

Proceedings of the 6th Workshop on
Heuristics and Search for Domain Independent Planning

Edited By:

J. Benton, Patrik Haslum, Malte Helmert, Michael Katz and Jordan Thayer

Portsmouth, New Hampshire, USA - June 22, 2014

Organizing Committee

J. Benton
SIFT, USA
Patrik Haslum
NICTA/ANU, Australia
Malte Helmert
University of Basel, Switzerland
Michael Katz
IBM Research, Israel
Jordan Thayer
SIFT, USA

Program Committee

J. Benton, SIFT, USA
Patrik Haslum, NICTA/ANU, Australia
Malte Helmert, University of Basel, Switzerland
Michael Katz, IBM Research, Israel
Jordan Thayer, SIFT, USA

2

Foreword

Heuristics and search algorithms are the two key components of heuristic search, one of the main approaches to many variations
of domain-independent planning, including classical planning, temporal planning, planning under uncertainty and adversarial
planning. This workshop seeks to understand the underlying principles of current heuristics and search methods, their limita-
tions, ways for overcoming those limitations, as well as the synergy between heuristics and search.

The workshop on Heuristics and Search for Domain-Independent Planning (HSDIP) is the sixth workshop in a series that
started with the Heuristics for Domain-Independent Planning (HDIP) workshops at ICAPS 2007, 2009 and 2011. At ICAPS
2012, the workshop was held for the fourth time and was changed to its current name and scope to explicitly encourage work on
search for domain-independent planning. It was very successful under both names. Many ideas presented at these workshops
have led to contributions at major conferences and pushed the frontier of research on heuristic planning in several directions,
both theoretically and practically. The workshops, as well as work on heuristic search that has been published since then, have
also shown that there are many exciting open research opportunities in this area. Given the considerable success of the past
workshops, we intend to continue holding it annually.

The main focus of the HSDIP workshop series is on contributions that help us find a better understanding of the ideas
underlying current heuristics and search techniques, their limitations, and the ways for overcoming them. While the workshop
series has originated mainly in classical planning, it is very much open to new ideas on heuristic schemes for more general
settings, such as temporal planning, planning under uncertainty and adversarial planning. Contributions do not have to show that
a new heuristic or search algorithm “beats the competition”. Above all we seek crisp and meaningful ideas and understanding.
Also, rather than merely being interested in the “largest” problems that current heuristic search planners can solve, we are
equally interested in the simplest problems that they cannot actually solve well.

We hope that the workshop will constitute one more step towards a better understanding of the ideas underlying current
heuristics, of their limitations, and of ways for overcoming those.

We thank the authors for their submissions and for their hard work.

June 2014 J. Benton, Patrik Haslum, Malte Helmert, Michael Katz, and Jordan Thayer.

3

Table of Contents

Korf’s Conjecture and the Future of Abstraciton-based Heuristics
Robert Holte 5

Distance? Who Cares? Tailoring Merge-and-Shrink Heuristics to Detect Unsolvability
Jörg Hoffmann, Peter Kissmann and Alvaro Torralba 13

Learning Pruning Rules for Heuristic Search Planning
Michal Krajnansky, Jörg Hoffmann, Olivier Buffet and Alan Fern 22

What Does it Take to Render h+(ΠC) Perfect?
Jörg Hoffmann, Marcel Steinmetz and Patrik Haslum 31

Pushing the Limits of Partial Delete Relaxation: Red-Black DAG Heuristics
Michael Katz and Jörg Hoffmann 40

Landmarks in Oversubscription Planning
Vitaly Mirkis and Carmel Domshlak 45

Adding Local Exploration to Greedy Best-First Search in Satisficing Planning
Fan Xie, Martin Mueller and Robert Holte 53

Type-based Exploration with Multiple Search Queues for Satisficing Planning
Fan Xie, Martin Mueller, Robert Holte and Tatsuya Imai 62

A Practical, Integer-Linear Programming Model for the Delete-Relaxation in Cost-Optimal Planning
Tatsuya Imai and Alex Fukunaga 71

Optimal Planning in the Presence of Conditional Effects: Extending LM-Cut with Context Splitting
Gabriele Röger, Florian Pommerening and Malte Helmert 80

Width-based Algorithms for Classical Planning: New Results
Nir Lipovetzky and Hector Geffner 88

To reopen or not to reopen in the context of Weighted A*? Classifications of different trends
Vitali Sepetnitsky, Ariel Felner and Roni Stern 92

Delete Relaxation and Traps in General Two-Player Zero-Sum Games
Thorsten Rauber, Denis Mller, Peter Kissmann and Jrg Hoffmann 98

Generalized Label Reduction for Merge-and-Shrink Heuristics
Silvan Sievers, Martin Wehrle and Malte Helmert 107

4

Korf’s Conjecture and the Future of Abstraction-based Heuristics

Robert C. Holte
Computing Science Department

University of Alberta
Edmonton, AB, Canada T6G 2E8

(holte@cs.ualberta.ca)

Abstract

In his 1997 paper on solving Rubik’s Cube optimally using
IDA* and pattern database heuristics (PDBs), Rich Korf con-
jectured that there was an inverse relationship between the
size of a PDB and the amount of time required for IDA*
to solve a problem instance on average. In the current pa-
per, I examine the implications of this relationship, in par-
ticular how it limits the ability of abstraction-based heuristic
methods, such as PDBs, to scale to larger problems. I dis-
cuss methods that might allow abstraction-based heuristics
to scale better than Korf’s Conjecture suggests and identify
important auxiliary roles for abstraction-based heuristics in
heuristic planning and search systems of the future that do
not depend on their ability to scale well. Finally, I examine
some key assumptions in the analysis underlying Korf’s Con-
jecture, and identify two complications that arise in trying to
apply it in practice.

Introduction
In 1997, Rich Korf published a paper (Korf 1997) in which
random instances of Rubik’s Cube were solved optimally
for the first time using a general-purpose search algorithm
(IDA*). This outstanding achievement was made possi-
ble by abstraction-based heuristics called pattern databases
(PDBs), which had only recently been invented (Culber-
son and Schaeffer 1996). Korf’s paper launched the golden
age of abstraction-based methods for heuristic search, and
a few years later Edelkamp (2001) introduced PDBs to the
fledgling world of heuristic-search planning.

Korf’s Rubik’s Cube paper contained a second important
but largely overlooked contribution that casts serious doubt
on the long-term future of abstraction-based heuristics. Korf
conjectured that there was an inverse relationship between
m, the size of a PDB, and t, the number of node expansions
that IDA*, using a PDB of size m, would perform to solve a
problem instance on average, i.e. m · t = n, where n is the
size of the brute-force search tree for the original state space.
Since node expansion is the primary operation in IDA*, t
is indicative of IDA*’s execution time. Korf later gave a
rigorous analysis, refining the conjecture to be M · t = n,
where M = m

1+log(m) (Korf 2007).
In this paper I examine the implications of M · t = n,

in particular how it limits the ability of abstraction-based
heuristic methods, such as PDBs, to scale to larger prob-

lems. Much of the discussion surrounds methods that might
allow abstraction-based heuristics to scale better than Korf’s
Conjecture suggests. There are several promising possibil-
ities, which I believe should be the focus of research in the
next few years. I also identify important auxiliary roles for
abstraction-based heuristics in heuristic planning and search
systems of the future that do not depend on their ability
to scale well. Finally, I examine some key assumptions
in the analysis underlying Korf’s Conjecture, and identify
two complications that arise in trying to apply it in practice.
This paper supercedes the version published last year (Holte
2013).

Background
Planning and heuristic search study the problem of finding a
least-cost path (sequence of actions) from a given start state
to a given goal state (goal).1 The distance from state s to
state t, denoted d(s, t), is the cost of a least-cost path from
s to t. An abstraction of a state space S is a mapping φ
to another state space, S′, such that d(φ(s), φ(t)) ≤ d(s, t)
for all pairs of states s, t ∈ S. For any choice of S′ and φ,
h(s) = d(φ(s), φ(goal)) is an admissible, consistent heuris-
tic for S. For example, consider the standard 3x3x3 Rubik’s
Cube, which consists of 8 corner cubies and 12 edge cubies.
One way it can be abstracted is to consider all the corner
cubies indistinguishable, e.g. to paint all the faces of every
corner cubie black. A solution to this abstract problem is
a sequence of actions that puts all the edge cubies in their
goal positions without regard for what happens to the corner
cubies. Distances in this space cannot be greater than the
corresponding distances in the original Rubik’s Cube space
because the same operators exist in both spaces and solu-
tions in the original space also must put the edge cubies in
their goal positions. There are a variety of different families
of abstraction functions that can be implemented as simple
operations on standard state space representations, the most
common of which are projection (Edelkamp 2001), and do-
main abstraction (Holte and Hernádvölgyi 1999).

