, and the way they were encoded
(not designed for ease of planning). For example, in the ini-
tial state of the medium problem each robot can perform
eight or nine valid actions, meaning that there are over forty-
six thousand possible joint actions. Obviously, the temporal
planner does not deal directly with the joint action space,
which is why it is a feasible approach for solving these kind
of problems in the first place.

No-Deliver Equal Robot-side
Ag’s time(s) span time(s) span time(s) span

3 0.97 65 0.97 70 0.97 70
4 4.25 41 4.82 42 4.82 42
5 8.18 37 10.83 36 4.71 29
6 6.64 26 15.82 24 8.02 28
7 14.06 23 26.16 28 – –
8 35.25 23 56.77 26 14.4 41
9 139 24 210 22 51 39

10 43.25 21 70 20 26 39

Table 3: Table showing the time in seconds and makespan of
the first plan found by POPF2 for different domain sizes and
number of agents.

Given the previous results, we wanted to test how adding
robots (but not otherwise increasing the problem size) af-
fected planning. We used the middle problem from the previ-
ous table (medium size, 3 kits) as our starting point and only
varied the number of agents. All agents were given every ca-
pability, except that half were confined to the robot side and
half to the human side. The smallest problem instance con-
tained 3 robots with two on the human side to ensure that
the problem has a solution (i.e., the deliver-kit action
requires two agents acting simultaneously).

The results of these experiments are shown in Table 3.
The middle column shows the set-up described above and
contains an anomalous looking result for the 9 agent prob-
lem. As the goal does not change over these problems, the
makespan becomes closer to optimal as more agents are
added (as there are more ‘free’ robots to assign actions to
at each point). The time taken for the 9 robot problem ap-
pears to break the trend of the slow increase in planning
times as the number of agents is increased. We hypothe-
sised that this could be due to the deliver-kit action
having exponentially more possible groundings now that an-
other robot has been added to the human side. We therefore
ran experiments without the deliver-kit action (col-
umn 1) and experiments where robots were only added to the
robot side (column 3). From the results we can see that the
deliver-kit action, while problematic, is not the sole
cause of the anomaly. We can only conclude that due to the
very large state space, there is noise in the results depending
on the path of the heuristic search. This can also be seen by
the fact that no result was found for the seven agent problem
in column 3 even though one clearly exists.

Finally, we wanted to test the effectiveness of our trans-
lation optimisations. Table 4 shows the effects that the op-
timisations have on both planning times and plan cost. The
reported values are of the form unoptimised/optimised (from
Table 2) so that a value less than one represents an improved
time or makespan. The cells containing ’x’ show where the
optimised version found a solution where the unoptimised
version could not. The values of the table that contain ‘–’
are cases where the planner did not manage to find a solu-
tion on the unoptimised translation. We can see that the cov-
erage for the unoptimised case is much worse than for the
optimised case. This means that the optimisations are nec-

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

22

Small Medium Large
Kits time span time span time span

1 333 0.86 3.33 1.08 1.86 1.13
2 14.7 0.94 22.3 1.03 120 1.06
3 1.20 0.89 7.97 0.85 x x
4 2.71 0.91 x x – –
5 x x x x – –

Table 4: A comparison of the unoptimised translation with
the results for the optimised translation. Each table entry is
calculated as the value of unoptimised/optimised, meaning
that the results show how much slower/more costly the un-
optimised version was. A value of x shows where the unop-
timised version did not find a plan but the optimised version
did, whereas ‘–’ represents that both translations failed.

A1, …,
A10 GOAL

(v1, 1d, 4p)

(v2, 2d, 1p)

(v3, 1d, 2p)

(v5, 3d, 3p)

(v4, 1d, 2p)

Figure 2: An example Vehicles problem. Ten agents (only
six of which can drive), starting on the left, must travel to the
rightmost location via a collection of vehicles requiring dif-
ferent numbers of drivers, and permitting different numbers
of passengers. This problem is solved in 0.15s by POPF2.

essary, especially in the larger domains. It is also interesting
to note that when the unoptimised domain returns a solution
it is often of better quality than that of the unoptimised do-
main. However, coverage is a much more important factor as
the planner can always be run for longer if a higher quality
solution is required.

Vehicles
Finally, we test some further capabilities and properties of
our approach on the Vehicles domain, first introduced in
(Crosby 2014). In the domain, agents must use different ve-
hicles to reach a particular goal location. The vehicles in the
domain have associated concurrency constraints, such that
one vehicle may require a driver and may hold up to four
passengers, while another may require two drivers and not
be able to hold any passengers. Some agents in the domain
are designated as drivers and able to perform the drive ac-
tion, while others are only able to perform the passenger
action. An example problem is shown in Figure 2.

The Vehicles domain shows that it is possible to model
conjunctive concurrency constraints with our approach, e.g.:

(and
(v1 drive 1 1)
(v1 passenger 0 4)

)

Fig 2 (v, d1, p1) (v, d5, p5)
Drivers time span time span time span

5 – – – – 0.03 2
6 0.15 3 – – 0.15 2
7 – – 0.64 5 2.42 2
8 0.32 4 1.1 5 – –
9 – – 2.2 6 – –

10 3.13 5 1.99 6 – –

Table 5: Results for the Vehicles domain as the number of
drivers increases. The first column is for the problem shown
in Figure 2 while the latter two are for the same problem
with all vehicle constraints replaced with that shown.

The intended interpretation of this constraint is that the ve-
hicle v1 can have at most one concurrent driver and simulta-
neously up to four passengers. This is translated to the tem-
poral planning encoding by adding the condition:

(at start (> (using-drivable ?v) 0))

to the passenger action. This method can be used for any
conjunctive constraint by designating one element (with
min > 0) as the initial action, and adding the relevant con-
dition to all other actions. However, it is not yet known if
this works for problems where the concurrency constraints
overlap in terms of the actions they include.

The results of running our algorithm on the Vehicles do-
main are shown in Table 5. Interestingly, the results were
very dependent on the number of driver agents in the do-
main, presumably because certain numbers of drivers lead
to dead ends early in the problem. Overall, the coverage was
not very impressive while the planning times when a solu-
tion was found were surprisingly fast. We take the optimistic
view that the results are promising in that future work can
build on the areas where temporal planners are effective for
these type of problems.

Conclusion
This paper presented a method for encoding and solving
planning problems with concurrent interacting actions and
heterogeneous agents. For simple concurrency constraints,
where the translation can be optimised, the approach was
shown to be effective. However, more work is needed to plan
with more complex concurrency constraints.

In the future, we plan to analyse further the conditions un-
der which the temporal approach is effective, and use this as
a starting point for creating a planning algorithm specifically
designed for domains with concurrency constraints. We also
intend to explore the notion of affordances for multiagent
planning further and see how different representations can
be utilised in the planning process. Finally, we intend to in-
troduce some further complexities of the real-world Ware-
house domain into our work.

Acknowledgements
The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
under grant agreement no. 610917 (STAMINA).

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

23

References
Bøgh, S.; Nielsen, O. S.; Pedersen, M. R.; Krüger, V.; and
Madsen, O. 2012. Does your Robot have Skills? In Pro-
ceedings of the International Symposium on Robotics (ISR
2012).
Boutilier, C., and Brafman, R. 2001. Partial-order planning
with concurrent interacting actions. Journal of Artificial In-
telligence Research 14:105–136.
Brafman, R. I., and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS 2008), 28–35.
Brenner, M. 2003. A Multiagent Planning Language. In
Proceedings of the Workshop on PDDL at the International
Conference on Automated Planning and Scheduling (ICAPS
2003).
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In Proceedings
of the International Conference on Automated Planning and
Scheduling (ICAPS 2010), 42–49.
Coles, A. J.; Coles, A.; Olaya, A. G.; Celorrio, S. J.; López,
C. L.; Sanner, S.; and Yoon, S. 2012. A Survey of the
Seventh International Planning Competition. AI Magazine
33(1):83–88.
Crosby, M. 2014. A Temporal Approach to Multiagent Plan-
ning with Concurrent Actions. In Workshop of the UK Plan-
ning and Scheduling Special Interest Group (PlanSIG 2013).
Duchon, A. P.; Warren, W. H.; and Kaelbling, L. P. 1998.
Ecological robotics. Adaptive Behavior, Special issue on bi-
ologically inspired models of navigation 6(3-4):473–507.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2(3-4):189–208.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research 20:61–124.
Gibson, J. 1977. The theory of affordances. In Shaw, R.,
and Bransford, J., eds., Perceiving, Acting, and Knowing:
Toward an Ecological Psychology, 67–82.
Jonsson, A., and Rovatsos, M. 2011. Scaling Up Multiagent
Planning: A Best-Response Approach. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS 2011), 114–121.
Knoblock, C. A. 1994. Automatically Generating Abstrac-
tions for Planning. Artificial Intelligence 68:243–302.
Krüger, N.; Geib, C.; Piater, J.; Petrick, R.; Steedman, M.;
Wörgötter, F.; Ude, A.; Asfour, T.; Kraft, D.; Omrčen, D.;
Agostini, A.; and Dillmann, R. 2011. Object-Action
Complexes: Grounded abstractions of sensory-motor pro-
cesses. Robotics and Autonomous Systems 59(10):740–757.
doi:10.1016/j.robot.2011.05.009.
Lewis, M. A., and Simó, L. S. 2001. Certain principles of
biomorphic robots. Autonomous Robots 11(3):221–226.
McDermott, D. 2000. The 1998 AI Planning Systems Com-
petition. AI Magazine 21(2):35–55.

Sahin, E.; Çakmak, M.; Doǧar, M. R.; Uǧur, E.; and Ücoluk,
G. 2007. To afford or not to afford: A new formalization of
affordances toward affordance-based robot control. Adap-
tive Behavior 15(4):447–472.
Steedman, M. 2002. Plans, affordances, and combinatory
grammar. Linguistics and Philosophy 25(5-6):723–753.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

24

A Privacy-preserving Model for the Multi-agent Propositional
Planning Problem

Andrea Bonisoli and Alfonso E. Gerevini and Alessandro Saetti and Ivan Serina
Università degli Studi di Brescia, email:{firstname.surname}@unibs.it

Abstract

Over the last years, the planning community has for-
malized several models and approaches to multi-agent
(MA) planning. One of the main motivations in MA
planning is that some or all agents have private knowl-
edge that cannot be communicated to other agents dur-
ing the planning process and the plan execution. In this
paper, we propose a model that preserves the privacy of
the involved agents, and discuss how the MA-A∗ search
algorithm can be adapted to implement our model.

Introduction
Over the last years, the planning community has for-
malized several models and approaches to multi-agent
(MA) planning (e.g., (Brafman, & Carmel 2008; Nissim,
& Brafman 2012; Torreño, Onaindia, & Sapena 2012)).
One of the main motivations in MA planning is that
some or all agents have private knowledge that cannot
be communicated to other agents during the planning
process and the plan execution.

The most known model for the MA planning task
is MA-STRIPS (Brafman, & Carmel 2008). In MA-
STRIPS, the set of the executable actions is partitioned
into n sets {Ai}ni=1, such that Ai is the set of actions
the i-th agent is capable of executing. A proposition
is considered private if it is required and affected only
by the actions of a single agent. All other propositions
are considered public. An action is private if all its pre-
conditions and effects are private; the action is consid-
ered public, otherwise. An efficient approach (Nissim,
& Brafman 2012) using MA-STRIPS is the multi-agent
(distributed) formulation of A∗ (MA-A∗). In MA-A∗,
no agent has complete knowledge of the search state,
and hence during the A∗ search each agent sends a mes-
sage to the other agents including a representation of
the state under expansion, where, for sake of the agents’
privacy, private propositions are encrypted.

The approach described in (Nissim, & Brafman
2012), which uses the MA-STRIPS formulation of MA
planning, does not fully guarantee the privacy of the
involved agents when: at least one public proposition
is confidential (i.e., it should be kept hidden from some
agent), or the identity/existence of at least one agent is
confidential, and hence only certain authorized agents

Figure 1: An instance of a multi-agent scenario.

can communicate with her. For instance, consider the
scenario depicted in Figure 1. In this scenario, four
agents act: the retailer (Re), the courier (Co), the re-
tailer’s supplier (Su), and the retailer’s customer (Cu).
Assume that customer Cu needs to have goods G that
are not currently in the retailer’s shop (Sh). Retailer
Re sends a purchase order to its supplier Su for the
shipment of a package P containing G. Express de-
livery courier Co moves package P from the supplier’s
factory (F) to the retailer’s shop. Assume also that
(pack G P F) is an action of agent Su; (load T P F) is
an action of agent Co; (unpack G P Sh) is an action of
agent Cu; (in G P) and (loadable P) are two (positive)
effects of (pack G P F); (loadable P) is a precondition
of (load T P F); and, finally, (in G P) and (at P Sh)
are two preconditions of (unpack G P Sh). Essentially,
actions (pack G P F), (load T P F), and (unpack G P Sh)
represent, respectively, that at factory F supplier Su
packs goods G in package P, making package P load-
able, courier Co loads package P from F into truck T,
and, at shop Sh, customer Cu unpacks goods G from
package P.

According to the approach described in (Nissim, &
Brafman 2012), for this scenario propositions (in G P)
and (loadable P) are public; hence, when agent sup-
plier Su communicates the state obtained by executing
its action (pack G P F) to agent courier Co, proposition
(in G P) is not encrypted. The negative effect of this in-
formation exchange is that the privacy of the customer
is violated, as it makes the courier know the content
of package P. In order to preserve the privacy of the
involved agents, the supplier should not communicate
(in G P) to the courier. Moreover, while proposition
(in G P) needs to be somewhat communicated to the
retailer’s customer so that the customer will be able
to unpack goods G from package P, there should be no

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

25

(direct) contact between the retailer’s supplier and the
retailer’s customer.

In MA-STRIPS, the privacy of the involved agents
may also be violated by the definitions of the initial
state and the set of problem goals, because these defini-
tions are shared among the involved agents. As for our
scenario, using MA-STRIPS, every agent knows that
initially goods G and package P are at the supplier’s
factory, and that customer needs to have goods G. This
violates the privacy of the retailer’s supplier and the
retailer’s customer.

In this paper, we propose a model that preserves the
privacy of the involved agents, and, discuss how the
MA-A∗ search algorithm can be adapted to implement
our model.

The model of MA planning that is most similar to the
one we propose here is the model adopted by MAP-
POP (Torreño, Onaindia, & Sapena 2012). MAP-
POP is a multi-agent planning system searching the
space of partial-order plans by an A∗ POP algorithm.
Each agent selects a (partial) plan π from an open list,
chooses an open (sub)goal g from the selected plan,
computes a set of plans refining π to achieve g, sends
the refined plans to every other agent, and receives the
plans refined by other agents. This exchange of (par-
tial) plans can imply some violation of the agents’ pri-
vacy. For the example of MA planning described above,
according to the MAP-POP’s approach, the customer
agent computes the (partial) plan consisting of action
(unpack G P Sh) in order to refine the initial empty
plan for achieving the customer’s goal, and sends the
refined plan to the supplier agent (by occluding pre-
condition (at P Sh)). However, as discussed before, for
this scenario no contact between the retailer’s supplier
and the retailer’s customer should be established. Our
model of MA planning avoids the global broadcasting
and, by restricting message passing to certain agents,
guarantees that, even when the plan is executed, the
identity/existence of certain agents remains confiden-
tial.

Privacy-preserving Multi-agent
Planning

A privacy-preserving multi-agent planning problem for
a set of agents Σ = {αi}ni=1 is a tuple 〈{Ai}ni=1, {Fi}ni=1,
{Ii}ni=1, {Gi}ni=i, {Mi}ni=1〉 where:

• Ai is the set of actions agent αi is capable of execut-
ing, and such that for every pair of agents αi and αj ,
Ai ∩Aj = ∅;

• Fi is the set of relevant facts for agent αi;

• Ii ⊆ Fi is the portion of the initial state relevant for
αi;

• Gi ⊆ Fi is the set of goals for agent αi;

• Mi ⊆ Fi×Σ is the set of messages agent αi can send
to the other agents.

Facts and actions are literals and pair 〈Pre,Eff〉, respec-
tively, where Pre is a set of positive literals and Eff is a
set of positive or negative literals. Let X+/X− denote
the positive/negative literals in set X, respectively. Let
G be the graph induced by {Mi}ni=1, where nodes rep-
resent agents, and edges represent possible information
exchanges between agents; i.e., an edge from node αi to
node αj labelled p represents the agent αi’s capability of
sending p to agent αj . In order to have well-defined sets
{Mi}ni=1, ∀αi, αj ∈ Σ, ∀p s.t. p ∈ Fi and p ∈ Fj , there
should be a path in G from the node representing αi to
the node representing αj formed by edges labelled p, if
p ∈ Ii, or ∃a ∈ Ai ·p ∈ Eff+(a), or ∃a ∈ Ai ·p ∈ Eff−(a).

A plan for a multi-agent planning problem is a set
{πi}ni=1 of n single-agent plans. Each single agent plan
is a sequence of happenings. Each happening of agent
αi consists of a (possibly empty) set of actions of αi, and
a (possibly empty) set of exogenous events. Exogenous
events are facts that become true/false because of the
execution of actions of other agents; in this sense, these
events cannot be controlled by agent αi. Formally, πi =
〈h1i , . . . , hli〉, h

j
i = 〈Aj

i , E
j
i 〉, A

j
i ⊆ Ai, E

j
i ⊆

⋃
k Fk, for

i = 1 . . . n, j = 1 . . . l, k ∈ {1, . . . , i− 1, i+ 1 . . . , n}.
The execution of plan πi generates a state trajectory,
〈s0i , s1i , . . . , sli〉, where s0i = Ii, and a sequence of mes-
sages, 〈m1

i , . . . ,m
l
i〉, each of which is a set of literals.

At planning step j agent αi sends literal p/¬p if either
αi executes an action that makes p true/false or αi re-
ceives the message that lets the agent know p becoming
true/false. In this latter case, αi forwards the received
message p/¬p to the agents it is connected to. For every
planning step, the forwarding is repeated n − 1 times
so that, if sets {Mi}ni=1 are well-defined, every agent
αk such that p ∈ Fk is advised that p becomes true or
false (the length of the shortest path between any pair
of nodes in the graph induced by {Mi}ni=1 is at most
n− 1).

Formally, state sji and message mj
i are defined as fol-

lows, for j = 1 . . . l and k = 1 . . . i− 1, i+ 1 . . . n.

sji = sj−1i ∪
⋃

a∈Aj
i

Eff+(a) ∪ E+j
i \

⋃
a∈Aj

i

Eff−(a) \ E−j
i ;

mj
i =

⋃
k

sm+j
i→k(n− 1) ∪

⋃
k

sm−j
i→k(n− 1), with

sm+j
i→k(t) =

{
〈p, αk〉 | 〈p, αk〉 ∈Mi,

p ∈
⋃

a∈Aj
i

Eff+(a) ∪ rm+j
i (t− 1)

}
,

sm−j
i→k(t) =

{
〈¬p, αk〉 | 〈p, αk〉 ∈Mi,

p ∈
⋃

a∈Aj
i

Eff−(a) ∪ rm−j
i (t− 1)

}
,

rm+j
i (t) =

{
p | 〈p, αi〉 ∈

⋃
k

sm+j
k→i(t)

}
,

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

26

(loadable P)

Re CuCoSu
(at P F) (at P Sh)

(loadable P)

(loadable P)
(at P F)

(at P Sh)

(empty P)
(loadable P)

(empty P)
(in G P)

(in G P)

Figure 2: The graph induced by {Mi}ni=1 for the multi-
agent scenario of Figure 1.

rm−j
i (t) =

{
p | 〈¬p, αi〉 ∈

⋃
k

sm−j
k→i(t)

}
,

rm+j
i (0) = rm−j

i (0) = ∅.

Intuitively, for planning step j, sm+j
i→k(t)/sm−j

i→k(t)
is the set of positive/negative literals that at the t-th
forwarding step (t = 1 . . . n−1) agent αi sends to agent

αk; rm+j
i (t)/rm−j

i (t) is the set of positive/negative lit-
erals that at the t-th forwarding step agent αi receives.
Note that propositional planning assumes that at every
planning step the execution of actions is instantaneous,
and hence the information exchanges also happens in-
stantaneously.

We say that the single-agent plan πi is consistent if
the following conditions hold for j = 1 . . . l and t =
1 . . . n− 1:

(1) E+j
i =

⋃
t rm+j

i (t), E−j
i =

⋃
t rm−j

i (t);

(2) ∀a, b ∈ Aj
i · Pre(a) ∩ Eff−(b) = Pre(b) ∩ Eff−(a) = ∅;

(3) ∀a, b ∈ Aj
i ·Eff+(a)∩Eff−(b) = Eff+(b)∩Eff−(a) = ∅;

(4) ∀a ∈ Aj
i ,∀e ∈ E−j

i ·Pre(a)∩ e = ∅ = Eff+(a)∩ e = ∅.

Basically, (1) asserts that at planning step j all the
exogenous events for agent αi are the positive/negative
literals αi receives during the information exchange, i.e.,
(1) guarantees that these events are generated by some
other agent; (2) and (3) assert that at planning step
j agent αi executes no pair of mutually exclusive ac-
tions; finally, (4) asserts that at planning step j agent
αi executes no action that is mutex with some action
executed by other agents.

Let 〈s0i , s1i , . . . , sli〉 be the state trajectory gener-
ated by single-agent plan πi. Plan πi is executable if
Pre(a) ⊆ sj−1i , ∀a ∈ Aj

i , j = 1 . . . l. Plan πi is valid
for agent αi if it is executable, consistent, and achieves
the goals of agent αi, i.e., Gi ⊆ sli. A multi-agent
plan {πi}ni=1 is a solution of the multi-agent privacy-
preserving planning task if single-agent plan πi is valid
for agent αi, for i = 1 . . . n.

The main difference with existing models to multi-
agent planning, like (Torreño, Onaindia, & Sapena
2012), is related to sets {Mi}ni=1 and the purpose for
which agents use them. Essentially, Mi determines the
messages agent αi can generate during the execution of
its plan, that can be sent to other agents without loss
of privacy. Figure 2 shows an example of the graph in-
duced by {Mi}ni=1 for the multi-agent scenario of Figure
1. E.g., 〈(in G P), Re〉 ∈ MSu, and 〈(in G P), Cu〉 ∈ MRe.
Therefore, when agent supplier Su packs goods G into
package P, Su communicates that G is in P to agent
retailer Re; when Re receives this communication, Re
sends it to agent customer Cu, so that courier Co has no
access to message (in G P), and there is no direct con-
tact between the retailer’s seller and the retailer’s cus-
tomer. A solution multi-agent plan is {πSu, πCo, πRe, πCu}
with:

πSu = 〈((pack G P F), ∅), (∅, {¬(at P F)}), (∅, ∅), (∅, ∅),
(∅, {¬(loadable P), (empty P),¬(in G P)})〉

πCo = 〈(∅, {(loadable P)}), ((load T P F), ∅),
((move T F Sh), ∅), ((unload T P Sh), ∅),

(∅, {¬(loadableP)})〉

πRe = 〈(∅, {(loadable P),¬(empty P), (in G P)})
(∅, ∅), (∅, ∅), (∅, {(at P Sh)}),

(∅, {¬(loadable P), (empty P),¬(in G P)})〉

πCu = 〈(∅, {(loadable P),¬(empty P), (in G P)})
(∅, ∅), (∅, ∅), (∅, {(at P Sh)}),

((unpack G P Sh), ∅).〉

In the rest of the paper, we describe how MA-A∗

(Nissim, & Brafman 2012) can be adapted to handle our
problem model. Briefly, in MA-A∗ each agent considers
a separate search space, since each agent maintains its
own open list and, when an agent expands a state s
from its open list, the agent uses its own actions. The
open search states that are relevant to different agents
are shared, i.e., when s is expanded each agent sends to
the others a representation of s obtained by encrypting
private propositions.

In order to preserve the privacy according to
{Mi}ni=1, each agent αi generates its own key that will
be used to encrypt every proposition in Fi except those
that αi sends to or receives from other agents. The
agents that are capable of communicating proposition
p initially exchange a (shared) key to encrypt p.

At the beginning, each agent αi constructs its own
(partially encrypted) description I ′i of the initial global
state of the MA scenario, and αi sets I ′i to Ii. For
each agent αk αi is capable to communicate with, αi

encrypts the portion of I ′i formed by all propositions
p ∈ Fi such that 〈p, αk〉 6∈Mi. Specifically, αi encrypts
p by using the encryption key of p, if it exists; while αi

encrypts p by using its own encryption key, otherwise.
Then, αi sends the resulting state to αk. When agent αi

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

27

receives a description of the initial state, αi decrypts the
portion of the state formed by the (encrypted) proposi-
tions in Fi and computes the union between the result-
ing state and I ′i. If such a state I ′′i is different from I ′i,
agent αi sets I ′i to I ′′i and, for each agent αk αi is capa-
ble to communicate with, αi sends the description of I ′i
to αk as described before. This procedure is repeated
until, for every agent αi, I

′
i does not change anymore.

Similarly, subsequently each agent constructs its own
(partially encrypted) description G′i of the initial global
set of goals of the MA scenario.

Then, each agents αi performs the MA-A∗ proce-
dure from initial state I ′i to achieve the goals G′i. The
important difference w.r.t. the procedure described in
(Nissim, & Brafman 2012) concerns the information ex-
change among agents. The exchanged messages still
include (partially encrypted) description of the world
state, but the encrypted propositions of these messages
are different. Specifically, when agent αi expands a
state, for every other agent αk αi can communicate
with, agent αi encrypts the portion of the state formed
by every proposition p such that 〈p, αk〉 6∈Mi by using
the encryption key of p, if exists, or its own encryption
key, otherwise. Then, αi sends the resulting state to αk.
Note that αi communicates not only proposition p to
agent αk: agents exchange the complete representation
of the search state that can be partially encrypted.

After agent αi extracts the best state s from open
list and generates the successors of s by applying its
own actions that are executable from s, αi has to cal-
culate the h-value of every generated successor state.
The heuristic value computed using only the actions of
agent αi can often be inaccurate. In a MA scenario,
accurate heuristics can be computed in a distributed
way. The drawback of this method is that the com-
putation of the heuristic value can require several in-
formation exchanges, and becomes a bottleneck of the
search procedure (Stolba, & Komenda 2013). An alter-
native way for computing accurate heuristics is using
a set of actions encrypted according to sets {Mi}ni=1.
Basically, initially, each agent αi sends an encrypted
representation of its own actions to every agent αk αi

can communicate with. Specifically, for every action a
of αi, αi encrypts the name of a using its own encryp-
tion key, encrypts every precondition/effect p of a such
that 〈p, αk〉 6∈ Mi by using the encryption key of p, if
exists, or its own encryption key, otherwise. This infor-
mation exchange has the potential disadvantage that
an agent could infer some private information from the
encrypted representation of the actions of other agents.
Whether and how this inference, which may depend on
the particular application domain and planning prob-
lem, is possible deserves further investigation.

Conclusion
In this paper, we have presented a model of the multi-
agent planning task that preserves the agents’ privacy,
and we have briefly described how the MA-A∗ proce-
dure can be adapted to implement the proposed model.

Ongoing work includes the implementation of our ver-
sion of MA-A∗, the study of new heuristics and other
algorithms for planning with our model.

Appendix: Encoding of a MA privacy
preserving planning task

In this appendix, we show the PDDL encoding of
our running example. The agent communication con-
straints for their information exchange are specified ac-
cording to the following BNF grammar:

<agent-def> ::= (:agent <agent>)

<comm-def> ::= (:communications <comm-list>)

<comm-list> ::= (to <agent> <atomic formula>)

<comm-list> ::= (to <agent> <atomic formula>) <comm-list>

<agent> ::= <name>

<atomic formula> ::= (<predicate> <name>*)

Supplier
(define (domain example)

(:requirements :typing)

(:agent supplier)

(:types location agent locatable

goods package - locatable)

(:predicates

(at ?o - locatable ?l - location)

(in ?g - goods ?p - package)

(empty ?p - package)

(loadable ?p - package))

(:action PACK

:parameters (?g - goods ?p - package ?l - location)

:precondition (and (at ?p ?l) (at ?g ?l) (empty ?p))

:effect (and (not (at ?g ?l)) (in ?g ?p)

(not (empty ?p)) (loadable ?p))))

(define (problem business1)

(:domain Business)

(:agent Supplier)

(:objects

Supplier Retailer - agent

G - goods

P - package

Factory - location)

(:init (at P Factory) (at G Factory) (empty P))

(:communications

(to Retailer (in G P))

(to Retailer (empty P))

(to Retailer (loadable P))

(to Courier (loadable P))

(to Courier (at P F))))

Courier
(define (domain example)

(:requirements :typing)

(:types location agent locatable

goods package truck - locatable)

(:agent Courier)

(:predicates

(at ?o - locatable ?l - location)

(loadable ?p - package)

(in ?p - package ?t - truck))

(:action LOAD

:parameters (?t - truck ?p - package ?l - location)

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

28

:precondition (and (at ?t ?l) (at ?p ?l)

(loadable ?p))

:effect (and (not (at ?p ?l)) (in ?p ?t)))

(:action DRIVE

:parameters (?t - truck ?l1 - location ?l2 - location)

:precondition (and (at ?t ?l1))

:effect (and (not (at ?t ?l1)) (at ?t ?l2)))

(:action UNLOAD

:parameters (?t - truck ?p - package ?l - location)

:precondition (and (in ?p ?t) (at ?t ?l))

:effect (and (not (in ?p ?t)) (at ?p ?l))))

(define (problem business1)

(:domain Business)

(:agent Courier)

(:objects

Supplier Retailer - agent

P - package

Factory Shop - location

T - truck)

(:init (at P Factory) (at T Factory))

(:communications

(to Retailer (at P Shop))

(to Supplier (at P Factory))))

Customer

(define (domain example)

(:requirements :typing)

(:agent customer)

(:types location agent locatable

goods package - locatable)

(:predicates

(at ?o - locatable ?l - location)

(in ?g - goods ?p - package)

(empty ?p - package)

(loadable ?p - package))

(:action UNPACK

:parameters (?g - goods ?p - package ?l - location)

:precondition (and (at ?p ?l) (in ?g ?p))

:effect (and (not (in ?g ?p)) (at ?g ?l)

(not (loadable ?p)) (empty ?p))))

(define (problem business1)

(:domain Business)

(:agent Customer)

(:objects

Retailer - agent

G - goods

P - package

Shop - location)

(:goal (and (at G Shop)))

(:communications

(to Retailer (loadable P))

(to Retailer (empty P))

(to Retailer (in G P))))

Retailer

(define (domain example)

(:requirements :typing)

(:agent Retailer)

(:types location agent locatable

goods package - locatable)

(:predicates

(at ?p - package ?l - location)

(in ?g - goods ?p - package)

(empty ?p - package)

(loadable ?p - package))

(define (problem business1)

(:domain Business)

(:agent Retailer)

(:objects

Supplier Courier Customer - agent

P - package

G - goods

Shop - location)

(:communications

(to Customer (in G P))

(to Customer (empty P))

(to Customer (loadable P))

(to Supplier (in G P))

(to Supplier (empty P))

(to Supplier (loadable P))

(to Courier (loadable P))))

References
Ronen I. Brafman and Carmel Domshlak, ‘From one
to many: Planning for loosely coupled multi-agent sys-
tems’, in Proc. of the 18th ICAPS, (2008).

Raz Nissim and Ronen I. Brafman, ‘Multi-agent A* for
parallel and distributed systems’, in Proc. of the 11th
AAMAS, (2012).

Michal Stolba and Antońın Komenda, ‘Fast-Forward
Heuristic for Multiagent Planning’, in Proc. of the
ICAPS-13 Workshop on Distributed and Multi-agent
Planning, (2013).

Alejandro Torreño, Eva Onaindia, and Óscar Sapena,
‘An approach to multi-agent planning with incomplete
information’, in Proc. of the 20th ECAI, (2012).

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

29

A Formal Analysis of Required Cooperation in Multi-agent Planning

Yu Zhang and Subbarao Kambhampati
School of Computing and Informatics

Arizona State University
Tempe, Arizona 85281 USA
{yzhan442,rao}@asu.edu

Abstract

Research on multi-agent planning has been popular in
recent years. While previous research has been moti-
vated by the understanding that, through cooperation,
multi-agent systems can achieve tasks that are unachiev-
able by single-agent systems, there are no formal char-
acteristics of situations where cooperation is required
to achieve a goal, thus warranting the application of
multi-agent systems. In this paper, we provide such a
formal discussion from the planning aspect. We first
show that determining whether there is required coop-
eration (RC) is intractable is general. Then, by dividing
the problems that require cooperation (referred to as RC
problems) into two classes – problems with heteroge-
neous and homogeneous agents, we aim to identify all
the conditions that can cause RC in these two classes.
We establish that when none of these identified con-
ditions hold, the problem is single-agent solvable. Fur-
thermore, with a few assumptions, we provide an upper
bound on the minimum number of agents required for
RC problems with homogeneous agents. This study not
only provides new insights into multi-agent planning,
but also has many applications. For example, in human-
robot teaming, when a robot cannot achieve a task, it
may be due to RC. In such cases, the human teammate
should be informed and, consequently, coordinate with
other available robots for a solution.

Introduction
A multi-agent planning (MAP) problem differs from a single
agent planning (SAP) problem in that more than one agent
is used in planning. While a (non-temporal) MAP problem
can be compiled into a SAP problem by considering agents
as resources, the search space grows exponentially with the
number of such resources. Given that a SAP problem with
a single such resource is in general PSPACE-complete (By-
lander 1991), running a single planner to solve MAP is in-
efficient. Hence, previous research has generally agreed that
agents should be considered as separate entities for planning,
and thus has been mainly concentrated on how to explore
the interactions between the agents (i.e., loosely-coupled vs.
tightly-coupled) to reduce the search space, and how to per-
form the search more efficiently in a distributed fashion.

However, there has been little discussion on whether mul-
tiple agents are required for a planning problem in the first
place. If a single agent is sufficient, solving the problem with
multiple agents becomes an efficiency matter, e.g., shorten-
ing the makespan of the plan. Problems of this nature can
be solved in two separate steps: planning with a single agent
and optimizing with multiple agents. In such a way, the dif-
ficulty of finding a solution may potentially be reduced.

In this paper, we aim to answer the following questions: 1)
Given a problem with a set of agents, what are the conditions
that make cooperation between multiple agents required to
solve the problem; 2) How to determine the minimum num-
ber of agents required for the problem. We show that provid-
ing the exact answers is intractable. Instead, we attempt to
provide approximate answers. To facilitate our analysis, we
first divide MAP problems into two classes – MAP prob-
lems with heterogeneous agents, and MAP problems with
homogeneous agents. Consequently, the MAP problems that
require cooperation (referred to as RC problems) are also di-
vided into two classes – type-1 RC (RC with heterogeneous
agents) and type-2 RC (RC with homogeneous agents) prob-
lems. Figure 1 shows these divisions.

For the two classes of RC problems, we aim to identify
all the conditions that can cause RC. Figure 2 presents these
conditions and their relationships to the two classes of RC
problems. We establish that at least one of these conditions
must be present in order to have RC. Furthermore, we show
that most of the problems in common planning domains be-
long to type-1 RC, which is identified by three conditions
in the problem formulation that define the heterogeneity of
agents; most of the problems in type-1 RC can be solved by a
super agent. For type-2 RC, we show that RC is only caused
when the state space is not traversable or when there are
causal loops in the causal graph. We provide upper bounds
for the answer of the second question for type-2 RC prob-
lems, based on different relaxations of the conditions that
cause RC, which are associated with, for example, how cer-
tain causal loops can be broken in the causal graph.