I will use the term “pattern database” (PDB) to refer
to any data structure that is indexed by individual abstract
states and stores d(s′, φ(goal)) for each s′ ∈ S′ from which
the abstract goal can be reached. I will assume for the

1Korf’s analysis assumes there is just one goal state.

5

present that the PDB is uncompressed, i.e. that the amount
of memory needed for the PDB is linear in m, the number
of abstract states in S′ from which the abstract goal can be
reached. Sometimes “PDB" is used in a narrower sense than
this, but the reasoning underlying Korf’s Conjecture applies
to any data structure of this kind. A PDB is computed during
a pre-processing phase by enumerating abstract states back-
wards from the abstract goal and recording the distance to
each abstract state reached. During search, h(s), the heuris-
tic value for state s ∈ S, is computed by looking up the
distance for φ(s) in the PDB.

Overview of Korf’s Analysis
At the core of the analysis underlying Korf’s Conjecture is
the distribution of distances in the abstract space, which Korf
calls the heuristic distribution since these distances are being
used as heuristic values. Table 1 shows the distribution of
distances in the abstraction of the 3x3x3 Rubik’s Cube that
ignores the corner cubies, as described above. In this space
all moves cost 1, so the distance to the goal is the number of
moves from the goal (“depth”).

Given a heuristic distribution, Korf’s Conjecture is de-
rived in two steps. In the first step, the heuristic distribu-
tion is related to the size of the PDB. For this purpose, Korf
assumes the number of abstract states at a given distance
from the abstract goal grows exponentially as the distance
increases, i.e. that there will be bd abstract states at distance
d for some branching factor b.2 Korf recognizes that abstract
spaces are usually graphs, not trees, so his analysis may un-
derestimate the amount of pruning the heuristic will cause.
The key to the analysis being a good approximation is that
the exponential growth assumption be true of the majority
of heuristic values, as it clearly is in Table 1 (see the “ratio”
column).

The second step of the derivation relates the heuristic dis-
tribution to the number of nodes expanded by IDA*. In the
formal analysis (Korf 2007) this step is done using the KRE

2To simplify the analysis, Korf assumes that this b is the same
as the branching factor in the search tree for the original space.

depth #states ratio
0 1 -
1 18 18.0
2 243 13.5
3 3,240 13.3
4 42,807 13.2
5 555,866 13.0
6 7,070,103 12.7
7 87,801,812 12.4
8 1,050,559,626 12.0
9 11,588,911,021 11.0

10 110,409,721,989 9.5
11 552,734,197,682 5.0
12 304,786,076,626 -
13 330,335,518 -
13 248 -

Table 1: Distance-to-goal (“depth”) distribution for the
3x3x3 Rubik’s Cube abstraction that ignores the corner cu-
bies (Table 2 in (Korf 2008)). “ratio” is #states at depth d
divided by #states at depth d− 1 (not shown if less than 1).

formula (Korf, Reid, and Edelkamp 2001). The relationship
M · t = n follows directly from some straightforward ma-
nipulation of the KRE formula with an exponential heuristic
distribution.

Because this derivation is entirely formal, Korf’s Conjec-
ture is no longer a conjecture, except in the sense that the
assumptions on which the analysis is based are being con-
jectured to hold in problems of interest. That is a topic I will
return to later in the paper, but for the next few sections I
will assume Korf’s Conjecture has been proven and explore
its implications.

The Problem of Scaling
The fact that the amount of memory needed to store a PDB
is linear in m, the number of abstract states for which the
PDB stores information, limits how useful abstraction-based
heuristics can be in solving combinatorial problems. n
grows exponentially as the size of a combinatorial problem
increases (e.g. add 1 more block to the blocks world, 1 more
disk to the Towers of Hanoi, 1 more row or column full of
tiles to the sliding-tile puzzle). If Korf’s Conjecture is true,
then M · t must also grow exponentially. If we have a fixed
amount of memory, twould have to grow exponentially, and,
if we have an upper bound on how much time we are will-
ing to wait for a solution, then m must grow exponentially.
This represents a fundamental limitation on the ability of
abstraction-based heuristics to guide search effectively.

If we allow m and t to both increase as n increases, it is
somewhat encouraging to see that they can increase with the
square root of n (M=

√
n⇒ t=

√
n). If the time to construct

the PDB is linear in M , then the total time to solve a single
problem instance will also grow with the square root of n,
instead of being linear in n as brute-force search would be.
Nevertheless, if n grows exponentially as we increase the
size of our combinatorial problems, t and m will both also
grow exponentially.

Possible Solutions
In this section I review existing technologies that might pro-
vide a solution to the scaling problem.

Disk-based and Distributed PDBs. Storing PDBs on
disk instead of in RAM (Sturtevant and Rutherford 2013;
Zhou and Hansen 2005) or distributing them across a cluster
of workstations that each have their own RAM (Edelkamp,
Jabbar, and Kissmann 2008) allows m to be two or three or-
ders of magnitude larger than it could be if the PDB had to
fit in the RAM of one workstation. This is extremely useful,
but, in the end, is just a big constant factor, not a solution to
the scaling problem.

PDB Compression. Lossless compression of PDBs, such
as symbolic PDBs (Edelkamp 2001), routinely reduces the
memory needed to store a PDB by one to two orders of
magnitude (Ball and Holte 2008). In certain special cases
symbolic PDBs have been proven to be logarithmic in the
uncompressed size of the PDB (Edelkamp and Kissmann
2011). The scaling problem is solved by symbolic PDBs

6

in these spaces, but not in general. Large memory reduc-
tions have also been obtained with lossy PDB compression
methods (Felner et al. 2007; Samadi et al. 2008), which offer
a little more hope for addressing the scaling issue because it
seems that by allowing some loss of heuristic information,
these methods sometimes produce a more favourable trade-
off between time and memory than is predicted by Korf’s
Conjecture. For example, Felner et al. (2007)’s Table 9 re-
ports that a 9 times reduction in memory results in only 2.25
greater search time, and an even more favourable tradeoff is
reported in their Table 4 for the Towers of Hanoi.

Hierarchical Heuristic Search. Instead of precomput-
ing, and storing, the entire PDB, hierarchical heuristic
search (Holte, Grajkowski, and Tanner 2005; Leighton,
Ruml, and Holte 2011) computes, on demand, precisely
those abstract distances that are required as heuristic values
in solving a given problem instance. Experimentally, only
about 1% of the PDB entries actually need to be computed to
solve a problem instance (see Table 3 in (Holte, Grajkowski,
and Tanner 2005)), which means about one order of magni-
tude less memory is required than for the full PDB since the
data structure for caching distance-to-goal information in hi-
erarchical heuristic search is not as compact as a good PDB
data structure. What is not known is how the memory re-
quirements of hierarchical heuristic search scale as the state
space size increases. It is possible that hierarchical heuris-
tic search scales better than PDBs and therefore provides at
least a partial solution to the scaling problem.

Multiple PDBs. One direction that offers clear hope for
mitigating the scaling problem is the use of multiple PDBs.
Korf’s Conjecture, as I have described it here, is about how
search time is related to the size of a PDB when just one
PDB is used to guide IDA*. But it is known that, for a fixed
amount of memory, search using one PDB that uses all the
memory is much slower than search that takes the maximum
of two PDBs that each require half the memory (Holte et al.
2004; 2006). Could it be that as a search space scales up,
the total size (m) of a set of PDBs does not have to grow
exponentially in order to keep t constant?

In my opinion, the answer is almost certainly “no" when
the maximum is taken over the set of PDBs. Korf (2007)
analyzes this case when the PDBs are “independent”. Ac-
cording to the formula he derives with this assumption, the
optimal number of PDBs is two, which is not consistent with
experimental data. Korf offers two reasons for this discrep-
ancy. One is that the heuristic distribution is not necessarily
exponential. I return to this point below. The other is that
the derived formula overestimates the pruning power of a
set of PDBs if they are not truly independent. I suspect that
non-additive PDBs will rarely be independent, or even ap-
proximately independent, and so their total size will have to
scale almost as quickly as a single PDB.

On the other hand, a set of PDBs based on additive ab-
stractions (Yang et al. 2008) might well give us the scaling
behaviour we want. Breyer and Korf (2010) proved that the
speedup produced using a set of additive heuristics is the
product of their individual speedups over brute-force search
if the heuristics are independent in the same sense as above.

This seems to me a much more plausible assumption for
additive abstractions than non-additive ones. Breyer and
Korf’s analysis suggests that as a state space is scaled up,
t could be kept constant by increasing the number of PDBs,
which is only a linear increase in memory. A more power-
ful version of this idea, which I call “factored heuristics", is
discussed below.

Multiple PDB Lookups. Another source of hope related
to the use of multiple PDBs is the use of multiple lookups in
a single PDB: to compute the heuristic value of state s one
not only does the normal PDB lookup, but has a mechanism
for extracting one or more additional values from the PDB
that are also lower bounds on s’s distance to goal. This ob-
tains the benefits of having multiple PDBs while using the
memory needed by only one PDB. Most studies that make
multiple lookups in a PDB use symmetries in the search
space to define the additional lookups (Zahavi et al. 2008).

A particularly powerful form of symmetry is seen in the
Towers of Hanoi. The standard method of abstracting this
space is to choose k disks and build a PDB containing the
number of moves needed to get those k disks to their goal
positions, entirely ignoring all the other disks (Felner et al.
2007). If the Towers of Hanoi problem one is trying to solve
has 2k disks, two lookups can be made in this PDB and their
values added: one lookup is based on any set of k disks, the
other lookup is based on the other k disks. If the problem
is made bigger by increasing the number of disks, the PDB
remains the same, but more lookups are done and added to-
gether to compute a state’s heuristic value. I call this a “fac-
tored heuristic" because the heuristic calculation is done by
decomposing the state into parts (in this example, partition-
ing the set of disks into groups that each contain k or fewer
disks), making separate lookups for each part in the same
PDB, and then adding the results.

The same idea has been used for the Pancake puzzle (Tor-
ralba Arias de Reyna and Linares López 2011) and produced
extremely good (sub-exponential) scaling behaviour. Dou-
bling the number of pancakes from 20 to 40 increased the
number of nodes generated by a factor of 120, a miniscule
fraction of the increase in the size of the state space (from
20! to 40!).

Reliance on symmetries in the state space has limited
the use of multiple PDB lookups. However, Pang and
Holte (2012) report a technique that allows multiple PDB
lookups to be based on multiple abstractions that all map to
the same abstract space, thereby allowing multiple lookups
to be done for state spaces that do not have symmetries.

Alternative Ways of Representing Abstraction-based
Heuristics. It may be possible to avoid the scaling prob-
lem by representing abstraction-based heuristics in a form
that is entirely different than a lookup table. Manhattan Dis-
tance, for example, could be implemented as an additive
PDB, but is more commonly implemented as a procedure
that is executed for a given state. In fact, this procedure
strongly resembles hierarchical heuristic search, but with in-
dividual abstract spaces that are so small there is no need for
a hierarchy of abstractions or for search results to be cached.

7

An alternative representation of abstraction-based heuris-
tics that is especially useful if admissibility is not required
is to use machine learning to create an extremely compact
approximation of a PDB (e.g. a small neural network), as
was done by Samadi et al. (2008). If admissibility is re-
quired, a lookup table can be used to store the PDB entries
that the neural network overestimates. In the experiments by
Samadi et al., only about 2% of the PDB entries needed to
be explicitly stored.

A different way of compactly approximating an
abstraction-based heuristic is to map the abstract states into
a low-dimensional Euclidean space in such a way that Eu-
clidean distances between states are admissible and consis-
tent. The basic technology for this exists (Rayner, Bowl-
ing, and Sturtevant 2011), but at present it requires the same
amount of memory as a PDB.

Alternative Roles for Abstraction-based
Heuristics

In this section I consider what role there might be for
abstraction-based heuristics if, indeed, they are unable to
scale to provide effective guidance for solving much larger
problems than we currently study. Assuming they do not
scale, we need to consider roles in which weak heuristics can
make important contributions to solving search problems.

Node Ranking. Many search algorithms, including depth-
first branch and bound, beam search, greedy best-first
search (Doran and Michie 1966), and limited discrepancy
search (Harvey and Ginsberg 1995), sort the nodes they gen-
erate according to what might be called a ranking function.
Although there is no need for the ranking function to be an
estimate of the cost to reach the goal (e.g. (Xu, Fern, and
Yoon 2009)), a heuristic function is an obvious candidate to
use for ranking. Even a relatively weak heuristic can be ef-
fective for ranking. For example, BULB (Furcy and Koenig
2005), which combines beam search and limited discrep-
ancy backtracking, solves instances of the 9 × 9 sliding-tile
puzzle in 120 seconds using Manhattan Distance for rank-
ing, which is not an especially effective heuristic for that
size of puzzle.3

Type Systems. Levi Lelis and his colleagues have devel-
oped methods for a variety of search-related tasks that re-
quire the nodes in a search tree to be partitioned into a set
of “types" (Lelis et al. 2012; Lelis, Zilles, and Holte 2013a;
2013b; Lelis, Otten, and Dechter 2013; Xie et al. 2014). In
the ideal partitioning, the search subtrees below nodes of the
same type are identical in certain key regards, such as the
size of the subtree, the cost of the cheapest solution in the
subtree, etc. Type systems based on heuristic functions have
proven very effective in all these studies, and, as with node

3In 2001 it was estimated that IDA* would need 50,000 years
of CPU time to solve one instance of the 5 × 5 sliding-tile puzzle
using Manhattan Distance (Korf, Reid, and Edelkamp 2001). Korf
has re-calculated this based on the speed of today’s computers and
estimates that only 7,600 years would be required now (personal
communication).

ranking, there is no need for the heuristic to be especially
accurate (many of Lelis’s heuristics are small PDBs).

Features for Learning. There has been recent inter-
est in using machine learning to create heuristic func-
tions (Samadi, Felner, and Schaeffer 2008; Jabbari Arfaee,
Zilles, and Holte 2011). In these studies small PDBs have
proven to be excellent features for machine learning. Again,
there is no obvious need for heuristics used for this purpose
to be especially accurate.

Heuristic Search as a Component Technology. One ap-
proach to solving a very large problem is to decompose it
into a sequence of subproblems that are then solved one by
one, in order, to produce a solution to the original prob-
lem. Korf developed this technique for solving Rubik’s
Cube, with the subproblems being solved by brute-force
search (Korf 1985). Later, Hernádvölgyi (2001) realized that
abstraction-based heuristics could be used to guide the solv-
ing of the subproblems. This speeded up search so much that
it allowed several subproblems to be merged to form a sin-
gle subproblem that was still feasible to solve, resulting in
much shorter solutions (50.3 moves, on average, compared
to 82.7). This is just one example of how abstraction-based
heuristic search can be used as a component in a different
type of search system.

The Assumptions Underlying Korf’s Analysis
The previous sections have outlined directions for the future
of abstraction-based heuristics assuming that Korf’s Conjec-
ture holds. In this section, I examine the assumptions under-
lying Korf’s analysis, and describe two complications that
arise in trying to apply it in practice. The two points I will
make in this section will both be illustrated using the 5-disk,
3-peg Towers of Hanoi puzzle, with states being represented
the same way that Zilles and Holte (2010) represented states
in the Blocks World with distinct table positions. In this rep-
resentation there are 6 state variables for each peg. The first
variable is an integer (0 . . . 5) saying how many disks are on
the peg. The other 5 variables give the names of the disks
(d1 . . . d5 or nodisk) in the order they occur on the peg from
bottom to top: the first of these variables names the disk at
the bottom (nodisk if the peg has no disks on it), the second
names the disk second from the bottom (nodisk if the peg
has 0 or 1 disks on it), and so on. The abstraction of this
space that I will discuss is shown in Figure 1. This abstrac-
tion keeps the variables that say how many disks are on each
peg and deletes all the other variables, so that the identities
of the disks on each peg are entirely lost. For example, the
Towers of Hanoi goal state, which has all the disks on peg1,
would be mapped to abstract state 500 (at the top of the fig-
ure), and any Towers of Hanoi state in which there are 3
disks on peg1, 2 disks on peg2, and no disks on peg3 would
be mapped to abstract state 320.