The answers to these questions not only enrich our funda-
mental understanding of MAP, but also have many applica-
tions. For example, in a human robot teaming scenario, a hu-
man may be remotely working with multiple robots. When
a robot is assigned a task that it cannot achieve, it is useful
to determine whether the failure is due to the fact that the

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

30

Figure 1: Division of MAP problems into MAP with hetero-
geneous and homogeneous agents. Consequently, RC prob-
lems are also divided into two classes: type-1 RC involves
RC problems with heterogeneous agents and type-2 RC in-
volves RC problems with homogeneous agents.

Figure 2: Causes of required cooperation in RC problems.

task is simply unachievable or the task requires more than
one robot. In the latter case, it is useful then to determine
how many extra robots must be sent to help. The answers
can also be applied to multi-robot systems, and are useful in
general to any multi-agent systems in which the team com-
positions can dynamically change (e.g., when the team must
be divided to solve different problems).

The rest of the paper is organized as follows. After a re-
view of the related literature, we start the discussion of re-
quired cooperation for MAP, in which we answer the above
questions in an orderly fashion. We conclude afterward.

Related Work
One of the earlier works on MAP is the PGP framework
by (Durfee and Lesser 1991; Decker and Lesser 1992). Re-
cently, the MAP problem has started to receive an increas-
ing amount of attention. Most of these recent research works
consider agents separately for planning, and have been con-
centrated on how to explore the structure of agent interac-
tions to reduce the search space, as well as solving the prob-
lem in a distributed fashion. (Nissim, Brafman, and Domsh-
lak 2010) provide a search method by compiling MAP into a
constraint satisfaction problem (CSP), and then using a dis-
tributed CSP framework to solve it. The MAP formulation is
based on an extension of the STRIPS language called MA-
STRIPS (Brafman and Domshlak 2008). In MA-STRIPS,
actions are categorized into public and private actions. Pub-
lic actions can influence other agents while private actions
cannot. In this way, it is shown by (Brafman and Domsh-

lak 2008) that the search complexity of MAP is exponen-
tial in the tree-width of the agent interaction graph. Due to
the poor performance of DisCSP based approaches, (Nis-
sim and Brafman 2012) apply the A∗ search algorithm in a
distributed manner, which represents one of the state-of-art
MAP solvers. (Torreno, Onaindia, and Sapena 2012) pro-
pose a POP-based distributed planning framework for MAP,
which uses a cooperative refinement planning technique that
can handle planning with any level of coupling between the
agents. Each agent at any step proposes a refinement step
to improve the current group plan. Their approach does not
assume complete information. A similar paradigm is taken
by (Kvarnstrom 2011). An iterative best-response planning
and plan improvement technique using standard SAP algo-
rithms is provided by (Jonsson and Rovatsos 2011), which
considers the previous singe agent plans as constraints to be
satisfied while the following agents perform planning.

Given a problem, all of these MAP approaches solve it
using the given set of agents, without first asking whether
multiple agents are really required, let alone what is the min-
imum number of agents required. Answers to these ques-
tions not only separate MAP from SAP in a fundamental
way, but also have real world applications when the team
compositions can dynamically change. In this paper, we
analyze these questions using the SAS+ formalism (Back-
strom and Nebel 1996) with causal graph (Knoblock 1994;
Helmert 2006), which is often discussed in the context
of factored planning (Bacchus and Yang 1993; Amir and
Engelhardt 2003; Brafman 2006; Brafman and Domshlak
2013). The causal graph captures the interaction between
different variables; intuitively, it can also capture the interac-
tions between agents since agents affect each other through
these variables. In fact, (Brafman and Domshlak 2013) men-
tion the causal graph’s relation to the agent interaction graph
when each variable is associated with a single agent.

Multi-agent Planning (MAP)
In this paper, we start the analysis of RC in the simplest
scenarios – with instantaneous actions and sequential exe-
cution. The possibility of RC can only increase when we
extend the model to the temporal domain, in which concur-
rent or synchronous actions must be considered. We develop
our analysis of required cooperation for MAP based on the
SAS+ formalism (Backstrom and Nebel 1996).

Background
Definition 1. A SAS+ problem is given by a tuple P =
〈V,A, I,G〉, where:
• V = {v1, ..., vn} is a set of state variables. Each variable
vi ∈ V is associated with its domainD(vi), which is used
to define an extended domainD(vi)

+ = D(vi)∪u, where
u denotes the undefined value. The state space is defined
as S+

V = D(v1)+× ...×D(vn)+; s[vi] denotes the value
of the variable vi in a state s ∈ S+

V .
• A = {a1, ..., am} is a finite set of actions. Each ac-

tion aj is a tuple 〈pre(aj), post(aj), prv(aj)〉, where
pre(aj), post(aj), prv(aj) ⊆ S+

V are the preconditions,
postconditions and prevail conditions of aj , respectively.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

31

We also use pre(aj)[vi], post(aj)[vi], prv(aj)[vi] to de-
note the corresponding values of vi.
• I and G denote the initial and goal state, respectively.

A plan in SAS+ is often defined to be a total-order plan:
Definition 2. A plan π in SAS+ is a sequence of actions
π = 〈a1, ..., al〉.

Given two states s1, s2 ∈ S+
V , (s1⊕ s2) denotes that s1 is

updated by s2, and is subject to the following for all vi ∈ V :

(s1 ⊕ s2)[vi] =

{
s2[vi] if s2[vi] 6= u,
s1[vi] otherwise. (1)

Given a variable with two values x, y in which one of
them is u, x t y is defined to be the other value. t can be
extended to two states s1 and s2, such that s1 t s2[vi] =
s1[vi] t s2[vi] for all vi ∈ V . s1 v s2 if and only if
∀vi ∈ V, s1[vi] = u or s1[vi] = s2[vi]. The state result-
ing from executing a plan π can then be defined recursively
using a re operator as follows:

re(s, 〈π; o〉) =

{
re(s, 〈π〉)⊕ post(o)
if pre(o) t prv(o) v re(s, 〈π〉),
s otherwise.

(2)

in which re(s, 〈〉) = s, o is an action, and ; is the concate-
nation operator.

Extension to MAP
To extend the previous formalism to MAP without losing
generality, we minimally modify the definitions.
Definition 3. A SAS+ MAP problem is given by a tuple Π =
〈V,Φ, I, G〉, where:
• Φ = {φg} is the set of agents; each agent φg is associated

with a set of actions A(φg).
Definition 4. A plan πMAP in MAP is a sequence of agent-
action pairs πMAP = 〈(a1, φ(a1)), ..., (aL, φ(aL))〉, in
which φ(a) returns the agent for the action a and L is the
length of the plan.

We do not need to consider concurrency or synchroniza-
tion given that actions are assumed to be instantaneous.

Required Cooperation for MAP
Next, we formally define the notion of required cooperation
and other useful terms that are used in the following anal-
yses. We assume throughout the paper that more than one
agent is considered (i.e., |Φ| > 1).

Required Cooperation
Definition 5 (k-agent Solvable). Given a MAP problem
P = 〈V,Φ, I, G〉 (|Φ| ≥ k), the problem is k-agent solvable
if ∃Φk ⊆ Φ (|Φk| = k), such that 〈V,Φk, I, G〉 is solvable.
Definition 6 (Required Cooperation (RC)). Given a solv-
able MAP problem P = 〈V,Φ, I, G〉, there is required co-
operation if it is not 1-agent solvable.

In other words, given a solvable MAP problem that satis-
fies RC, any plan must involve more than one agent.

Lemma 1. Given a solvable MAP problem P =
〈V,Φ, I, G〉, determining whether it satisfies RC is PSPACE-
complete.

Proof. First, it is not difficult to show that the RC deci-
sion problem belongs to PSPACE, since we only need to
verify that P = 〈V, φ, I,G〉 is unsolvable for all φ ∈ Φ,
given that the initial problem is known to be solvable. Then,
we complete the proof by reducing from the PLANSAT
problem, which is PSPACE-complete in general (Bylander
1991). Given a PLANSAT problem (with a single agent), the
idea is that we can introduce a second agent with only one
action. This action directly achieves the goal but requires
an action (with all preconditions satisfied in the initial state)
of the initial agent to provide a precondition that is not ini-
tially satisfied. We know that this constructed MAP problem
is solvable. If the algorithm for the RC decision problem
returns that cooperation is required for this MAP problem,
we know that the original PLANSAT problem is unsolvable;
otherwise, it is solvable.

Definition 7 (Minimally k-agent Solvable). Given a solv-
able MAP problem P = 〈V,Φ, I, G〉 (|Φ| ≥ k), it is min-
imally k-agent solvable if it is k-agent solvable, and not
(k−1)-agent solvable.
Corollary 1. Given a solvable MAP problem P =
〈V,Φ, I, G〉, determining the minimally solvable k (k ≤ |Φ|)
is PSPACE-complete.

Although directly querying for RC is intractable, we aim
to identify all the conditions (which can be quickly checked)
that can cause RC. We first define a few terms that are used
in the following discussions.

We note that the reference of agent is explicit in the ac-
tion (i.e., ground operator) parameters. Although actions are
unique for each agent, two different agents may be capable
of executing actions that are instantiated from the same op-
erator, with all other parameters being identical. To identify
such cases, we introduce the notion of action signature.
Definition 8 (Action Signature (AS)). An action signature is
an action with the reference of the executing agent replaced
by a global EX-AG symbol.

For example, an action signature in the IPC logistics do-
main is drive(EX-AG, pgh-po, pgh-airport). EX-AG is
a global symbol to denote the executing agent, which is not
used to distinguish between action signatures. We denote the
set of action signatures for φ ∈ Φ asAS(φ), which specifies
the capabilities of φ. Furthermore, we define the notion of
agent variable.
Definition 9 (Agent Variable (Agent Fluent)). A variable
(fluent) is an agent variable (fluent) if it is associated with
the reference of an agent.

Agent variables are used to specify agent state. For ex-
ample, location(truck-pgh) is an agent variable since it is
associated with an agent truck-pgh. We use Vφ ⊆ V to de-
note the set of agent variables that are associated with φ (i.e.,
variables that are present in the initial state or actions of φ).

Following this notation, we can rewrite a MAP problem
as P = 〈Vo∪VΦ,Φ, Io∪IΦ, Go∪GΦ〉, in which VΦ = {Vφ},

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

32

IΦ = {Iφ},GΦ = {Gφ}, Iφ = I∩Vφ andGφ = G∩Vφ. Vo
denotes the set of non-agent variables; Io and Go are the set
of non-agent variables in I and G, respectively. In this pa-
per, we assume that agents can only interact with each other
through non-agent variables (i.e., Vo). In other words, agent
variables contain one and only one reference of agent. As a
result, we have Vφ ∩ Vφ′ ≡ ∅ (φ 6= φ′). It seems to be possi-
ble to compile away exceptions by breaking agent variables
(with more than one reference of agent) into multiple vari-
ables and introducing non-agent variables to correlate them.
Definition 10 (Variable (Fluent) Signature (VS)). Given an
agent variable (fluent), its variable (fluent) signature is the
variable (fluent) with the reference of agent replaced by
EX-AG.

For example, location(truck-pgh) is an agent variable
for truck-pgh and its variable signature is location(EX-
AG). We denote the set of VSs for Vφ as V S(φ), and use
V S as an operator so that V S(v) returns the VS of a variable
v; this operator returns any non-agent variable unchanged.

Classes of RC
In the following discussion, we assume that the specifica-
tion of goal (i.e., G) in the MAP problems does not involve
agent variables (i.e., G ∩ Vφ = ∅ or Gφ = ∅), since we
are mostly interested in how to reach the desired world state
(i.e., specified in terms of Vo). As aforementioned, we divide
RC problems into two classes as shown in Figure 1. Type-
1 RC involves problems with heterogeneous agents; type-
2 RC involves problems with homogeneous agents. Next,
we formally define each class and discuss the causes of RC.
Throughout this paper, when we denote a condition as X, the
negated condition is denoted as N-X.

Type-1 RC (RC with Heterogeneous Agents)
Given a MAP problem P = 〈V,Φ, I, G〉, the heterogeneity
of agents can be characterized by the following conditions:

• Domain Heterogeneity (DH): ∃v ∈ Vφ and D(v) \
D(V ′) 6= ∅, in which V ′ = {v′|v′ ∈ Vφ′(φ

′ 6= φ) and
V S(v) = V S(v′)}.
• Variable Heterogeneity (VH): V S(φ) \ V S(Φ \ φ) 6= ∅.
• Capability Heterogeneity (CH): AS(φ) \AS(Φ \φ) 6= ∅.
Definition 11 (Type-1 RC). An RC problem belongs to type-
1 RC if at least one of DH, VH and CH is satisfied for an
agent.

The condition that requires at least one of DH, VH and
CH to be satisfied is denoted as DVC in Figure 1. It is worth
noting that when considering certain objects (e.g., truck and
plane in the logistics domain) as agents rather than as re-
sources, most of the RC problems in the IPC domains belong
to type-1 RC.

Causes of RC in Type-1
The most obvious condition for RC in type-1 RC problems
is due to the heterogeneity of agents. In the logistics
domain, for example, if any truck agent can only stay in
one city, the domains of the location variable for different

truck agents are different (DH). When there are pack-
ages that must be transferred between different locations
within cities, at least one truck agent for each city is
required (hence RC). In the rover domain, a rover that is
not equipped with a camera sensor would not be associ-
ated with the agent variable equipped for imaging.
When we need both equipped for imaging and
equipped for rock analysis, and no rovers are equipped
with the sensors for both (VH), we have RC. Note that VH
does not specify any requirement on the variable value (i.e.,
the state); however, when the domain of a variable contains
only a single value, e.g., equipped for imaging, we
assume in this paper that this variable is always defined in
a positive manner, e.g., expressing cans instead of cannots.
In the logistics domain, given that the truck agent cannot
fly (CH), when a package must be delivered from a city to
a non-airport location of another city, at least a truck and a
plane are required. Note that DH, VH and CH are closely
correlated.

However, note that 1) the presence of DVC in a solvable
MAP problem does not always cause RC, as shown in Figure
1; 2) the presence of DVC in a type-1 RC problem is not
always the cause of RC, as shown in Figure 2.

As an example for 1), when there is only one package to
be delivered from one location to another within the same
city, there is no need for a plane agent, even though we can
create a non-RC MAP problem with a plane and a truck
agent that satisfies CH (thus DVC).

As an example for 2), for navigating in a grid world, the
traversability of the world for all mobile agents can be re-
stricted based on edge connections, i.e., connected(a, b),
in which a and b are vertices in the grid. Suppose that we
have two packages to be delivered to locations b and c,
respectively, which are both initially at a. There are two
truck agents at a that can be used for delivery. However,
the paths from a to both b and c are one-way only (i.e.,
connected(a, b) = true and connected(b, a) = false).
Even if one of the truck agents uses gas and the other one
uses diesel, thus satisfying DVC, it is clear that RC in this
problem is not caused by the heterogeneity of agents.

Type-1 RC problems in which RC is caused by only DVC
can be solved by a super agent (defined below), which is
an agent that combines all the domain values, variable sig-
natures and capabilities (i.e., action signatures) of the other
agents. We refer to the subset of type-1 RC problems that
can be solved by a super agent as super-agent solvable, as
shown in Figure 2.
Definition 12 (Super Agent). A super agent is an agent φ∗
that satisfies:
• ∀v ∈ VΦ, ∃v∗ ∈ Vφ∗ , D(v∗) = D(V), in which V =
{v|v ∈ VΦ and V S(v∗) = V S(v)}.
• V S(φ∗) = V S(Φ).
• AS(φ∗) = AS(Φ).

It is not difficult to see that most problems in the IPC do-
mains are also super-agent solvable. For example, when we
have a truck-plane agent in the logistics domain that can both
fly (between airports of different cities) and drive (between
locations in the same cities), or when we have a rover that is

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

33

equipped with all sensors and can traverse all waypoints in
the rover domain.

From Figure 2, one may have already noticed that the con-
ditions that cause RC in type-2 problems may also cause RC
in type-1 problems (i.e., indicated by the mixed cause re-
gion in Figure 2). For example, the aforementioned example
for navigating in a grid world demonstrates that the initial
states (specified in terms of the values for variables) of dif-
ferent agents may cause RC in type-1 problems. Note that
the initial states of different agents cannot be combined as
for domain values, variable signatures and capabilities in a
super agent construction; however, the special cases when
the domains of variables contain only a single value (when
we discussed VH in Causes of RC in Type-1) can also be
considered as cases when RC is caused by the initial state.

Type-2 RC (RC with Homogeneous Agents)
Type-2 RC involves homogeneous agents:
Definition 13 (Type-2 RC). An RC problem belongs to type-
2 RC if it satisfies N-DVC (for all agents).

Definition 13 states that an RC problem belongs to type-2
RC when all the agents are homogeneous.

Type-2 RC Caused by Traversability
One condition that causes RC in type-2 RC problems is the
traversability of the state space of variables, which is re-
lated to the initial states of the agents and the world, as we
previously discussed. Since the traversability is associated
with the evolution of variable values, we use causal graphs
to perform the analysis.
Definition 14 (Causal Graph). Given a MAP problem P =
〈V,Φ, I, G〉, the causal graphG is a graph with directed and
undirected edges over the nodes V . For two nodes v and v′
(v 6= v′), a directed edge v → v′ is introduced if there exists
an action that updates v′ while having a prevail condition
associated with v. An undirected edge v− v′ is introduced if
there exists an action that updates both.

A typical example of a causal graph for an individual
agent is presented in Figure 3. For type-2 RC study, since
the agents are homogeneous, the causal graphs for all agents
are the same. Hence, we can use agent VSs to replace agent
variables; we refer to this modified causal graph for a single
agent in a type-2 RC problem as an individual causal graph
signature (ICGS). Next, we define the notions of closures
and traversable state space.
Definition 15 (Inner and Outer Closures (IC and OC)). An
inner closure (IC) in an ICGS is any set of variables for
which no other variables are connected to them with undi-
rected edges; an outer closure (OC) of an IC is the set of
nodes that have directed edges going into nodes in the IC.

In Figure 3, {v2, v3} and {v4} are examples of ICs. The
OC of {v2, v3} is {v1} and the OC of {v4} is {v3}.
Definition 16 (Traversable State Space (TSS)). An IC has a
traversable state space if and only if: given any two states of
this IC, denoted by s and s′, there exists a plan that connects
them, assuming that the state of the OC of this IC can be
changed freely within its state space.

Figure 3: Example of a causal graph (ICGS). Variables in
goal G are shown as bold-circle nodes and agent VSs are
shown as double-circle nodes.

In other words, an IC has a TSS if the traversal of its state
space is only dependent on the variables in its OC; this also
means that when the OC of an IC is empty, the state of the IC
can change freely. Note that static variables in the OC of an
IC can assume values that do not influence the traversability.
For example, the variables that are used to specify the con-
nectivity of vertices in a grid, e.g., connected(a, b), can be
assigned to be true or false; although the variables that are
assigned to be true cannot change their values to be false,
they do not influence the traversability of the grid world. In
such cases, the associated ICs are still considered to have a
TSS. An ICGS in which all ICs have TSSs is referred to as
being traversable.

Type-2 RC Caused by Causal Loops

However, even a solvable MAP problem that satisfies N-
DVC for all agents while having a traversable ICGS can still
satisfy RC. An example is presented below.

The goal of this problem is to steal a diamond from a
room, in which the diamond is secured, and place it in an-
other room. The diamond is protected by a stealth detection
system. If the diamond is taken, the system locks the door
of the room in which the diamond is kept, so that the insid-
ers cannot exit. There is a switch to override the detection
system but it is located outside of the room. This problem is
modeled as above, in which the value is immediately speci-
fied after each variable. It is not difficult to see that the above
problem cannot be solved with a single agent.

Initial State:
location(agent1) room1
location(agent2) room1
location(diamond1) room1
doorLocked(room1) false
location(switch1) room2

Goal State:
location(diamond1) room2

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

34

Operators:
WalkThrough(agent, door, fromRoom, toRoom):
prv: doorLocked(door) false
pre: location(agent) fromRoom
post: location(agent) toRoom

Steal(agent, diamond, room, door):
prv: location(agent) room
pre: doorLocked(door) u
pre: location(diamond) room
post: doorLocked(door) true
post: location(diamond) agent

Switch(agent, switch, room, door):
prv: location(switch) room
prv: location(agent) room
pre: doorLocked(door) u
post: doorLocked(door) false

P lace(agent, diamond, room):
prv: location(agent) room
pre: location(diamond) agent
post: location(diamond) room

Again, we construct the ICGS for this type-2 RC exam-
ple, as shown in Figure 4. One key observation is that a
single agent cannot address this problem due to the fact
that WalkThrough with the diamond to room2 requires
doorLocked(door1) = false, which is violated by the
Steal action to obtain the diamond in the first place. This
is clearly related to the loops in Figure 4. In particular, we
define the notion of causal loops.

Definition 17 (Causal Loop (CL)). A causal loop in the
ICGS is a directed loop that contains at least one directed
edge.

Note that undirected edges can be considered as edges in
either direction but at least one directed edge must be present
in a causal loop.

Gap between MAP and Single Agent Planning
We now establish in the following theorem that when none
of the previously discussed conditions (for both type-1 and
type-2 RC) hold in a MAP problem, this problem can be
solved by a single agent.

Theorem 1. Given a solvable MAP problem that satisfies
N-DVC for all agents, and for which the ICGS is traversable
and contains no causal loops, any single agent can also
achieve the goal.

Proof. Given no causal loops, the directed edges in the
ICGS divides the variables into levels, in which: 1) vari-
ables at each level do not appear in other levels; 2) higher
level variables are connected to lower level variables with
only directed edges going from higher levels to lower lev-
els; 3) variables within each level are either not connected
or connected with undirected edges. For example, the vari-
ables in Figure 3 are divided into the following levels (from
high to low): {v1}, {v2, v3}, {v4}, {v5, v7}, {v6, v8}. Note
that this division is not unique.

Figure 4: ICGS for the diamond example that illustrates the
second condition that causes RC in type-2 RC problems. Ac-
tions (without parameters) are labeled along with their cor-
responding edges. The variables inG are shown as bold-box
nodes and agent VSs are shown as dashed-box nodes.

Next, we prove the result by induction based on the level.
Suppose that the ICGS has k levels and we have the fol-
lowing holds: given any trajectory of states for all variables,
there exists a plan whose execution traces of states include
this trajectory in the correct order.

When the ICGS has k + 1 levels: given any state s for all
variables from level 1 to k + 1, we know from the assump-
tion that the ICGS is traversable that there exists a plan that
can update the variables at the k+ 1 level from their current
states to the corresponding states in s. This plan (denoted
by π), meanwhile, requires the freedom to change the states
of variables from level 1 to k. Given the induction assump-
tion, we know that we can update these variables to their
required states in the correct order to satisfy π; furthermore,
these updates (at level k and above) also do not influence
the variables at the k + 1 level (hence do not influence π).
Once the states of the variables at the k + 1 level are up-
dated to match those in s, we can then update variables at
level 1 to k to match their states in s accordingly. Using this
process, we can incrementally build a plan whose execution
traces of states contain any given trajectory of states for all
the variables in the correct order.

Furthermore, the induction holds when there is only one
level given that ICGS is traversable. Hence, the induction
conclusion holds. The main conclusion directly follows.

Towards an Upper Bound for Type-2 RC
In this section, we investigate type-2 RC problem to obtain
upper bounds on the k (Definition 7), based on different re-
laxations of the two conditions that cause RC in type-2 RC
problems. We first relax the assumption regarding causal
loops (CLs) and show that the relaxation process is asso-
ciated with how certain CLs can be broken.

We notice that there are two kinds of CLs in ICGS. The
first kind contains agent VSs while the second kind does not.
Although we cannot break CLs for the second kind, it is pos-
sible to break CLs for the first kind. The motivation is that
certain edges in these CLs can be removed when there is

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

35

Figure 5: Illustration of the process for breaking causal loops
in the diamond example, in which the CLs are broken by
removing the edge marked with a triangle in Figure 4. Two
agent VSs are introduced to replace the original agent VS.

no need to update the associated agent VSs. In our diamond
example, when there are two agents in room1 and room2,
respectively, and they can stay where they are during the ex-
ecution of the plan, there is no need to WalkThrough and
hence the associated edges can be removed to break the CLs.
Figure 5 shows this process. Based on this observation, we
introduce the following lemma.
Lemma 2. Given a solvable MAP problem that satisfies N-
DVC for all agents and for which the ICGS is traversable, if
no CLs contain agent VSs and all the edges going in and out
of agent VSs are directed, the minimum number of agents re-
quired is upper bounded by ×v∈CR(Φ)|D(v)|, when assum-
ing that the agents can choose their initial states, in which
CR(Φ) is constructed as follows:

1. add the set of agent VSs that are in the CLs into CR(Φ);
2. add in an agent VS into CR(Φ) if there exists a directed

edge that goes into it from any variable in CR(Φ);
3. iterate 2 until no agent VSs can be added.

Proof. Based on the previous discussions, we can remove
edges that are connected to agent VSs to break loops. For
each variable in CR(Φ), denoted by v, we introduce a set of
variables N = {v1, v2, ..., v|D(v)|} to replace v. Any edges
connecting to v from other variables are duplicated on all
variables in N , except for the edges that go into v. Each
variable vi ∈ N has a domain with a single value; this value
for each variable in N is different and chosen from D(v).
Note that these new variables do not affect the traversability
of the ICGS.

From Theorem 1, we know that a virtual agent φ+ that
can simultaneously assume all the states that are the different
permutations of states for CR(Φ) can achieve the goal. We
can simulate φ+ using ×v∈CR(Φ)|D(v)| agents as follows.
We choose the agent initial states according to the permu-
tations of states for CR(Φ), while choosing the same states
for all the other agent VSs according to φ+. Given a plan for
φ+, we start from the first action. Given that all permutations
of states for CR(Φ) are assumed by an agent, we can find an
agent, denoted by φ, that can execute this action: 1) If this

action updates an agent VS in CR(Φ), we do not need to
execute this action based on the following reasoning. Given
that all edges going in and out of agent VSs are directed, we
know that this action does not update Vo. (Otherwise, there
must be an undirected edge connecting a variable in Vo to
this agent VS. Similarly, we also know that this action does
not update more than one agent VS.). As a result, it does not
influence the execution of the next action. 2) If this action
updates an agent VS that is not in CR(Φ), we know that this
action cannot have variables in CR(Φ) as preconditions or
prevail conditions, since otherwise this agent VS would be
included in CR(Φ) given its construction process. Hence,
all the agents can execute the action to update this agent VS,
given that all the agent VSs outside of CR(Φ) are always
kept synchronized in the entire process (in order to simulate
φ+). 3) Otherwise, this action must be updating only Vo and
we can execute the action on φ.

Following the above process for all the actions in φ+’s
plan to achieve the goal. Hence, the conclusion holds.

Next, we investigate the relaxation of the traversability of
the ICGS.

Lemma 3. Given a solvable MAP problem that satisfies N-
DVC for all agents, if all the edges going in and out of agent
VSs are directed, the minimum number of agents required is
upper bounded by×v∈V S(Φ)|D(v)|, when assuming that the
agents can choose their initial states.

Proof. Given a valid plan πMAP for the problem, we can
solve the problem using×v∈V S(Φ)|D(v)| agents as follows:
first, we choose the agent initial states according to the per-
mutations of state for V S(Φ).

The process is similar to that in Lemma 2. We start from
the first action. Given that all permutations of V S(Φ) are as-
sumed by an agent, we can find an agent, denoted by φ, that
can execute this action: if this action updates some agent
VSs in V S(Φ), we do not need to execute this action; other-
wise, the action must be updating only Vo and we can exe-
cute the action on φ.

Following the above process for all the actions in πMAP

to achieve the goal. Hence, the conclusion holds.

Note that the bounds in Lemma 2 and 3 are upper bounds
and the minimum number of agents actually required may
be smaller. Nevertheless, for the simple scenario in our di-
amond example, the assumptions of both lemmas are satis-
fied and the bounds returned are 2 for both, which happens
to be exactly the k in Definition 7. In future work, we plan
to investigate other relaxations and establish the tightness of
these bounds.

Conclusion
In this paper, we introduce the notion of required coopera-
tion (RC), which answers two questions: 1) whether more
than one agent is required for a solvable MAP problem, and
2) what is the minimum number of agents required for the
problem. We show that the exact answers to these questions
are difficult to provide. To facilitate our analysis, we first
divide RC problems into two class – type-1 RC involves

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

36

heterogeneous agents and type-2 RC involves homogeneous
agents. For the first question, we show that most of the prob-
lems in the common planning domains belong to type-1 RC;
the set of type-1 RC problems in which RC is only caused
by DVC can be solved with a super agent. For type-2 RC
problems, we show that RC is caused when the state space
is not traversable or when there are causal loops in the causal
graph; we provide upper bounds for the answer of the sec-
ond question, based on different relaxations of the condi-
tions that cause RC in type-2 RC problems. These relax-
ations are associated with, for example, how certain causal
loops can be broken in the causal graph.

Acknowledgement
This research is supported in part by the ARO grant
W911NF-13-1-0023, and the ONR grants N00014-13-1-
0176 and N00014-13-1-0519.

References
Amir, E., and Engelhardt, B. 2003. Factored planning. In
Proceedings of the 18th International Joint Conferences on
Artificial Intelligence, 929–935.
Bacchus, F., and Yang, Q. 1993. Downward refinement
and the efficiency of hierarchical problem solving. Artificial
Intelligence 71:43–100.
Backstrom, C., and Nebel, B. 1996. Complexity results for
sas+ planning. Computational Intelligence 11:625–655.
Brafman, R. I., and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling, 28–35. AAAI Press.
Brafman, R. I., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198(0):52 – 71.
Brafman, R. I. 2006. Factored planning: How, when, and
when not. In Proceedings of the 21st National Conference
on Artificial Intelligence, 809–814.
Bylander, T. 1991. Complexity results for planning. In
Proceedings of the 12th International Joint Conference on
Artificial Intelligence, volume 1, 274–279.
Decker, K. S., and Lesser, V. R. 1992. Generalizing the
partial global planning algorithm. International Journal of
Cooperative Information Systems 1:319–346.
Durfee, E., and Lesser, V. R. 1991. Partial global planning:
A coordination framework for distributed hypothesis forma-
tion. IEEE Transactions on Systems, Man, and Cybernetics
21:1167–1183.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Jonsson, A., and Rovatsos, M. 2011. Scaling Up Multiagent
Planning: A Best-Response Approach. In Proceedings of the
21th International Conference on Automated Planning and
Scheduling, 114–121. AAAI Press.
Knoblock, C. 1994. Automatically generating abstractions
for planning. Artificial Intelligence 68:243–302.

Kvarnstrom, J. 2011. Planning for loosely coupled agents
using partial order forward-chaining. In Proceedings of the
21th International Conference on Automated Planning and
Scheduling.
Nissim, R., and Brafman, R. I. 2012. Multi-agent a* for
parallel and distributed systems. In Proceedings of the 11th
International Conference on Autonomous Agents and Multi-
agent Systems, volume 3, 1265–1266.
Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A
general, fully distributed multi-agent planning algorithm. In
Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems, 1323–1330.
Torreno, A.; Onaindia, E.; and Sapena, O. 2012. An ap-
proach to multi-agent planning with incomplete informa-
tion. In European Conference on Artificial Intelligence, vol-
ume 242, 762–767.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

37

Plan Merging by Reuse for Multi-Agent Planning

Nerea Luis and Daniel Borrajo
Departamento de Informática

Universidad Carlos III de Madrid
nluis@inf.uc3m.es, dborrajo@ia.uc3m.es

Abstract

Multi-Agent Planning (MAP) can be solved by two al-
ternative approaches: centralized, where a single plan-
ner computes a plan for multiple agents; and distributed,
where each agent computes a plan, and then plans are
merged or coordinated. This paper focuses on the sec-
ond approach. We present Plan Merger by Reuse, PMR,
an algorithm that, given a multi-agent planning prob-
lem, lets the agents build their individual plans sepa-
rately. Then, PMR concatenates all the plans to build
a parallel plan. As plans are not always valid, spe-
cially in the case of tightly-coupled domains, PMR exe-
cutes LPG-ADAPT with the invalid plan as input. LPG-
ADAPT performs planning by reuse and is able to gener-
ate a valid plan from the input invalid plan.We show ex-
perimental results in several IPC domains, where plan
merging can successfully compete against other state-
of-the-art planning techniques to obtain solutions to
MAP tasks.

Introduction
In Multi-Agent Planning (MAP), two main approaches have
been commonly used: centralized and distributed. The for-
mer builds a plan using a master agent which knows every-
thing about the other agents. Among other disadvantages,
its complexity can grow exponentially with the number of
agents. In the distributed approach each agent builds its own
plan and then those plans have to be either merged before
execution starts, or execution requires some coordination to
avoid an agent to negatively interact with other agents goals
(e.g. using a common resource).

The goal of plan merging is to start with a set of plans,
one for each agent, and then generate a single valid plan.
Thus, the resulting plan should be: free of negative in-
teractions among the different agents plans (as one agent
deleting some effect that is a precondition of another agent
plan); free of actions that achieve goals unnecessarily (as
two agents achieving the same goal twice); and sound
(when the plan is applied from the overall initial state,
it should arrive to a state where goals are achieved). In
the past, most plan merging approaches focused on ana-
lyzing the input plans and detect positive or negative in-
teractions among the plans (Foulser, Li, and Yang 1992;
Mali 2000).

From the perspective of MAP, planning domains exhibit a
coupling level that ranges from loosely-coupled to tightly-
coupled, depending on the degree of interaction between
agents plans (Brafman and Domshlak 2013). This paper de-
scribes an approach, Plan Merger by Reuse (PMR), that tries
to automatically accommodate to the coupling level of the
domain. First, it performs individual planning for each agent
and then merges the results into a combined plan and paral-
lelizes it. If the domain is loosely-coupled, then most proba-
bly this plan will be a valid plan, since there will be little (or
no) interaction among agents plans, and PMR returns that
plan. Otherwise (in more tightly-coupled domains), PMR
provides that plan as input to a planning by reuse technique
(LPG-ADAPT (Fox et al. 2006)) that generates a valid plan
from the invalid input plan. The hypothesis is that most of
the relevant actions of the final valid plan will be available
in the input invalid plan, so LPG-ADAPT will efficiently gen-
erate a plan. Experimental results show the benefits of using
such an approach, even against a competitive centralized ap-
proach (LAMA (Richter and Westphal 2010)).

The next section presents a formal definition of the MAP
task. Then, in Section 3, the algorithm PMR and its different
phases are described. Section 4 presents the experiments and
results of comparing PMR with other approaches. Finally,
we present some conclusions and future work to be done.

Multi-Agent Planning Task
A single-agent STRIPS planning task can formally defined as
a tuple Π = {F,A, I,G}, where F is a set of propositions,
A is a set of instantiated actions, I ⊆ F is an initial state,
and G ⊆ F is a set of goals. Each action a ∈ A is described
by a set of preconditions (pre(ai)), that represent literals that
must be true in a state to execute the action and a set of
effects (eff(ai)), literals that are expected to be added (add
effects) or removed (delete effects) from the state after ex-
ecution of the action. Actions definition might also include
a cost c(a) (default is one). In order to compactly repre-
sent planning tasks, automated planning uses the standard
language PDDL (Planning Domain Description Language).
Thus, a planning task Π is automatically generated from the
PDDL description of a domain and a problem. The domain
contains a definition of a set of generalized actions (defined
using variables – parameters, par(a) – whose instantiations
with problem objects will lead to actions inA), a set of pred-

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

38

icates (whose instantiations will generate facts in F), and a
set of types (to characterize the problem objects). A plan-
ning problem defines a set of objects (instantiations of types
in the domain), an initial state (I), and a set of goals (G).
The planning task should generate as output a sequence of
actions π = (a1, . . . , an) such that if applied in order would
result in a state s, where goals are true, G ⊆ s. Plan cost is
commonly defined as: C(π) =

∑
ai∈π c(ai).