The first thing one notices about this space is that the dis-
tance distribution is not exponential, it is linear; there are
exactly d + 1 abstract states at distance d from the abstract
goal. It would seem therefore that Korf’s Conjecture does
not apply in this case. However, Korf’s analysis could be

8

500

410

311

401

302 320

230 221 212 203

122 113 131 140 104

041 032 023 014 005 050

Figure 1: Abstraction of the 5-disk, 3-peg Towers of Hanoi
state space that keeps track of how many disks are on each
peg but not their identities. 320, for example, is the abstract
state in which there are 3 disks on peg1, 2 disks on peg2, and
no disks on peg3.

repeated with a linear model plugged into the KRE formula
to derive the relation between t and m for this situation. I
have not actually done that, but using the simpler, “back of
the envelope” method of Korf’s original, intuitive analysis,
I estimate that, with a heuristic defined by an abstract space
with a linear distance distribution, if n is doubled, m does
not need to be doubled to keep t constant, it only needs to
be increased additively by approximately 2

√
m.4

In the preceding paragraph I said “it would seem” Korf’s
Conjecture does not apply because it is not correct, in gen-
eral, to equate the distance distribution in the abstract space
with the heuristic distribution. In the KRE formula the
heuristic distribution is the fraction of states in the original
state space that have a particular heuristic value,5 not the
fraction in the abstract space. The distance distribution in
the abstract space and the heuristic distribution are only the
same if the same number of states in the original space map
to each abstract state. That is certainly not the case for the
Towers of Hanoi abstraction in Figure 1. Only one Towers of
Hanoi state maps to abstract state 500, but 10 map to abstract
state 320, and 30 map to abstract state 221. The number of
Towers of Hanoi states that map to each abstract distance are
1 (distance 0), 10 (distance 1), 40, 80, 80, and 32 (distance
5), which is probably close enough to being an exponential
distribution that Korf’s Conjecture would hold in this case.
This is an important consideration because it oftens happens
naturally that different numbers of states that map to differ-
ent abstract states, as in this example, and, in addition, there
are several abstraction methods that are very likely to pro-
duce abstractions in which this occurs (e.g. CEGAR (Seipp

4This calculation assumes that t = 2D−h, whereD is the depth
of the search in the original space, 2 is the branching factor in
both the original space and the abstract space, and h is the average
heuristic value, which, for a space with a linear distance distribu-
tion, is approximately

√
m.

5Even this is not a perfectly correct statement. The distribution
described here is what Korf calls the overall distribution. The KRE
analysis requires the “equilibrium” distribution, which in general
is not the same as the overall distribution.

and Helmert 2013), CFDP (Raphael 2001), and merge-and-
shrink (Nissim, Hoffmann, and Helmert 2011)).

An important, but easily overlooked, feature of the num-
bers (1, 10, 40, etc.) just given is that they refer to the num-
ber of reachable states that map to each abstract state. If
we consider unreachable states as well, then the same num-
ber of states map to each abstract state and we are back to
a linear heuristic distribution. So, Korf’s Conjecture rests
on the heuristic distribution of reachable states being dis-
tributed exponentially. That is the first point about the con-
jecture I wish to make. This does not make the analysis any
less valid, it just means it is more difficult to apply than do-
ing a simple inspection of the abstract space, and that sim-
ilar problems might have very different behaviours: remov-
ing the Towers of Hanoi restriction that a larger disk cannot
be put onto a smaller one changes the heuristic distribution
from being (approximately) exponential to being linear.

The other point I wish to make is that although the pa-
rameter m in the analysis seems perfectly well defined, it
is, in fact, anything but. The most obvious source of doubt
about how exactly m should be defined is spurious abstract
states, which are abstract states that can be reached by back-
wards search from the abstract goal but whose pre-image6

cannot be reached by forward search from the start state in
the original space.7 Because they are reached by backwards
search from the abstract goal, there is an entry in the PDB
for each spurious state, but because their pre-images can-
not be reached during forward search from the start state in
the original state space, they contribute nothing to the prun-
ing power of the heuristic and therefore should not be in-
cluded in the heuristic distribution or the value of m used in
Korf’s analysis (if m is increased by adding spurious states,
t will obviously not change at all). For example, Zilles and
Holte (2010) report an abstraction of the Blocks World in
which there are 1, 310, 720 abstract states from which the
abstract goal can be reached, of which only 89, 400 are non-
spurious. In Korf’s analysis, m = 89, 400 must be used, not
m = 1, 310, 720. Unfortunately, there is no practical way,
in general, of determining how many abstract states are spu-
rious, or even deciding whether or not there are any spurious
states (Zilles and Holte 2010).

The difficulties concerning m’s definition raised by spu-
rious states is a special case of a more general phenomenon
where two abstract spaces of different sizes give rise to ex-
actly the same heuristic values for all states in the original
space. The space in Figure 1 has 21 states. Once 500 has
been designated as the goal, the space can be compressed
to just 6 states without losing any distance-to-goal informa-
tion. This is done by mapping all the states on the same
level in the figure to the leftmost state on the level. This is
an ordinary abstraction of the space in Figure 1 defined by
keeping the first state variable and deleting the other two.
We now have a real dilemma in deciding what value of m to

6If S is a state space and φ is an abstraction mapping S to S′,
the pre-image of s′ ∈ S′ is {s ∈ S|φ(s) = s′}.

7Spurious states can be caused either by the backwards (regres-
sion) search (Bonet and Geffner 2001) that computes the PDB or
by the abstraction process itself (Zilles and Holte 2010).

9

use. There are no spurious states in Figure 1, so m = 21 is
genuinely the size of the space, but the heuristic based on it
is identical to a heuristic based on a linear space of size 6.
If n is doubled and we want t to remain constant, doubling
“m” means to make a space equivalent to a linear space of
size 12, not a triangular space of size 42.8 For the purpose
of defining a heuristic, additional states at each level are as
useless as spurious states: increasing m by adding more of
them does not affect t at all.

Methods for creating symbolic PDBs (Edelkamp 2001)
can be seen as doing exactly what I have just illustrated with
the space in Figure 1: they take the distances-to-goal defined
in one abstract space (the space in Figure 1, for example),
and construct a smaller abstract space that returns exactly
the same heuristic value for every state in the original space
(the linear space with just 6 nodes, for example). This is
also what merge-and-shrink aspires to do with its shrink-
ing stategies that are h-preserving (Helmert, Haslum, and
Hoffmann 2007) or based on bisimulation (Nissim, Hoff-
mann, and Helmert 2011). In fact, these methods can be
seen as always producing a linear abstract space with one
state at each distance, coupled with a memory-based index-
ing mechanism for mapping a given state to one of these
abstract states.

The fact that abstract spaces of very different sizes can
produce identical heuristics suggests that Korf’s goal of re-
lating the number of node expansions by IDA* to the num-
ber of states in an abstract space is simply impossible. And
yet there is experimental data showing that a strong rela-
tion does indeed hold between PDB size and the number
of node expansions, exactly as predicted by Korf’s Conjec-
ture. The data in Table 2 is based on the results reported
in Korf (2007)’s Table 2, columns “Size” (m) and “IDA*”
(t). One iteration of IDA* with a depth bound of 12 was
run on the same 1000 Rubik’s Cube instances using four
PDBs of different sizes based on abstractions called “6 cor-
ners”, “6 edges”, “8 corners”, and “7 edges”. For a given
PDB, t is the average number of nodes expanded by IDA*
on these runs. The asymptotic branching factor of Rubik’s
Cube, 13.34847 (Korf 1997), was used as the base of the log-
arithm in computing M from m. If Korf’s Conjecture was
perfectly correct, the numbers in the M · t column would be
identical. They are nearly so: the largest value is only about
13% larger than the smallest value. This shows that, in this
particular experiment, Korf’s Conjecture makes very accu-
rate predictions about how the number of node expansions
will change if the PDB size is changed. Additional support

8The two are not the same; a triangular space would need 78
states to correspond to a linear space of length 12.