We consider a multi-agent setting, so we have to plan for
a set of m agents, Φ = {φ1, . . . , φm}. We define the MAP
task as a set of planning subtasks, one for each agent, M =
{Π1, . . . ,Πm}. Each planning subtask can be defined as a
single-agent planning task, Πi = {Ai, Fi, Ii, Gi}. All these
components have a public part and a private part, that cannot
be openly shared with the rest of agents. We believe privacy
relates to the information on the state and the objects in the
problems, rather than to the actions. Our notion of privacy
takes into account the following statements:

• literals l ∈ F are considered either private or public. In
case they are private, they belong to a given agent ai and
they should only be known and modified by ai when plan-
ning. In case they are needed by other agents to reproduce
the agent ai plans (as explained later), they will have to be
obfuscated by ai when sent to other agents

• in particular, literals l ∈ I and l ∈ G can be private or
public in turn. If they need to be sent to other agents, they
will have to be obfuscated

• actions a ∈ A are not considered private nor public by
themselves. But, we make the assumption that other
agents do not need to know the actions that were used
to achieve the agents goals (even the public ones). There-
fore, when plans are communicated to the central agent
in PMR, actions are obfuscated. In particular, the action
names and private components (literals) are obfuscated.

As an example, in the Satellite domain of the International
Planning Competition (IPC)1 several satellites must take im-
ages from different directions in space. The private literals
are those that are groundings of the predicates: supports, cal-
ibration target, on board, pointing, power avail, calibrated
and power on.

PMR
The main steps of the PMR algorithm are (as shown in the
pseudocode in Figure 1): assign public goals to agents, con-
catenate each plan built from each agent, parallelize that
plan and check if it is a valid plan.] represents the oper-
ator that returns the concatenation of individual plans.

Figure 2 shows the architecture of PMR. Giving a multi-
agent domain and problem in standard PDDL, two ap-
proaches can be chosen: centralized or distributed. We will
focus on the distributed, but later we will use the central-
ized to compare those plans with the ones generated in the
distributed approach. First, PMR performs an assignment
of goals (public) to agents, as explained later and taken
from (Borrajo 2013). After that, for each agent, a total-order

1http://ipc.icaps-conference.org/

Function PMR (M,GA,P): plan

M = {Π1, . . . ,Πm}: MAP task
GA: goal assignment strategy
P : planner

Assign subset of public goals to each agent φi using GA
For all φi ∈ Φ do πi =Plan(Πi, P)
πPMR−seq =]πi
πpar =parallelize(πPMR−seq)
if valid(πpar)
then return πPMR = πpar
else return πPMR−reuse =plan-reuse-planner(πpar,M)

Figure 1: High level description of PMR algorithm.

plan is generated based on its assigned goals. In this step,
each agent will use a planner to generate its plan. For sim-
plicity, in the experiments we assume all agents use the same
planner.

Once all the plans are generated, they are concatenated
to create a new plan (πPMR−seq). Then, PMR transforms
πPMR−seq into a parallel plan (πpar) in order to obtain a
better plan in terms of concurrency. This is performed in
two steps: converting a total-order plan into a partial-order
one by a similar algorithm to (Veloso, Pérez, and Carbonell
1990); and parallelizing this partial-order plan. πPMR−seq
and πpar are validated using VAL, the validator from IPC
2011 (Howey, Long, and Fox 2004). In case, the parallel
plan is valid (usually in domains that are loosely coupled as
shown in the experiments), PMR returns that plan. Other-
wise, PMR executes a plan reuse planner, and πpar becomes
its input plan. The goal of this step is to find a new plan,
by combining the reuse of actions of πpar, that is partially
valid, and the search heuristics of the plan reuse planner.

Goal Assignment
In a MAP task, the way the public goals are assigned to the
different agents affects directly to the efficiency and the per-
formance of the plan. We use here the four goal assignment
(GA) strategies defined for MAPR (Borrajo 2013). First, for
each agent φi ∈ Φ and goal g ∈ G, a relaxed plan is com-
puted (Hoffmann and Nebel 2001). The main objective is
to know if the goal can be reached from the initial state of
the agent and with what estimated cost. All values fill a cost
matrix c(G,Φ) where each cell represents the estimated cost
per agent to achieve a goal. The GA strategies were:

• all-achievable: it assigns each goal to every agent that can
reach the goal

• rest-achievable: it assigns the goals iteratively, starting
with φ1. First, it assigns all goals that φ1 can potentially
achieve to φ1. Those goals are deleted from G. Then, it
starts with the second agent and so on.

• best-cost: each goal is assigned to the agent that can po-
tentially achieve it with the least cost. As a result, there
can be agents with several goals assigned and others that
will focus only on its private goals if they have.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

39

Plan

Reuse

Distributed

approach

Goal Selection

Planner Planner

Ʃ

Paralellization

Plan reuse planner

Validate

Validate

Domain

Problem
π= (π1…..πN)

π1 πN

πPMR-seq

πpar

πPMR-reuse

IF VALIDπPMR

YES NO

Figure 2: Architecture of PMR.

• load-balance: it performs some load balancing, not allow-
ing an agent to be assigned more goals than the average
of goals per agent. Goals are assigned first to agents as in
best-cost.

Planning
In the second step of PMR, each agent invokes a planner to
solve its planning task. Any state-of-the-art planner can be
used for this task. Each agent will have a partial solution to
the overall MAP task, composed of a total-order plan. Then,
PMR concatenates all plans. This plan, a sequence of agents
plans, is called πPMR−seq . The concatenation process re-
ceives as an input the obfuscated description of the problem
for each agent (public and private parts joined) and also the
public and private goals.

After that, πPMR−seq is validated using VAL. If it is
valid, most probably agents plans do not present interaction
(there can still be repetitions, though) and the domain most
probably will be loosely-coupled. We do not have a special
focus on this paper on plan quality, so PMR returns this plan.
We could easily enter an anytime search algorithm now to
improve plan quality. If the plan is not valid, PMR provides
it as input to the planner by reuse. More details of this in the
Plan Reuse section.

Parallelization
In the third step, PMR parallelizes πPMR−seq to obtain a
parallel plan πpar. In loosely-coupled domains, paralleliza-
tion should reduce the length of the plan proportionally to
the number of agents, because actions and predicates of one
agent will be independent of those of the rest of agents. In

tightly-coupled domains, they are not independent, and it
is easier to obtain an invalid plan. Now, PMR has a plan
that most probably has negative interactions. We propose to
solve the task of solving plan failures by using a planner that
performs planning by reuse.

Plan Reuse
In the fourth step, we can obtain the benefit of transform-
ing πpar into a valid plan; the planner to be used in this
step must allow PMR to start the search for a valid plan from
an input plan, πpar. In case it can solve the planning task
and the planner is sound, it will generate a new valid plan
πPMR−reuse. Candidate planners for this phase are LPG-
ADAPT and ERRTPLAN (Borrajo and Veloso 2012).

Properties
As most work on plan merging, PMR performs suboptimal
incomplete planning, since we are using suboptimal plan-
ners, working separately on subsets of goals, and choosing a
subset of agents to plan for public goals. In order to make it
a complete and optimal approach, we would have to use all
agents, while keeping their privacy, and using optimal plan-
ners. In relation to the soundness of the algorithm, each indi-
vidual (agent) plan is sound, since we are using sound plan-
ners. However, PMR cannot ensure soundness of the con-
catenation. But, if πPMR−seq is sound, πpar will be sound
too. But, after invoking the plan reuse planner, PMR en-
sures soundness of the whole process if the plan reuse plan-
ner is sound (we use LPG-ADAPT in the experiments, that is
sound).

A key issue in MAP is agents privacy. Before the par-
allelization phase, each agent builds its plan without shar-
ing private information, so privacy is preserved. In the last
two steps, parallelization and obtaining a valid plan from
plan reuse, it would need to handle private information from
agents. In our case, agents can obfuscate their private in-
formation, as it is done for MAPR. In that case, the plan
reuse planner will be able to handle information related to
each agent (i.e. what resource it is using, where it is placed)
in order to solve the conflicts between shared resources or
interests. In the current implementation, though, agents
do not obfuscate that information yet, but in can be easily
done given the previous obfuscation processes taking part in
MAPR.

Experiments and Results
This section presents some experiments on the performance
of PMR and its comparison with other planners. We show
results of quality of solutions and time taken to obtain the
solutions in several multi-agent domains. In our work, qual-
ity for parallel plans represents the makespan not the plan
cost. In a previous paper (Borrajo 2013), we showed com-
parisons of a related approach, MAPR, with other state-of-
the-art multi-agent planners, where those other planners did
not scale well in the compared domains. Since we used very
similar experimental conditions as in the other paper, it can
be easily inferred that the results of the other planners will
be similar.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

40

Our configuration of PMR uses LAMA-UNIT-COST as the
planner P of the algorithm. Agents use it to generate the
individual plans. LAMA-UNIT-COST corresponds to the first
search that LAMA performs, using greedy best first with all
actions considered to have unit cost. The reason of choosing
this planner is because our aim is to efficiently find plans;
additionaly (as shown in the results), PMR with LAMA-UNIT-
COST does not perform bad in quality. For plan reuse, we
have decided to use LPG-ADAPT, an stochastic (re)planner
that starts the search for a valid plan by using the input plan,
πpar.

• Comparing approaches. We compare parallel plans ob-
tained by PMR (before and after invoking LPG-ADAPT)
against the ones obtained by LPG and LAMA-UNIT-COST.
To evaluate the results, we used two scores of the 7th
International Planning Competition (IPC): quality and
time1. Quality of plans is measured as the makespan
(number of parallel steps). Time is measured in seconds.
We have sum the time for building πPMR−seq and πpar in
the case of PMR and LAMA-UNIT-COST plans. Since LPG
is able to build parallel plans from scratch, we use its plan-
ning time. Finally, the time for building πPMR−reuse is
obtained from the time for computing πpar plus the time
used by LPG-ADAPT to generate the new plan.
LPG-ADAPT is called in speed mode and only cares about
finding one solution. The same configuration is used for
LPG. LAMA-UNIT-COST refers to the LAMA heuristic
with unitary costs placed inside Fast Downward, which
is the one we have used inside PMR. In order to com-
pare PMR with LAMA, after obtaining the sequential plan
of LAMA-UNIT-COST using the centralized approach of
MAPR (Borrajo 2013), we perform the same paralleliza-
tion step of PMR to generate the parallel plan of the
LAMA-UNIT-COST plan.

• Domains. We have used Rovers, Zenotravel, Satellite,
Transport and Port domains (Port was defined in (Borrajo
2013), while the rest are IPC domains). Each domain has
20 problems to be solved by a set of agents. The problems
in the IPC, varies the number of agents. The problems
of the IPC domains are the ones used in the respective
IPCs. The problems of the Port domain were randomly
generated for the previous paper. These domains go from
loosely-coupled (like Satellite) to tightly-coupled (Port,
which is similar to a multi-robot blocksworld).

• Goal assignment. We have used the four GA strategies:
all-achievable (AA), best-cost (BC), load-balance (LB)
and rest-achievable (RA).

• Planners. Inside PMR we have used LAMA-UNIT-COST
in the distributed approach and LPG-ADAPT in the reuse
phase. The planners we are comparing with are LAMA-
UNIT-COST and LPG. They build parallel plans following
a centralized approach.

• Time bound. We have used 1800 seconds to let the plan-
ners solve the problems. Most problems were solved,
though Transport and Port are more difficult than the rest
of domains. LPG-ADAPT solved almost all invalid prob-
lems of PMR and LAMA-UNIT-COST.

The next tables show the results of the experiments; Ta-
ble 1 shows time results and the next ones quality results.
Table 1 shows the summary of time scores obtained in
each domain with each planner. Table 2 and 3 show the
summary of quality scores obtained in each domain with
each planner with sequential and parallel plans, respec-
tively. In these tables we have used the following nota-
tion for each phase of the algorithm (Figure 2): PMR equals
πPMR plans; PMR-SEQ equals πPMR−seq and PMR-LPG-
AD equals πPMR−reuse. Again, take into account that
both LPG-ADAPT and LAMA-UNIT-COST are centralized ap-
proaches that do not preserve privacy.

In relation to time results, as expected PMR scores are bet-
ter than PMR-LPG-AD scores. Related to our algorithm, the
best configuration is RA (rest achievable). The worse con-
figuration is AA (all-achievable) as we expected, because
in many domains, it is not valid that two or more agents
achieve the same goal separately. The combined plans will
not be valid most of the times. For instance, when a truck
delivers a package in the Transport domain, it will change
the location of the package, while the rest of trucks assume
the package is in its initial state and will try to move it also.

Table 2 shows a summary of quality scores of sequential
plans of PMR-SEQ and LAMA-UNIT-COST. Clearly, LAMA-
UNIT-COST total quality outperforms any other configura-
tion. This is because LAMA-UNIT-COST uses a centralized
approach, while PMR, cannot build valid plans if the domain
is tightly-coupled as in the Port domain.

Table 3 shows the quality scores of parallel plans. It
presents a comparison of the output plans of our algorithm,
PMR and PMR-LPG-AD, as well as LAMA-UNIT-COST and
LPG results. If πpar was a valid plan (πPMR), we have as-
signed directly its makespan to the equivalence in PMR-LPG-
AD. Otherwise, LPG-ADAPT generates the new plan, and its
makespan is used. We can see that the LB goal assignment
strategy in PMR-LPG-AD is the best configuration. Again,
the AA configuration is the worst configuration for the same
reason as before. LAMA-UNIT-COST now decreases its qual-
ity, because the rest of the configurations can build valid
plans. LPG is the fastest in time, but not in quality. When
domains are more difficult like Transport or tightly-coupled
like Port the performance of LPG decreases considerably.

This table also shows why we use LPG-ADAPT: the plan-
ner has converted with success the invalid plans of the con-
figuration of PMR with the AA strategy into valid plans with-
out loosing so much coverage. The AA configuration gener-
ated invalid plans in all domains except in the Satellite do-
main (because goals are completely independent). Also in
Transport both BC and LB obtained some invalid plans. In
the Port domain, as it is a tightly-coupled domain, all plans
failed, except in one problem. Sometimes the quality be-
tween PMR and PMR-LPG-AD does not change, because all
plans from PMR were valid and no reuse phase was needed
as LB in the Satellite domain.

Related Work
Multi-Agent Planning (MAP) lies between the automated
planning and multi-agent communities, with strong implica-
tions in other areas, as robotics. As was discussed in the in-

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

41

Table 1: Time score parallel plans.
Algorithms Rovers Zenotravel Satellite Transport Port TOTAL

AA 2.02 1.10 9.86 0.00 0.38 13.36
BC 9.56 11.67 11.28 7.42 0.41 40.35

PMR LB 8.94 10.68 11.31 3.85 0.43 35.21
RA 9.95 12.89 11.34 19.39 0.43 54.01

LAMA-UNIT-COST 19.96 10.89 9.80 8.95 5.89 55.48
AA 8.84 10.01 8.63 1.51 7.74 36.72
BC 9.56 11.67 8.83 9.84 7.91 47.80

PMR-LPG-AD LB 8.94 10.68 8.80 8.45 7.94 44.81
RA 9.95 12.89 8.85 19.39 7.84 58.92

LPG 20.00 19.56 20.00 0.66 15.00 75.22

Table 2: Quality score of sequential plans.
Algorithms Rovers Zenotravel Satellite Transport Port TOTAL

AA 3.63 2 7.66 0 1.00 14.30
BC 19.10 18.01 16.18 9.13 1.00 63.42

PMR-SEQ LB 18.19 14.81 14.50 4.78 1.00 53.28
RA 17.97 17.79 17.01 18.33 1.00 72.10

LAMA-UNIT-COST 19.97 19.56 19.61 14.84 17.70 91.68

Table 3: Quality score of parallel plans.
Algorithms Rovers Zenotravel Satellite Transport Port TOTAL

AA 3.56 2.00 8.43 0.00 0.92 14.90
BC 15.49 14.42 11.03 7.41 0.92 49.27

PMR LB 19.46 17.93 18.97 4.96 0.92 62.23
RA 19.46 12.19 10.32 8.89 0.92 51.78

LAMA-UNIT-COST 16.78 18.56 13.35 14.31 10.17 73.17
AA 11.01 8.69 8.43 0.89 7.57 36.58
BC 15.49 14.42 11.03 11.05 7.27 59.27

PMR-LPG-AD LB 19.46 17.93 18.97 11.15 7.24 74.74
RA 19.46 12.19 10.32 8.89 6.82 57.69

LPG 15.55 16.39 15.33 0.44 13.74 61.45

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

42

troduction, approaches range from centralized to distributed
planning. In case of distributed planning, some papers dealt
with a distributed coordinated approach when generating
plans (Nissim and Brafman 2013; Jonsson and Rovatsos
2011; Torreño, Onaindia, and Sapena 2014), while others
preferred to delay coordination and perform plan merging
after generating the individual plans (Foulser, Li, and Yang
1992). As an example of plan merging, in (Foulser, Li, and
Yang 1992) its authors developed some algorithms to merge
a plan decomposed previously in subplans in order to solve
a task. They present both efficient and optimal heuristic al-
gorithms, while we are interested in satisficing algorithms.
Also, Mali in (Mali 2000) proposed plan merging and plan
reuse as a new way to obtain satisficing plans. Mali iden-
tifies two types of merging: contiguous and partially order;
PMR only focuses on the second one. The main difference
with his work is that we combine plan merging and plan
reuse to generate valid plans. In Mali’s work if the merging
needed an extra action that was not present in the individ-
ual plans (due to some strong interaction among plans), it
was not able to generate it. Another difference is that PMR
can handle plans where the same action appears in several
individual plans, while Mali’s approach could not.

Later, Britanik in (Britanik and Marefat 1995) proposed
to do plan merging in HTN planning. Merging appears in
different levels of abstraction by decomposing a plan in sub-
plans. If a replanning phase is needed, it will be easier to
apply because of the independency of the plans. None of
these works have taken into account the agents privacy. Our
approach focuses on classical planning, but our aim is to use
plan merging to obtain fast a parallel plan that is not neces-
sarily valid in its first instance. Also, our goal is to maintain
the agents privacy. We do not have a replanning phase, but a
reuse phase where the parallel plan is received as an input.

Finally, in (Brafman and Domshlak 2006) Brafman and
Domshlak propose a decomposition method of the planning
domain. Instead, PMR uses the agents to decompose the
problem.

Conclusions
We have presented PMR, an algorithm capable of solving
a multi-agent planning task using plan-merging and plan-
reuse techniques. First, it uses a distributed approach to let
agents build each plan individually, and then it concatenates
each plan to obtain a parallel plan. We also showed that
PMR does not ensure soundness, so if the parallel plan was
not valid, LPG-ADAPT generates a new valid plan based on
the invalid parallel plan.

After comparing the plans obtained with PMR and the
ones from LPG and LAMA-UNIT-COST, the reuse phase im-
proves coverage over previous steps. PMR’s BC and LB con-
figurations obtain the best results, comparable to those of
LPG and LAMA-UNIT-COST. In fact, LB improves the qual-
ity scores of the two planners.

As future work, we plan to compare our algorithm with
other factored planning approaches, to understand the ad-
vantage of decomposing based on agents over other alterna-
tive approaches for decomposing a planning task.

Acknowledgments
This work has been partially supported by Spanish MICINN
projects TIN2011-27652-C03-02.

References
Borrajo, D., and Veloso, M. M. 2012. Probabilistically
reusing plans in deterministic planning. In In Proceedings of
ICAPS’12 workshop on Heuristics and Search for Domain
Independent Planning. AAAI Press.
Borrajo, D. 2013. Plan sharing for multi-agent planning. In
Nissim, R.; Kovacs, D. L.; and Brafman, R., eds., Preprints
of the ICAPS’13 DMAP Workshop on Distributed and Multi-
Agent Planning, 57–65.
Brafman, R. I., and Domshlak, C. 2006. Factored planning:
How, when, and when not. In In Proceedings of the 21st
National Conference on Artificial Intelligence (AAAI-2006,
809–814.
Brafman, R. I., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198:52–71.
Britanik, J., and Marefat, M. 1995. Hierarchical plan merg-
ing with application to process planning. In Proceedings of
the 14th International Joint Conference on Artificial Intel-
ligence - Volume 2, IJCAI’95, 1677–1684. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.
Foulser, D.; Li, M.; and Yang, Q. 1992. Theory and algo-
rithms for plan merging. Artificial Intelligence 57(2-3):143–
181.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In Proceedings of
the Sixteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS’06), 212–221.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using PDDL. In Khoshgoftaar, T. M., ed., ICTAI 2004:
16th IEEE International Conference on Tools with Artificial
Intelligence, 294–301.
Jonsson, A., and Rovatsos, M. 2011. Scaling up multiagent
planning: A best-response approach. In Proceedings of the
21st International Conference on Automated Planning and
Scheduling (ICAPS’11), 114–121.
Mali, A. D. 2000. Plan merging & plan reuse as satisfi-
ability. In Proceedings of the 5th European Conference on
Planning: Recent Advances in AI Planning. ECP’99, 84–96.
Springer-Verlag.
Nissim, R., and Brafman, R. I. 2013. Cost-optimal planning
by self-interested agents. In Proceedings of AAAI’13.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Torreño, A.; Onaindia, E.; and Sapena, O. 2014. A Flex-
ible Coupling Approach to Multi-Agent Planning under In-

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

43

complete Information. Knowledge and Information Systems
38(1):141–178.
Veloso, M. M.; Pérez, M. A.; and Carbonell, J. G. 1990.
Nonlinear planning with parallel resource allocation. In Pro-
ceedings of the DARPA Workshop on Innovative Approaches
to Planning, Scheduling, and Control, 207–212. San Diego,
CA: Morgan Kaufmann.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

44

Improving Uncoordinated Collaboration in Partially Observable Domains
with Imperfect Simultaneous Action Communication

Aris Valtazanos
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK

a.valtazanos@ed.ac.uk

Mark Steedman
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB, UK

steedman@inf.ed.ac.uk

Abstract
Decentralised planning in partially observable multi-agent
domains is limited by the interacting agents’ incomplete
knowledge of their peers, which impacts their ability to work
jointly towards a common goal. In this context, communica-
tion is often used as a means of observation exchange, which
helps each agent in reducing uncertainty and acquiring a more
centralised view of the world. However, despite these merits,
planning with communicated observations is highly sensitive
to communication channel noise and synchronisation issues,
e.g. message losses, delays, and corruptions. In this paper, we
propose an alternative approach to partially observable un-
coordinated collaboration, where agents simultaneously exe-
cute and communicate their actions to their teammates. Our
method extends a state-of-the-art Monte-Carlo planner for
use in multi-agent systems, where communicated actions are
incorporated directly in the sampling and learning process.
We evaluate our approach in a benchmark multi-agent do-
main, and a more complex multi-robot problem with a larger
action space. The experimental results demonstrate that our
approach can lead to robust collaboration under challenging
communication constraints and high noise levels, even in the
presence of teammates who do not use any communication.

Introduction
Collaborative planning is an important challenge for many
interactive systems, where multiple agents must work to-
gether to achieve a common goal. This problem becomes
harder when agents do not have the benefit of centralised
coordination, or when the task involves collaboration with a
priori unknown teammates. For example, consider a rescue
scenario where various robots programmed by different en-
gineers are deployed to a disaster site in an emergency situ-
ation. In this setting, generating a commonly agreed plan of
actions may be infeasible due to tight time constraints and
limited knowledge of the environment. Instead, the robots
may be forced to plan from an egocentric perspective, by
using their own internal models to select robust actions.

When the above constraints on collaboration arise, agents
must reason about the actions of their peers by gathering and
processing data on their behaviour. In a general multi-agent
planning setting with no centralised coordination, there are
two types of input that can be acquired by an agent:

1. Direct observations of the teammates, e.g. images from a
camera, sonar readings, or other sensory inputs.

2. Inter-agent communication, i.e. messages received from
teammates about their own (past or future) actions, obser-
vations, plans, or intentions.

Each of these input types is significant for uncoordinated
collaboration, but also carries its own challenges and limi-
tations. On the one hand, sensory observations are collected
and processed internally by each agent, so they are not gen-
erated by unknown external protocols or mechanisms. How-
ever, many domains of practical interest are characterised
by partial and/or limited observability, so agents may not
be able to view their teammates (reliably and noiselessly)
at all times. On the other hand, a communicated message
provides direct insight on the planning process used by the
sending agent, thus helping the receiving agent in selecting
its own actions with regard to the overall team goal. How-
ever, limited bandwidth or poor synchronisation issues may
lead to dropped or delayed messages during an interaction.
Furthermore, communication channels may be noisy or un-
reliable, giving rise to misinterpreted (or uninterpreted) mes-
sages that also impact an agent’s knowledge of its peers.

In light of the above constraints, an important challenge
in uncoordinated collaboration under partial observability
lies in combining the relative merits of observation- and
communication-based reasoning. Planning under limited ob-
servations has been widely studied using the Partially Ob-
servable Markov Decision Process (POMDP) formulation
(Kaelbling, Littman, and Cassandra 1998), which however
does not explicitly model communication (Figure 1(a)). By
contrast, communication-based planning in multi-agent sys-
tems is a more open-ended problem, which is typically con-
cerned with the following issues:

1. When and how to communicate.
2. What to communicate.

With regard to the first issue, there is a distinction between
implementations assuming perfect synchronisation between
communication and planning phases (where agents can reli-
ably exchange messages before selecting their actions, as in
Figure 1(b)), and those accounting for stochastic communi-
cation (where messages can be lost or delayed). With regard
to what to communicate, a commonly employed approach is
observation-based communication (as in the work of Pyna-
dath and Tambe (2002)), where agents exchange their most
recent observations. The motivation behind this choice is

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

45

Time

Execute

Action

Make

Observation

Execute

Action

Make

Observation

(a) Planning with no communication (as in standard decen-
tralised POMDP planning implementations).

Time

Send

Message
Execute

Action

Make

Observation

Receive

Message

(b) Planning with distinct (synchronised) action selection and
communication phases.

Time

Execute

Action

Make

Observation

Excecute

Action
...

Send

Message

+
Send

Message

+
Receive

Message

+

(c) Planning with simultaneous action selection and commu-
nication phases (the approach followed in this paper).

Figure 1: Sketch drawings of different approaches to com-
bining decentralised planning and communication in par-
tially observable multi-agent domains. Illustrations are given
for the two-agent case, with superscripts 1 and 2 being the
agent indices, and subscripts denoting time. Clouds: Ac-
tion selection/planning steps (A). Rectangles: Communica-
tion/message selection steps (C). Diamonds: State updates.
Circles: Communication updates. Other notation: actions –
a, observations – o, world states – s, message queues – q,
sent messages – mÝÑ , received messages – mÐÝt .

that agents obtain an approximate world model by combin-
ing the locally transmitted views, thus effectively reducing
collaboration to a centralised planning problem.

Despite these advantages, we also note some important
limitations of observation-based communication. First, plan-
ning becomes sensitive to stochastic communication, as de-
layed or dropped observation messages inevitably lead to an

incomplete or outdated world model. Second, even when
communication is perfectly synchronised, there is an un-
derlying assumption that all agents use the same planning
mechanism (and thus interpret each other’s observations
identically), which however breaks down when heteroge-
neous teammates are called to collaborate (as in the rescue
scenario example introduced earlier). Third, reasoning about
other agents’ observations effectively means modeling their
own beliefs and uncertainty about the world state, which in-
creases the depth of reasoning and thus also the complexity
of the planning process.

In this paper, we propose a novel action-based commu-
nication model for uncoordinated collaboration in partially
observable domains. Our approach extends a state-of-the-art
online POMDP Monte-Carlo planner with a simple commu-
nication protocol, where agents execute and broadcast their
selected actions simultaneously (Figure 1(c)). Agents main-
tain a distribution (defined in terms of their own beliefs) over
selected teammate actions, which is updated when a new
message is received. The planner then uses this distribution
as a prior in action sampling during Monte-Carlo iterations,
and to perform a new type of factored policy learning, which
decouples observation- and message-based value updates.

As illustrated in Figure 1(c), our protocol implies that
transmitted messages are only received after the current
planning cycle. Thus, even when the communication chan-
nel is perfect and noiseless, agents will always have delayed
information on their peers. This motivates a looser coupling
between communication and planning, which, as we demon-
strate in our results, makes our approach more robust to three
types of noise:

1. Message losses.
2. Message delays.
3. Message corruptions/misinterpretations.

The latter type of noise has received less attention in par-
tially observable multi-agent planning, but we argue that it is
particularly important when considering collaboration with
heterogeneous agents, such as humans or human-controlled
robots. These settings typically involve complex speech gen-
eration and recognition processes that significantly constrain
communication within a team.

Another distinguishing feature of our approach is that
agents do not exchange their observations, and thus also do
not explicitly model each other’s beliefs and planning mech-
anisms. This keeps the computational complexity of our ap-
proach low and scalable to challenging domains.

In the remainder of this paper, we first review related
ideas and techniques from the literature, and we subse-
quently present our methodology, describing our planning
algorithms and communication protocol. We then evaluate
our approach in two multi-agent domains; a benchmark box-
pushing problem with a small action space, and a more chal-
lenging multi-robot kitchen planning scenario. Our results
demonstrate that planning with action communication out-
performs non-communicative implementations under most
noise configurations, while requiring comparable computa-
tion time. We conclude by summarising our key contribu-
tions and suggesting possible future directions.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

46

Related Work
Single-agent planning
Planning in partially observable single-agent domains is
usually described in terms of a Partially Observable Markov
Decision Process (POMDP) (Kaelbling, Littman, and Cas-
sandra 1998), xS,A,O, T ,Z,Ry, where S,A,O are the
state, action, and observation sets, T : S �A� S ÞÑ r0, 1s
is the transition function, Z : S � O � A ÞÑ r0, 1s is the
observation function, and R : S�A�S ÞÑ < is the reward
function giving the expected payoff for executing an action.

POMDPs can be used to model a wide range of decision
problems. However, analytical solutions are known to be
hard to compute (Papadimitriou and Tsitsiklis 1987), with
several problems requiring hours or even days to solve ex-
actly. This is a restricting factor for systems with tight com-
putational constraints and varying task specifications.

The complexity of finding offline analytical solutions has
led to the development of online POMDP planning methods,
which only consider the current state of the interaction and
use limited computation time. Partially Observable Monte
Carlo Planning (POMCP) (Silver and Veness 2010) employs
Monte-Carlo Tree Search to sample the problem space ef-
ficiently. This method models action selection as a multi-
armed bandit problem, by initially estimating the value of
random action sequences (referred to as rollouts), and then
balancing exploration and exploitation through the Upper
Confidence Bound (UCB) heuristic (Kocsis and Szepesvári
2006). POMCP has been successfully applied to problems
with large branching factors (Gelly et al. 2012), and imple-
mented in a winning entry of the 2011 International Planning
Competition (Coles et al. 2012).

Multi-agent planning without communication
A Decentralised POMDP (Dec-POMDP) (Bernstein et al.
2002) is a generalisation of a POMDP to multi-agent sys-
tems, defined as xI,S, ~A, ~O, T ,Z,Ry, where I � t1...nu

is the set of agents, ~A �
�

iPI Ai is the set of joint ac-
tions ~a � xa1, ..., any, defined as the Cartesian product of
the agents’ individual action sets Ai, ~O �

�
iPI Oi is simi-

larly the set of joint observations, with T , Z , and R defined
as in POMDPs, with ~A and ~O substituting A and O.

Compared to POMDPs, Dec-POMDPs carry the addi-
tional limitation that action and observation spaces grow
exponentially with the number of agents, thus also be-
ing intractable. Furthermore, fast single-agent methods like
POMCP cannot be directly extended to Dec-POMDPs, due
to the added constraint of reasoning about joint observations
and beliefs. In this paper, we describe an alternative, egocen-
tric method of adapting POMCP to multi-agent system con-
straints. Each agent keeps track of and updates values over
only its own history and observation space, with teammate
actions modeled at the rollout sampling level. This keeps
the complexity of the planning process low and scalable to
larger and more complex planning spaces.

Multi-agent planning with communication
In their general form, the POMDP and Dec-POMDP for-
mulations do not explicitly model communication between

agents. To address this issue, several extensions combin-
ing decentralised planning and message passing have been
proposed. One of the earlier such approaches is the Com-
municative Multi-agent Team Decision Problem (Pynadath
and Tambe 2002), which presents a general framework
for teamwork with instantaneous communication. However,
this model assumes distinct pre-communication and post-
communication phases (similarly to Figure 1(b)) and perfect
noiseless channels without delays and losses.

Becker, Lesser, and Zilberstein (2005) consider communi-
cation with associated costs in a Decentralised MDP frame-
work, where agents must additionally decide when to trans-
mit their local states to their peers. This concept is extended
to partially observable domains by Roth, Simmons, and
Veloso (2005), leading to reasoning over joint beliefs based
on intermittently transmitted local observations. Despite
factoring communication costs, both of these works also
assume reliable communication channels, through which
agents are able to merge their local observations (or states)
and construct a more complete approximation of the world.

Planning with communication costs has also been stud-
ied in the context of coordinated multi-agent reinforcement
learning (Zhang and Lesser 2013). This method uses a loss
rate threshold to select sub-groups of agents that will coordi-
nate their actions (and communicate) at each time step. De-
spite addressing concerns of systems with larger numbers of
agents, this work makes stronger assumptions on inter-agent
coordination, while also not considering noise (and actual
message losses) in the communication channel.

The problem of decentralised planning with imperfect
communication has recently received more attention in the
literature. Within the Dec-POMDP framework, Bayesian
game techniques (Oliehoek, Spaan, and Vlassis 2007) and
tree-based solutions (Oliehoek and Spaan 2012) have been
proposed to deal with one-step message delays. This is ex-
tended to account for stochastic delays that can be longer
than one time step (Spaan, Oliehoek, and Vlassis 2008).
Our simultaneous communication model (Figure 1(c)) aims
to address similar effects, but does not assume any explicit
bounds on message delays. Furthermore, we also consider
other types of communication noise such as message losses
(which are effectively analogous to infinite-time delays).

Wu, Zilberstein, and Chen (2011b) introduce a model of
bounded message-passing, where the communication chan-
nel may be periodically unavailable. In this context, two
distinct protocols are evaluated; the first postpones com-
munication until the channel becomes available again, and
the second drops the communication attempt entirely. While
these constraints are similar to the ones we consider, we also
note some important differences. First, the bounded com-
munication model uses separate communication and action
phases, whereas we adopt a more constrained simultaneous
approach (Figure 1). Second, the above protocols assume
that agents know when the communication channel is un-
available; by contrast, our method makes no assumptions on
when, if, or how transmitted messages will reach other team-
mates.

A common feature of all the above works is that agents
communicate their local observations to each other, with

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

47

the goal of combining them and forming a more complete
world model. As discussed in the introduction of this paper,
we adopt a different, action-based communication protocol,
which does not aim to “centralise” a decentralised decision
problem through observation exchange and joint-belief rea-
soning. Instead, agents maintain their own incomplete views
of the world, and use (any) communicated actions received
from their teammates to bias their own, egocentric plan-
ning process. As we demonstrate in our results, this proto-
col maintains a robust performance even under high levels
of communication channel noise. Moreover, our approach is
also tolerant to novel types of noise, such as message cor-
ruption, which have so far received little attention in decen-
tralised planning under partial observability.