PDB m t M · t
6 corners 14,696,640 20,918,500 41,722 ×109
6 edges 42,577,920 8,079,408 44,222 ×109

8 corners 88,179,840 3,724,861 40,752 ×109
7 edges 510,935,040 670,231 39,191 ×109

Table 2: Evidence supporting Korf’s Conjecture. M · t is
almost constant for four PDBs of different sizes for Rubik’s
Cube. m and t are from Table 2 in (Korf 2007).

for Korf’s Conjecture is given in an experiment that looked
at a large number of PDBs of many different sizes for three
state spaces (Holte and Hernádvölgyi 1999), although this
study uses A*, not IDA*.

Conclusions
In this paper, I have examined how Korf’s Conjecture (M ·
t = n), if it is true, limits the ability of abstraction-based
heuristic methods, such as PDBs, to scale to larger prob-
lems. It is certain that abstraction-based heuristics can and
should play important auxiliary roles in the heuristic plan-
ning and search systems of the future, whether or not they
scale well. If they do not scale well, there are several alter-
native types of heuristics in the planning literature—delete
relaxations (McDermott 1996; Bonet, Loerincs, and Geffner
1997), heuristics based on linear programming (Bonet
2013), the causal graph heuristic (Helmert 2004), landmark-
based heuristics (Bonet and Helmert 2010), and hm (Haslum
2006)—whose scaling behaviour has only partly been stud-
ied (Helmert and Mattmüller 2008).

However, there are several reasons to expect that
abstraction-based heuristics may continue to play a primary
role in planning and search systems. In part, this hope lies in
the use of merge-and-shrink, multiple additive abstractions,
and multiple heuristic lookups in a single abstract space.
These technologies exist, and might possibly greatly miti-
gate the scaling problem, but more research is needed on
them. The second place where hope lies is in the scaling be-
haviour of compression methods and hierarchical heuristic
search, which I assumed to be linear in m in this paper. If
any of these were to scale logarithmically, say, instead of lin-
early, abstraction-based heuristic methods would continue to
play a central role in solving large combinatorial problems.

This paper has also shown that it is not straightforward
to apply Korf’s Conjecture in practice. One reason is that
the poor scaling behaviour rests on an assumption about the
heuristic distribution of reachable states, not just on the dis-
tribution of distances in the abstract space. The other reason
is that the number of entries in a PDB is definitely not the
sole determining factor of the pruning power of the resulting
heuristic: PDBs of very different sizes can give rise to ex-
actly the same heuristic. More research is needed to better
understand, and exploit, this phenomenon.

Acknowledgements
Thanks to Malte Helmert, Rich Korf, Carlos Linares López,
Rong Zhou, Roni Stern, and Ariel Felner for their feedback,
and to Canada’s NSERC and Switzerland’s SNF for their
financial support.

References
Ball, M., and Holte, R. C. 2008. The compression power of
symbolic pattern databases. In ICAPS, 2–11.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In ECAI, 329–334.

10

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planning. In AAAI,
714–719.
Bonet, B. 2013. An admissible heuristic for SAS+ planning
obtained from the state equation. In IJCAI.
Breyer, T. M., and Korf, R. E. 2010. Independent additive
heuristics reduce search multiplicatively. In AAAI, 33–38.
Culberson, J., and Schaeffer, J. 1996. Searching with pattern
databases. In Proc. 11th Biennial Conference of the Cana-
dian Society for Computational Studies of Intelligence, vol-
ume 1081 of Lecture Notes in Computer Science, 402–416.
Springer.
Doran, J. E., and Michie, D. 1966. Experiments with the
Graph Traverser program. In Proceedings of the Royal So-
ciety, 235–259.
Edelkamp, S., and Kissmann, P. 2011. On the complexity of
BDDs for state space search: A case study in Connect Four.
In AAAI, 18–23.
Edelkamp, S.; Jabbar, S.; and Kissmann, P. 2008. Scaling
search with pattern databases. In MoChArt, 49–64.
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. European Conference on Planning, 13–24.
Felner, A.; Korf, R. E.; Meshulam, R.; and Holte, R. C.
2007. Compressed pattern databases. Journal of Artificial
Intelligence Research 30:213–247.
Furcy, D., and Koenig, S. 2005. Limited discrepancy beam
search. In IJCAI, 125–131.
Harvey, W. D., and Ginsberg, M. L. 1995. Limited discrep-
ancy search. In IJCAI, 607–615.
Haslum, P. 2006. Improving heuristics through relaxed
search - an analysis of TP4 and HSP*a in the 2004 plan-
ning competition. Journal of Artificial Intelligence Research
(JAIR) 25:233–267.
Helmert, M., and Mattmüller, R. 2008. Accuracy of admis-
sible heuristic functions in selected planning domains. In
AAAI, 938–943.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
ICAPS, 176–183.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In ICAPS, 161–170.
Hernádvölgyi, I., and Holte, R. C. 2000. Experiments with
automatically created memory-based heuristics. In Sym-
posium on Abstraction, Reformulation and Approximation
(SARA), volume 1864 of Lecture Notes in Artificial Intelli-
gence, 281–290. Springer.
Hernádvölgyi, I. T. 2001. Searching for macro operators
with automatically generated heuristics. In Canadian Con-
ference on AI, 194–203.
Holte, R. C., and Hernádvölgyi, I. T. 1999. A space-time
tradeoff for memory-based heuristics. In AAAI, 704–709.
Holte, R. C.; Newton, J.; Felner, A.; Meshulam, R.; and
Furcy, D. 2004. Multiple pattern databases. In ICAPS, 122–
131.

Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.; and
Furcy, D. 2006. Maximizing over multiple pattern databases
speeds up heuristic search. Artificial Intelligence 170(16-
17):1123–1136.
Holte, R. C.; Grajkowski, J.; and Tanner, B. 2005. Hierarchi-
cal heuristic search revisited. In Symposium on Abstraction,
Reformulation and Approximation (SARA), 121–133.
Holte, R. C. 2013. Korf’s conjecture and the future of
abstraction-based heuristics. In Symposium on Abstraction,
Reformulation and Approximation (SARA).
Jabbari Arfaee, S.; Zilles, S.; and Holte, R. C. 2011. Learn-
ing heuristic functions for large state spaces. Artificial Intel-
ligence 175(16-17):2075–2098.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of iterative-deepening-A*. Artificial Intelligence
129(1-2):199–218.
Korf, R. E. 1985. Macro-operators: A weak method for
learning. Artificial Intelligence 26(1):35–77.
Korf, R. 1997. Finding optimal solutions to Rubik’s Cube
using pattern databases. In AAAI, 700–705.
Korf, R. E. 2007. Analyzing the performance of pattern
database heuristics. In AAAI, 1164–1170.
Korf, R. E. 2008. Minimizing disk i/o in two-bit breadth-
first search. In AAAI, 317–324.
Leighton, M. J.; Ruml, W.; and Holte, R. C. 2011. Faster
optimal and suboptimal hierarchical search. In Symposium
on Combinatorial Search (SoCS).
Lelis, L.; Stern, R.; Felner, A.; Zilles, S.; and Holte, R. C.
2012. Predicting optimal solution cost with bidirectional
stratified sampling. In ICAPS.
Lelis, L. H. S.; Otten, L.; and Dechter, R. 2013. Predicting
the size of depth-first branch and bound search trees. In
IJCAI.
Lelis, L.; Zilles, S.; and Holte, R. C. 2013a. Stratified
tree search: A novel suboptimal heuristic search algorithm.
In Twelfth International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 555–562.
Lelis, L. H. S.; Zilles, S.; and Holte, R. C. 2013b. Predicting
the size of IDA*’s search tree. Artificial Intelligence 196:53–
76.
McDermott, D. V. 1996. A heuristic estimator for means-
ends analysis in planning. In Proceedings of the Third In-
ternational Conference on Artificial Intelligence Planning
Systems (AIPS), 142–149.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
IJCAI, 1983–1990.
Pang, B., and Holte, R. C. 2012. Multimapping abstractions
and hierarchical heuristic search. In Symposium on Combi-
natorial Search (SoCS).
Raphael, C. 2001. Coarse-to-fine dynamic programming.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 23(12):1379–1390.

11

Rayner, D. C.; Bowling, M. H.; and Sturtevant, N. R. 2011.
Euclidean heuristic optimization. In AAAI, 81–86.
Samadi, M.; Siabani, M.; Felner, A.; and Holte, R. 2008.
Compressing pattern databases with learning. In ECAI, 495–
499.
Samadi, M.; Felner, A.; and Schaeffer, J. 2008. Learning
from multiple heuristics. In AAAI, 357–362.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In ICAPS.
Sturtevant, N. R., and Rutherford, M. J. 2013. Minimizing
writes in parallel external memory search. In IJCAI.
Torralba Arias de Reyna, Á., and Linares López, C. 2011.
Size-independent additive pattern databases for the pancake
problem. In Symposium on Combinatorial Search (SoCS),
164–171.
Xie, F.; Müller, M.; Holte, R.; and Imai, T. 2014. Type-
based exploration with multiple search queues for satisficing
planning. In AAAI.
Xu, Y.; Fern, A.; and Yoon, S. W. 2009. Learning linear
ranking functions for beam search with application to plan-
ning. Journal of Machine Learning Research 10:1571–1610.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A general theory of additive state space abstractions.
Journal of Artificial Intelligence Research 32:631–662.
Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2008.
Duality in permutation state spaces and the dual search al-
gorithm. Artificial Intelligence 172(4-5):514–540.
Zhou, R., and Hansen, E. A. 2005. External-memory pat-
tern databases using structured duplicate detection. In AAAI,
1398–1405.
Zilles, S., and Holte, R. C. 2010. The computational com-
plexity of avoiding spurious states in state space abstraction.
Artificial Intelligence 174:1072–1092.

12

“Distance”? Who Cares? Tailoring Merge-and-Shrink Heuristics to Detect
Unsolvability

Jörg Hoffmann and Peter Kissmann and Álvaro Torralba
Saarland University, Saarbrücken, Germany

{hoffmann,kissmann,torralba}@cs.uni-saarland.de

Abstract

Research on heuristic functions is all about estimating the
length (or cost) of solution paths. But what if there is no
such path? Many known heuristics have the ability to de-
tect (some) unsolvable states, but that ability has always been
treated as a by-product. No attempt has been made to design
heuristics specifically for that purpose, where there is no need
to preserve distances. As a case study towards leveraging
that advantage, we investigate merge-and-shrink abstractions
in classical planning. We identify safe abstraction steps (no
information loss regarding solvability) that would not be safe
for traditional heuristics. We design practical algorithm con-
figurations, and run extensive experiments showing that our
heuristics outperform the state of the art for proving planning
tasks unsolvable.

Introduction
Research on heuristic functions is all about estimating the
length (or cost) of solution paths. There even is a percep-
tion that, on unsolvable problems, state ordering does not
matter so computing a heuristic is a waste of time. That is
false for heuristics with the ability to detect (some) dead-end
states, like almost all known heuristics in planning. This is
not in itself a new observation, but it has never been system-
atically explored. Unsolvability detection has always been
treated as a by-product of estimating goal distance/cost. For
example, all relaxed-plan based heuristics (e. g. (Hoffmann
and Nebel 2001)), all landmark heuristics (e. g. (Richter and
Westphal 2010)), and the recent red-black plan heuristics
(Katz and Hoffmann 2013), are no better at unsolvability
detection than the “Methuselah heuristic” hmax. We intro-
duce unsolvability heuristics, returning either∞ or 0, as an
alternative research focus aiming to address the questions:
How to design heuristics specifically for unsolvability de-
tection? Can we leverage the lack of need to preserve dis-
tances? Is search with such heuristics competitive with other
approaches for proving unsolvability?

These are long-term research challenges, that are relevant
due to (a) the practical importance of unsolvable problems
(e. g., directed model checking (Edelkamp, Lluch-Lafuente,
and Leue 2004) and over-subscription planning (Gerevini
et al. 2009)), and (b) the practical importance of detecting
dead-ends in solvable problems (e. g., when dealing with
limited resources (Nakhost, Hoffmann, and Müller 2012;

Coles et al. 2013)).
We investigate merge-and-shrink abstractions (Helmert,

Haslum, and Hoffmann 2007) as a case study. M&S abstrac-
tions iteratively merge all state variables (build the cross-
product of these variable’s transition systems), and shrink
the intermediate outcomes to keep abstraction size at bay. A
key issue is how to shrink without losing too much informa-
tion. We identify safe abstraction steps, that do not incur any
information loss regarding solvability (but that do lose infor-
mation regarding goal distance so would not be safe for tra-
ditional heuristics). Leveraging prior work on K-catching
bisimulation (Katz, Hoffmann, and Helmert 2012), where
the behavior of a subset of actions K is reflected exactly in
the M&S abstraction, we identify sets K rendering this kind
of abstraction safe. Approximating such K yields practical
heuristics. We collect a suite of unsolvable benchmarks, and
run comprehensive experiments. Competing approaches, in-
cluding BDDs, are outperformed drastically; the advantage
over previous M&S methods is less pronounced but still sig-
nificant.

Our work is partly inspired by recent work (Bäckström,
Jonsson, and Ståhlberg 2013) on unsolvable planning prob-
lems, testing whether projections onto a subset of vari-
ables (a special case of M&S) are unsolvable, where the
tested variable subsets are systematically enumerated (start-
ing with small ones). In contrast, we stick to the stan-
dard M&S process incorporating all variables, and investi-
gate in-depth the abstraction steps (shrinking) during that
process. Two prior works (Helmert 2006a; Haslum 2007)
identify conditions under which a state variable can be pro-
jected away without affecting solvability. Helmert’s condi-
tion (Helmert 2006a) is a special case of our techniques;
Haslum’s generalized condition (Haslum 2007) is not. We
get back to this later.

Background
A planning task is a 4-tuple Π = (V,A, I,G). V is a finite
set of variables v, each associated with a finite domain Dv .
A complete assignment to V is called a state; we identify
(partial) assignments to V with sets of facts, i. e., variable-
value pairs. I is the initial state, and the goal G is a partial
assignment to V . A is a finite set of actions. Each action
a ∈ A is a pair (prea, effa) of partial assignments to V called
precondition and effect, respectively. Each action is also

13

associated with a real-valued cost.
The semantics of planning tasks are defined via their state

spaces, which are (labeled) transition systems. Such a sys-
tem is a 5-tuple Θ = (S,L, T, I, SG) where S is a finite set
of states, L is a finite set of labels, T ⊆ S × L × S is a
set of transitions, I ∈ S is the initial state, and SG ⊆ S
is the set of goal states. We will usually write transitions
(s, l, s′) ∈ T as s l−→ s′, or s → s′ if the label does not
matter. The state space of a planning task Π is the transition
system Θ where: S is the set of all states; L = A; s ∈ SG
if G ⊆ s; and s a−→ s′ if a is applicable to s and s′ is the
resulting state. Here, a is applicable to s if prea ⊆ s, and
s′ is the resulting state if s′(v) = effa(v) where effa(v) is
defined, and s′(v) = s(v) elsewhere. Π is solvable if Θ has
a path from I to a state in SG. We sometimes call Θ the
“concrete” state space to distinguish it from abstract ones.

For a state s, remaining cost h∗(s) is defined as the cost
of a cheapest path from s to a state in SG, or ∞ if there is
no such path. A heuristic is a function h : S → R+

0 ∪{∞}.
A heuristic is perfect if it coincides with h∗. Herein, we
consider heuristics based on abstractions. An abstraction
is a function α mapping S to a set of abstract states Sα.
The abstract state space Θα is (Sα, L, Tα, Iα, SαG), where

α(s)
l−→ α(s′) in Tα iff s l−→ s′ in T , Iα = α(I), and

SαG = {α(s) | s ∈ SG}. The abstraction heuristic hα
maps each s to the remaining cost of α(s) in Θα. We will
sometimes consider the induced equivalence relation ∼α,
where s ∼α t if α(s) = α(t). If s ∼α t, we also say that s
and t are aggregated by α.

Merge-and-shrink (Dräger, Finkbeiner, and Podelski
2006; Helmert, Haslum, and Hoffmann 2007; Dräger,
Finkbeiner, and Podelski 2009; Helmert et al. 2014), short
M&S, is a practical method to construct abstractions. The
approach builds the abstraction in an incremental fashion, it-
erating between merging and shrinking steps. Namely, M&S
abstractions are constructed using the following rules:

(i) For v ∈ V , π{v} is an M&S abstraction over {v}.
(ii) If β is an M&S abstraction over W and γ is a function

on Sβ , then γ ◦ β is an M&S abstraction over W .
(iii) If α1 and α2 are M&S abstractions over disjoint sets

W1 and W2, then α1 ⊗ α2 is an M&S abstraction over
W1 ∪W2.