Collaboration without prior coordination
Another common underlying aspect of the works presented
in the previous section is collaboration between identical
agents. However, many of these approaches break down
when the domains feature heterogeneous agents with differ-
ent planning, reward, or world modeling processes. To ad-
dress this issue, our method draws inspiration from the ad-
hoc teamwork problem (Stone et al. 2010), which consid-
ers collaboration without pre-coordination in the presence
of unknown teammates. In this context, the POMCP algo-
rithm has been combined with Markov games (Wu, Zilber-
stein, and Chen 2011a) and transfer learning (Barrett et al.
2013b) to generate team-level strategies. However, both of
these works assume full world observability and do not in-
volve inter-agent communication.

A communication protocol for ad-hoc teamwork has been
proposed by Barrett et al. (2013a), where message selec-
tion is integrated within the planning process. In particu-
lar, each agent has a fixed set of communicative messages
that are synthesised through the POMCP multi-armed ban-
dit framework. Despite taking some important first steps to-
wards combining planning and communication with hetero-
geneous agents, this work assumes full world observability
and noiseless channels, while also using distinct communi-
cation and action phases. To our knowledge, our method is
the first to address the combined existence of several of the
challenges described so far, i.e. uncoordinated collaboration
with unknown teammates in partially observable domains,
in the presence of imperfect communication.

Method
In this section, we first provide an overview of POMDP
and Monte-Carlo planning, summarising some key concepts
from Silver and Veness (2010). Then, we extend the single-
agent POMCP definitions to model egocentric planning in
multi-agent systems. We subsequently present our commu-
nication protocol, and then describe our approach to plan-
ning with communicated actions. We conclude by providing
detailed algorithms for our implementation.

Planning in single-agent POMDPs
Preliminaries An agent acting in a partially observable
domain cannot directly observe the state of the world, st,

but only knows a history of past actions and observations
up to the current time t, ht � to0, a0, . . . , ot, at, ot�1u,
and plans with respect to the belief Bps, hq, which is a
history-dependent distribution over states. A policy πph, aq
is a mapping from histories to actions, and the return Rt �°8
k�t γ

k�trk is the obtained reward starting at time t, where
0 γ ¤ 1 is a discount factor, and each rk is drawn from the
reward function R. The value function V πphq � ErRt|hs
is the expected return under π starting at history h, and
V �phq � maxπ V πphq is the optimal value function. Addi-
tionally,Qπph, aq is the value of taking action a after history
h, and then following policy π.

Monte-Carlo planning Due to the complexity associ-
ated with computing V � exactly, POMCP approximates
this value through sampling-based forward search from the
current history h. The planner uses a black-box simulator
pst�1, ot�1, rt�1q � Gpst, atq that generates successor val-
ues given the current state and action. The value of a state s
is approximated by the mean return of n simulations, or plan
samples, V psq � 1

n

°n
i�1Ri, each searching the problem

space over a fixed time horizon H. Starting with 0 values,
the planner also maintains visitation counts Nphq, Nph, aq
and Q-value estimates Qph, aq for each history-action pair,
which are updated during plan sampling; visitation counts
are incremented by 1 each time a history or history-action
pair is sampled, and Q-values are updated as Qph, aq Ð

Qph, aq � R�Qph,aq
Nph,aq , where R is the return of the most re-

cent plan sample. When a history h has not been visited be-
fore, actions are chosen randomly based on a rollout policy,
a � πrolloutphq. Otherwise, the optimal action is selected as

a� � arg maxaPA Qph, aq� c
a

logpNphqq{Nph, aq, (1)

using the UCB heuristic with an exploration constant c.

Egocentric POMCP for multi-agent systems
Extending POMCP heuristics to multi-agent systems is not
straightforward due to the existence of joint actions and ob-
servations. For fully observable systems, Eq. 1 can be rewrit-
ten as ~a� � arg max~aP ~A Qps,~aq� c

a
logpNpsqq{Nps,~aq

(Wu, Zilberstein, and Chen 2011a), replacing histories with
states and single-agent actions with joint ones. Unfortu-
nately, this does not apply to partially observable domains
with no communication because agents cannot observe joint
histories ~h (and actions ~a).

To overcome this problem (and avoid maintaining expen-
sive beliefs over the beliefs of others), we restrict our sam-
ple updates to single-agentN andQ values as in the original
POMCP framework. However, we modify the rollout policy
to generate random joint actions, ~a � πrolloutphq, though it
is still parametrised only by the planning agent’s history h.
Similarly, we parametrise the black-box simulator in terms
of joint actions, pst�1, ot�1, rt�1q � Gpst,~atq, though it
still generates observations and rewards for the planning
agent only. These modifications can be implemented at min-
imal additional computational cost, while also not making
any assumptions about other agents’ beliefs and histories.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

48

Simultaneous Action Communication
Communication protocol and structures Despite pro-
viding support for decision-making in the presence of other
agents, the above definitions do not model communication
within a team. To address this issue, we define a simple
protocol through which agents can communicate with each
other. In particular, let M denote the set of messages that can
be exchanged between agents, mÝÑ a message sent by an
agent to its teammates, andmÐÝ a received message. We as-
sume a simple broadcasting protocol, where the world state,
s, is augmented with a message queue, q, containing all the
currently available messages. When an agent sends a mes-
sage mÝÑ, it simply adds it to the front of q; when an agent
receives a message mÐÝ, it marks it for removal and mÐÝ is
erased from q at the end of the current time step.

Message selection, exchange, and interpretation As dis-
cussed in previous sections, one distinguishing feature of our
approach is that agents communicate their actions (and not
their observations), and they do so simultaneously with ac-
tion execution (as illustrated in Figure 1(c)). In this context,
an agent selects the action at to be executed at time t, an
deterministically sets its upcoming message to mÝÑt � at.
Thus, the message set is identical to the action set, i.e.
M � A. Furthermore, we can straightforwardly extend the
action rollout policy, ~a � πrolloutphq, to obtain the joint
message rollout policy, ~mÝÑ � µrolloutp~aq � ~a.

Similarly to actions, agents receive messages from their
teammates simultaneously to making observations on the
state of the world. At every observation/message reception
phase, each agent receives a set, tmÐÝu, of up to n� 1 mes-
sages, where n is the size of the team (so at most one mes-
sage per teammate is received). However, the size of tmÐÝu
may be potentially smaller when messages are delayed or
dropped. The received messages are interpreted under the
assumption that all agents are communicating their actions;
we use a simple procedure a Ð ParseActionpmq that
converts a message m to an action a. When the channel is
reliable, ParseAction will return the (correct) action that
was originally transmitted by the sending agent. Neverthe-
less, as discussed in the following section, we also consider
the case where messages are corrupted during transmission
and thus interpreted incorrectly at the receiving end.

Putting everything together, the black-box G with simul-
taneous communication and state updates is rewritten as

pst�1, qt�1, ot�1, rt�1, tmÐÝt�1uq � Gpst, qt,~at, ~mÝÑt q (2)

Modeling imperfect communication Our protocol can
be extended to account for different types of imperfect com-
munication. When modeling message losses, a transmitted
message mÝÑt is dropped with probability 0 ¤ pplossq ¤ 1,
in which case the queue q remains unchanged. For message
delays, mÝÑt is added with probability ppdelayq to q after
the other updates for step t are completed, which means that
it cannot be used by its teammates at decision step t � 1.
Thus, our notion of delay is different to definitions assum-
ing distinct action and communication phases. In our frame-
work, all messages by default arrive with a one (planning)
step delay, so our definition of delay refers to an additional

communication lag (leading to an overall delay of at least
two planning steps). Finally, a transmitted message is cor-
rupted with probability ppcorruptq, in which case the re-
ceiving agent interprets it as an action other than the one that
was originally sent. For the latter type of noise, the number
of possible misinterpretations grows with the action set size.

Planning with Communicated Actions
One important open question in our framework is how to use
communicated messages to improve the quality of selected
actions. To address this issue, we propose two extensions to
the original egocentric POMCP framework. First, we intro-
duce a distribution over communicated messages, and use it
as a bias in the teammate action sampling process. Second,
we define and learn Q-values over the message space, thus
obtaining a factored approach to action selection.

Teammate action sampling In the non-communicate
egocentric POMCP variant, teammate actions are always
sampled based on the random rollout policy πrollout. How-
ever, when communication is available, the received mes-
sages can provide better insight on the actions chosen by the
other agents. To exploit this feature, we introduce a distribu-
tion A1ph, aq over communicated teammate actions for ev-
ery (single-agent) history h and action a. We modelA1ph, aq
as an unweighted particle filter that is progressively popu-
lated from the received messages (similarly to how the be-
lief distribution Bphq is updated from the generated state
samples). When A1ph, aq is non-empty, teammate actions
are sampled directly from this distribution, otherwise we
use πrollout as in the non-communicative approach. Thus,
action selection is biased towards the information extracted
from the received teammate messages, and the rollout policy
serves as a fall-back when communication is limited.

Factored value learning and action selection We model
communicated messages a special type of observation, over
which a separate set of Q-values is learned and used in ac-
tion selection. In particular, we define a value Qph, a,mq
(and an associated visitation count Nph, a,mq) for every
history h, action a, and message m, thus introducing an
additional layer in the policy learning hierarchy. Like reg-
ular Q-values, message values are updated based on the re-
turn R generated by each plan sample, i.e. Qph, a,mq Ð
Qph, a,mq � R�Qph,a,mq

Nph,a,mq . Moreover, Eq. 1 is updated as

a� � arg maxaPA pQph, aq � maxmPM Qph, a,mq

� c
a

logpNphqq{Nph, aqq
(3)

to incorporate the learned message values. This leads to a
factored learning and action selection procedure, where the
planning agent performs distinct learning updates for the dif-
ferent types of input acquired during the interaction.

Summary of Algorithms
We conclude this section by providing implementations for
all the procedures described so far. Algorithm 1 summarises
the high-level search algorithm; when a history h has not
been visited before, states are sampled from the initial state

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

49

Algorithm 1: SearchWithCommunication(h)
for iÐ 1 to NumPlanSamples do

if h � empty then s � IS , q ÐH
else xs, qy � Bphq
Simulateps, q, h, 0q

return arg max
aPA

pQph, aq � max
mPM

Qph, a,mqq

Algorithm 2: SelectActionphq
return a� Ð arg max

aPA
pQph, aq � max

mPM
Qph, a,mq

� c �
b

logpNphqq
Nph,aq q

Algorithm 3: Rolloutps, q, h, dq
if d ¥ H then return 0
~aÐ xa, a1y � πrolloutphq, ~mÝÑ � µrolloutp~aq
xś, q́, o, r, �y � Gps, q,~a, ~mÝÑq
return r � γ � Rolloutpś, q́, hao, d� 1q

distribution IS , and the message queue is empty. Algorithm
2 recaps the communication-based action selection formu-
lation, and Algorithm 3 gives the random rollout sampling
procedure. Finally, Algorithm 4 illustrates the main simula-
tion algorithm, where Q-values are initialised and updated.

Results
We evaluate our approach in two multi-agent domains; a
benchmark cooperative box-pushing problem from the Dec-
POMDP literature, and a more complex multi-robot kitchen
scenario with a significantly larger action space. The do-
mains are noisy, so actions and observations are perturbed
with 0.1 probability. In both problems, we compare a decen-
tralised POMCP agent with simultaneous action communi-
cation (denoted SAC) to an identical agent with no commu-
nication (NoComm); both agents follow the planning ap-
proach defined in the previous section, but NoComm does
not learn or use any message Q-values.

We assess the two algorithms in two-agent teams, divid-
ing our experiments for each domain in two phases. In the
first, same-agent team phase, we pair CAC and NoComm
with an identical agent, and compare the resulting teams un-
der varying message loss, delay, and corruption probabili-
ties. We test for the cases where each threshold (pplossq,
ppdelayq, ppcorruptq) is modified independently, and the
case where all types of noise are combined. In the sec-
ond, heterogeneous-agent team phase, we fix the three noise
thresholds to 0.1 (so they are equal to the action and ob-
servation noise probabilities), and compare performance in
collaboration with other, unknown agents. In this context,
the candidate teammates are an agent selecting random ac-
tions (Rand), and a problem-specific human-designed agent
(HumDes) running a robust hand-coded algorithm. Both
Rand and HumDes can communicate their actions to their
teammates, though their behaviour does not make any as-

Algorithm 4: Simulateps, q, h, dq
if d ¥ H then return 0
if Nphq � 0 then

forall a P A do
Nph, aq Ð 0, Qph, aq Ð 0, A1ph, aq Ð H
forall m PM do

Nph, a,mq Ð 0, Qph, a,mq Ð 0

return Rolloutps, q, h, dq
aÐ SelectActionphq
if A1ph, aq � H then a1 � A1ph, aq
else x�, a1y � πrolloutphq
~mÝÑ � µrolloutpxa, a

1yq
xś, q́, o, r, tmÐÝuy � Gps, q, xa, a1y, ~mÝÑq
RÐ r � γ � Simulatepś, q́, hao, d� 1q
Bphq Ð Bphq Y xs, qy, Nphq Ð Nphq � 1

Nph, aq Ð Nph, aq�1, Qph, aq Ð Qph, aq�R�Qph,aq
Nph,aq

forall m P tmÐÝu do
Nph, a,mq Ð Nph, a,mq � 1
A1ph, aq Ð A1ph, aq Y ParseActionpmq

Qph, a,mq Ð Qph, a,mq � R�Qph,a,mq
Nph,a,mq

return R

sumptions about the availability of communication.
To demonstrate the generality of our approach, we use

the same experiment parameters in both problems. For each
team, we average results over 100 runs with 1024 plan sam-
ples per decision step, recording the mean return (the re-
ward achieved by the team after each run) and the average
computation time per team per step. We set the time horizon
to H � 20 and the exploration constant to c � rmax, where
rmax is the maximum reward of the domain. Experiments
were run on a dual core 3GHz PC with a 4GB RAM.

Cooperative box-pushing
In the cooperative box-pushing domain (Seuken and Zilber-
stein 2007), agents interact in a walled grid with one large
and two small boxes. Agents get a reward of +10 for pushing
a small box to the edge of the grid and +100 for doing this
for the large box. However, the large box can be moved only
if simultaneously pushed by both agents. Each agent has 4
actions (move, turn left, turn right, stay) and can only see
the square to its front, with the possible observations being
empty, other agent, wall, small box, large box. Each agent
gets a reward of -0.1 for every step taken, and -5 for bump-
ing into a wall, its teammate, or a box it cannot move. When
any box reaches the edge, the problem resets to the start state
and the interaction repeats until the time horizon is reached.

The box-pushing results for same-agent teams under dif-
ferent types of communication noise are presented in Fig-
ure 2. The SAC + SAC team is seen to outperform the
NoComm variant under all possible noise thresholds, even
when the communication channel is always unavailable or
unreliable. Moreover, the performance is similar across the
different types of noise (and the case where all types of
noise combine), thus indicating that our method is not sen-

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

50

0.0 0.2 0.4 0.6 0.8 1.0
2

7

12

17

22

p(loss)

M
e
a
n
 R

e
tu

rn

SAC+SAC
NoComm+NoComm

(a) Message losses

0.0 0.2 0.4 0.6 0.8 1.0
2

7

12

17

22

p(delay)

SAC+SAC
NoComm+NoComm

(b) Message delays

0.0 0.2 0.4 0.6 0.8 1.0
2

7

12

17

22

p(corrupt)

SAC+SAC
NoComm+NoComm

(c) Message corruptions

0.0 0.2 0.4 0.6 0.8 1.0
2

7

12

17

22

p(loss), p(delay), p(corrupt)

SAC+SAC
NoComm+NoComm

(d) All types of noise combined

Figure 2: Box-pushing domain - comparison of same-agent teams (SAC + SAC and NoComm + NoComm) for different types
of communication channel noise. pplossq: probability of message loss. ppdelayq: probability of message delay. ppcorruptq:
probability of message corruption. (a)-(c): Returns obtained under a single type of noise - the other probabilities are set to 0.
(d): All types of noise combined (with pplossq � ppdelayq � ppcorruptq in each case).

sitive to any specific irregularities. Thus, the simultaneous
action communication approach benefits from the exchange
of messages when the channel is reliable, while not being
impacted by message losses, delays, or corruptions even un-
der severely restricted communication conditions.

An experimental evaluation of decentralised planning
with communication in the box pushing domain has also
been conducted by Wu, Zilberstein, and Chen (2011b). In
their results, they report considerably higher positive returns
for most noise thresholds, which however drop to negative
values when the channel is always unavailable (whereas
our method still manages to achieve a positive mean re-
turn). Nevertheless, a direct comparison with simultaneous
action communication is problematic for two reasons. First,
as discussed in the related work section, their approach
uses distinct action execution and communication phases,
where successfully transmitted messages always provide up-
to-date information on teammate observations. In our frame-
work, even where there is no additional noise, all messages
arrive with a one-step delay. Thus, our experimental setting
introduces considerably harder constraints on collaboration
that are not fully captured by the distinct phase model1. Sec-
ond, their method first solves a centralised MDP version of
the problem, and then uses it as a heuristic in the decen-
tralised algorithms, thus improving planning performance.
By contrast, our approach uses no such heuristics, follow-
ing a fully uncoordinated planning approach that does not
incorporate any prior centralised knowledge.

The results for collaboration with heterogeneous agents
in the box-pushing domain are given in Figure 3. Compared
to NoComm, the SAC agent achieves better returns when
paired with all other teammates. Moreover, the SAC + No-
Comm team outperforms both the SAC + SAC and the No-
Comm + NoComm combinations, thus indicating that our

1In practice, the distinct and simultaneous phase models are
aligned only in the maximal 1.0 loss rate case, when all messages
are dropped in both frameworks (in this case, only our method at-
tains positive returns in the box-pushing problem). For all other
noise levels 1.0, the distinct-phase framework provides agents
with synchronised messages for at least some fraction of the time;
this advantage would however be lost in our experimental setting.

−15

−6

3

12

21

30

M
e
a
n
 R

e
tu

rn

Mean return

Time (s)

0

0.01

0.02

0.03

0.04

0.05

T
im

e
 (

s
)

Rand + R
and

Rand +
 N

oCom
m

Rand +
 S

AC

Rand +
 H

um
Des

NoComm + N
oComm

SAC + SAC

SAC +
 N

oCom
m

NoCom
m

 +
 H

um
Des

SAC +
 H

um
Des

HumDes + H
umDes

Figure 3: Box pushing domain - results for heterogeneous
agent teams. The results are sorted in order of increasing
mean return. Boldface labels: teams with different agents.
Non-boldface labels: teams with the same agents. Commu-
nication noise: pplossq � ppdelayq � ppcorruptq � 0.1.
See text for description of the different algorithms.

method can achieve robust collaboration even with agents
who do not use any communication.

Multi-robot kitchen domain
The multi-robot kitchen domain is an extension of a single-
agent problem described by Petrick, Geib, and Steedman
(2009). In the multi-agent variant, two bi-manual robots are
tasked with transporting a tray between two different kitchen
locations. The kitchen has five locations (sideboard, stove,
fridge, dishwasher, cupboard), and each robot can move be-
tween them. A location can be opened or closed by a robot’s
left or right hands. The tray can be grasped or put down at a
location, or transported between locations; these actions are
joint and fail if not simultaneously executed by both robots.
If a joint action fails at the start location, the tray is dropped
and needs to be placed upright by one robot; if it fails at any

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

51

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

p(loss)

M
e
a
n
 R

e
tu

rn
SAC+SAC
NoComm+NoComm

(a) Message losses

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

p(delay)

SAC+SAC
NoComm+NoComm

(b) Message delays

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

p(corrupt)

SAC+SAC
NoComm+NoComm

(c) Message corruptions

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

p(loss), p(delay), p(corrupt)

SAC+SAC
NoComm+NoComm

(d) All types of noise combined

Figure 4: Kitchen domain - results for different types of communication noise. See caption of Figure 2 for further explanations.

−10

0

10

20

30

40

50

60

M
e
a
n
 R

e
tu

rn

Mean return

Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
im

e
 (

s
)

Rand + R
and

Rand +
 H

um
Des

Rand +
 N

oCom
m

Rand +
 S

AC

NoComm + N
oComm

NoCom
m

 +
 H

um
Des

SAC +
 N

oCom
m

SAC + SAC

SAC +
 H

um
Des

HumDes + H
umDes

Figure 5: Kitchen domain - results for heterogeneous agent
teams. See caption of Figure 3 for further explanations.

other location, the tray is moved back to the start. The tray
and teammate are visible only when in the same location as
the planning robot. The reward is +100 for successfully tak-
ing the tray to the goal, and -0.1 for every other step.

When aggregating all possible object/location/gripper
combinations, the kitchen domain has a total of 175 ac-
tions per agent. This represents a considerably larger prob-
lem space than the box-pushing domain, which impacts
both planning and communication (since, as previously dis-
cussed, the number of possible message misinterpretations
grows with the action space). Additionally, several distinct
joint actions are now needed to achieve the goal, i.e. grasp,
transport, and put down (as opposed to just moving the large
box). Another distinguishing feature is that no goal can now
be attained by a single agent (as with small boxes previ-
ously), so robots must collaborate to get a positive reward.

The higher difficulty of the kitchen domain is illustrated
in Figure 4, where the SAC algorithm now performs worse
than NoComm in some of the more restricting noise cases.
This is particularly evident in Figure 4(d), where the perfor-
mance decline is more rapid. Nevertheless, even in this chal-
lenging problem, SAC outperforms NoComm under limited
communication noise, while exhibiting comparable sensitiv-

ity to the different noise types (with 0.6 being the cut-off
probability threshold in Figures 4(a), 4(b), and 4(c)).

The SAC agent also maintains its ability to achieve supe-
rior collaboration with heterogeneous agents than NoComm
(Figure 5). When comparing with the box-pushing problem
results, SAC now also outperforms HumDes when paired
with Rand and NoComm, thus indicating better adapta-
tion to unknown teammates in this more challenging do-
main. Furthermore, the SAC approach demonstrates com-
parable efficiency to the other algorithms, as indicated by
the recorded computation times.

Conclusions
In this paper, we introduce a novel approach to collaboration
in partially observable domains, which is based on the simul-
taneous execution and exchange of actions between team-
mates. We extend a state-of-the-art, single-agent Monte-
Carlo planner to support egocentric reasoning in multi-agent
systems, where communicated messages are used to bias
the sampling process and learn policies through factored
value updates. Thus, unlike many existing methods that rely
heavily on observation and belief synchronisation within a
team, our work assumes a looser coupling between planning
and communication phases. As demonstrated by our results,
our approach outperforms a non-communicative variant in
a benchmark domain under varying noise types (message
losses, delays, corruptions), while achieving robust collab-
oration with unknown teammates even in a larger and more
complex collaborative planning problem.

We are currently working on integrating communication-
based planning with reinforcement learning techniques that
actively model the rewards of interacting agents. Our goal
is to develop fast, robust decentralised planning algorithms
that can be applied to challenging problems with varying
task specifications and team compositions. In particular, we
are interested in collaborative human-robot interaction ap-
plications requiring heterogeneous agents to work (and com-
municate) in teams towards a common goal, under limited
resources and tight coordination constraints.

Acknowledgment
This work has been funded by the European Commission
through the EU Cognitive Systems and Robotics project
Xperience (FP7-ICT-270273).

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

52

References
Barrett, S.; Agmon, N.; Hazon, N.; Kraus, S.; and Stone,
P. 2013a. Communicating with Unknown Teammates. In
AAMAS Adaptive Learning Agents (ALA) Workshop.
Barrett, S.; Stone, P.; Kraus, S.; and Rosenfeld, A. 2013b.
Teamwork with Limited Knowledge of Teammates. In
AAAI.
Becker, R.; Lesser, V.; and Zilberstein, S. 2005. Analyzing
Myopic Approaches for Multi-Agent Communication. In
Proceedings of Intelligent Agent Technology, 550–557.
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The Complexity of Decentralized Control of
Markov Decision Processes. Math. Oper. Res. 27(4):819–
840.
Coles, A. J.; Coles, A.; Olaya, A. G.; Celorrio, S. J.; López,
C. L.; Sanner, S.; and Yoon, S. 2012. A Survey of the
Seventh International Planning Competition. AI Magazine
33(1).
Gelly, S.; Kocsis, L.; Schoenauer, M.; Sebag, M.; Silver, D.;
Szepesvári, C.; and Teytaud, O. 2012. The grand challenge
of computer Go: Monte Carlo tree search and extensions.
Commun. ACM 55(3):106–113.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and Acting in Partially Observable Stochastic Do-
mains. Artificial Intelligence 101(1-2):99–134.
Kocsis, L., and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In European Conference on Machine Learn-
ing (ECML), 282–293.
Oliehoek, F. A., and Spaan, M. T. J. 2012. Tree-Based Solu-
tion Methods for Multiagent POMDPs with Delayed Com-
munication. In AAAI.
Oliehoek, F. A.; Spaan, M. T. J.; and Vlassis, N. 2007. Dec-
POMDPs with delayed communication. In AAMAS Work-
shop on Multi-agent Sequential Decision Making in Uncer-
tain Domains.
Papadimitriou, C., and Tsitsiklis, J. N. 1987. The Com-
plexity of Markov Decision Processes. Math. Oper. Res.
12(3):441–450.
Petrick, R.; Geib, C.; and Steedman, M. 2009. Inte-
grating Low-Level Robot/Vision with High-Level Planning
and Sensing in PACO-PLUS. Technical Report, PACO-
PLUS Project Deliverable 4.3.5 (available at http://
www.paco-plus.org).
Pynadath, D. V., and Tambe, M. 2002. The Communicative
Multiagent Team Decision Problem: Analyzing Teamwork
Theories and Models. J. Artif. Intell. Res. (JAIR) 16:389–
423.
Roth, M.; Simmons, R.; and Veloso, M. 2005. Reasoning
About Joint Beliefs for Execution-time Communication De-
cisions. In AAMAS, 786–793.
Seuken, S., and Zilberstein, S. 2007. Memory-Bounded
Dynamic Programming for DEC-POMDPs. In IJCAI.
Silver, D., and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In NIPS, 2164–2172.

Spaan, M. T. J.; Oliehoek, F. A.; and Vlassis, N. A. 2008.
Multiagent Planning Under Uncertainty with Stochastic
Communication Delays. In ICAPS, volume 8, 338–345.
Stone, P.; Kaminka, G. A.; Kraus, S.; and Rosenschein, J. S.
2010. Ad Hoc Autonomous Agent Teams: Collaboration
without Pre-Coordination. In AAAI.
Wu, F.; Zilberstein, S.; and Chen, X. 2011a. Online Planning
for Ad Hoc Autonomous Agent Teams. In IJCAI, 439–445.
Wu, F.; Zilberstein, S.; and Chen, X. 2011b. Online Plan-
ning for Multi-Agent Systems with Bounded Communica-
tion. Artificial Intelligence 175(2):487–511.
Zhang, C., and Lesser, V. R. 2013. Coordinating multi-
agent reinforcement learning with limited communication.
In AAMAS, 1101–1108.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

53

Closed-form Solutions to a Subclass of Continuous Stochastic Games via Symbolic
Dynamic Programming

Shamin Kinathil
ANU and NICTA

Canberra, ACT, Australia
shamin.kinathil@anu.edu.au

Scott Sanner
NICTA and ANU

Canberra, ACT, Australia
ssanner@nicta.com.au

Nicolás Della Penna
ANU and NICTA

Canberra, ACT, Australia
nicolas.della-penna@anu.edu.au

Abstract

Zero-sum stochastic games provide a formalism to study
competitive sequential interactions between two agents with
diametrically opposing goals and evolving state. A solution
to such games in the case of a discrete state, was presented in
(Littman, 1994). The continuous state case, however, remains
unsolved. In many instances this requires nonlinear parame-
terised optimisation, a problem for which closed-form solu-
tions are generally unavailable. We characterise a subclass
of continuous stochastic games and present a novel symbolic
dynamic programming method which enables these problems
to be reduced to a parameterised linear program, for which an
exact closed-form solution exists. This solution is empirically
applied to compute exact solutions to a variety of continuous
state zero-sum stochastic games.

Introduction
Modelling competitive sequential interactions between
agents has important applications within economics and
decision-making. Stochastic games (Shapley, 1953) pro-
vide a convenient framework to model sequential interac-
tions between non-cooperative agents. In zero-sum stochas-
tic games, participating agents have diametrically oppos-
ing goals. A reinforcement learning solution to zero-
sum stochastic games with discrete states was presented in
(Littman, 1994). Closed-form solutions for the continuous
state case remain unknown, despite the general importance
of this formalism — zero-sum continuous state stochastic
games provide a convenient framework with which to model
robust sequential optimisation in adversarial settings includ-
ing many important financial and economic domains such as
option valuation on derivative markets.

The difficulty of solving zero-sum continuous state
stochastic games arises from the need to calculate a Nash
equilibrium for every state, of which there are infinitely
many. In this paper we characterise a subclass of continuous
state stochastic games for which we can calculate exact so-
lutions for arbitrary horizons via closed-form symbolic dy-
namic programming (SDP) (Boutilier et al., 2001) in contin-
uous domains (Sanner et al., 2011; Zamani & Sanner, 2012).

We begin by presenting Markov Decision Processes
(MDPs) (Howard, 1960) and value iteration (Bellman,

1957), a commonly used dynamic programming solution
for MDPs. We then describe both discrete and continuous
state zero-sum stochastic games as game-theoretic general-
isations of the MDP framework. Following this we show
how symbolic dynamic programming can be used to calcu-
late the first known exact solution to a particular subclass
of zero-sum continuous stochastic games. We conclude by
calculating exact solutions to continuous state matching pen-
nies and a binary option valuation game.

In this paper we make the following key contributions:

• We characterise a subclass of zero-sum continuous
stochastic games with restricted reward and transition
functions that can be solved exactly via parameterised lin-
ear optimisation.

• We provide an algorithm that solves this subclass of
stochastic games exactly and optimally using symbolic
dynamic programming for arbitrary horizons.

Markov Decision Processes

A Markov Decision Process (MDP) (Howard, 1960) is de-
fined by the tuple 〈S,A, T,R, h, γ〉. S andA specify a finite
set of states and actions, respectively. T is a transition func-
tion T : S×A→ S which defines the effect of an action on
the state. R is the reward functionR : S×A→ R which en-
codes the preferences of the agent. The horizon h represents
the number of decision steps until termination and the dis-
count factor γ ∈ [0, 1) is used to discount future rewards. In
general, an agent’s objective is to find a policy, π : S → A,
which maximises the expected sum of discounted rewards
over horizon h.

Value iteration (VI) (Bellman, 1957) is a general dynamic
programming algorithm used to solve MDPs. VI is based on
the set of Bellman equations, which mathematically express
the optimal solution of an MDP. They provide a recursive
expansion to compute: (1) V ∗(s), the expected value of fol-
lowing the optimal policy in state s; and (2) Q∗(s, a), which
is the expected quality of taking a in state s, then follow-
ing the optimal policy. The key idea of the algorithm is to
successively approximate V ∗(s) andQ∗(s, a) by V h(s) and
Qh(s, a), respectively, at each horizon h. These two func-
tions satisfy the following recursive relationship:

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

54

Qh(s, a) = R(s, a) + γ ·
∑
s′∈S

T (s, a, s′) · V h−1(s′) (1)

V h(s) = max
a∈A

{
Qh(s, a)

}
(2)

The algorithm is executed by first initialising V 0(s) to
zero or the terminal reward. Then for each h, V h(s) is cal-
culated from V h−1(s) via Equations (1) and (2), until the
intended h-stage-to-go value function is computed. Value it-
eration converges linearly in the number of iterations to the
true values of Q∗(s, a) and V ∗(s) (Bertsekas, 1987).

MDPs can be used to model multiagent systems under the
assumption that other agents are part of the environment and
have fixed behaviour. As a result, they ignore the difference
between responsive agents and a passive environment (Hu
& Wellman, 1998). In the next section we present a game
theoretic framework which generalises MDPs to situations
with two or more agents.

Zero-sum Discrete Stochastic Games

Discrete state stochastic games (DSGs) are formally defined
by the tuple 〈S,A1, . . . , An, T,R1, . . . , Rn, h, γ〉. S is a set of
discrete states and Ai is the action set available to agent i.
T is a transition function T : S × A1 × . . . × An → ∆(S),
where ∆(S) is the set of probability distributions over the
state space S. The reward functionRi : S×A1×. . .×An → R
encodes the individual preferences of agent i. The horizon
h represents the number of decision steps until termination
and the discount factor γ ∈ [0, 1) is used to discount future
rewards. In general, an agent’s objective is to find a pol-
icy, πi : S → σi(Ai) which maximises the expected sum
of discounted rewards over horizon h. Here σi(Ai) speci-
fies probability distributions over action set Ai. The optimal
policy in a DSG may be stochastic, that is, it may define a
mixed strategy for each state.

Zero-sum DSGs are a type of DSG involving two agents
with diametrically opposing goals. Under these conditions
the reward structure for the game can be represented by a
single reward function since an agents reward function is
simply the opposite of their opponent’s. The objective of
each agent is to maximise its expected discounted future re-
wards in the minimax sense. That is, each agent views its
opponent as acting to minimise the agent’s reward. Zero-
sum DSGs can be solved using a technique analogous to
value iteration for MDPs (Littman, 1994). The value func-
tion, V h(s), in this setting can be defined as:

V h(s) =

max
m∈σ1(A1)

min
o∈σ2(A2)

∑
a1∈A1

∑
a2∈A2

Qh(s, a1, a2) ·ma1 · oa2 (3)

where m ∈ R|A1| and o ∈ R|A2| are mixed (stochas-
tic) strategies from σ1(A1) and σ2(A2), respectively.
Qh(s, a1, a2), the quality of taking action a1 against action
a2 in state s, is given by:

Qh(s, a1, a2) = R(s, a1, a2)+

γ ·
∑
s′∈S

T (s, a1, a2, s
′) · V h−1(s′). (4)

Equation (3) can be further simplified by noting that since
the min operation is “inside” the max, the minimum is
achieved for a deterministic action choice. This observation
leads to the following form:

V h(s) = max
m∈σ1(A1)

min
a2∈A2

∑
a1∈A1

Qh(s, a1, a2) ·ma1 . (5)

Together Equations (4) and (5) define a recursive method
to calculate the optimal solution to zero-sum DSGs. The
policy for the opponent can be calculated by applying
symmetric reasoning and the Minimax theorem (Neumann,
1928).

Solution Techniques
Zero-sum DSGs can be solved via discrete linear optimisa-
tion. The value function in Equation (5) can be reformulated
as a linear program through the following steps:

1. Define V h(s) to be the value of the inner minimisation
term in Equation (5). This leads to the following linear
program for a known state s:

maximise V h(s)

subject to

V h(s) = min
a2∈A2

∑
a1∈A1

Qh(s, a1, a2) ·ma1 (6a)

∑
a1∈A1

ma1 = 1; ma1 ≥ 0 ∀a1 ∈ A1

2. Replace the equality (=) in constraint (6a) with ≤ by
observing that the maximisation of V h(s) effectively
pushes the ≤ condition to the = case. This gives:

maximise V h(s)

subject to

V h(s) ≤ min
a2∈A2

∑
a1∈A1

Qh(s, a1, a2) ·ma1 (7a)

∑
a1∈A1

ma1 = 1; ma1 ≥ 0 ∀a1 ∈ A1

3. Remove the minimisation operator in constraint (7a) by
noting that the minimum of a set is less than or equal to
the minimum of all elements in the set. This leads to the
final form of the discrete linear optimisation problem:

maximise V h(s)

subject to

V h(s) ≤
∑
a1∈A1

Qh(s, a1, a2) ·ma1 ∀a2 ∈ A2∑
a1∈A1

ma1 = 1; ma1 ≥ 0 ∀a1 ∈ A1

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

55

We can now use existing linear programming solvers to
compute the optimal solution to this linear program for each
s ∈ S at a given horizon h.

The linear program used to solve zero-sum DSGs cannot
be used once the state is continuous since there are infinitely
many states. The key innovation of this paper is in show-
ing that continuous state zero-sum games can still be solved
through the use of symbolic dynamic programming.

Zero-sum Continuous Stochastic Games
Continuous state stochastic games (CSGs) are formally de-
fined by the tuple 〈~x,A1, . . . , An, T,R1, . . . , Rn, h, γ〉. In
CSGs states are represented by vectors of continuous vari-
ables, ~x = (x1, . . . , xm), where xi ∈ R. The other com-
ponents of the tuple are as previously defined for discrete
stochastic games in the preceding section.

Zero-sum CSGs impose the same restrictions on the num-
ber of agents and the reward structure as their discrete state
counterparts. The optimal solution to zero-sum CSGs can
be calculated via the following recursive functions:
Qh(~x, a1, a2) = R(~x, a1, a2) +

γ ·
∫
T (~x, a1, a2, ~x

′) · V h−1(~x′) d~x′ (8)

V h(~x) = max
m∈σ(A1)

min
a2∈A2

∑
a1∈A1

Qh(~x, a1, a2) ·ma1 (9)

We can derive Equation (8) from Equation (4) by replac-
ing s, s′ and the

∑
operator with their continuous state

counterparts, ~x, ~x′ and
∫

, respectively.

Solution Techniques
Zero-sum CSGs can be solved using a technique analogous
to that presented in Section . Namely, the value function in
Equation (9) can be reformulated as the following continu-
ous optimisation problem:

maximise V h(~x)

subject to

V h(~x) ≤
∑
a1∈A1

Qh(~x, a1, a2) ·ma1 ∀a2 ∈ A2 (10a)

∑
a1∈A1

ma1 = 1; ma1 ≥ 0 ∀a1 ∈ A1

This optimisation problem cannot be easily solved using
existing techniques due to two factors: (1) there are infinitely
many states in ~x; and (2) constraint (10a) is nonlinear in ~x
and ma1

for general representations of Qh(~x, a1, a2). To fur-
ther illustration the second limitation consider Qh(~x, a1, a2)
in the form of a linear function in x for some a1 and a2:

Qh(~x, a1, a2) =
∑
j

cj · xj (11)

Substituting Equation (11) into constraint (10a) yields:

V h(~x) ≤
∑
a1∈A1

ma1

∑
j

cj · xj ∀a2 ∈ A2. (12)

It is clear from Equation (12) that a linear representation
of Qh(~x, a1, a2) leads to a nonlinear constraint where ma1

must be optimal with respect to the free variable ~x since we
need to solve for all states ~x. This results in a parameterised
nonlinear program, whose optimal solutions are known to
be NP-hard (Bennett & Mangasarian, 1993; Petrik & Zil-
berstein, 2011).

At this point we present the first key insight of this paper:
we can transform constraint (10a) from a parameterised non-
linear constraint to a piecewise linear constraint by imposing
the following restrictions: (1) restricting the reward func-
tion, R(~x, a1, a2), to piecewise constant functions; and (2)
restricting the transition function, T (~x, a1, a2, ~x

′), to piece-
wise linear functions.

In the next section we show that zero-sum CSGs, with
the aforementioned restrictions, can be solved optimally for
arbitrary horizons using symbolic dynamic programming.

Symbolic Dynamic Programming
Symbolic dynamic programming (SDP) (Boutilier et al.,
2001) is the process of performing dynamic programming
via symbolic manipulation. In the following sections we
present a brief overview of SDP for zero-sum continuous
stochastic games. We refer the reader to (Sanner et al., 2011;
Zamani & Sanner, 2012) for more thorough expositions of
SDP and its operations.

Case Representation

Symbolic dynamic programming assumes that all sym-
bolic functions can be represented in case statement form
(Boutilier et al., 2001) as follows:

f =

φ1 : f1
...

...
φk : fk

Here the φi are logical formulae defined over the state ~x
and can include arbitrary logical combinations of boolean
variables and linear inequalities over continuous variables.
Each φi is disjoint from the other φj (j 6= i) and may not
exhaustively cover the state space. Hence, f may only be
a partial function. In this paper we restrict the fi to be ei-
ther linear or constant functions of the state variable ~x. We
require f to be continuous.

Case Operations

Unary operations on a case statement f, such as scalar mul-
tiplication c · f where c ∈ R or negation −f , are applied to
each fi (1 ≤ i ≤ k) .

Binary operations on two case statements are executed in
two stages. Firstly, the cross-product of the logical partitions
of each case statement is taken, producing paired partitions.
Finally, the binary operation is applied to the resulting paired
partitions. The “cross-sum” ⊕ operation can be performed
on two cases in the following manner:

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

56

{
φ1 : f1
φ2 : f2

⊕

{
ψ1 : g1
ψ2 : g2

=

φ1 ∧ ψ1 : f1 + g1
φ1 ∧ ψ2 : f1 + g2
φ2 ∧ ψ1 : f2 + g1
φ2 ∧ ψ2 : f2 + g2

“cross-subtraction” 	 and “cross-multiplication” ⊗ are
defined in a similar manner but with the addition operator
replaced by the subtraction and multiplication operators, re-
spectively. Some partitions resulting from case operators
may be inconsistent and are thus removed.

Minimisation over cases, known as casemin, is defined
as:

casemin

({
φ1 : f1
φ2 : f2

,

{
ψ1 : g1
ψ2 : g2

)
=

φ1 ∧ ψ1 ∧ f1 < g1 : f1
φ1 ∧ ψ1 ∧ f1 ≥ g1 : g1
φ1 ∧ ψ2 ∧ f1 < g2 : f1
φ1 ∧ ψ2 ∧ f1 ≥ g2 : g2
...

...

casemin preserves the linearity of the constraints and the
constant or linear nature of the fi and gi. If the fi or gi are
quadratic then the expressions fi > gi or fi ≤ gi will be at
most univariate quadratic and any such constraint can be lin-
earised into a combination of at most two linear inequalities
by completing the square.

The casemax operator, which calculates symbolic case
maximisation, is defined as:

casemax

({
φ1 : f1
φ2 : f2

,

{
ψ1 : g1
ψ2 : g2

)
=

φ1 ∧ ψ1 ∧ f1 > g1 : f1
φ1 ∧ ψ1 ∧ f1 ≤ g1 : g1
φ1 ∧ ψ2 ∧ f1 > g2 : f1
φ1 ∧ ψ2 ∧ f1 ≤ g2 : g2
...

...

casemax preserves the linearity of the constraints and the
constant or linear nature of the fi and gi.

Other important SDP operations include substitution and
continuous maximisation. The substitution operation sim-
ply takes a set θ of variables and their substitutions, e.g.
θ =

{
x′1/(x1 + x2), x′2/x

2
1exp(x2)

}
, where the LHS of the /

represents the substitution variable and the RHS of the / rep-
resents the expression that should be substituted in its place.
We can apply the substitution θ to both non-case functions
fi and case partitions φi as fiθ and φiθ, respectively. Sub-
stitution into case statements can therefore be written as:

fθ =

φ1θ : f1θ
...

...
φkθ : fkθ

Maximisation can be used to calculate f1(~x, y) =
maxyf2(~x, y) with respect to a continuous parameter y. This
is a complex case operation whose explanation is beyond the
scope of this paper. We refer the reader to (Zamani & San-
ner, 2012) for further elucidation on this operator.

Case statements and their operations are implemented us-
ing Extended Algebraic Decision Diagrams (XADDs) (San-
ner et al., 2011). XADDs provide a compact data structure

with which to maintain compact forms of Qh(~x, a1, a2) and
V h(~x) . XADDs also permit the use of linear constraint fea-
sibility checkers to prune unreachable paths in the XADD.

SDP for Zero-sum Continuous Stochastic Games
In this section, we will show that a a class of zero-sum
continuous stochastic games with a closed-form solution is
given by stochastic games with (a) piecewise constant re-
wards and (b) piecewise linear transition functions, where
SDP can be used to calculate such solutions.

We calculate the optimal solution to zero-sum CSGs by
first expressing R(~x, a1, a2) , T (~x, a1, a2, ~x

′) , V 0(~x) as case
statements. We also express ma1 as a trivial case statement
representing an uninstantiated symbolic variable:

ma1 =
{
> : ma1

We can then compute the optimal solution via the follow-
ing SDP equations:

Qh(~x, a1, a2) = R(~x, a1, a2) ⊕

γ ⊗
∫
T (~x, a1, a2, ~x

′)⊗ V h−1(~x′) d~x′ (13)

Q̃h(~x, a1, a2) =
∑
a1∈A1

Qh(~x, a1, a2) ⊗ ma1 (14)

V h(~x) = max
m

casemin
(

casemina2∈A2

(
Q̃h(~x, a1, a2), Q̂h(~x, a1, a2)

)
, I
)
(15)

Equations (13) and (15) can be derived from Equations
(8) and (9) by replacing all functions by their case state-
ment equivalents and replacing operations such as +, × and
min, by their symbolic equivalents, ⊕, ⊗ and casemin, re-
spectively. Equation (14) calculates a symbolic Q function
weighted by the variable ma1

for each a1. In Equation (15)
casemin is a binary operation as previously defined where
the second argument Q̂h(~x, a1, a2) is simply Q̃h(~x, a1, a2)
instantiated with a particular a2. Equation (15) also includes
an “indicator” function, I, which serves as a summation con-
straint

∑
a1∈A1

ma1 = 1. The function I returns 1 when the
conjunction of all constraints on each ma1 are satisfied and
−∞, otherwise. That is:

I ={
∀a1 ∈ A1 [(ma1 ≥ 0) ∧ (ma1 ≤ 1) ∧ (

∑
ma1 = 1)] : 1

∀a1 ∈ A1¬ [(ma1 ≥ 0) ∧ (ma1 ≤ 1) ∧ (
∑
ma1 = 1)] : −∞

The summation constraint is included to ensure that the
subsequent max operation returns legal values for ma1

,
since max(l,−∞) = l .

In Algorithm 1 we present a methodology to calculate
the optimal h-stage-to-go value function, V h(~x), Equations
(13) and (15). In the algorithm we notationally specify the

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

57

arguments of the Qh and V h functions when they are in-
stantiated by an operation. For the base case of h = 0, we
set V 0(~x), expressed in case statement form, to zero or to
the terminal reward. For all h > 0 we apply the previously
defined SDP operations in the following steps:

1. Prime the Value Function. In line 6 we set up a substitu-
tion θ = {x1/x′1, . . . , xm/x′m}, and obtain V ′h = V hθ, the
“next state”.

2. Discount and add Rewards. We assume that the reward
function contains primed variables and incorporate it in
line 8.

3. Continuous Regression. For the continuous state variables
in ~x lines 10 - 11 follow the rules of integration w.r.t. a
δ function (Sanner et al., 2011) which yields the follow-
ing symbolic substitution:

∫
f(x′j) ⊗ δ

[
x′j − g(~z)

]
dx′j =

f(x′j)
{
x′j/g(~z)

}
, where g(~z) is a case statement and ~z

does not contain x′j . The latter operation indicates that
any occurrence of x′j in f(x′j) is symbolically substituted
with the case statement g(~z).

4. Incorporate Agent 1’s strategy. At this point we have cal-
culated Qh(~x, a1, a2), as shown in Equation (13). In lines
13 - 14 we weight the strategy for a specific a1 by ma1

.
We note thatma1

is a case statement representing an unin-
stantiated symbolic variable.

5. Case Minimisation. In lines 16 - 17 we compute the best
case for a2 as a function of all other variables.

6. Incorporate Constraints. In line 19 we incorporate con-
straints on the ma1

variable:
∑
a1∈A1

ma1 = 1 and ma1 ≥
0 ∧ma1 ≤ 1 ∀a1 ∈ A1. The casemin operator ensures
that all case partitions which involve illegal values ofma1

are mapped to −∞.

7. Maximisation. In lines 22 - 23 we compute the best re-
sponse strategy for every state. We note that this can only
be done via symbolic methods since there are infinitely
many states. At this point we have calculated V h(~x) as
shown in Equation (15).

It can be proved that all of the SDP operations used in Al-
gorithm 1 are closed form for linear piecewise constant or
linear piecewise linear functions (Sanner et al., 2011; Za-
mani & Sanner, 2012). Given a linear piecewise constant
V 0(~x) and that SDP operations are closed form, the result-
ing V h+1(~x) is also linear piecewise constant. Therefore, by
induction V h+1(~x) is linear piecewise constant for all hori-
zons h.

In the next section we demonstrate how SDP can be used
to compute exact solutions to a variety of zero-sum continu-
ous stochastic games.

Empirical Results
In this section we evaluate our novel SDP solution technique
on two domains: (1) continuous stochastic matching pen-
nies; and (2) continuous binary option valuation. The do-
main descriptions and results are presented below.

Algorithm 1: CSG-VI(CSG, H , I) −→ (V h)

1 begin
2 V 0 := 0, h := 0
3 while h < H do
4 h := h+ 1
5 // Prime the value function
6 Qh := Prime(V h−1)
7 // Discount and add Rewards
8 Qh := R(~x, a1, a2, ~x

′)⊕ (γ ⊗Qh)
9 // Continuous Regression

10 for all x′j ∈ Qh do
11 Qh :=

∫
Qh ⊗ T (x′j |a1, a2, ~x) dx′

j

12 // Incorporate Agent 1’s strategy
13 for all a1 ∈ A1 do
14 Qh := Qh ⊕

(
Qh (a1)⊗ {> : ma1

)
15 // Case Minimisation
16 for all a2 ∈ A2 do
17 Qh := casemin(Qh, Qh (a2))
18 // Incorporate constraints
19 Qh := casemin(Qh, I)
20 // Maximisation
21 V h = Qh

22 for all a1 ∈ A1 do
23 V h := maxma1

V h (ma1)

24 // Terminate if early convergence
25 if V h = V h−1 then
26 break
27 return (V h)

Continuous Stochastic Matching Pennies

Matching pennies is a well known zero-sum game with a
mixed Nash Equilibrium (Osborne, 2004). In this paper we
extend the standard formulation of the game by incorpo-
rating continuous state and sequential decisions while still
maintaining the zero-sum nature of the reward.

Domain Description We define continuous stochastic
matching pennies as an extensive form game between two
players p ∈ {1, 2}. The aim of a player is to maximise
its expected discounted pay-off at a fixed horizon H. Our
game is played within the interval [0, 1], two fixed variables
c ∈ [0, 1) and d ∈ (0, 1] with (c < d), are used to partition
the interval into three regions r ∈ {1, 2, 3}. Each region
is associated with its own zero-sum reward structure. The
continuous state variable x ∈ [0, 1] is used to specify which
region the the players are competing within.

At each horizon (h ≤ H) each player executes an ac-
tion ap ∈ {headsp, tailsp}. Player 1 “wins” if both players
choose the same action. Otherwise, Player 2 wins. The joint
actions of the players affect the state x as follows:

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

58

P (x′|x, a1, a2) =

δ

x′ −

(heads1) ∧ (heads2) ∧ (x ≥ k) : x− k
(heads1) ∧ (tails2) ∧ (x ≤ 1) : x+ k

(tails1) ∧ (heads2) ∧ (x ≥ k) : x+ k

(tails1) ∧ (tails2) ∧ (x ≤ 1) : x− k

The constant k ∈ (0, 1) is a step size which perturbs the

state x. If Player 1 wins, the state moves to the left by k,
otherwise it moves to the right by k. The Dirac function δ[·]
ensures that the transitions are valid conditional probability
functions that integrate to 1. We define the rewards obtained
by Player 1 in region r as:

Rr1 =

(heads1) ∧ (heads2) : αr1
(heads1) ∧ (tails2) : αr2
(tails1) ∧ (heads2) : αr3
(tails1) ∧ (tails2) : αr4

(16)

Here we restrict αr
i ∈ R. The rewards obtained by

Player 2 in the same region are simply −Rr
1. Henceforth,

we define rewards from the perspective of Player 1. Given
this domain description, we investigate the affects of sym-
metric and asymmetric reward structures on the continuous
stochastic matching pennies game. We define a symmetric
reward structure as having αr

1 = αr
4 and αr

2 = αr
3. Under

a symmetric reward structure the expected reward in each
region is the same for both players. An asymmetric reward
structure allows the αr

i to differ in both sign and magnitude.
Under this setting the expected rewards for a player may dif-
fer across regions. Tables 1 and 2 show examples of sym-
metric and asymmetric rewards for the continuous stochastic
matching pennies domain.

Table 1: Symmetric reward structure for Player 1. Note that
symmetric nature of the rewards within each region and the
differing rewards between regions.

Region 1 Region 2 Region 3
(heads1) ∧ (heads2) 10 5 20
(heads1) ∧ (tails2) -10 -5 -20
(tails1) ∧ (heads2) -10 -5 -20
(tails1) ∧ (tails2) 10 5 20

Table 2: Asymmetric reward structure for Player 1. Note
that asymmetric nature of the rewards within each region
and the differing rewards between regions.

Region 1 Region 2 Region 3
(heads1) ∧ (heads2) 1 5 7
(heads1) ∧ (tails2) -3 -5 -2
(tails1) ∧ (heads2) 0 -5 10
(tails1) ∧ (tails2) 2 5 20

Results Figure 1a shows the results of the continuous
stochastic matching pennies game using the symmetric re-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

State (x)

V
a
lu
e

(a) Symmetric rewards.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

State (x)

V
a
lu
e

(b) Asymmetric rewards.

Figure 1: Optimal value functions for continuous stochastic
matching pennies under (a) symmetric and (b) asymmetric
reward structures at horizon 4. Threshold values c and d are
highlighted in red and green, respectively. The step size is
k = 0.3.

ward structure given in Table 1. The results show that the
expected reward for Player 1 remains at zero over all 4 hori-
zons, irrespective of the state x. Given the symmetric re-
wards in each region, both players are indifferent between
their pure strategies. Hence, the expected reward for each
player is zero in all regions. This corresponds to the well
known solution of the matching pennies game where the re-
wards are symmetric and serves as a proof of concept for our
novel solution technique.

The effect of the asymmetric reward structure, given in
Table 2, is shown in Figure 1b. From the figure it is clear that
Player 1 achieves the highest expected reward in Region 3,
followed by Region 2 and finally by Region 1. This is to be
expected given the nature of the asymmetric rewards within
each region. The results indicate that the two players are
no longer indifferent between their pure strategies in each
region.

Binary Option Stochastic Game
Binary options are financial instruments which allow an in-
vestor to bet on the outcome of a yes/no proposition. The
proposition typically relates to whether the price of a par-
ticular asset that underlies the option will rise above or fall
below a specified amount, known as the strike price, κ ∈ R.
When the option reaches maturity the investor receives a
fixed pay-off if their bet was correct and nothing otherwise.

Domain Description We analyse the valuation of a binary
option as an extensive form zero-sum game between a trader
and the market. The aim of the trader is to maximise their
expected discounted pay-off at a fixed horizon H through
buying and selling options within an adversarial market. The

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

59

problem has two state variables: the underlying market value
of the option v ∈ [0, 100] and the trader’s inventory of op-
tions i ∈ N.

At each time step the trader can execute one of three ac-
tions atrd ∈ {buytrd, selltrd, holdtrd}, where buytrd refers
to a request to buy an option from the market, selltrd refers
to a request to sell an option to the market and holdtrd is
equivalent to taking no action. The market can execute one
of two actions: amkt ∈ {sellmkt, nsellmkt}, where sellmkt

corresponds to selling an option to the trader and nsellmkt

corresponds to not selling to the trader.
The joint actions of the trader and market, atrd and amkt,

respectively, affect both the market value of the option and
the trader’s inventory. For the sake of simplicity we assume
that the market value may increase or decrease by fixed step
sizes, u ∈ R for an increase and d ∈ R for a decrease.

The trader’s option inventory dynamics are given by:

P (i′|v, i, atrd, amkt) = δ

i′ −

(buytrd) ∧ (sellmkt) : i+ 1

(selltrd) ∧ (i > 0) : i− 1

otherwise : i

It should be noted that under this formulation the market

will always buy an option from the trader when the trader
selects selltrd. The market value changes according to:

P (v′|v, i, atrd, amkt) =

δ

v′ −

(buytrd) ∧ (sellmkt) : v + u

(selltrd) ∧ (i > 0) : v − d
otherwise : v

Assuming that the strike price κ ∈ [0, 100], the rewards
obtained by the trader are given by:

Rtrader =

{
(selltrd) ∧ (i > 0) ∧ (v > κ) : 1

otherwise : 0

The market’s reward is simply the additive inverse of the
trader’s reward. Hence, the binary option game is zero-sum.

Figure 2: The optimal value function for the binary option
game at horizon 20. The strike price is set to κ = 45.0 and
the increment and decrement values are set to u = 1.0 and
d = 1.0, respectively.

Results In Figure 2 we show the optimal value function
for the binary option game at horizon 20. The strike price
κ = 45.0 and the increment and decrement values, u and d
are both set to 1.0. The value function clearly shows that un-
der this formulation the trader achieves the most reward by
selling the option as soon v > κ. Selling an option triggers
the underlying value to decrease, which triggers the trader to
buy once the value falls beneath the strike price. This leads
to the continual cycling of buying and selling of the option
at values close to the strike price κ. In essence the trader
behaves like a market maker in that they take both sides of
the transaction at values near κ.

Related Work
Solutions to stochastic games have been proposed from
within both game theory and reinforcement learning. The
first algorithm, game theoretic or otherwise, for finding a so-
lution to a stochastic game was given by Shapley (Shapley,
1953). The algorithm repeatedly calculates a value func-
tion V (s) over discrete states which converges to an opti-
mal value function V ∗(s), which represents the expected
discounted future reward if both players in the game fol-
lowed the game’s Nash equilibrium. Shapley’s algorithm is
in essence an extension of the value iteration algorithm to
stochastic games.

A reinforcement learning based solution to stochastic
games was first introduced by (Littman, 1994). Littman’s al-
gorithm, Minimax-Q, extends the traditional Q-learning al-
gorithm for MDPs to zero-sum discrete stochastic games.
The algorithm converges to the stochastic game’s equilib-
rium solution. Hu and Wellman (Hu & Wellman, 1998) ex-
tended Minimax-Q to general-sum games and proved that
it converges to a Nash equilibrium under certain restrictive
conditions. Although both reinforcement learning based al-
gorithms are able to calculate equilibrium solutions they are
limited to discrete state formulations of stochastic games. In
this paper we calculate exact solutions to continuous state
formulations of stochastic games, under certain restrictions.
The Dec-MDP (Bernstein et al., 2002) framework allows for
decentralised control within continuous state spaces but is
limited to general-sum systems. In this paper we provide the
first known exact closed-form solution to a subclass of con-
tinuous state zero-sum stochastic games defined by a piece-
wise constant reward and piecewise linear transition.

Several techniques have been put forward to tackle con-
tinuous state spaces in MDPs. Li and Littman (Li & Littman,
2005) describe a method for approximate solutions to con-
tinuous state MDPs. In their work, Li and Littman only
allow for rectilinearly aligned constraints in their reward
and transition functions (not arbitrary linear constraints)
and cannot handle general linear transition models with-
out approximation. Our SDP method provides exact solu-
tions without these restrictions, which makes SDP strictly
more general. Also, Li and Littman did not consider game-
theoretic extensions of their work or the parameterised opti-
misation problem that these extensions entail.

Symbolic dynamic programming techniques have been
previously used to calculate exact solutions to single agent
MDPs with both continuous state and actions in a variety of

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

60

non-game theoretic domains (Sanner et al., 2011; Zamani
& Sanner, 2012). In this paper we build on this work and
present the first application of SDP to stochastic games with
concurrently acting agents.

Conclusions
We have characterised a subclass of zero-sum continuous
stochastic games that can be solved exactly via parame-
terised linear optimisation. We have also presented a novel
symbolic dynamic programming algorithm that can be used
to calculated exact solutions to this subclass of stochastic
games for arbitrary horizons. The algorithm was used to
calculate the first known exact solutions to a variety of ex-
perimental continuous domains.

There are a number of avenues for future research. Firstly,
it is important to examine more general representations of
the reward and transition functions while still guaranteeing
exact solutions. Another direction of research lies within im-
proving the scalability of the algorithm by using techniques
such as bounded error compression for XADDs (Vianna
et al., 2013) or lazy approximation of value functions as
piecewise linear XADDs (Li & Littman, 2005). Search
based approaches such as RTDP (Barto et al., 1995) and
HAO* (Meuleau et al., 2009) are also readily adaptable to
SDP. These extensions may then be used to model more
complex financial and economic domains. Finally, SDP can
be used to calculate exact solutions to general sum stochastic
games. The advances made by this work open up a number
of potential novel research paths that we believe may help
make progress in solving game theoretic domains with con-
tinuous state.

References
Barto, Andrew G., Bradtke, Steven J., & Singh, Satinder P.

1995. Learning to act using real-time dynamic pro-
gramming. Artificial Intelligence, 72(1-2), 81–138.

Bellman, Richard E. 1957. Dynamic Programming. Prince-
ton, NJ: Princeton University Press.

Bennett, Kristin P., & Mangasarian, O. L. 1993. Bilinear
Separation of Two Sets in N-space. Comput. Optim.
Appl., 2(3), 207–227.

Bernstein, Daniel S., Givan, Robert, Immerman, Neil, & Zil-
berstein, Shlomo. 2002. The Complexity of Decentral-
ized Control of Markov Decision Processes. Mathe-
matics of Operations Research, 27(4), 819–840.

Bertsekas, Dimitri P. 1987. Dynamic Programming: Deter-
ministic and Stochastic Models. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc.

Boutilier, Craig, Reiter, Ray, & Price, Bob. 2001. Sym-
bolic Dynamic Programming for First-order MDPs.
Pages 690 – 697 of: Proceedings of the Seventeenth In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-01). IJCAI, vol. 1.

Howard, Ronald A. 1960. Dynamic Programming and
Markov Processes. The M.I.T. Press.

Hu, Junling, & Wellman, Michael P. 1998. Multiagent Re-
inforcement Learning: Theoretical Framework and an
Algorithm. Pages 242–250 of: Proceedings of the Fif-
teenth International Conference on Machine Learning.
ICML. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

Li, Lihong, & Littman, Michael L. 2005. Lazy Approxi-
mation for Solving Continuous Finite-horizon MDPs.
Pages 1175–1180 of: Proceedings of the 20th Na-
tional Conference on Artificial Intelligence - Volume 3.
AAAI. AAAI Press.

Littman, Michael L. 1994. Markov Games as a Framework
for Multi-Agent Reinforcement Learning. Pages 157–
163 of: Proceedings of the 11th International Confer-
ence on Machine Learning Machine Learning. ICML.
San Francisco, California, USA: Morgan Kaufmann
Publishers Inc.

Meuleau, Nicolas, Benazera, Emmanuel, Brafman, Ro-
nen I., Hansen, Eric A., & Mausam. 2009. A Heuris-
tic Search Approach to Planning with Continuous Re-
sources in Stochastic Domains. Journal of Artificial
Intelligence Research, 34, 27–59.

Neumann, J. 1928. Zur Theorie der Gesellschaftsspiele.
Mathematische Annalen, 100(1), 295–320.

Osborne, Martin J. 2004. An introduction to game theory.
New York: Oxford University Press.

Petrik, Marek, & Zilberstein, Shlomo. 2011. Robust Ap-
proximate Bilinear Programming for Value Function
Approximation. Journal of Machine Learning Re-
search, 12, 3027–3063.

Sanner, Scott, Delgado, Karina, & Nunes de Barros, Leliane.
2011. Symbolic Dynamic Programming for Discrete
and Continuous State MDPs. Pages 1–10 of: Proceed-
ings of the 27th Conference on Uncertainty in Artificial
Intelligence (UAI-11). UAI.

Shapley, L. S. 1953. Stochastic Games. Proceedings of the
National Academy of Sciences, 39(10), 1095–1100.

Vianna, Luis Gustavo Rocha, Sanner, Scott, & Nunes de
Barros, Leliane. 2013. Bounded Approximate Sym-
bolic Dynamic Programming for Hybrid MDPs. Pages
1–9 of: Proceedings of the Twenty-Ninth Conference on
Uncertainty in Artificial Intelligence (UAI2013). UAI.

Zamani, Zahra, & Sanner, Scott. 2012. Symbolic Dynamic
Programming for Continuous State and Action MDPs.
Pages 1–7 of: Proceedings of the 26th Conference on
Artificial Intelligence (AAAI-12). AAAI.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

61

Beliefs in Multiagent Planning: From One Agent to Many

Filippos Kominis
Universitat Pompeu Fabra
08018 Barcelona, Spain

Hector Geffner
ICREA & Universitat Pompeu Fabra

08018 Barcelona, Spain

Abstract

Single-agent planning in partially observable settings is a
well understood problem and existing planners can repre-
sent and solve a wide variety of meaningful instances. In
the most common formulation, the problem is cast as a non-
deterministic search problem in belief space where beliefs are
sets of states that the agent regards as possible. In this work,
we build on the methods developed for representing beliefs
in single-agent planning to introduce a simple but expressive
formulation for handling beliefs in multi-agent settings. The
resulting formulation deals with multiple agents that can act
on the world (physical or ontic actions), and can sense ei-
ther the state of the world (truth of objective formulas) or the
mental state of other agents (truth of epistemic formulas). The
formulation captures and defines a fragment of dynamic epis-
temic logics that is simple and expressive but which does not
involve event models or product updates, and has the same
complexity of belief tracking in the single agent setting and
can benefit from the use of similar techniques. We show in-
deed that the problem of computing multiagent linear plans
can be actually compiled into a classical planning problem
using the techniques that have been developed for compiling
conformant and contingent problems in the single agent set-
ting.

Introduction
Single-agent planning in partially observable settings is a
well understood problem and existing planners can represent
and solve a wide variety of meaningful instances. In the most
common formulation, single-agent planning in partially ob-
servable environments is cast as a non-deterministic search
problem in belief space where the beliefs are sets of states
that the agent regards as possible (Bonet and Geffner 2000).
The work in partially observable or contingent planning has
been focused on ways for representing beliefs and selecting
actions (Bertoli et al. 2001; Brafman and Hoffmann 2004;
Albore, Palacios, and Geffner 2009; To, Pontelli, and Son
2011; Brafman and Shani 2012a).

Current approaches for representing beliefs in multiagent
dynamic settings, on the other hand, are based on Kripke
structures (Fagin et al. 1995). Multiagent Kripke structures
are triplets defined by a set of worlds, accessibility relations

among the worlds for each of the agents, and truth valuations
that define the propositions that are true in each world. While
a truth valuation determines the objective formulas that are
true in a world, the accessibility relation among worlds pro-
vides the truth conditions for epistemic formulas.

Dynamic epistemic logics extend epistemic logics with
the ability to deal with change (van Ditmarsch, van der
Hoek, and Kooi 2007; van Ditmarsch and Kooi 2008;
Van Benthem 2011). The standard approach relies on event
models and product updates by which both the agent be-
liefs and the events are represented by Kripke structures,
and the resulting beliefs are captured by a suitable cross
product of the two (Baltag, Moss, and Solecki 1998; Bal-
tag and Moss 2004). Syntactically, axiomatizations have
been developed to capture the valid inferences in such a
setting, and a number of approaches have been developed
to facilitate modeling and inference (Baral et al. 2012;
Herzig, Lang, and Marquis 2005). A simple form of plan-
ning, however, where an event sequence is sought to achieve
a given goal formula, has been shown to be undecidable in
dynamic epistemic logic (Aucher and Bolander 2013), while
decidable subsets have been identified as well (Löwe, Pacuit,
and Witzel 2011).

In this work, we build on the methods developed for rep-
resenting beliefs in single-agent planning to introduce a sim-
ple but expressive formulation for handling beliefs in multi-
agent settings. The resulting formulation deals with multi-
ple agents that can act on the world (physical or ontic ac-
tions), and can sense either the state of the world (truth of
objective formulas) or the mental state of other agents (truth
of epistemic formulas). The formulation captures and de-
fines a fragment of dynamic epistemic logics that is sim-
ple and expressive, but which does not involve event mod-
els or product updates, and has the same complexity of
belief tracking in the single agent setting and can benefit
from the use of similar techniques. We show indeed that
the problem of computing linear multiagent plans (Bolander
and Andersen 2011) can be actually compiled into a classi-
cal planning problem, using the techniques that have been
developed for compiling conformant and contingent prob-
lems in the single agent setting (Palacios and Geffner 2009;
Brafman and Shani 2012b).

The proposed formulation exploits certain conventions
and restrictions. First, while the agents can have private in-

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

62

formation as they have private sensors, they are all assumed
to start with a common initial belief on the set of worlds
that are possible. Second, the effects of physical actions on
the world are assumed to be deterministic. And third, the se-
quence of events (physical actions, sensing events, and pub-
lic announcements) that can change the state of the world or
the knowledge state of the agents, is public to all the agents.
In the formulation it is crucial to distinguish between the
event of sensing the truth value of an objective or epistemic
formula, and the agent coming to know that the formula is
true or false. While the sensing event is public, as when all
agents know the sensor capabilities of the other agents, the
actual information provided by these sensors is private. For
example, in the muddy children problem (Fagin et al. 1995),
every child i is assumed to be capable of sensing the truth
value of the atoms mj encoding whether child j is muddy
for j 6= i, and every child knows that. Yet this doesn’t mean
that children have access to the truth values revealed by the
sensors that are not their own.

The rest of the paper is organized as follows. We start with
a well known example and introduce the modeling language,
the belief representation, and the (linear) planning problem.
We then analyze other examples, discuss the relation to dy-
namic epistemic logic, and formulate the compilation of the
linear multiagent planning problem into classical planning.

Example
Before proceeding with the details of the formulation, it’ll
be useful to consider how a familiar example, the Muddy
Children Puzzle will be represented (Fagin et al. 1995). We
consider three agents A = {a, b, c} and atoms mx, for x ∈
A, each representing that child x is muddy. The states of
the problem are the possible truth valuation over these three
atoms, and the common initial belief state bI is given by the
set of all such states (8 in total). Consider then the sequence
of events σ given by:

update(ma ∨mb ∨mc), [sense(a, [mb,mc]),
sense(b, [ma,mc]), sense(c, [ma,mb])] ,

(1)

that includes the public announcement made by the father,
followed by each agent sensing in parallel whether each of
the other children is muddy or not. The event sense(a, φ) ex-
presses that agent a senses the truth value of formula φ. Vari-
ations of these events, expressed as sense(a, [φ1, . . . , φn]),
sense([a, b], [φ1, . . . , φn]), and sense([φ1, . . . , φn]) repre-
sent that agent a senses the truth value of each of the for-
mulas φi, i = n, in parallel, that both a and b sense such
truth values in parallel, and that all agents sense them in par-
allel. In addition, groups of sensing events can be enclosed
in brackets as in (1), meaning that the events are in parallel.

A possible query after the sequence of events σ may be
whether any of the agents will know that he is muddy if the
world is such that there is just one muddy child. This query
would amount to testing the formula

ma ⊕mb ⊕mc ⇒ Kama ∨Kbmb ∨Kcmc (2)
in (the Kripke structure associated with) the situation result-
ing from the common initial belief state bI and the event

sequence σ. In this formula, ‘⊕’ stands for the “exclusive
or”; p⊕ q thus being an abbreviation of (p ∨ q) ∧ ¬(p ∧ q).
The answer to this query will be positive. On the other hand,
the answer to the query:

¬(ma ⊕mb ⊕mc)⇒ Kama ∨Kbmb ∨Kcmc (3)

will be negative, as when there is more than one muddy
child, no child will know that he is muddy from the an-
nouncement made by the father and the information gath-
ered from his physical sensors alone. It can be shown, how-
ever, that if the event sequence σ is extended with the fol-
lowing parallel sensing event:

[sense(Kama), sense(Kbmb), sense(Kcmc)] (4)

where all agents learn whether each of the agents knows that
he is muddy, a formula like

ma ∧mb ∧ ¬mc ⇒ Kama (5)
will become true, as in the world where a and b are muddy
and c is not, the sensing captured by (4) would result in a
learning that b does not know that b is muddy (Ka¬Kbmb),
while in the other world that is possible to a, where a is not
muddy, a would come to learn the opposite; namely that b
knows that b is actually muddy (KaKbmb).