Rule (i) allows to start from atomic projections. These
are simple abstractions π{v} (also written πv) mapping each
state s ∈ S to the value of one selected variable v. Rule (ii),
the shrinking step, allows to iteratively aggregate an arbi-
trary number of state pairs, in abstraction β. Formally, this
simply means to apply an additional abstraction γ to the im-
age of β. In rule (iii), the merging step, the merged abstrac-
tion α1 ⊗ α2 is defined by (α1 ⊗ α2)(s) := (α1(s), α2(s)).

Throughout the construction of α, for every intermediate
abstraction β, M&S also maintains the corresponding ab-
stract state space Θβ . The details are not relevant to our
work here.

To implement M&S in practice, we need a merging strat-
egy deciding which abstractions to merge in (iii), and a
shrinking strategy deciding which (and how many) states

to aggregate in (ii). Like all prior work on M&S in planning,
we will use linear and full merging strategies only, where
the variables V are ordered v1, . . . , vn (hence “linear”) and
we iteratively merge v1 with v2, merge their product with
v3, and so on until all variables have been merged (hence
“full”). Prior to every merging step, a shrinking step is ap-
plied to both, the current abstraction over {v1, . . . , vi} and
the atomic projection onto the variable vi+1 to be merged-in
next.

Following recent work (Katz, Hoffmann, and Helmert
2012), each shrinking step is based on the notion of K-
catching bisimulation. If Θ = (S,L, T, I, SG) is a tran-
sition system and K ⊆ L is a subset of its labels, then an
equivalence relation ∼ on S is a K-catching bisimulation
for Θ if s ∼ t implies that: (a) either s, t ∈ SG or s, t 6∈ SG;
(b) for every l ∈ K we have that {[s′] | s l−→ s′} = {[t′] |
t
l−→ t′}, where [s] for a state s denotes the equivalence class

of s. An abstraction α is aK-catching bisimulation if the in-
duced equivalence relation ∼α is. Intuitively, a K-catching
bisimulation (a) preserves goal states, and (b) preserves the
behavior of transitions labeled with K. If K = L then α is
called a bisimulation, and preserves all transition behavior
exactly. Note that a bisimulation does not actually have to
make any aggregations: the identity function is a bisimula-
tion. Whenever we say “K-catching bisimulation”, we mean
the coarsest one, aggregating maximally. Given a transition
system Θ as input, coarsestK-catching bisimulations can be
computed efficiently.

In difference to previous works, we will consider com-
posed shrinking strategies, that (within every shrinking
step) sequentially apply individual (component) shrinking
steps. We will give each individual strategy a name “X”;
“X+Y” is the sequential application of X and Y in that or-
der. The strategy names will be postfixed with “-shrinking”.
The K-shrinking strategy chooses a subset K ⊆ A of ac-
tions up front in a pre-process, and whenever rule (ii) is ap-
plied, defines γ as the coarsest K-catching bisimulation for
Θβ . When using full bisimulation (K = A), the strategy is
called A-shrinking.

It is easy to see that K-catching bisimulation is invari-
ant over M&S steps (i–iii). So, with K-shrinking, the out-
come of M&S is a K-catching bisimulation of the concrete
state space Θ, and particular choices of K allow to guaran-
tee qualities of hα. The simple limiting case is A-shrinking
where hα is perfect. More interesting choices of K were
first explored by Katz et al. (Katz, Hoffmann, and Helmert
2012); we will adapt their observations to the unsolvability
setup considered herein.

We run M&S with label reduction (Helmert, Haslum,
and Hoffmann 2007): The transition labels a = (prea, effa)
in the current abstraction over the already merged-in vari-
ables W = {v1, . . . , vi} are projected onto V \ W . This
yields the same heuristic, but it saves memory as previously
distinct labels may collapse, and it can reduce bisimulation
size exponentially.

For any W ⊆ V , we use ΘW as a short-hand for the ab-
stract state space ΘπW of the projection onto W . Any M&S
abstraction α over W can be cast as an abstraction of ΘW .

14

We will use s, t to denote concrete states, sα, tα to denote
abstract states, and sW , tW to denote projected states. Any
abstract state sα is identified with a set of states, namely the
equivalence class of states mapped to sα. We will view ab-
stract states as both, sets of concrete states s from Θ, and
sets of projected states sW from ΘW . We sometimes de-
note assignments

⋃
v∈U{v = d} to a subset of variables U

simply by dU .

Unsolvability Heuristics
The definition of “unsolvability heuristic” is trivial. But as
this is the basic concept distinguishing our setup from tradi-
tional heuristic search, and as that concept has (as best we
know) not been introduced before, it seems appropriate to
give it a name and make it explicit:1

Definition 1 An unsolvability heuristic is a function u :
S → {0,∞} such that u(s) =∞ only if h∗(s) =∞.

Our function u now merely indicates whether a state is
recognized to be unsolvable (u(s) = ∞), or not (u(s) =
0).2 Such truncated heuristics are useful for (a) search on
unsolvable problems, and (b) dead-end detection in solvable
problems. We can trivially obtain unsolvability heuristics
from regular ones:

Definition 2 Let h be a heuristic that returns h(s) = ∞
only if h∗(s) = ∞. Then the induced unsolvability heuris-
tic h|u is defined by h|u(s) = ∞ if h(s) = ∞, and
h|u(s) = 0 otherwise.

The perfect unsolvability heuristic u∗ is defined by u∗ =
h∗|u, and an unsolvability heuristic u is perfect if u = u∗.

Note the close connection to “disregarding action costs”:
Denoting by Π[0] the planning task with all action costs re-
duced to 0, h|u is perfect iff h is perfect in Π[0]. Moreover,
for the abstraction heuristics we consider here, and more
generally for any heuristic h whose R+

0 (i. e., non-∞) return
values result from summing up action costs in an approxi-
mate solution, we have h|u = h(Π[0]).

Unsolvability-Perfect M&S Abstractions
Abstractions induce unsolvability heuristics in the obvious
manner. Focusing on M&S, in this and the next section we
are concerned with conditions under which such use of ab-
stractions is loss-free, i. e., where the resulting unsolvability
heuristics are perfect:

Definition 3 Let α be an abstraction. Then uα is defined by
uα = hα|u. We say that α is unsolvability perfect if, for
every pair s, t of states in Θ where s ∼α t, u∗(s) = ∞ iff
u∗(t) =∞.

It is easy to see that uα is perfect iff α is unsolvability per-
fect. We derive “safety” conditions on M&S, guaranteeing
the latter property:

1Throughout the paper, we tacitly assume a planning task Π =
(V,A, I,G) with state space Θ = (S,A, T, I, SG).

2We could in principle choose arbitrary return values to make
this indication. The chosen ones {0,∞} are natural in that they
correspond to disregarding action costs (see next).

Definition 4 LetW ⊆ V and let sW , tW be projected states
in ΘW . Then sW and tW are safe to aggregate if, for ev-
ery assignment dV \W to V \W , u∗(sW ∪ dV \W) = ∞ iff
u∗(tW ∪ dV \W) =∞.

Let α be an abstraction of ΘW . An abstract state sα is
safe if, for every pair of projected states sW , tW ∈ sα, sW
and tW are safe to aggregate; α is safe if all its abstract
states are.