Language
We consider planning problems P = 〈A,F, I,O,N,U,G〉
where A is a set of agent names, F is a set of atoms, I is
the initial situation, O is a set of physical actions, N is a set
of sensing actions, U is set of public updates, and G is the
goal. A plan for P , as in classical planning, is a sequence
of actions for achieving the goal G from the initial situation
described by I . The main differences to classical planning
result from the uncertainty in the initial situation, that makes
the problem similar to conformant planning, and the beliefs
of the multiple agents involved. In addition the actions may
come from any of the sets O, N , or U . If we let S stand
for the set of all possible truth-valuations s over the atoms
in F and call such valuations states, we assume that I is an
objective formula over F which denotes a non-empty set of
possible initial states bI . A physical action a in O denotes a
deterministic state-transition function fa that maps any state
s into a state s′ = fa(s). A (parallel) sensing action in N
is a set of expressions of the form sense[Ak](φk), where Ak

is a non-empty set of agent names and φk is an objective
or epistemic formula over the atoms F and the knowledge
modalities Ki for i ∈ A. The action updates in U are de-
noted by expressions of the form update(φ) where φ is a
formula. Finally, each action a has a precondition Pre(a),
which like the goal G are formulas as well. The grammar of
these formulas can be expressed as:

φ = p | ¬φ | (φ ∧ φ) | (φ⇒ φ) |Kiφ

where p is an atom in F , and i an agent in A.
We regard plans as linear sequences of actions (Bolander

and Andersen 2011), and call P a linear multiagent planning

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

63

problem. While many problems require non-linear plans, as
it is the case in contingent planning, linear plans suffice for
a number of non-trivial contexts and provide the basis for
more complex forms of plans.

Belief Update and Dynamics
In order to define the belief representation and dynamics, let
us represent the event sequences or plans σ over a problem
P by sequences of the form e(0), . . . , e(t), where e(k) is
the event from P that occurs at time k. When convenient,
we will assume that the agent names are positive numbers i,
i = 1, . . . ,m for m = |A|, or that they can enumerated in
this way.

The beliefs of all the agents at time step t, called also the
joint belief, will be denoted as B(t), and it is represented by
a vector of conditional beliefs B(s, t), where s is one of the
possible initial states, s ∈ bI ; namely,

B(t) = {B(s, t) | s ∈ bI } . (6)
The conditional beliefs B(s, t) represent the beliefs of all
the agents at time t, under the assumption that the true but
hidden initial state is s. The reason for tagging beliefs with
possible initial states is that for a fixed (hidden) initial state
s, the evolution of the beliefsB(s, t) after an arbitrary event
sequence is deterministic.1 These conditional beliefsB(s, t)
are in turn represented by tuples:

B(s, t) = 〈v(s, t), r1(s, t), r2(s, t), ..., rm(s, t)〉 (7)

where v(s, t) is the state of the world that results from the
initial state s after the event sequence e(0), . . . , e(t − 1),
and ri(s, t) is the set of possible initial states s′ ∈ bI that
agent i cannot distinguish at time t from the actual initial
state s. Note that s may be the true initial state, and yet the
agents may not know about it. Indeed, initially, they only
know that if s is the true initial state, it must be part of the
initial common belief bI .

More precisely, the initial beliefsB(s, t) at time t = 0 are
given by:

v(s, t) = s and ri(s, t) = bI (8)
for all agents i, meaning that under the assumption that the
hidden initial state is s and that no events have yet occurred,
the actual state is s and the set of possible initial states is bI .

The beliefB(t+1) at time t+1 is a function of the belief
B(t) and event e(t) at time t:

B(t+ 1) = F(B(t), e(t)) (9)
We express this function by defining how the type of event

e(t) at time t affects the state v(s, t + 1) and the relations
ri(s, t+ 1) that define the belief B(t+ 1) at time t+ 1.

Physical Actions: If e(t) = do(a) for action a denoting
a state-transition function fa, then the current state v(s, t)

1In single-agent planning, the idea of tagging beliefs with each of
the possible initial states has been used in translations of con-
formant and partial-observable planning into classical planning
(Palacios and Geffner 2009; Brafman and Shani 2012a).

associated with the hidden initial state s changes according
to fa, but the sets of initial states ri(s, t) that agent i regards
as possible remains unchanged

v(s, t+ 1) = fa(v(s, t)) (10)
ri(s, t+ 1) = ri(s, t) (11)

where the index i ranges over all the agents in A.

All the other event types affect instead the sets ri(s, t+1)
but not the state v(s, t+ 1) that is regarded as current given
the assumption that s is the true initial hidden state. That is,
for the following event types v(s, t+ 1) = v(s, t).

Sensing: If e(t) = [sense[A1](φ1), . . . , sense[Al](φl)]] is
a sensing action denoting the set of sensing expressions
sense[Ak](φk) done in parallel at time t, the current state
given s does not change, but the set of possible initial states
compatible with the hidden initial state s for agent i given
by ri(s, t+ 1) becomes:

{s′ | s′ ∈ ri(s, t) and B(t), s′ |= φk iff B(t), s |= φk}
(12)

where k ranges over all the indices in [1, l] such that Ak

includes agent i. If there are no such indices, ri(s, t+ 1) =
ri(s, t). The expression B(t), s |= φ denotes that φ is true
in the belief at time t conditional on s being the true hidden
state. The truth conditions for these expressions are spelled
out below.

Updates: If e(t) = update(φ), ri(s, t+ 1) is

{s′ | s′ ∈ ri(s, t) and B(t), s′ |= φ} . (13)

The intuition for all these updates is the following. Phys-
ical actions change the current state of the world accord-
ing to their state transition function. Sensing actions do not
change the world but yield information. More specifically,
when agent i senses the truth value of formula φ at time t,
the set of initial states ri(s, t+1) that he thinks possible un-
der the assumption that the true initial state is s, preserves
the states s′ in ri(s, t) that agree with s on the truth value
predicted for φ at time t. Finally, a public update φ pre-
serves the possible initial states s′ in ri(s, t) that predict the
formula φ to be true, and rules out the rest. The conditions
under which a possible initial state s predicts that a formula
φ will be true at time t, and the conditions under which a
formula φ is true at time t, are made explicit below. Physi-
cal, sensing, and update actions are applicable at time t only
when their preconditions are true at t.

Beliefs and Kripke Structures
A Kripke structure is a tuple K = 〈W,R, V 〉, where W is
the set of worlds, R is a set of binary accessibility relations
Ri on W , one for each agent i, and V is a mapping from the
worlds w in W into truth valuations V (w). The conditions
under which an arbitrary formula φ is true in a world w of
a Kripke structure K = 〈W,R, V 〉, written K, w |= φ, are
defined inductively:

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

64

• K, w |= p for an atom p, if p is true in V (w),
• K, w |= φ ∨ ψ if K, w |= φ or K, w |= ψ,
• K, w |= (φ⇒ ψ) if K, w |= φ implies K, w |= ψ,
• K, w |= Kiφ if K, w′ |= φ for all w′ s.t. Ri(w,w

′), and
• K, w |= ¬φ if K, w 6|= φ

A formula φ is valid in the structureK, writtenK |= φ, iff
K, w |= φ for all worldsw inK. The conditions under which
a possible initial state s predicts the truth of a formula φ at
time t, written B(t), s |= φ, follow from replacing the belief
B(t) by the Kripke structure K(t) = 〈W t, Rt, V t〉 defined
by B(t) where

• W t = {s | s ∈ Poss(t)},
• Rt

i = {(s, s′) | if s′ ∈ ri(s, t) },
• V t(s) = v(s, t)

In these expressions, Poss(t) stands for initial states that
remain possible at time t; i.e,

Poss(t) = ∪s∈bI ∪i=1,...,m ri(s, t) (14)

In other words, the worlds w in the structure K(t) are the
possible initial states s ∈ bI of the problem P that have not
been ruled out by the updates. The worlds that are accessible
from a world s to the agent i are the possible initial states
s′ that are in ri(s, t). And finally, the valuation associated
to a world s in this structure is the state v(s, t) that deter-
ministically follows from the possible initial state s and the
event sequence up to t − 1. B(t), s |= φ is thus true when
K(t), s |= φ is true, and B(t) |= φ iff K(t) |= φ.

It is simple to show that the accessibility relations Ri(t)
are reflexive, symmetric, and transitive, meaning that the
valid formulas satisfy the axioms of the epistemic logic S5.

Examples
We will show later that a linear multiagent problem P can
be translated into a classical planning problem and solved
by off-the-shelf planners. Before presenting such a transla-
tion, we consider two other examples. As it is common in
planning, while the language is propositional, we make use
of predicate and actions schemas to characterize the set of
(ground) atoms and actions.

Physical and Sensing Actions Combined
Let a, b, and c be three agents in a corridor of four rooms
(p1, p2, p3 and p4 from left to right). The agents can move
from a room to a contiguous room, and when agent i com-
municates (tells) some information, all the agents that are in
the same room or in a contiguous room, will hear what was
communicated. For example, if agent i expresses in room p3
his knowledge about q, all agents in rooms p2, p3 and p4 will
come to know it. We consider the problem where agent a is
initially in room p1, b in p2, c in p3, and a has to find out the
truth value of a proposition q and let c know without agent b
learning it. To simplify things, we assume that only agent a
can move, and that he can learn the value of q in room p2. A
shortest solution to the problem will be for agent a to move
right once to p2 to learn the value of q, to move right twice

to p4, and to communicate the value of q from p4, so that
agent c can listen but agent b can’t.

The planning problem is encoded as the tuple P =
〈A,F, I,O,N,U,G〉 where A = {a, b, c}, F = {q} ∪
{p(x, i)}, x ∈ A, i ∈ [1, 4], I = {p(a, 1), p(b, 2), p(c, 3)} ∪
D, where D contains the formulas expressing that each
agent is in a single room, U is empty, and the goal is

G = (Kcq ∨Kc¬q) ∧ (¬Kbq ∧ ¬Kb¬q) .

The set of physical actions is O = {right, left} affecting
the location of agent a in the obvious way (the actions have
no effects when they’d move the agent away from the four
rooms).

The sensing actions in N are two: the first about a learn-
ing the value of q when in p2, the other, about a expressing
his knowledge regarding q, which translates into agents b
and c learning this when they are close enough to a. The
first sensing action is thus sense(a, q) with the precondition
p(a, 2), and the second is

tell(a, q) : [sense(b, φb ⇒ Kaq), sense(b, φb ⇒ Ka¬q),
sense(c, φc ⇒ Kaq), sense(c, φc ⇒ Ka¬q)] ,

where tell(a, q) is the abbreviation of the action that we will
use, and φb is the formula expressing that agent b is at dis-
tance less than 1 from agent a; namely φb = ∨i,j [p(a, i) ∧
p(b, j)] for i and j in [1, 4] such that |i−j| ≤ 1. The formula
φc is similar but with c instead of b.

Initially, bI contains the two states s1 and s2 satisfying I ,
the first where q is true, and the second where it is false. The
initial belief at time t = 0 is B(t) = {B(s1, t), B(s2, t)},
where B(si, t) = 〈v(si, t), ra(si, t), rb(si, t), rc(si, t)〉, i =
1, 2, and rx(s, t) = bI for x ∈ A and s ∈ bI . The shortest
plan is

do(right), sense(a, q),do(right),do(right), tell(a, q) .

The first sensing action can be done because its precondi-
tion p(a, 2) holds in B(1), and as an effect it removes agent
a’s uncertainty regarding q making ra(s1, 2) = {s1} and
ra(s2, 2) = {s2}. Agent a then knows whether q is true
or false, and in principle, he could communicate this from
his current location p2 by performing the action tell(a, q)
right away. But since the condition φb is true, b would come
to know whether q is true, making the problem goal G un-
achievable. The effect of the two right actions is to make
p(a, 4) true, and all other p(a, i) atoms false, thus making
the formula φb false and the formula φc true (i.e., agent a is
now near c but not near b). The final event in the plan makes
the truth value of q known to agent c but not to agent b,
thus achieving the goal G. The first part follows because the
state v(s1, 5) where agent a is at p4 and q is true, makes the
formula φc ⇒ Kaq sensed by agent c true, while the state
v(s2, 5) makes this formula false, and similarly, the state
v(s2, 5) makes the formula φc ⇒ Ka¬q sensed by agent
c true, while the state v(s1, 5) makes it false. As a result, the
state s2 is not in rc(s1, 5), the state s1 is not in rc(s2, 5),
both sets become singletons, and hence, the truth value of
q becomes known to agent c. The same reasoning does not
apply to agent b because the condition φb is false in the two

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

65

states v(s1, 5) and v(s2, 5), and hence, both states trivially
satisfy the formulas φb ⇒ Kaq and φb ⇒ Ka¬q that are
sensed by agent b, so that rb(s1, 5) and rb(s2, 5) remain un-
changed, and equal to bI .

Collaboration through Communication
As another example, we consider a scenario where two
agents volunteer information to each other in order to ac-
complish a task faster that would otherwise be possible with-
out information exchange. It is inspired in the BW4T envi-
ronment, a proposed testbed for joint activity (Johnson et al.
2009). There is a corridor of four rooms, p1, p2, p3 and p4
as in the previous example, four blocks b1, . . . , b4 that are in
some of the rooms, and two agents a and b that can move
back and forth along this corridor. Initially, the two agents
are in p2 and do not know where the blocks are (they are not
in p2). When an agent gets into a room, he can see which
blocks are in the room if any. The goal of the planning prob-
lem is for agent a to know the position of block b1, and for
agent b to know the position of block b2. A shortest plan
for the problem involves six steps: one agent, say a, has to
move to p1, the other agent has to move to p3, they both
must sense which blocks are in these rooms, and then they
must exchange the relevant information. At that point, the
goal would be achieved whether or not the information ex-
changed explicitly conveys the location of the target blocks.
Indeed, if agent a does not see block b2 in p1 and agent b
doesn’t see this block either at p3, agent a will then know
that block b2 must be in p4 once b conveys to a the relevant
piece of information; in this case ¬Kbin(b2, p3).

The planning problem is P = 〈A,F, I,O,N,U,G〉,
where A = {a, b}, F = {at(x, pk), in(bi, pk)}, x ∈ A
i, k ∈ [1, 4], I = {at(a, p2), at(b, p2)} ∪ D, where D
contains the formulas expressing that each block has a
unique location. The set of updates U is empty, the goal is
G = (∨k=1,4Kaat(b1, pk)) ∧ (∨k=1,4Kbat(b2, pk)), the
actions in O are rightx and leftx, for each agent x ∈ A
with the same semantics as in the example above, while
the sensing actions are sense(x, [in(b1, pk), . . . , in(b4, pk)]
with precondition at(x, pk) by which agent x ∈ A finds out
in parallel which blocks bi, if any, are and are not in pk, and
sense(x, [Kyin(bi, pk]), by which agent y communicates
to agent x 6= y, whether he knows in(bi, pk), i, k ∈ [1, 4].
There are thus four physical actions, eight actions that sense
the world, and sixteen communication actions. A shortest
plan is:

do(lefta), do(rightb), sense(a, [in(b1, p1), ..., in(b4, p1)]),
sense(b, [in(b1, p3), ..., in(b4, p3)]),sense(a,Kbin(b1, p3)),
sense(b,Kain(b2, p1)).

This sequential plan achieves the goal in spite of the un-
certainty of the agents about the world and about the beliefs
of the other agents.

Relation to Single Agent Beliefs and DEL
The proposed formulation for handling beliefs in a multi-
agent setting sits halfway between the standard formula-
tion of beliefs in single agent settings as found in confor-

mant and contingent planning (Geffner and Bonet 2013),
and the standard formulation of beliefs in the multiagent set-
tings as found in dynamic epistemic logics (van Ditmarsch,
van der Hoek, and Kooi 2007; van Ditmarsch and Kooi
2008). In the single agent settings, beliefs are represented
as the sets of states b that are possible, and physical actions
a, whether deterministic or not, affect such beliefs deter-
ministically, mapping a belief b into a belief ba = {s | s ∈
F (a, s′) and s′ ∈ b} where F represent the system dynam-
ics so that F (a, s) stands for the set of states that may follow
action a in state s. If the action a is deterministic, F (a, s)
contains a single state. The belief resulting from doing ac-
tion a in the belief b and getting an observation token o is
boa = {s | s ∈ ba such that o ∈ O(a, s)} where O repre-
sents the sensor model so that O(a, s) stands for the set of
tokens that can be observed after doing action a, resulting in
the (possibly hidden) state s. Sensing is noiseless or deter-
ministic, whenO(a, s) contains a single token. Interestingly,
when both the actions and the sensing are deterministic, the
set of beliefs B′(t) at time t that may follow from an initial
belief bI and a given action sequence can be expressed as

B′(t) = {b(s, t) | s ∈ bI } (15)
where b(s, t) is the unique belief state that results from the
action sequence and the initial belief state bI when s is the
hidden state.

The expression (15) for the set of possible beliefs at time
t in the single agent setting, has close similarities with the
beliefs B(t) defined by (6) and (7) above

B(t) = {{v(s, t), r1(s, t), . . . , rm(s, t)} | s ∈ bI } (16)

where m is the number of agents, v(s, t) refers to the pos-
sible initial state s progressed through the execution up to
time t, and ri(s, t) refers to the set of possible initial states
that by time t cannot be distinguished from s by agent i. The
Kripke structures K(t) defining the agent (nested) beliefs at
time t is built on top of this representation: using such pos-
sible initial states s as the possible worlds. It is important
to note that it is not possible to define a structure equivalent
to K(t) by identifying the worlds of the structure with the
states that are possible at time t. Indeed, the number of be-
lief states that may be possible at time t may be larger than
the number of states that are possible at time t, although
they can’t be larger than the number of states that are pos-
sible at time t = 0 under the assumptions of determinism.
Non-deterministic actions and sensing can be handled, how-
ever, through the usual trick of making such actions and sen-
sors deterministic but conditional on the value of additional
problem variables.

While the proposed formulation is an extension of the be-
lief representation used in single-agent planning, it repre-
sents also a fragment of dynamic epistemic logics where the
Kripke structure K(t + 1) that represents the belief at time
t+1 is obtained from the Kripke structureK(t) representing
the beliefs at time t and the Kripke structure representing the
event at time t called the event model. The update operation
is known as the product update as the set of worlds of the
new structure is obtained by taking the cross product of the

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

66

sets of worlds of the two time t structures. In particular, us-
ing the framework laid out in (van Ditmarsch and Kooi 2008;
Bolander and Andersen 2011) for integrating epistemic and
physical actions, the basic actions in our language can be
all mapped into simple event models. The event model for
do(a) is given by a single event whose postcondition in a
state s is fa(s). The event model for update(φ) has also a
single event with precondition φ and null postcondition. Fi-
nally, the event model for sense(A, φ) has two events that
can be distinguished by the agents in A but not by the other
agents, one with precondition φ, the other with precondi-
tion ¬φ, and both with null postconditions. Interestingly,
the worlds in Kripke structures that result from this type
of events are associated with tuples made of an initial state
followed by a sequence of events, and their number does
not grow. Thus, belief tracking for this fragment of dynamic
epistemic logic remains polynomial in the number of initial
states as well. From the perspective of dynamic epistemic
logic, hence, our formulation does not add expressive power
but rather restricts it without improving the worst-case com-
plexity of this fragment. From a planning perspective, how-
ever, the situation is different: it establishes a close connec-
tion to the methods used in single-agent planning which in
many cases perform much better than what the worst case
scenario would suggest. We explore one such connection
below, for mapping our linear multiagent planning problem
into a classical planning problem that can be solved by plan-
ners off-the-shelf.

Translation into Classical Planning
Let P be a linear multiagent planning problem. We show
next how to map P into a classical problem K(P) such that
the plans for P are plans for its translation K(P), and vice
versa, the plans for K(P) are plans for P . The language
for K(P) is STRIPS extended with negation, conditional
effects, and axioms. This is a PDDL fragment supported by
many classical planners. We will use ¬L for a literal L to
stand for the complement of L, so that ¬¬L is L. A condi-
tional effect is an expression of the form C → E associated
with an action a that states that the head E becomes true
when a is applied and C is true. We write such effects as
a : C → E when convenient. In addition planners normally
assume that C and E are sets (conjunctions) of literals. If
C,C ′ → E is one such effect, we take C,¬C ′ → E as
a shorthand for the effects C,¬L → E for each literal L
in C ′. Axioms allow the definition of new, derived atoms in
terms of primitive ones, called then the primitive fluents. The
derived fluents can be used in action preconditions, goals,
and in the body of conditional effects. While it’s possible
to compile axioms away, there are benefits for dealing with
them directly in the computation of heuristics and in state
progression (Thiébaux, Hoffmann, and Nebel 2005).

For mapping the multiagent problem P =
〈A,F, I,O,N,U,G〉 into the classical problem K(P),
we will make some simplifying assumptions about the
types of formulas that may appear in P . We will assume
as in planning, and without loss of generality, that such
formulas correspond to conjunctions of literals, where a
literal L is an (objective) atom p from F or its negation,

or an epistemic literal KiL or ¬KiL where L is a literal
and i is an agent in A. Other formulas, however, can easily
be accommodated by adding extra axioms to K(P). We
will denote the set of objective literals in P by LF (P);
i.e., LF (P) = {p,¬p|p ∈ F}, and the set of positive
epistemic literals appearing in P by LK(P); i.e., LK(P)
is the set of KiL literals that appear as subformula of an
action precondition, condition, goal, or sensing or update
expression. Indeed, while the set of KiL literals is infinite,
as they can be arbitrarily nested, the set of such literals
appearing in P is polynomial in the size of P . As an
example, if ¬K2K1¬K3p is a goal, then LK(P) will
include the (positive epistemic) literals K3p, K1¬K3p and
K2K1¬K3p.

The translation K(P) comprises the fluents L/s for the
objective literals L in LF (P), and possible initial states
s ∈ bI , and fluents Di(s, s

′) for agents i ∈ A. The former
express that the objective literal L is true given that s is the
true initial state, while the latter that agent i can distinguish
s from s′ and vice versa. The epistemic literals KiL appear-
ing in P , such as K3p, K1¬K3p and K2K1¬K3p above,
are mapped into derived atoms in K(P) through the use of
axioms. The expression C/s where C is a conjunction of
literals L stands for the conjunction of the literals L/s.

Definition 1. Let P = 〈A,F, I,O,N,U,G〉 be a linear
multiagent planning problem. Then the translation K(P) of
P is the classical planning problem with axioms K(P) =
〈F ′, I ′, O′, G′, X ′〉 where

• F ′ = {L/s : L ∈ LF (P), s ∈ bI} ∪ {Di(s, s
′) : i ∈

A, s, s′∈bI},
• I ′ = {L/s : L ∈ LF (P), s ∈ bI , s |= L},
• G′ = G,
• O′ = O ∪ N ∪ U ; i.e., same set of actions a with same

preconditions Pre(a), but with
– effects a : C/s→ E/s for each s ∈ bI , in place of the

effect a : C → E for physical actions do(a), a ∈ O,
– effects a : C/s,¬C/s′ → Di(s, s

′), Di(s
′, s) for each

pair of states s, s′ in bI and (parallel) sensing actions
a in N that involve a sense(i, C) expression, and

– effects a : ¬C/s′ → Di(s, s
′) and a : C/s′ →

Di(s, s
′), for each pair of states s, s′ in bI and i ∈ A,

for actions a of the form update(C) and update(¬C)
respectively,

• X ′ is a set of axioms:
– one for each positive derived fluent KiL/s where
KiL ∈ LK(P) and s ∈ bI with (acyclic) definition
L/s ∧ ∧s′∈bI [L/s

′ ∨Di(s, s
′)],

– one for each literal L in LF (P) ∪ LK(P) with defini-
tion ∧s∈bI [L/s ∨Di(s, s)],

In words, the primitive fluents inK(P) represent the truth
of the literals L in P conditioned on each possible hid-
den initial state s as L/s, and the (in)accessibility relation
Di(s, s

′) among worlds. Initially, the worlds are all accessi-
ble from each other and Di(s, s

′) is false for all such pairs.
On the other hand, L/s is true initially if L is true in s. The
goal G′ of K(P) is the same as the (conjunctive) goal G of

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

67

P , and the actions O′ in K(P) are the actions in the sets O,
N , and U of P with the same preconditions. However, in the
translation, the effect of physical actions is on the L/s liter-
als, while the effect of sensing actions and updates is on the
Di(s, s

′) literals, with the literals Di(s, s) for any i being
used to denote that the world s is no longer possible. Last,
the truth conditions for epistemic literals in the translation
is expressed by means of axioms in terms of the primitive
literals L/s and Di(s, s

′).
The complexity of the translation is quadratic in the num-

ber |bI | of possible initial states. It soundness and complete-
ness properties can be expressed as follows:

Theorem 1. An action sequence π is a plan that solves the
linear multiagent planning problem P iff π is a plan that
solves the classical planning problem with axioms K(P).

The translation above follows the pattern of other trans-
lations developed for conformant and contingent planning
problems in the single agent setting (Palacios and Geffner
2009; Albore, Palacios, and Geffner 2009; Brafman and
Shani 2012a) and is closest to the one formulated in (Braf-
man and Shani 2012b). Actually, Brafman, Shani and Zil-
berstein have recently developed a translation of a class of
multiagent contingent planning problems that they refer to
as Qualitative Dec-POMDPs (Brafman, Shani, and Zilber-
stein 2013), as it’s a “qualitative” (logical) version of Decen-
tralized POMDPs (Bernstein, Zilberstein, and Immerman
2000). A key difference with our linear multiagent planning
problems is that in Q-Dec-POMDPs the agents have beliefs
about the world, but not about each other. Hence there are
no epistemic modalities or epistemic formulas.

Summary
We have introduced a framework for handling beliefs in the
multiagent setting that builds on the methods developed for
representing beliefs in single-agent planning. The frame-
work also captures and defines a fragment of dynamic epis-
temic logics that does not require event models or prod-
uct updates, and has the same complexity as belief track-
ing in the single agent setting (exponential in the number
of atoms). We have also built on these connections to show
how the problem of computing linear multiagent plans can
be mapped into a classical planning problem. A basic as-
sumption is that all uncertainty originates in the set of states
that are possible initially and hence that actions are deter-
ministic. Still, non-deterministic physical and sensing ac-
tions can be introduced by reducing them to deterministic
actions whose effects are made conditional on extra hidden
variables. In the future, we want to explore the range of mul-
tiagent problems that can be effectively solved by existing
classical planners, and to develop more compact translations
able to exploit width considerations as done in the confor-
mant and contingent settings.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In Proc.
IJCAI-09, 1623–1628.

Aucher, G., and Bolander, T. 2013. Undecidability in epis-
temic planning. Technical Report.
Baltag, A., and Moss, L. S. 2004. Logics for epistemic
programs. Synthese 139(2):165–224.
Baltag, A.; Moss, L. S.; and Solecki, S. 1998. The logic
of public announcements, common knowledge, and private
suspicions. In Proc. of the 7th Conf. on Theoretical aspects
of rationality and knowledge, 43–56.
Baral, C.; Gelfond, G.; Pontelli, E.; and Son, T. C. 2012. An
action language for reasoning about beliefs in multi-agent
domains. In Proc. of the 14th International Workshop on
Non-Monotonic Reasoning.
Bernstein, D.; Zilberstein, S.; and Immerman, N. 2000. The
complexity of decentralized control of Markov decision pro-
cesses. In Proc. of the 16th Conf. on Uncertainty in Artificial
Intelligence, 32–37.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001.
Planning in nondeterministic domains under partial observ-
ability via symbolic model checking. In Proc. IJCAI-01.
Bolander, T., and Andersen, M. B. 2011. Epistemic planning
for single and multi-agent systems. Journal of Applied Non-
Classical Logics 21(1):9–34.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proc. of
AIPS-2000, 52–61.
Brafman, R., and Hoffmann, J. 2004. Conformant plan-
ning via heuristic forward search: A new approach. In Proc.
ICAPS-04.
Brafman, R. I., and Shani, G. 2012a. A multi-path compila-
tion approach to contingent planning. In Proc. AAAI.
Brafman, R. I., and Shani, G. 2012b. Replanning in do-
mains with partial information and sensing actions. Journal
of Artificial Intelligence Research 45(1):565–600.
Brafman, R. I.; Shani, G.; and Zilberstein, S. 2013. Qualita-
tive planning under partial observability in multi-agent do-
mains. In Proc. AAAI.
Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995. Rea-
soning about Knowledge. MIT Press.
Geffner, H., and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan &
Claypool Publishers.
Herzig, A.; Lang, J.; and Marquis, P. 2005. Action progres-
sion and revision in multiagent belief structures. In Proc. 6th
Workshop on Nonmonotonic Reasoning, Action, and Change
(NRAC 2005).
Johnson, M.; Jonker, C.; van Riemsdijk, B.; Feltovich, P.;
and Bradshaw, J. M. 2009. Joint activity testbed: Blocks
world for teams (bw4t). In Engineering Societies in the
Agents World X. Springer. 254–256.
Löwe, B.; Pacuit, E.; and Witzel, A. 2011. DEL planning
and some tractable cases. In Logic, Rationality, and Interac-
tion. Springer. 179–192.
Palacios, H., and Geffner, H. 2009. Compiling Uncertainty
Away in Conformant Planning Problems with Bounded

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

68

Width. Journal of Artificial Intelligence Research 35:623–
675.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of pddl axioms. Artif. Intell. 168(1-2):38–69.
To, S. T.; Pontelli, E.; and Son, T. C. 2011. On the ef-
fectiveness of CNF and DNF representations in contingent
planning. In Proc. IJCAI, 2033–2038.
Van Benthem, J. 2011. Logical dynamics of information and
interaction. Cambridge University Press.
van Ditmarsch, H., and Kooi, B. 2008. Semantic results for
ontic and epistemic change. Logic and the Foundations of
Game and Decision Theory (LOFT 7) 87–117.
van Ditmarsch, H.; van der Hoek, W.; and Kooi, B. 2007.
Dynamic Epistemic Logic. Springer.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

69

Multi-Agent Planning with Agent Preferences

Jesús Virseda and Susana Fernández and Daniel Borrajo
Departamento de Informática

Universidad Carlos III de Madrid
jvirseda@inf.uc3m.es, sfarregu@inf.uc3m.es, dborrajo@ia.uc3m.es

Abstract

In the field of Automated Planning, there is a renewed
interest in Multi-Agent Planning (MAP). In this paper,
we focus on the task of planning efficiently when agents
have preferences over goals and want to maintain privacy.
Our approach takes as input a MAP task, and a prefer-
ence of each agent for each goal. Those preferences
can be mapped into utilities (rewards) and are modeled
as costs (penalties) when planning. The planner has to
generate a valid plan taking into account the agent’s pref-
erences and the cost of actions. We compare different
approaches for assigning goals to agents that heed either
the expected costs or preferences, and plan considering
either costs or preferences.

Introduction
In the field of Multi-Agent systems, there has been plenty
of work on self-interested agents. Most works focus on ne-
gotiation, auctions, or single-decision tasks. In Multi-Agent
Planning (MAP), planners should also take into account the
fact that they have to generate a valid plan (where a sequence
of actions is involved, which is different to other sequences
of decisions in Multi-Agent systems, as repeated auctions).
In MAP, there has not been many approaches yet that focus
on self-interested agents. Current work by Nissim and Braf-
man (2013) focused first on optimal planning, minimizing
the cost of plans, to then compute a posteriori the payoff
(utility) of agents participating in a plan. This payoff is, in
other words, a fair payment for each agent proportionally
according to its contribution based on plan costs. So, it does
not take into account preferences that agents might have a
priori on achieving specific goals.

In this paper, we focus on a different task, which is
based on several past and current projects of our group,
where each agent has private information and preferences
over goals. We will call it the Multi-Agent Planning with
Preferences (MAPP) task. For instance, in logistics trans-
portation domains, each branch of a transportation com-
pany has preferences over goals (moving some goods at
some place) since they might prefer a transport task over
another (Garcı́a et al. 2013). Likewise, in an ESA (Eu-
ropean Space Agency) project, sensors must be assigned
(as satellites or antennas) to observe objects based also on
some preferences of sensors over objects (Arregui et al.

2012). Finally, in two more projects we dealt with tourist
plans where each user has a set of preferences over goals
(places to visit) (Cenamor, de la Rosa, and Borrajo 2013;
Castillo et al. 2008). So, our main aim is to efficiently find
good-quality plans that maximize preference over goals while
maintaining agents privacy.

Here, we propose an approach for MAP where agents
have explicit preferences over goals, which can be inde-
pendent of costs to achieve the goals. Solutions ideally
would minimize the cost while maximizing the compli-
ance with the preferences of all agents. Here, we ex-
tend the distributed approach proposed in (Borrajo 2013b;
2013a) (MAPR) for solving MAP tasks. MAPR first assigns
goals to agents and then iteratively solves each agent problem
preserving the privacy of agents during the process. More-
over, MAPR flexibility allows us to use any state-of-the-art
planner.

In order to reason with preferences, we have to model
them into planning tasks. Preferences can be implemented
in a positive or negative way. That is to say, if preferences
over goals are seen as rewards for the agents which achieve
the goals, they are positive preferences; and if preferences
are seen as penalties, they are negative preferences. Since
most planners work minimizing total-cost metrics, we use
the negative implementation of preferences.

Thus, the problem of MAP with preferences can be under-
stood as a multi-criteria optimization problem, where two
different and not related metrics must be minimized: cost and
penalty. In our approach, we work with two PDDL domain
files and their respective problem files. The cost domain and
problem model the original planning task, ignoring agent
preferences. And, the penalty domain and problem ignore
action costs. In this latter case, penalties are added in the
effects of the actions that achieve goals. We study here the
impact in terms of runtime, cost and reward of using both
metrics at two different steps in the algorithm: when assign-
ing goals to agents; and during search while the planner is
solving each agent MAP task.

The next sections formalize the MAPP task, describe the
employed MAPR approach for distributed MAP, give the de-
tails of the preferences over goals compilation as penalties,
explain the experimental setup and show the results, con-
trast the differences with related work and finalize with the
conclusions of this work.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

70

Multi-Agent Planning Tasks with Preferences
We are interested in MAP tasks with Preferences (MAPP)
that can be formally defined as:

Definition 1. A MAPP task for a set of self-interested agents
Φ = {φi}mi=1 with private and public information is a tuple
Π = {F,A, I,G, c, p} where:

• F = FP ∪ {Fi}mi=1 is a set of fluents that can be public,
FP , or private for each agent, {Fi}mi=1

• A = {Ai}mi=1 ∪ AE is the set of instantiated actions that
agents can perform, {Ai}mi=1, and the optional set of exter-
nal actions, AE , performed by other agents not in Φ

• I ⊆ F is an initial state

• G ⊆ F is a set of goals

• c : A→ < is a cost function representing the cost of every
action a ∈ A
• p : Φ, G → < is a preference function representing the

preference that agent φ ∈ Φ has for achieving goal g ∈ G
Each action a ∈ A is described by a set of parameters

(par(a)), a set of preconditions (pre(a)), that represent literals
that must be true in a state to execute the action and a set of
effects (eff(a)), literals that are expected to be added (add
effects) or removed (delete effects) from the state after the
execution of the action. The actions of an agent φi can be
described as: Ai = {a ∈ A | φi ∈ par(a)}. And external
actions are: AE = {a ∈ A | par(a) ∩ Φ = ∅}.

The planning task should generate as output a sequence of
actions π = (a1, . . . , ak) such that if applied in order would
result in a state sk where goals are true: G ⊆ sk. We will
later define the plan cost.

A MAPP task Π can be naturally decomposed into a set of
partial planning subtasks, one for each agent {Πp

i }mi=1 as:

• Πp
i = {F pi , A

p
i , I

p
i , G

p
i }

• F pi = FP ∪ Fi
• Api = Ai ∪AE
• Ipi = I ∩ (Fi ∪ FP)

• Gpi = G ∩ (Fi ∪ FPi)

where FPi is the subset of public goals assigned to agent
φi: ∀i, FPi ⊆ FP and ∪mi=1FPi = G ∩ FP . We will see
later how we assign a subset of the public goals to each
agent. As explained in the next section, our MAP algorithm
solves Π by iteratively solving a subset of planning subtasks
M = {Πp+

1 , . . . ,Πp+
n }, n ≤ m (since not all agents will

need to plan). Each Πp+
i completes Πp

i with the information
communicated by the previous agents in the iteration.

In our work, we consider that privacy is directly related to
the information on the state and goals that agents have on a
particular domain and problem. Others consider that actions
are also public or private, which is not our case. It is only
the information on preconditions and effects of actions that
is private or public (Nissim and Brafman 2013). Preserving
privacy in our work means that agents solve their planning
subtasks without ever knowing the private information of
other agents. Thus literals l ∈ F are considered either private

or public. In case they are private, they belong to a given
agent φi and they should only be known and modified by φi
when planning. In particular, literals l ∈ I and l ∈ G can
be private or public in turn. In order to maintain privacy, our
planner obfuscates some planning components when agents
finish their planning episodes, and communicate them to the
following agents, as explained later.

As an example, in the Transport domain of the Interna-
tional Planning Competition (IPC)1 several vehicles (agents)
must transport packages among locations. Fluents derived
from the PDDL predicates (at ?x - vehicle ?v - location) and
(in ?x - package ?v - vehicle) and from the function (capacity
?v -vehicle) are private. The cost of the action drive depends
on the road length and the other actions have a cost of 1. In
this IPC domain, problems goals only derive from the (at ?x -
package ?v - location) predicate. Since the action drop is the
only one that achieves the at predicate, drop is the only ac-
tion achieving goals of Transport problems, and thus the only
one that provides rewards to agents. The function p defines
the preference every vehicle has for dropping every package
involved in the goals. There are no external actions in this do-
main. In other domains, as in the Driverlog where the agents
are the drivers, there are external actions, such as load-truck
and unload-truck, since no agent (driver) intervenes in any of
the two.

MAPR
MAPR automatically generates the partial planning subtasks
{Πp

i }mi=1 from the PDDL description of a domain and prob-
lem and from the agents description (public goals are as-
signed to agents at this point). Next, the MAPR algorithm
iteratively solves each agent problem. 2 Once an agent solves
a problem, it obfuscates the private components of the solu-
tion and communicates them to the next agent. In turn, the
next agent should solve its own problem augmented with the
obfuscated private part of the solution of the previous agents
and the public part of those solutions. Therefore, MAPR sees
MAP as plan reuse. An important aspect of the algorithm
consists on how to assign public goals to agents. As we will
explain below, it uses several standard strategies.

Figure 1 shows a high-level description of the algorithm,
where we use @ to express obfuscated private information.
It takes as input a MAP task (domain, problem and agents
description), a goal assignment strategy, the planner to be
used by the first agent, and a second planner (it might be the
same one) to be used by the following agents. The reason to
use two planners (that could be different) is that the second
planner might be a replanning system. Since all inputs and
outputs are in PDDL, MAPR can use any state-of-the-art
planner. The algorithm is then composed of six main steps:
goal assignment; first planning episode; obfuscation of the
private part of a plan and communicating information to the
next agent; merging of a prior agents plan with a planning
problem; subsequent planning episodes; and termination.
The goal assignment strategy may not assign goals to some of

1http://ipc.icaps-conference.org/
2For a more detailed description, we refer the reader to (Borrajo

2013b).

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

71

the agents and thus these agents are not used in the planning
process. As a side comment on the algorithm, in the second
and following iterations, when j = 1, then j−1 means j = n
(n ≤ m). So, the first agent, instead of generating a new
plan using the first planner, it takes as input the obfuscated
solution from the last agent on the previous iteration. Since
MAPR can iterate over each agent once it has completed
the first iteration over all agents, MAPR benefits from an
implicit backtracking. So, if in the first iteration an agent
could not complete its goals due to a wrong decision (such as
using a particular action for achieving a goal, or consuming
a common resource that another agent needs), MAPR could
potentially find a solution if it can be generated by the set of
chosen agents.

Function MAPR (M,GA,FP, SP): plan

M : multi-agent planning task
GA: goal assignment strategy
FP : first planner
SP : second planner

Assign subset of public goals to each agent φi using GA
π1 ←First-Plan(FP,Πp

1)
j ← 1
Repeat until Termination
j ← j + 1
If j > n Then j ← 1
φj−1 Obfuscates its private information, S@

j−1:
• the plan π@

j−1 and
• the problem Π@

j−1 = {F@
j−1, A

@
j−1, I

@
j−1, G

@
j−1}

φj−1 Communicates S@
j−1 to agent φj

φj creates a new planning task, Πp+
j :

• it Merges its assigned problem and S@
j−1

πj ←Second-plan(SP,Πp+
j)

If solved, return last plan

Figure 1: High level description of MAPR planning algorithm.

Goal Assignment
Given the total set of public goals G and a set of agents Φ,
MAPR first has to assign a subset of goals to each agent to
lower the planning complexity of each individual planning
episode. For each goal in g ∈ G and agent in φi ∈ Φ,
MAPR computes a relaxed plan from the initial state of each
agent, Ii, following the well known relaxed plan heuristic of
FF (Hoffmann and Nebel 2001). If the relaxed plan heuristic
detects a dead-end, then c(g, φi) = ∞. This will define
a cost matrix, c(G,Φ). Next, we have devised four goals
assignment schemes.

all-achievable: MAPR assigns each goal g to all agents φi
such that c(g, φi) <∞; that is, if the relaxed plan heuristic
estimates g could be reached from the initial state of φi, g is
assigned to φi.

rest-achievable: MAPR assigns goals iteratively. It first
assigns to the first agent φ1 all goals that it can reach (cost
less than∞). Then, it removes those goals from the goals

set, and assigns to the second agent all goals that it can reach
from the remaining set of goals. It continues until the goals
set is empty.

best-cost: MAPR assigns each goal g to the agent
that can potentially achieve it with the least cost,
arg minφi∈Φ c(g, φi)

load-balance: MAPR tries to keep a good work balance
among agents. It first computes the average number of goals
per agent, k = |G|

m . Then, it starts assigning goals to agents
as in best cost. When it has assigned k goals to an agent, it
stops assigning goals to that agent. The next goals that could
be assigned to this agent will be redirected to the second best
agent for each goal. At the end, agents will have either all k
goals, or m− 1 agents will have k goals and one agent will
have the remaining goals, | G | −k × (m− 1).

In configurations rest-achievable and best-cost, there can
be agents for which MAPR does not assign goals.

Obfuscation
If an agent φj solves its subproblem, then it cannot pass
the private information openly to the next agent. So, it ob-
fuscates3 the private parts and communicates an augmented
obfuscated solution S@

j to the next agent. There can be po-
tentially many algorithms for obfuscating the information.
In this paper, we use the same simple version of this proce-
dure described in (Borrajo 2013b). Depending on the privacy
commitment of the planning task, more complex obfuscating
algorithms could be used and the difference will be: more
time devoted to the obfuscating algorithm (their time com-
plexity is usually much less than the one of planning); and
potentially more space of the obfuscated information (any
obfuscating algorithm with a space polynomial complexity
could be used without affecting the overall multi-agent plan-
ning complexity).

In our case, obfuscating is a two steps process. First, a
random substitution is generated for the names of all private
predicates, actions and objects. Action names are obfuscated
given that, in our privacy preserving scheme, other agents
do not need to know the specific actions used by any agent
to achieve the goals, even if all information used by those
actions is public. As a reminder, in our privacy preserving
scheme, actions are not considered public or private; it is
only the propositions that are private or public. For instance,
in the Satellite domain, if a plan contains an instantiated ac-
tion as (calibrate sat1 inst1 Phen6), given that
calibrate and inst1 are private, MAPR would generate
a random substitution as: 4

σ ={(calibrate . g12) (inst1 . g23)},
resulting in (g12 sat1 g23 Phen6)

The second step in obfuscation consists of applying the
substitution to the plan. An augmented obfuscated solution
S@
j consists of the obtained plan and the set of components

that are needed by the rest of agents to regenerate that solu-
tion. More specifically, if the plan of φj is πj = (a1, . . . , at),
it communicates S@

j = {π@
j , A

@
j , I

@
j , G

@
j } to φj+1:

3We will use obfuscate indistinctly of encrypt.
4We are describing the process in the PDDL lifted version, in-

stead in the propositional version.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

72

• the set of instantiated actions in the plan, after obfuscating
them, A@

j , by obfuscating the actions parameters (par(ai)),
preconditions (pre(ai)), and effects (eff(ai)):
A@
j = {a@i | ai ∈ πj , a

@
i = (par(ai) |σ, pre(ai) |σ, eff(ai) |σ)}

where we use the notation α |σ to represent the result of
applying substitution σ to formula α.

• the obfuscated plan, π@
j = {a@

1 , . . . , a
@
t }, since we can

use planning by reuse in the next iteration instead of plan-
ning from scratch.

• all goals (private and public, including goals of previous
agents), after obfuscating the private ones,5

G@
j = {g@ | g ∈ Gj , g@ = g |σ}

• initial state, after obfuscating the private information.
Since MAPR only needs to pass to φj+1 the relevant pri-
vate part of the state, it only considers the literals that are
preconditions of any action in the plan:

I@
j = {f@ | f ∈ Ij , ai ∈ πj , f ∈ pre(ai), f

@ = f |σ}

Planning with Preferences
In MAPP tasks, there are two independent metrics: cost and
preferences. We deal with cost as in regular planning settings.
Definition 2. The cost of a plan π is defined as: C(π) =∑
ai∈π c(ai).
Preferences cannot be handled directly by current plan-

ners, as they can only minimize metric values (in fact, most
current planners only allow the definition of one metric in
a domain file, named total-cost). Thus, we have to map
preferences to a minimizing criteria, as penalty. Preferences
are defined for goals and agents, while metrics are defined in
actions. Thus, we have to map preferences into action costs.
In order to define the mapping, we first translate agent-goals
preferences into actions rewards.
Definition 3. The reward r(ai, gk, π) an action ai receives
for achieving a goal gk in plan π is defined as:

r(ai, gk, π) =

p(φj , gk) if φj ∈ par(ai) and

ai is the last achiever
of goal gk in π

0 otherwise

So, actions only receive a reward if they are the only ones
that achieve a top-level goal and there is an agent that ex-
ecutes it. We are assuming that the preference relation is
defined for each agent and goal. Now, we can define the total
reward that an action receives.
Definition 4. The total reward an action ai receives in a
plan π is defined as:

r(ai, π) =
∑

gk∈G,gk∈eff(ai)
r(ai, gk, π)

Now, the reward of a plan is the sum of all rewards obtained
by the preferences for goals of the agents that achieved those
goals.

5Substitution only affects the private goals.

Definition 5. The total reward R(π) of a plan π is defined
as R(π) =

∑
ai∈π r(ai, π).

Since most planners minimize total-cost metrics, in this
paper preferences are converted into penalties (negative pref-
erences) in a standard way.
Definition 6. The penalty ρ(ai, gk, π) an action ai receives
for achieving a goal gk in plan π is defined as:

ρ(ai, gk, π) =

{
rmax − r(ai, gk, π) if ai is the last achiever

of goal gk in π
0 otherwise

where rmax is the maximum possible reward.
Definition 7. The total penalty an action ai receives in a
plan π is defined as:

ρ(ai, π) =
∑

gk∈G,gk∈eff(ai)
ρ(ai, gk, π)

We are interested in agent preferences for achieving goals,
so we implement the penalties as increments of the total-
cost function only in the actions that achieve goals when
they achieve a goal predicate. For example, in the Transport
domain where goals derive from the at predicate and only the
drop action has at as a positive effect, a new effect (increase
(total-cost) (penalty-vehicle-at ?v ?l ?p)) is added. The init part
of the problem contains the values of the penalty-vehicle-at
function. Only instantiations with the same parameters as
some of the goals have values different from 0.

Now, we can define the total penalty of a plan (equivalent
to a reward obtained by fulfilling the agents preferences).
Definition 8. The total penalty P (π) of a plan π is defined
as P (π) =

∑
ai∈π ρ(ai, π).

Note that r(ai, gk, π) (and consequently ρ(ai, gk, π) too)
includes the condition that ai is the last one in the plan π that
achieves a goal gk. Thus, this definition is plan dependent. In
this paper, we are interested in domains where goals need to
be achieved only once and it is not necessary to undo achieved
goals. Hence, we can assume that r(ai, gk, π) ' r(ai, gk)
and ρ(ai, gk, π) ' ρ(ai, gk).

Since most state-of-the-art planners only allow the
minimization of the total-cost function as the unique
metric (as, for instance, all planners based on FAST-
DOWNWARD (Helmert 2004)), we define two domains for
each planning task. As a side note, this is interesting given
that the initial idea of defining metrics in PDDL was that
domains could reason on different metrics (so all problems
in a given domain would use the same domain file) and it
would be in the problem where one would define which met-
ric to use for that particular problem. Now, we are forced
to define N different domains, one for each metric, while
we only need one problem! The first domain is the original
one, ignoring agents preferences. And the second domain
implements penalties as a total-cost metric. The problem task
is common for both domains: the original problem enriched
with the penalty information.

Formally, we can say that given a MAPP task Π =
{F,A, I,G, c, p}, a MAPP task Π′ with penalty costs can
be obtained by the following transformation:

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

73

Definition 9. Given a MAPP task with action costs and
preferences over goals Π = {F,A, I,G, c, p} the equiv-
alent MAPP task with penalty costs can be defined as
Π′ = {F ′, A, I ′, G, c′} with:

• F ′ = F ∪ Fp, where Fp = {ρij |gi ∈ G,φj ∈ Φ}. Each
ρij is a PDDL function representing the penalty agent φj
has for achieving goal gi.
• I ′ = I ∪ Fp
• G′ = G ∪ Fp
• c′ : A→ <+ is a new cost function defined as:

c′(a) = ρ(a, gi)

Therefore, given a MAPP task Π = {F,A, I,G, c, p}, we
work with two MAPP tasks: Π′ with penalty costs as defined
in Definition 9 and Π′′ = {F,A, I,G, c} with standard costs
and no preferences. Then, we use the extended MAPR algo-
rithm following four strategies: use Π′′ for assigning goals
to agents and for planning (cc); use Π′ for both (pp); use Π′

for assigning goals and Π′′ for planning (pc); and use Π′′

for assigning goals and Π′ for planning (cp). And we can
use different metrics to evaluate the quality of the generated
plans: plan cost C(π), plan reward R(π), plan penalty ρ(π)
and plan utility U(π) = R(π)−C(π) that relates the reward
and the cost. In unit-cost domains, plan cost is the length of
the solution plan. All measures apply to all strategies. Even
if strategies cp and pp ignore action costs when planning, it
is possible to compute C(π) a posteriori by consulting the
costs c(ai) in π. Penalty and reward are opposed values, so
it is possible to compute one value based on the other. Also,
even if goals are assigned by the agents preferences/costs
(so it selects agent φj because it is the one with highest-
preference/lowest-cost over goal gi) MAPR does not force
that in the final plan it is in fact agent φj that achieves gi.

This approach is valid only when the goals need to be
achieved once. Thus, the actions that are late achievers of
goals will be the only achievers of goals (definition of ρ
depends on the plan). However, in domains like the Sokoban
an agent could place a stone in a goal position, and then
another agent might have to move the stone to a different
position to fulfill all problem goals. In this case, the reward
obtained by the first agent when it places the stone in the
temporal goal position should be subtracted from the total
reward, so only late achievers get credit. An alternative
way to solve a MAPP task Π that avoids this problem is to
transform Π into a new task with soft goals and negative
utilities and then compile them away using the technique
described in (Keyder and Geffner 2009). Negative utilities
stand for conditions to be avoided; for example, a utility
u(p ∧ q) = -10 penalizes a plan that results in a state where
both p and q are true with an extra cost of 10. We are not
using this definition in this paper, since the domains we used
in the experiments do not have this problem. However, we
provide at least the solution to this problem here. The MAPP
task ΠS with soft goals and negative utilities that is equivalent
to Π can be obtained by the following transformation:
Definition 10. Given a MAPP task Π = {F,A, I,G, c, p},
the equivalent MAPP task with soft goals and negative utili-
ties is defined as ΠS = {FS , AS , I, GS , c, ν} where:

• GS = G ∪ {Gp}ni=1, where {Gp}i = {γij |gi ∈ G,φj ∈
Φ} are the new soft goals γij representing that agent φj
achieves the goal gi with its corresponding preference
value p(φj , gi)

• FS = F ∪ {Gp}ni=1

• AS transforms every action a ∈ A|(gi ∈ eff(a)) ∧ (gi ∈
G)∧ (φj ∈ par(a)) by adding as a new effect the soft goal
γij ∈ {Gp}i

• ν : {Gp}ni=1 × {Gp}ni=1 → R− is the negative utility
function defined over every pair (γij , γik) in the following
way ν(γij ∧ γik) = −p(φj , gi)

Properties
The approach we propose to solve preference problems in
MAPP inherits the properties of MAPR, i.e. it is suboptimal,
sound and incomplete.

Experiments and Results
We have used the following experimental setup for compari-
son:

Comparing approaches. We compare different dis-
tributed strategies against a centralized approach. These
distributed strategies are the ones previously defined (cc, pc,
cp, and pp). We only show a centralized approach to un-
derstand the relation between a distributed approach which
preserves privacy and a centralized one that does not pre-
serve privacy. Thus, the centralized approach has an ad-
vantage over the distributed approach. The centralized ap-
proach is LAMA11, the winner of the last IPC (Helmert 2004;
Richter and Westphal 2010). We are interested here on ef-
ficient MAPP computation. Therefore, we have used only
the first search iteration of LAMA11, that is one run of lazy
greedy best first search with actions costs, and FF and LM-
cut heuristics with preferred operators. We plan to move
into optimal planning or at least improve the quality of the
solutions with anytime behavior in the future.

Domains. We have chosen four domains from the previous
IPCs that have been regularly used in MAP papers: Rover,
Satellite, Transport and Zenotravel. This selection has been
done according to our main motivation: domains close to real
world problems where agent preferences are relevant. The
Transport domain implements action-costs while the other
three are unit-cost. The maximum penalty / reward are set
as 10 in all of them, because it seems to be intuitive to ask
users for preferences in scales from zero to ten. Costs are
the original ones used in the IPC and penalties have been
generated randomly to ensure independence from the cost
values.

Goal assignment. We have used the four defined methods:
all-achievable, rest-achievable, load-balance and best-cost.

Planners. We have used the centralized approach ex-
plained above for generating the first agent plan and for the
successive planning episodes too.

Time and memory bounds. We have used 1800 seconds
and 6GB RAM as in the IPC.

Scores. We have used the following metrics, similar to
those used in the IPC, to compare the different approaches:

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

74

• Coverage is the number of solved problems by each ap-
proach.

• Runtime score (ST) over a set of problems P , assuming
that T ∗p > 0, is computed as

ST =
∑
p∈P

1

1 + log
Tp

T∗
p

where T ∗p is the minimum time required to solve the prob-
lem p by any approach, and Tp is the time required by the
approach we want to calculate the score.

• Cost score (SC) over a set of problems P is computed as

SC =
∑
p∈P

C∗p
Cp

where C∗p is the minimum cost of any solution of the prob-
lem p and Cp is the cost of the solution by the approach
we want to calculate the score. This scores is called quality
score in the IPC.

• Reward score (SR) over a set of problems P is calculated
as

SR =
∑
p∈P

Rp
R∗p

where R∗p is the maximum reward achieved in any solution
of the problem p and Rp is the reward obtained by the
approach we want to calculate the score.

• (Reward, Cost) pareto-dominance gives to each approach a
score that equals the number of tuples it pareto-dominates
for the same problem. (R,C) is said to pareto-dominate
(R′, C ′) if and only if R ≥ R′ and C ≤ C ′. We use this
score instead of a utility score to avoid having to normalize
the reward and cost values.

We prefer (Reward, Cost) pareto-dominance instead of
a utility score (reward - cost), because the utility subtracts
two amounts in different metrics. Therefore, the weight of
both metrics on the score depends on the domain / problem;
whether the plan solutions are long or short, or whether the
actions costs are high or not in comparison to the number of
goals to achieve, which sets the maximum reward achievable
in the problem.

Tables 1, 2, 3 and 4 show the runtime, cost and penalty
score results for the domains Rover, Satellite, Transport and
Zenotravel, respectively. Table 5 summarizes all the score
results in a table.

In terms of coverage, the only domain that presents difficul-
ties is the Transport domain, where only the configurations
of the rest-achievable goal selection can solve all problems.
However, configurations that use costs when planning with
the best-cost goal selection obtain good results in coverage
too.

The fastest approach in all domains but Rover uses penal-
ties and the rest-achievable strategy during goal selection and
costs for planning. Only the centralized approach using cost
metric outperforms it in the Rover domain. Globally, the
rest-achievable strategy is the best one when we want to find
a solution fast.

Table 1: Results in the Rover domain.
coverage pc pp cp cc
best-cost 20 20 20 20
load-balance 20 20 20 20
rest-achievable 20 20 20 20
all-achievable 20 20 20 20
centralized 20 20
ST pc pp cp cc
best-cost 16.06 15.36 16.74 16.14
load-balance 15.16 14.66 15.01 14.73
rest-achievable 18.36 17.31 18.14 17.44
all-achievable 14.93 14.44 14.79 14.53
centralized 18.60 18.96
SC pc pp cp cc
best-cost 18.00 17.62 18.19 19.18
load-balance 18.73 17.90 17.90 18.73
rest-achievable 18.08 17.29 17.29 18.08
all-achievable 19.35 17.83 17.83 19.35
centralized 18.41 19.64
SR pc pp cp cc
best-cost 16.53 19.57 16.62 14.11
load-balance 14.13 17.94 17.94 14.13
rest-achievable 14.64 17.03 17.03 14.64
all-achievable 14.23 19.77 19.77 14.23
centralized 19.63 14.45
(R,C) pareto-d. pc pp cp cc
best-cost 85 96 101 76
load-balance 65 95 93 60
rest-achievable 59 69 64 54
all-achievable 62 104 108 57
centralized 149 87

The best quality plans in all domains, except for the Trans-
port, are obtained by the centralized approach using the cost
metric. In the Transport domain, surprisingly, the best config-
urations are the ones that select goals with the rest-achievable
strategy and plan with penalties. The score in the Transport
domain by the rest-achievable strategy is clearly influenced
by its high coverage. On the other hand, the Transport domain
is the only one that implements action-costs (the other three
are unit-cost) and the first solution is not the most relevant
one to compare the quality of the approaches. Furthermore,
the rest-achievable goal selection strategy distributes goals
without taking into account the costs / penalties, pruning the
search. In the other strategies, the best configurations are the
ones that plan using costs, as it was expected. The best-cost
goal selection strategy obtains good results in terms of the
cost score when it selects the goals using the action-costs and
plans with the same metric.

The reward score is the most diverse of all. Globally, the
best approach for this metric is the centralized approach using
penalties in planning tasks. In the Rover domain, though,
the best configurations use the all-achievable goal selection,
and plan with penalties. In the Transport domain the best
configuration uses the rest-achievable goal selection strategy,
and in the Zenotravel domain the best-cost goal selection

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

75

Table 2: Results in the Satellite domain.
coverage pc pp cp cc
best-cost 20 20 20 20
load-balance 20 20 20 20
rest-achievable 20 20 20 20
all-achievable 20 20 20 20
centralized 20 20
ST pc pp cp cc
best-cost 15.96 14.16 15.78 16.61
load-balance 15.62 13.87 14.23 15.20
rest-achievable 19.16 16.54 17.28 18.24
all-achievable 15.27 13.64 13.89 14.89
centralized 13.81 18.14
SC pc pp cp cc
best-cost 17.87 16.67 17.10 17.85
load-balance 17.64 16.72 16.72 17.64
rest-achievable 17.81 16.06 16.06 17.81
all-achievable 18.01 15.73 15.73 18.01
centralized 16.28 19.29
SR pc pp cp cc
best-cost 10.76 17.43 14.61 9.23
load-balance 10.76 14.99 14.99 10.76
rest-achievable 6.19 12.38 12.38 6.19
all-achievable 9.26 16.55 16.55 9.26
centralized 17.98 10.01
(R,C) pareto-d. pc pp cp cc
best-cost 92 102 86 75
load-balance 77 80 81 79
rest-achievable 48 49 45 46
all-achievable 61 57 56 60
centralized 106 118

using penalties to select the goals and to plan.
Finally, the (Reward, Cost) pareto-dominance indicates

which are the best balanced approaches; those which domi-
nate more often the other ones in both metrics: reward and
cost. The best balanced approach is the centralized one,
specifically when it uses the costs. In the Transport domain
the rest-achievable approaches obtain the best results influ-
enced by the coverage. In the Rover domain, approaches
which use penalties to plan are significantly better than those
which use costs to plan. On the opposite side is the Zeno-
travel domain, where the best approaches are which uses
costs to plan. In the rest of domains, the results are similar.

Table 5 shows that most MAPP configurations score higher
than the centralized approach in runtime. In the other metrics,
at least one of the MAPP configurations obtained a score
close to the centralized approach. As a reminder, the cen-
tralized approach cannot be directly compared against our
configurations, given that it does not preserve privacy.

Analyzing the results in more depth, we can affirm that the
distributed approaches become to outperforms the centralized
ones when the problems come to be more difficult. This fact
can be observed in the Transport domain, the most difficult
one, where distributed approaches obtain the best results in
all the scores. Additionally, approaches that plan using cost

Table 3: Results in the Transport domain.
coverage pc pp cp cc
best-cost 18 15 17 19
load-balance 16 14 14 17
rest-achievable 20 20 20 20
all-achievable 13 12 11 13
centralized 14 17
ST pc pp cp cc
best-cost 10.56 7.51 9.79 12.99
load-balance 10.25 7.16 7.19 10.51
rest-achievable 19.66 15.90 16.04 18.52
all-achievable 6.35 5.38 4.96 6.37
centralized 5.64 8.42
SC pc pp cp cc
best-cost 13.19 10.38 13.11 15.42
load-balance 12.34 10.06 10.06 13.00
rest-achievable 16.16 17.30 17.30 16.16
all-achievable 9.76 7.52 6.76 9.76
centralized 9.63 13.09
SR pc pp cp cc
best-cost 12.38 11.29 12.22 12.92
load-balance 9.74 9.47 9.47 10.47
rest-achievable 15.04 15.03 15.03 15.04
all-achievable 7.37 8.71 7.79 7.37
centralized 13.98 12.73
(R,C) pareto-d. pc pp cp cc
best-cost 59 43 75 68
load-balance 30 39 37 42
rest-achievable 122 128 128 123
all-achievable 12 16 12 15
centralized 61 83

get better results in terms of cost score and approaches that
plan using penalties get better reward score results. If the
goal selection step employs either cost or penalty metric does
not seem to affect so much these scores.

Related Work
Most work on multi-agent planning for self-interested agents
focuses on finding stable solutions in the spirit of game the-
ory (Brafman et al. 2009; Crosby and Rovatsos 2011). Agents
have their own goals and are able to form coalitions, costless
binding agreements, to fulfill them. A stable solution is a
coalition’s joint plan such that no subset of its agents would
benefit by joining an alternative coalition. Agents’ payoffs
are computed a posteriori and depend on the total cost of
the actions carried out by the agents. Nissim and Brafman
proposed a privacy-preserving distributed mechanism to find
cost optimal solutions that also calculates the payments to
each agent (Nissim and Brafman 2013). We model the self
interest of the agents with the preference function, indepen-
dently of the cost. And, we calculate suboptimal and not
stable solutions.

Oversubscription planning problems also define prefer-
ences on the goals (Keyder and Geffner 2009; Smith 2004).
They assume it is not possible to achieve all soft goals due to

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

76

Table 4: Results in the Zenotravel domain.
coverage pc pp cp cc
best-cost 20 20 20 20
load-balance 20 20 20 20
rest-achievable 20 20 20 20
all-achievable 20 20 20 20
centralized 20 20
ST pc pp cp cc
best-cost 15.06 13.73 15.91 16.48
load-balance 14.96 13.80 14.06 14.67
rest-achievable 19.93 17.97 18.61 19.11
all-achievable 14.74 13.57 13.76 14.24
centralized 14.19 15.77
SC pc pp cp cc
best-cost 16.03 14.60 15.95 17.73
load-balance 16.00 14.54 14.54 16.00
rest-achievable 17.35 15.85 15.85 17.35
all-achievable 18.28 14.68 14.68 18.28
centralized 14.65 19.29
SR pc pp cp cc
best-cost 15.25 18.61 15.74 14.18
load-balance 14.76 16.21 16.21 14.76
rest-achievable 12.17 11.23 11.23 12.17
all-achievable 15.26 17.80 17.80 15.26
centralized 18.39 15.11
(R,C) pareto-d. pc pp cp cc
best-cost 98 97 118 118
load-balance 87 83 82 88
rest-achievable 74 77 74 74
all-achievable 132 100 100 131
centralized 115 148

limited resources. The objective is to find a plan that maxi-
mizes the utility, modeled through goal preferences (possibly
keeping the cost under a certain bound (Garcı́a-Olaya, de la
Rosa, and Borrajo 2011)). Keyder and Geffner showed that
soft goals can be compiled away avoiding the need to devise
specific algorithms for handling them (Keyder and Geffner
2009). Unlike oversubscription planning, our work assumes
all goals are hard, every one must be achieved. There is some
relation, though, given that one could consider that in our
case, we could define as soft goals the fact that each agent
achieves each goal. But, then, we would also need to specify
that all goals are achieved.

Conclusions and Future Work
We have described an approach that deals with the task of
Multi-Agent Planning with agents preferences over goals.
We describe how to model those preferences as a planning
metric to be used by state-of-the-art planners that can only
minimize plan costs. Then, the approach divides planning
in two main steps: assignment of public goals to agents and
planning. Each of these two steps can be configured to take
into account either actions costs, or agents preferences mod-
eled as penalties. We show results in several IPC domains
with a set of configurations. As expected, results show that

Table 5: Summary of results in all domains.
coverage pc pp cp cc
best-cost 78 75 77 79
load-balance 76 74 74 77
rest-achievable 80 80 80 80
all-achievable 73 72 71 73
centralized 74 77
ST pc pp cp cc
best-cost 57.64 50.75 58.21 62.23
load-balance 55.99 49.50 50.49 55.11
rest-achievable 77.11 67.71 70.06 73.31
all-achievable 51.29 47.03 47.40 50.02
centralized 52.24 61.28
SC pc pp cp cc
best-cost 65.09 59.27 64.35 70.20
load-balance 64.72 59.23 59.23 65.37
rest-achievable 69.41 66.50 66.50 69.41
all-achievable 65.41 55.76 55.00 65.41
centralized 58.96 71.31
SR pc pp cp cc
best-cost 54.92 66.90 59.20 50.45
load-balance 49.39 58.61 58.61 50.12
rest-achievable 48.04 55.67 55.67 48.04
all-achievable 46.12 62.83 61.91 46.12
centralized 69.98 52.29
(R,C) pareto-d. pc pp cp cc
best-cost 334 338 380 337
load-balance 259 297 293 269
rest-achievable 303 323 311 297
all-achievable 267 277 276 263
centralized 431 436

approaches that use cost as the main metric when planning
are better than those which use penalties when we want to ob-
tain solutions of better quality in terms of cost. The opposite
applies when we want to obtain better rewards; then we must
employ rewards (translated into penalties) in the planning
step. The approaches with more coverage are those which
employ the rest-achievable goal selection, and they are the
fastest too, because the goals are well distributed and the divi-
sion of goals does not overload the agents planning iterations.
The pareto-dominance depends on the domain structure; in
some domains the approaches using costs to plan are better
than the others and the opposite applies in other domains.

As future work, we plan to improve the quality of the
solutions using an anytime scheme and, later, to move to
optimal planning, considering a pareto-optimal search. Also,
we want to implement the soft goals compilation defined
in (Keyder and Geffner 2009). Using this compilation, the
goals of the original problem would remain as hard goals and
preferences agents have over goals would be modeled as soft
goals.

Acknowledgments
This work has been partially supported by Spanish MICINN
project TIN2011-27652-C03-02.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

77

References
Arregui, J. P.; Tejo, J. A.; Linares-López, C.; and Borrajo, D.
2012. Steps towards an operational sensors network planning
for space surveillance. In Proceedings of the SpaceOps’12.
Borrajo, D. 2013a. Multi-agent planning by plan reuse.
Extended abstract. In Proceedings of the AAMAS’13, 1141–
1142.
Borrajo, D. 2013b. Plan sharing for multi-agent planning. In
Nissim, R.; Kovacs, D. L.; and Brafman, R., eds., Preprints
of the ICAPS’13 DMAP Workshop on Distributed and Multi-
Agent Planning, 57–65.
Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz,
M. 2009. Planning games. In Proceedings of IJCAI, 73–78.
Castillo, L.; Armengol, E.; Onaindı́a, E.; Sebastiá, L.;
González-Boticario, J.; Rodrı́guez, A.; Fernández, S.; Arias,
J. D.; and Borrajo, D. 2008. SAMAP. A user-oriented adap-
tive system for planning tourist visits. Expert Systems with
Applications 34(2):1318–1332. ISSN: 0957-4174.
Cenamor, I.; de la Rosa, T.; and Borrajo, D. 2013. Ondroad
planner: Building tourist plans using traveling social network
information. In Proceedings of Conference on Human Com-
putation & Crowdsourcing (HCOMP’13). Works-in-Progress
& Demonstrations.
Crosby, M., and Rovatsos, M. 2011. Heuristic multiagent
planning with self-interested agents. In Proceedings of AA-
MAS, 1213–1214.
Garcı́a, J.; Florez, J. E.; Álvaro Torralba; Borrajo, D.; Linares-
López, C.; Ángel Garcı́a-Olaya; and Sáenz, J. 2013. Com-
bining linear programming and automated planning to solve
multimodal transportation problems. European Journal of
Operations Research 227:216–226.
Garcı́a-Olaya, A.; de la Rosa, T.; and Borrajo, D. 2011. Us-
ing relaxed plan heuristic to select goals in oversubscription
planning problems. In Advances in Artificial Intelligence,
volume 7023/2011 of Lecture Notes on Computer Science,
183–192. Springer Verlag.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Shlomo Zilberstein, J. K., and Koenig, S.,
eds., Proceedings of ICAPS’04, 161–170.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Keyder, E., and Geffner, H. 2009. Soft goals can be compiled
away. Journal of Artificial Intelligence Research 36(1):547–
556.
Nissim, R., and Brafman, R. I. 2013. Cost-optimal planning
by self-interested agents. In Proceedings of AAAI’13.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Smith, D. E. 2004. Choosing objectives in over-subscription
planning. In Proceedings of ICAPS’04, 393–401.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

78

Integrating individual preferences in multi-agent planning

Alejandro Torreño, Eva Onaindia, Óscar Sapena
Universitat Politècnica de València

Camino de Vera s/n, 46022 Valencia, SPAIN
{atorreno,onaindia,osapena}@dsic.upv.es

Abstract

In this paper we address the problem of incorporating
self-interest agents which have individual preferences
in a cooperative multi-agent planning (MAP) frame-
work. Thus, agents are aimed at solving together the
hard problem goals and, in addition, to satisfy as many
as possible of their soft preferences.
We propose an extension of FMAP, an efficient general-
purpose forward MAP algorithm that solves cooperative
tasks over a diverse set of planning problems, to accom-
modate the individual preferences of agents. The new
heuristic function of FMAP estimates now the cost to
reach the common problem goals as well as the util-
ity of a node regarding the individual preferences of the
agents. We show some preliminary experimental results
of the preference-based FMAP when agents use a Borda
voting mechanism to select the best node according to
their preference profiles.

Introduction
Multi-Agent Planning (MAP) extends the classical planning
paradigm by introducing several independent entities that
plan and act together. Over the last years, MAP has primar-
ily focused on studying different types of architectures (dis-
tributed or centralized), coordination mechanisms of agents’
solutions (coordination before planning, coordination after
planning or interleaved planning and coordination) or issues
like privay preserving.

Most MAP approaches stem from extensions of the clas-
sical single-agent planning paradigm, assuming agents to
be fully cooperative. Agents are typically endowed with a
set of global goals that must be collectively attained by the
group in order to solve the task at hand (Nissim, Brafman,
and Domshlak 2010; Torreño, Onaindia, and Sapena 2012;
Borrajo 2013).

The inclusion of self-interested agents with individual
preferences in MAP is a matter of study rarely addressed by
the planning community. Preference-based planning (PBP)
is a branch of classical single-agent planning that addresses
the problem of determining when a plan is preferred over
another (Baier and McIlraith 2009). Users specify the desir-
able properties of a solution plan in the form of preferences

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and PBP algorithms search for a solution that satisfies the
largest number of preferences.

The combination of PBP and MAP emerges as an inter-
esting and novel field of research. Most of the existing MAP
approaches focus only on fully cooperative agents or ap-
ply game-theoretic concepts to combine local solutions into
a multi-agent solution plan that ensures certain theoretical
properties, such as Nash equilibrium (Brafman et al. 2009).

In (Torreño, Onaindia, and Sapena 2013; 2014b), we in-
troduced FMAP (Forward Multi-Agent Planning), a general-
purpose MAP framework that efficiently solves cooperative
multi-agent planning tasks from different planning domains.
FMAP shows to be very effective at solving hard problem
instances where the level of interaction between subgoals
is strong. FMAP features a refinement planning scheme
(Kambhampati 1997), by which agents cooperatively ex-
plore a joint search tree. The nodes of the search tree are
partial-order plans built through the contributions of one or
more planning agents. At each iteration of the procedure,
agents pose refinement plans by introducing actions over a
base plan chosen among the leaf nodes of the tree through a
novel MAP heuristic function. Each agent is provided with
an embedded forward-chaining partial-order planner to build
refinement plans.

The main limitation of FMAP is that it only attains coop-
erative tasks in which the goals are known to all the par-
ticipating agents. This work generalizes the definition of
MAP task introduced in (Torreño, Onaindia, and Sapena
2014b), explicitly allowing agents to have individual pref-
erences over the goal state.

In its original form, FMAP agents apply a straightforward
A* procedure, selecting the open node of the search tree that
minimizes an evaluation function f = g + h as the next
base plan to refine. Since FMAP is based on a cooperative
scheme, all the agents share the same f value for any given
plan.

In this paper, we propose an extension of FMAP to ac-
commodate individual preferences. Our aim is to allow
agents to explore the search tree considering not only the
global goals, but also their individual preferences. For this
purpose, we defined a utility function that allows each agent
to estimate the quality of the refinement plans with respect
to the global goals as well as its individual preferences.

In single-agent PBP, it is necessary to establish an order-

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

79

ing relation that specifies which plans are preferred to others.
A possible way to define this relation is to associate a numer-
ical value to each preference, representing the penalty value
for the plans that leave such preference unsatisfied. This ap-
proach is followed by PDDL3 (Gerevini and Long 2005),
in which a preference is violated by a plan if it logically
evaluates to false in such plan. As the aforementioned PBP
approach, we associate a penalty to each of the preferences
and evaluate the quality of the solution plans according to a
metric function that takes into consideration the unfulfilled
preferences of the agents.

We define a new plan selection scheme that aggregates the
individual preferences of the agents when selecting the next
base plan to explore. To do so, we rely on concepts from the
social choice theory; particularly, we apply voting mecha-
nisms to select the best base plan according to the preference
profiles of the agents.

Most of the PBP algorithms follow an incremental ap-
proach in which the planner returns a sequence of plans with
increasing quality (Baier and McIlraith 2009). For the exper-
imental evaluation, we modified the stop criterion of FMAP,
so that agents keep building solution plans of increasing
quality after the first one is found.

This paper is organized as follows: next section formal-
izes a generalized MAP task and presents the main concepts
upon which our approach is based, as well as the changes in-
troduced into our specification language to support individ-
ual preferences; next, we introduce the modified FMAP al-
gorithm and thoroughly analyze the main changes included;
following, we provide some initial experimental results; and
finally, we conclude and summarize our upcoming lines of
work.

MAP task formalization
Agents in our MAP model work under a limited knowledge
of the planning task by assuming that the information not
represented in an agent’s model is unknown to the agent. The
states of the world are modeled through a finite set of state
variables, V , each of them associated to a finite domain,Dv ,
of mutually exclusive values that refer to the objects in the
world. Assigning a value d to a variable v ∈ V generates a
fluent. A positive fluent is a tuple 〈v, d〉, which indicates that
the variable v takes the value d. A negative fluent 〈v,¬d〉
indicates that v does not take the value d. A state is a set of
positive and negative fluents.

An action is a tuple α = 〈PRE(α), EFF (α)〉, where
PRE(α) is a finite set of fluents modeling the precondi-
tions of α, andEFF (α) is a set of variable assignments that
model the effects of α. Executing an action α in a world state
S leads to a new state S′ as a result of applying EFF (α)
over S.

Definition 1 A MAP task is tuple TMAP =
〈AG,V,I,G,A,P〉. AG = {1, . . . , n} is a finite non-
empty set of agents. V =

⋃
i∈AG Vi, where Vi is the set

of state variables known to an agent i. I =
⋃

i∈AG Ii is
a set of fluents that defines the initial state of TMAP . G is
the set of global goals of TMAP that are common to all the
participating agents. A =

⋃
i∈AG Ai is the set of planning

actions of the agents. Finally , P =
⋃

i∈AG Pi is the set of
preferences of the agents in TMAP .

Some characteristics of the elements of TMAP are:

• Since specialized agents are allowed, they may only know
a subset of the initial state I. However, the initial states of
the agents never contradict each other.

• Tyipically, the sets of actions of two specialized agents are
disjoint but they may also contain some common actions.

• A includes two fictitious actions αi and αf : αi repre-
sents the initial state of TMAP , i.e., PRE(αi) = ∅ and
EFF (αi) = I, while αf models the global goals of
TMAP , i.e., PRE(αf) = G, and EFF (αf) = ∅.
• The sets of individual preferences of the agents, Pi, are

disjoint sets.

The previous definition includes a private set of prefer-
ences Pi for each agent i. Preferences in our model are de-
fined as soft goals since they are not required to be accom-
plished in order to solve the MAP task. Formally, a prefer-
ence of an agent i, p ∈ Pi, is a tuple p = 〈f, penalty〉,
where f is a fluent that the agent i wants to achieve in G,
and penalty is a numerical penalty applied to the agent in
case that the preference is not satisfied in a solution plan.

As indicated in Definition 1, our model considers special-
ized agents such that each agent has a local and limited view
on the MAP task. The view of an agent includes both the
information it knows and the preferences it has on the MAP
task at hand.

Definition 2 The view of an agent i on a MAP task is de-
fined as T i

MAP = 〈Vi,Ai, Ii,G,Pi, T hi〉. Vi is the set of
state variables known to agent i; Ai ⊆ A is the set of its
planning actions; Ii is the subset of fluents of the initial state
I that are visible to agent i; and G is the set of global goals
of TMAP . All the agents in TMAP are aware of the global
goals of the task. Pi is the set of individual preferences of
agent i, and T hi is the acceptable threshold of penalty for
the agent to validate a solution plan.

The state variables of an agent i are determined by the
view it has on the initial state, Ii, the planning actions it can
perform, Ai, and set of goals of TMAP . This also affects the
domain Dv of a variable v. We define Di

v ⊆ Dv as the set
of values of the variable v that are known to agent i. Agents
in our model interact with each other by sharing information
on their state variables. Given a pair of agents i and j, the set
of variables they share is defined as Vij = Vji = Vi ∩ Vj .
Moreover, some of the values in the domain of a variable can
also be public to both agents. The set of values of a variable
v that are public to a pair of agents i and j is defined as
Dij

v = Dji
v = Di

v ∩ Dj
v .

As introduced in (Torreño, Onaindia, and Sapena 2014b),
our MAP model is based on a multi-agent refinement plan-
ning framework, in which agents apply a Partial-Order Plan-
ning (POP) search procedure in order to generate refinement
plans. The next definitions briefly introduce standard con-
cepts from the POP paradigm (Ghallab, Nau, and Traverso
2004) adapted to a MAP context with state variables.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

80

Definition 3 A partial-order plan or partial plan is a tuple
Π = 〈∆,OR, CL〉. ∆ = {α|α ∈ A} is the set of actions in
Π.OR is a finite set of ordering constraints (≺) on ∆. CL is

a finite set of causal links of the form α
〈v,d〉→ β or α

〈v,¬d〉→ β,

where α and β are actions in ∆. A causal link α
〈v,d〉→ β

enforces a precondition 〈v, d〉 ∈ PRE(β) through an effect

(v = d) ∈ EFF (α). Similarly, a causal link α
〈v,¬d〉→ β

enforces 〈v,¬d〉 ∈ PRE(β) through an effect (v 6= d) ∈
EFF (α) or (v = d′) ∈ EFF (α), d′ 6= d.

An empty partial plan is defined as Π0 = 〈∆0, OR0,
CL0〉, where OR0 and CL0 are empty sets, and ∆0 con-
tains only the fictitious initial action αi. A partial plan Π for
a task TMAP will always contain αi.

The introduction of new actions in a partial plan may trig-
ger the appearance of flaws, that is, preconditions that are
not yet solved through a causal link, and threats. A threat

over a causal link α
〈v,d〉→ β is caused by an action γ that is

not ordered w.r.t. α or β and might potentially modify the
value of v ((v 6= d) ∈ EFF (γ) or (v = d′) ∈ EFF (γ),
d′ 6= d), making the causal link unsafe.

A flaw-free plan is a threat-free partial plan in which the
preconditions of all the actions are supported through causal
links.

Planning agents in our model cooperate to solve MAP
tasks by progressively refining an initially empty plan Π un-
til a solution is found. We define a refinement plan as fol-
lows:

Definition 4 A refinement plan Πr = 〈∆r, ORr, CLr〉
over a partial plan Π = 〈∆, OR, CL〉, is a flaw-free par-
tial plan which extends Π, i.e., ∆ ⊂ ∆r, OR ⊂ ORr and
CL ⊂ CLr. Πr introduces a new action α ∈ ∆r in Π, result-
ing in ∆r = ∆ ∪ α. All the preconditions in PRE(α) are
linked to existing actions in Π through causal links; i.e., all
preconditions are supported and so it holds ∀p ∈ PRE(α),
∃ β p→ α ∈ CLr, where β ∈ ∆.

Refinement plans are individually evaluated by each agent
to assess not only their quality, but also how they accomplish
the agent’s preferences. More precisely, an agent i evaluates
a refinement plan Π through an evaluation function f i(Π) =
g(Π) + selfInteresti · hpub(Π) + (1 − selfInteresti) ·∑

∀p∈Pi(βp · hpri(Π, p)), where:

• g(Π) is the cost of Π, measured as the number of actions
of Π.

• hpub(Π) is an estimate of the number of actions required
to reach the global goals of the task, G.

• hpri(Π, p) estimates the number of actions to satisfy the
agent’s preference p in the refinement plan Π.

• βp ∈ [0, 1] is a parameter used to assess the rel-
evance of achieving a particular individual prefer-
ence p over the others. βp is defined in terms of
the penalty associated to each preference: βp =
penalty(p)/

∑
∀p′∈Pi penalty(p′).

• selfInteresti ∈ [0, 1] indicates the weight that the agent
i gives to the accomplishment of the global goals and its
private preferences. The higher the value, the more self-
interested the agent, meaning that achieving the individual
preferences is more relevant to the agent. In the case of a
more cooperative agent that puts the emphasis on achiev-
ing the global goals of the task, the value of this parameter
will be lower.
For every open node Π (refinement plan) of the search

tree, an agent i applies f i(Π), thus creating an individual
preference profile over the open nodes of the tree. As we will
explain in the next sections, agents aggregate the individual
preference profiles to select the next base plan to be refined.
Definition 5 A solution plan for TMAP is a refinement plan
Π = 〈∆, OR, CL〉 that addresses all the global goals G of
TMAP and meets the penalty threshold for a majority of the
agents. Hence, a refinement plan Π is a solution iff αf ∈
Π (and thus, all the goals in G are satisfied; that is, ∀g ∈
PRE(αf), ∃ β g→ αf ∈ CL, β ∈ ∆) and |PT | > |AG|/2,
where PT = {i ∈ AG|PlanPenaltyi(Π) ≤ T hi}.

Refinement plans in our model include parallel actions
introduced by different agents. As described in (Torreño,
Onaindia, and Sapena 2014b), we ensure that the effects
and preconditions of such actions are mutually consistent
through the resolution of threats over the causal links of the
plan. Consistency between any two non-sequential actions
introduced by different agents is always guaranteed since re-
finement plans are flaw-free plans.

Every time an agent i refines a plan by introducing an ac-
tion α ∈ Ai, it communicates the resulting refinement plan
Π to the rest of the agents in TMAP . As in (Torreño, Onain-
dia, and Sapena 2014b), privacy is preserved by communi-
cating only the fluents of the new action α that are relevant to
the sender and receiver agents. The information of a refine-
ment plan Π that an agent j receives from agent i configures
its view of such plan, viewj(Π).

Extensions to the MAP language
In (Torreño, Onaindia, and Sapena 2014a), we firstly in-
troduced our MAP language based on PDDL3.1 (Kovacs
2011). We have extended the language with some additional
constructs in order to support the extensions introduced in
this section. The domain files of the specialized agents do
not suffer any modification but the problem file of each agent
includes now new constructs to define the behaviour and in-
dividual preferences of the agent. Throughout this section,
we will illustrate the changes using a simple example from
the well-known driverlog domain.

Currently, we only allow for the definition of individ-
ual preferences regarding the goal state. Therefore, now the
:goal construct includes the definition of the preferences:

(:goal (and
(= (in package1) s1)
(= (in package2) s2)
(preference p0 (= (at driver1) s1))
(preference p1 (= (pos truck1) s1))

))

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

81

As shown in the previous example, each preference is as-
sociated to an identifier that is then used in the specification
of the problem metric and the penalties that are applied to
the agent when its preferences are not accomplished. The
:metric section is defined as in PDDL2.1 (Fox and Long
2003).

(:metric minimize
(+ (total-time)

(is-violated p0)
(* (is-violated p1) 2)

))

The above example shows that the metric minimizes the
sum of the plan duration and the penalties associated to each
preference. Since FMAP does not explicitly manage time,
the total-time parameter is interpreted as the makespan
or duration of the plan. In the example, penalty(p0) = 1
and penalty(p1) = 2.

Finally, we include the :behaviour construct to define
both the agent’s self-interest level and its metric threshold.
This section is defined as in the following example:

(:behaviour
(self-interest 0.5)
(metric-threshold 0)

)

The agent in this example gives the same level of rele-
vance to the global goals and its preferences when it evalu-
ates refinement plans. The value of the metric threshold in-
dicates that the agent will only accept a plan as a solution
when all its individual preferences are satisfied.

Preference-based FMAP
This section describes the preference-based FMAP algo-
rithm, which was originally designed for fully cooperative
agents (Torreño, Onaindia, and Sapena 2014b) and has been
revised to accomodate individual preferences. FMAP agents
build a joint search tree in which nodes are refinement plans
(partial-order plans) whose actions are contributed by one
or more planning agents. Each agent independently devises
refinement plans over a centralized base plan through an em-
bedded forward-chaining POP (FPOP) procedure.

Algorithm 1 shows the preference-based FMAP algo-
rithm as executed by an agent i. The main stages of the pro-
cedure can be summarized as follows:

• Individual refinement plan generation: each agent indi-
vidually applies its embedded FPOP procedure to gener-
ate a set of refinement plans over the current base plan,
Πb. In Algorithm 1, the RP i set stores the refinement
plans devised by agent i. A refinement plan introduces
a new fully-supported action in Πb.

• Communication of refinement plans: agents communi-
cate each other the refinement plans they generated. Agent
i in Algorithm 1 sends each other agent j viewj(Πi),
for each Πi ∈ RP i, thus occluding the information
that is private to j. In turn, agent i receives, from each
other agent j, viewi(Πj), for all Πj ∈ RP j . The
Refinementsi set stores the view an agent i has on all

Algorithm 1: Preference-based FMAP algorithm as ap-
plied by an agent i
SolutionP lans← ∅
openNodesi ← ∅
Πb ← Π0

repeat
RP i ← FPOP (Πb)

Refinementsi ← RP i

for j ∈ AG, j 6= i do
∀Πi ∈ RP i, send viewj(Πi) to j
∀Πj ∈ RP j , receive viewi(Πj) from j

Refinementsi ← Refinementsi ∪RP j

∀ Πr ∈ Refinementsi, compute f i(Πr)

openNodesi ← openNodesi ∪Refinementsi
Πb ← SocialChoice(openNodesi)

openNodesi ← openNodesi \Πb

if αf ∈ Πb then
if MajorityApproval(Πb) then

SolutionP lans← Πb

until Timeout ∨ openNodesi = ∅
return SolutionP lans

the refinement plans created by the participating agents in
a particular iteration of FMAP.

• Evaluation of the refinement plans: each agent i indi-
vidually applies the utility function f i, described in the
previous section, to evaluate the refinement plans, and
it stores them into the openNodesi set. This set keeps
the plans ordered according to the agent’s utility function
f i. Agents make use of a DTG-based heuristic function,
hDTG (Torreño, Onaindia, and Sapena 2014b), to calcu-
late the heuristic estimates of f i.

• Base plan selection: agents select, among all the open
nodes of the multi-agent plan-space search tree, the re-
finement plan that is preferred by the group of agents. To
do so, agents aggregate their individual preferences on the
open nodes by means of a social choice mechanism.

If a base plan Πb supports the task goals G, i.e., αf ∈ Πb,
agents vote to decide if such a plan is accepted as a solu-
tion (MajorityApproval(Πb) function in Algorithm 1). In
order for the plan Πb to be accepted, the sum of the agent’s
penalties caused by Πb, PlanPenaltyi(Πb), has to be equal
or lower than the agent’s threshold T hi for a majority of
agents. Otherwise, the agents keep searching for plans that
are compliant with the threshold of more than half of the
agents.

The original, cooperative FMAP algorithm ended its exe-
cution after finding a solution plan. For the preference-based
version, we modified the stop criterion, allowing agents to
proceed searching for better solution plans until a timeout is
reached. This feature will be used in the experimental results
to better assess the quality of the different solution plans ob-
tained.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

82

In the following, we provide more insight on how an agent
i performs the individual evaluation of a refinement plan,
and how social choice is applied to select a base plan that is
preferred by the group of agent.

Evaluating refinement plans
In the cooperative FMAP version, refinement plans were
evaluated by the agent that generated them. At the plan com-
munication stage, all the agents received the result of the
evaluation along with the refinement plan. In the preference-
based version of FMAP, it is not possible to follow such a
scheme, since the utility function introduced requires the re-
finement plans to be evaluated independently by each of the
agents.

As shown in the formalization, given a plan Π, an agent i
applies a utility function f i(Π) = g(Π) + selfInteresti ·
hpub(Π)+(1−selfInteresti) ·

∑
∀p∈Pi(βp ·hpri(Π, p)) to

evaluate how a plan Π adjusts to the global goals and agent
i’s interests. The g(Π) parameter stands for the number of
actions of the plan; it is thus common to all the participat-
ing agents. The selfInteresti and β values are straightfor-
wardly infered from the agent’s problem file.

The heuristic values, hpub(Π) and hpri(Π, p), ∀p ∈ Pi,
are jointly estimated by each agent individually. In (Torreño,
Onaindia, and Sapena 2014b), we introduced our novel
MAP heuristic function, which is based on the concept of
Domain Transition Graphs (DTGs) (Helmert 2004). The
idea behind this function is to take account of the number
of actions of a relaxed plan built in a backwards fashion be-
tween the frontier state of the refinement plan, FS(Π), and
the set of goals of TMAP , G. The frontier state of a plan Π,
FS(Π), is the set of fluents 〈v, d〉 achieved by applying the
actions in Π over the initial state of TMAP , I.

We have modified the DTG heuristic function to jointly
estimate both the number of actions required to reach the
global goals, G, and each of the agent’s preferences. The
procedure first builds the relaxed plan for G as described
in (Torreño, Onaindia, and Sapena 2014b), and stores in
hpub(Π) the number of actions of the relaxed plan. Next,
the preferences of the agents are arranged according to their
associated penalties, from the highest to the lowest penalty
value.

The heuristic function processes the preferences in order.
For each preference p ∈ Pi, the procedure reuses the ex-
isting relaxed plan and adds the necessary actions for p to
be reached. Once p is processed, the number of extra ac-
tions added to the relaxed plan to support this preference are
summed up and returned as hpri(Π, p). The procedure uses
all the information in the relaxed plan to analyze the next
preferences, both the actions required to reach the goals in G
and the ones introduced to support the previously processed
preferences.

Selecting a base plan
A key aspect of the preference-based FMAP algorithm is re-
lated to the base plan selection stage. At each iteration, the
agents select the refinement plan that best accommodates
to the global goals and their preferences as the next base

plan. Selecting such a plan implies aggregating the individ-
ual preference profiles of the agents into a global one.

Social choice theory attains the problem of a set of agents
selecting a single outcome among a set of candidates ac-
cording to their individual preferences (Shoham and Leyton-
Brown 2009). More precisely, a social choice function se-
lects a single outcome from a set of preference profiles,
while a social welfare function aggregates a set of preference
profiles into a single one. Therefore, the tools and mecha-
nisms provided by the social choice theory fit into the prob-
lem of a set of self-interested agents selecting a base plan.

Social choice mechanisms are democratic voting systems
by which the alternative preferred by the voters is chosen.
One key result in social choice theory is the Arrow impos-
sibility theorem, which states that, given three or more can-
didates, there is not a social welfare function that meets a
specific set of criteria, namely Pareto efficiency and inde-
pendence of irrelevant alternatives, without being dictatorial
(Arrow 1951).

In practice, the previous result shows that there is not an
ideal voting method, as it is not possible to simultaneously
meet all the desirable social choice theoretical properties.
Voting methods can be classified as follows:

• Simple or sequential election: in these methods, agents
select a single outcome among their preference profiles.
These mechanism perform one or more election rounds,
so that each agent selects a single candidate in each round
and the result of the voting is always a single winner.

• Ranking methods: these voting systems allow each agent
to provide a complete or partial preference profile. A rank-
ing method aggregates the agents’ individual preference
profiles into a joint preference profile. The first-classified
outcome in the global preference profile is selected as the
winner.

• Condorcet methods: a subset of the ranking methods
accomplish the Condorcet criterion, which can be enun-
ciated as follows: given two outcomes o1 and o2, if o1
is preferred to o2 by a majority of agents, a Condorcet-
compliant method will keep the preference o1 ≺ o2
(Shoham and Leyton-Brown 2009). This property also en-
sures that the Condorcet winner is also Pareto efficient.
On the other hand, finding a Condorcet winner is not al-
ways possible, and thus, it is necessary to define a tie-
breaking mechanism. Moreover, Arrow theorem shows
that Condorcet methods are not independent of irrelevant
alternatives (Arrow 1951).

• Rating methods: these mechanisms allow agents to pro-
vide a rating for each plan in their preference profiles,
which makes them more flexible than ranking methods.

Different social choice methods can be tested in FMAP
for the agents to jointly select the next base plan. Next sec-
tion shows the preliminary results obtained after testing the
preference-based FMAP along with a ranking strategy.

Experimental results
This section provides the preliminary experimental results
we collected. The tests assess the performance of the

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

83

Domain Pfile First solution plan Best solution plan
Actions Makespan Metric Time Iter Actions Makespan Metric Time Iter

Driverlog

1 13 9 10 3,66 177 20 7 7,5 56,54 3300
2 13 7 8 4,91 232 19 7 7 173,58 8784
3 10 7 8 1,20 42 13 7 7 6,38 291
4 12 5 6,3 1,82 51 13 5 5,7 81,89 2778
5 13 7 8,3 3,30 81 16 7 7,7 27,94 928

Elevators

1 11 7 8,3 3,26 63 13 7 7,3 19,12 436
2 6 6 7 7,41 119 10 3 3,3 71 1513
3 4 4 5,3 0,68 5 8 4 4,7 7,26 118
4 11 6 7 20,00 355 - - - - -
5 17 8 9,3 57,75 990 17 7 8 75,78 1289

Zenotravel

3 6 5 5,5 1,22 27 8 4 4 15,07 433
4 5 4 5 1,63 41 10 4 4 24,64 845
5 9 5 6 3,75 103 11 5 5,5 9,67 295
6 6 3 4 1,26 15 10 3 3,5 12,03 300
7 14 7 8 14,29 398 16 7 7 101,29 2929

Table 1: Experimental results

preference-based FMAP system by using three different
planning domains adapted from the International Planning
Competitions1 (IPC) benchmarks.

FMAP is entirely encoded in Java, and it makes use of
Magentix22 (Such et al. 2012), a middleware multi-agent
platform that provides the communication services required
by the agents. Magentix2 agents communicate by means
of the FIPA Agent Communication Language (O’Brien and
Nicol 1998). Messaging is carried out through the Apache
QPid broker3.

All the experimental tests were performed on a single ma-
chine with a quad-core Intel Core i7 processor and 8 GB
RAM. This machine runs both the complete FMAP system
and the QPid broker. We set up the planner by establishing
a 5-minute time limit for each planning task, so that agents
are allowed to find as many solutions as possible within the
time limit. For each task, we take account of the first and
best solution (measured by computing the agents’ average
metric for each solution plan) obtained by the agents within
the time limit.

We selected three different domains from the IPC bench-
marks and adapted five of the STRIPS tasks to a preference-
based MAP context. We modeled some of the goals in the
original problems as agent-specific preferences, and added
extra preferences so that each agent has two different prefer-
ences. All the preferences have 1 unit of associated penalty,
and the metric threshold is set to 1, meaning that an agent
will approve solution plans that meet at least one of its pref-
erences. The self-interest value is set to 0.5 for all the agents,
and thus, they assign the same weight to their preferences
and the global goals.

The specific design guidelines we applied to adapt each
domain are described as follows:

1http://ipc.icaps-conference.org/
2http://www.gti-ia.upv.es/sma/tools/magentix2
3http://qpid.apache.org/

• Driverlog (pfiles 1-5): the driver objects of the orig-
inal domain are defined as agents. The preferences are
defined through the predicates (at-driver driver)
and (pos truck).

• Elevators (pfiles 1-5): each slow-elevator and
fast-elevator is defined as an agent. The agents’ in-
dividual preferences were established using the predicates
(lift-at elevator) and (at passenger).

• Zenotravel (pfiles 3-7): The aircraft objects are de-
fined as agents in the zenotravel MAP version. Pref-
erences are modeled by means of the predicates (at
aircraft) and (in person).

Table 1 summarizes the early results we collected. For
each MAP task, we provide information about the first and
best solution plan found by FMAP according to the average
of the agents’ metric values. Actions and Makespan columns
refer to the number of actions and duration of the solution
plans. Metric stands for the average metric value of the solu-
tion plan. Finally, Time and Iter indicate the execution time
and number of iterations required by FMAP to find each so-
lution plan.

The social choice method selected for these tests is a
Borda voting (Shoham and Leyton-Brown 2009), one of the
most common ranking methods. For these experiments, we
modified the Borda method in order to use incomplete pref-
erence profiles. Using complete preference profiles entails
processing all the leaf nodes of the search tree at each iter-
ation of the FMAP procedure, which is too complex even
in middle-range tasks. For this reason, we limited the pref-
erence profile used by each agent in the voting to a fixed
number of 10 candidates.

As shown in Table 1, agents find the first solution that
meets the metric thresholds in a matter of seconds (less than
one minute in all the tasks). This first solution found by the
agents tends to adjust to the metric threshold defined for the
majority of agents; that is, a majority of the agents solve one

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

84

of their preferences, while the rest of agents do not attain
any preference.

The best solution for each task offers a more polished
plan that in most cases increases the number of actions,
but, in turn, offers an equal or lower duration and attains
a higher amount of the agents’ preferences. Agents find the
best solution in less than a half of the time limit in most
cases. In some tasks, the average metric equals the plan du-
ration (makespan), which means that all the preferences of
the agents are fulfilled (and thus, the metric only takes ac-
count of the plan duration).

Conclusions and future work
In this work, we presented an extension of FMAP, a coop-
erative MAP system, to support individual preferences. We
extended our MAP definition language, based on PDDL3.1,
to include new constructs to define the agents’ preferences
and behaviour.

The refinement planning procedure of FMAP has been
adapted to a preference-based context. Each agent makes
use of a utility function to measure how a plan adjusts to
the global goals and its private preferences. The application
of this utility function gives rise to an individual preference
profile for each of the agents. We apply social theory-based
mechanisms in order to aggregate the agents’ preference
profiles and to select the most appropriate base plan accord-
ing to the interests of the group of agents at each iteration of
the procedure. More precisely, agents apply voting methods
to democratically elect the candidate plan that is preferred
by the group.

Finally, we provide some early experimental results that
focus on solving simple tasks from the IPC benchmarks
adapted to a MAP context with preferences. In these exper-
iments, agents apply a Borda voting, a well-known ranking
method, to select plans.

This article presents a very early stage of our preference-
based MAP work. We have already modified and tested the
FMAP framework and the definition language to accommo-
date individual preferences. However, at this point we have
just a single functional coordination method.

We intend to add other more complex social choice
schemes that ensure different theoretical properties, such
as Condorcet-compliant ranking methods and rating mech-
anisms. Moreover, we will develop an in-depth experimen-
tal comparison to study how the search procedure and the
quality of the solution plans are affected by the behavioral
parameters defined for each agent, such as the social choice
mechanism, the level of self-interest or the metric threshold.

Acknowledgments
This work has been partly supported by the Span-
ish MICINN under projects Consolider Ingenio 2010
CSD2007-00022 and TIN2011-27652-C03-01, the Valen-
cian Prometeo project II/2013/019, and the FPI-UPV
scholarship granted to the first author by the Universitat
Politècnica de València.

References
Arrow, K. 1951. Individual values and social choice. Wiley,
New York.
Baier, J., and McIlraith, S. 2009. Planning with preferences.
AI Magazine 29(4):25.
Borrajo, D. 2013. Multi-agent planning by plan reuse. In
Proceedings of the 12th International Conference on Au-
tonomous Agents and Multi-agent Systems (AAMAS), 1141–
1142.
Brafman, R.; Domshlak, C.; Engel, Y.; and Tennenholtz, M.
2009. Planning games. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
73–78.
Fox, M., and Long, D. 2003. PDDL2.1: an extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences in PDDL3. Technical Report, Department of Elec-
tronics for Automation, University of Brescia, Italy.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning. Theory and Practice. Morgan Kaufmann.
Helmert, M. 2004. A planning heuristic based on
causal graph analysis. In Proceedings of the 14th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 161–170.
Kambhampati, S. 1997. Refinement planning as a unifying
framework for plan synthesis. AI Magazine 18(2):67–97.
Kovacs, D. L. 2011. Complete BNF description of
PDDL3.1. Technical report.
Nissim, R.; Brafman, R.; and Domshlak, C. 2010. A general,
fully distributed multi-agent planning algorithm. In Pro-
ceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 1323–1330.
O’Brien, P., and Nicol, R. 1998. FIPA - towards a standard
for software agents. BT Technology Journal 16(3):51–59.
Shoham, Y., and Leyton-Brown, K. 2009. Multiagent sys-
tems: Algorithmic, game-theoretic, and logical foundations.
Cambridge University Press.
Such, J.; Garcı́a-Fornes, A.; Espinosa, A.; and Bellver, J.
2012. Magentix2: A privacy-enhancing agent platform. En-
gineering Applications of Artificial Intelligence 96–109.
Torreño, A.; Onaindia, E.; and Sapena, O. 2012. An ap-
proach to multi-agent planning with incomplete informa-
tion. In Proceedings of the 20th European Conference on
Artificial Intelligence (ECAI), volume 242, 762–767. IOS
Press.
Torreño, A.; Onaindia, E.; and Sapena, O. 2013. FMAP: a
heuristic approach to cooperative multi-agent planning. In
Proceedings of the 1st Workshop on Distributed and Multi-
Agent Planning (DMAP 2013), 84–92.
Torreño, A.; Onaindia, E.; and Sapena, O. 2014a. A flex-
ible coupling approach to multi-agent planning under in-
complete information. Knowledge and Information Systems
38(1):141–178.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

85

Torreño, A.; Onaindia, E.; and Sapena, O. 2014b. FMAP:
distributed cooperative multi-agent planning. Applied Intel-
ligence.

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

86

Bonisoli, Andrea 25
Borrajo, Daniel 39, 70
Brafman, Ronen 1

Crosby, Matthew 16

Della Penna, Nicolas 54
Durkota, Karel 7

Fernández, Susana 70

Geffner, Hector 62
Gerevini, Alfonso 25

Jakubuv, Jan 7

Kambhampati, Subbarao 30
Kinathil, Shamin 54
Komenda, Antonin 7
Kominis, Filippos 62

Luis, Nerea 38

Onaindia, Eva 79

Petrick, Ron 16

Saetti, Alessandro 25
Sanner, Scott 54
Sapena, Óscar 79
Serina, Ivan 25
Steedman, Mark 45

Torreño, Alejandro 79
Tozicka, Jan 7

Valtazanos, Aris 45
Virseda Jerez, Jesús 70

Zhang, Yu 30
Zoran, Uri 1

Author Index

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

87

45Ad-hoc teamwork
Automated planning 70

Belief representation 62

Concurrency constraints 16

Distributed planning 1

45Egocentric planning in multi-agent domains
Exact solution 54

Game Theory 54

Heuristic forward search 1

Interacting actions 1

45
7, 16, 25, 30, 38, 62, 70, 79

30

Monte-Carlo methods
Multi-agent planning
Multi-agent theories
Multi-agent systems 54

Negotiation 7

25
38
38
7
25
70
62
45

79

PDDL
Plan merging
Planning by reuse
Planning graph
Planning with noisy communication
Planning with preferences
Planning with uncertainty
Planning
POMDP
Preferences
Privacy 1, 25

Required cooperation 30

79
79
54
54

Self-interested agents
Social choice
Stochastic games
Symbolic dynamic programming

Temporal planning 16

Keyword Index

Proceedings of the 2nd ICAPS Distributed and Multi-Agent Planning workshop (ICAPS DMAP-2014)

88

62

	DMAP
	toc
	01-paper_1
	02-paper_6
	03-paper_8
	04-paper_7
	05-paper_10
	06-paper_2
	07-paper_3
	08-paper_12
	09-paper_4
	10-paper_5
	author_index
	keyword_index