For W = V , being safe is equivalent to being unsolv-
ability perfect. But not for W (V : The aggregated states
s ∼α t in Θ are, then, all s = sW ∪ dV \Ws , t = tW ∪ dV \Wt

where sW ∼α tW and dV \Ws , d
V \W
t are arbitrary exten-

sions to the remaining variables. By contrast, safety only
considers identical extensions dV \Ws = d

V \W
t . This is ap-

propriate provided that α will be merged with any safe ab-
straction of the remaining variables:
Lemma 1 If α1 and α2 are safe abstractions of ΘW1 and
ΘW2 respectively, then α1 ⊗ α2 is a safe abstraction of
ΘW1∪W2 .
Proof: Let sW1∪W2 and tW1∪W2 be any pair of projected
states in ΘW1∪W2 so that sW1∪W2 ∼α1⊗α2 tW1∪W2 , and
let dV \(W1∪W2) be any extension to the remaining variables.
Denote by sW1 , tW1 , sW2 , and tW2 the respective projec-
tions onto W1 and W2. By prerequisite, (1) u∗(sW1 ∪
d′V \W1) = ∞ iff u∗(tW1 ∪ d′V \W1) = ∞ for all exten-
sions d′V \W1 to V \W1, and (2) u∗(sW2 ∪d′V \W2) =∞ iff
u∗(tW2∪d′V \W2) =∞ for all extensions d′V \W2 to V \W2.
Putting (1) and (2) together shows the claim: u∗(sW1∪W2 ∪
dV \(W1∪W2)) =∞⇔ u∗(sW1 ∪ sW2 ∪ dV \(W1∪W2)) =∞
(1)⇔ u∗(tW1 ∪ sW2 ∪ dV \(W1∪W2)) =∞ (2)⇔ u∗(tW1 ∪ tW2 ∪
dV \(W1∪W2)) =∞⇔ u∗(tW1∪W2 ∪dV \(W1∪W2)) =∞. �

In other words: safety is invariant over merging steps.
Therefore, as atomic projections are trivially safe, if we start
from a safe abstraction and merge in the remaining variables,
then the final abstraction over all variables W = V is safe
and hence unsolvability perfect. Unless, of course, we apply
any more shrinking steps in between.

As M&S without shrinking steps is void, our question
now boils down to examining these steps. A safe shrink-
ing strategy is one that, given a safe abstraction β as input,
returns a safe abstraction γ ◦β as its output. Obviously, if all
components of a composed shrinking strategy are safe, then
the composed strategy is also safe.
Corollary 1 If the shrinking strategy is safe, then the final
abstraction α of Θ is safe, and thus uα is perfect.

Safe Shrinking Strategies
We introduce safe shrinking strategies based on label sim-
plifications, and safe selections of K for K-catching bisim-
ulation.

Label Inheritance and Bisimulation
Consider any M&S abstraction over W ⊆ V . Consider
transitions sW a−→ s′W in ΘW where every variable occur-
ring in a = (prea, effa) is contained in W . Clearly, such

15

transitions are persistent in the sense that, for every dV \W ,
sW ∪ dV \W → s′W ∪ dV \W is a transition in Θ. We re-
fer to these transitions as own-label transitions, denoted
sW

own−−−→ s′W .3 Our core observation is that we can exploit
them to safely relax bisimulation:

Definition 5 Given an M&S abstraction β of ΘW ,
ModLabelA-shrinking computes an abstraction γ of Θβ as
follows:
(1) Label inheritance. Obtain transition system Θ1 from

Θβ as follows: Set Θ1 := Θβ; whenever sα own−−−→ tα,
sα in Θ1 inherits all outgoing transitions of tα, and if
tα is an abstract goal state then sα is made an abstract
goal state in Θ1 as well.

(2) Goal-label pruning. Obtain transition system Θ2 from
Θ1 as follows: Set Θ2 := Θ1; denoting the variables
on which the goal G is defined as VG, if VG ⊆ W then
remove all outgoing transitions from abstract goal states
in Θ2.

(3) Obtain γ as a bisimulation of Θ2, and interprete γ as an
abstraction of Θβ .

Explaining this definition bottom-up, step (3) works be-
cause all of Θβ , Θ1, and Θ2 share the same set of abstract
states.4 Intuitively, step (2) is justified because β’s abstract
goal states will always remain goal states, so there is no
point in distinguishing the ways by which we can leave them
(note that this applies to any M&S abstraction, not just the
ones we consider here). Intuitively, step (1) is justified be-
cause, the transition from sα to tα being persistent, the cor-
responding concrete states will have a transition in the state
space, so if we only need to preserve solvability then we can
just as well pretend that tα’s outgoing transitions/goal-state-
flag are attached directly to sα. Note that the latter does not
work if we need to preserve path cost, as we are discounting
the cost of getting from sα to tα.

Theorem 1 ModLabelA-shrinking is safe.

Proof Sketch: We need to prove that, for all abstract states
sβ and tβ of Θβ aggregated by bisimulation relative to Θ2,
sβ ∪ tβ is safe. Our proof is by assuming any sβ , tβ , and
extension dV \W where s = sW ∪ dV \W is solvable, and
proving by induction over the length n of that solution that
t = tW ∪ dV \W is solvable as well.

In the base case, n = 0, s is a goal state. Hence tβ must
be an abstract goal state in Θ2, which (as we’re using label
inheritance) implies that tβ has a path ~p in Θβ of own-label
transitions to an abstract state xβ that contains a goal state
x0. Because dV \W must agree with the goal, we can assume
WLOG that x0 = xW0 ∪dV \W . Considering the last abstract

3As configured here, either W = {v1, . . . , vi} for the current
abstraction, or W = {vi+1} for the atomic projection onto the
variable vi+1 to be merged-in next. In the former (but not in the
latter) case, own-label transitions are exactly those whose labels
are empty after label reduction.

4We remark that the intermediate transition systems Θ1 and Θ2,
as opposed to the final abstraction γ ◦ β, are not abstractions of Θ
in our sense, as they have additional transitions and goal states with
respect to Θ.

transition on ~p, yβ → xβ , we know that there exist yW0 ∈ yβ
and xW1 ∈ xβ so that yW0 has an own-label transition to
xW1 . Obtaining x1 as x1 := xW1 ∪ dV \W , as xβ is safe
and x0 is solvable, x1 is solvable. Obtaining y0 as y0 :=
yW0 ∪ dV \W , as the transition yW0 → xW1 is persistent, there
is a transition from y0 to x1, so y0 is solvable. Iterating
this argument backwards over ~p, we obtain a solvable state
t0 = tW0 ∪ dV \W in tβ . With safety of tβ , we get that
tW ∪ dV \W is solvable as well, as we needed to prove.

In the inductive case, say the length-n solution to s starts
with action a, yielding resulting state s′ whose solution
length is n− 1. By definition of abstractions, sβ has an out-
going transition labeled with a in Θβ , say to abstract state
s′β .

We now need to distinguish case (1) where the transition
sβ

a−→ s′β was not removed by goal-label pruning so is still
present in Θ2; and the opposite case (2). In case (2), simi-
larly as in the base case, we know that tβ is an abstract goal
state in Θ2; we know that dV \W agrees with the goal simply
because V \W cannot contain any goal variables; the rest
of the proof is the same. In case (1), with Θ2-bisimilarity

of sβ and tβ , Θ2 has a transition tβ a′−→ t′β , where t′β is
Θ2-bisimilar with s′β , and a′ is an action that (per label re-
duction, if it is applied to Θβ) agrees with a on the variables
V \ W . This implies that tβ has a path ~p in Θβ of own-
label transitions to an abstract state xβ that contains a state
x0 to which a′ is applicable, yielding the resulting state t′
where t′ ∈ t′β . Because a and a′ agree on V \ W , we
can assume WLOG that x0 = xW0 ∪ dV \W . Applying the
induction hypothesis to the states s′ = s′W ∪ d′V \W and
t′ = t′W ∪ d′V \W , we get that t′ is solvable and hence x0
is solvable. From there, the argument is the same as in the
base case. �

Our fully detailed proof of Theorem 1 is available in a TR
(Hoffmann, Kissmann, and Torralba 2014). As all aggre-
gations made by ModLabelA-shrinking would be made by
A-shrinking (i. e., using just bisimulation) as well, we have:

Corollary 2 A-shrinking is safe.

Recall that, with Corollary 1, this means that, if we use
either of A-shrinking or ModLabelA-shrinking or any com-
bination thereof, then the resulting uα is perfect. Keep in
mind that the same is true for all safe shrinking strategies
we will identify in what follows.

Own-Label Shrinking
The problem with ModLabelA-shrinking, as quickly be-
came apparent in our experiments, is that label inheritance
consumes way too much runtime (and if one explicitly
copies the labels, blows up memory as well). We hence de-
fined the following sound approximation, which turns out to
be very effective in practice:

Definition 6 Given an M&S abstraction β of ΘW ,
OwnPath-shrinking computes an abstraction γ of Θβ as
follows:

16

(1) Own-label cycles. Compute the strongly connected
components C of Θβ when considering only own-label
transitions; aggregate each C into a single abstract
state.

(2) Own-label goal paths. Denoting the variables on which
the goalG is defined as VG, if VG 6⊆W then do nothing.
Otherwise, whenever tα is an abstract goal state: if sα
is an abstract goal state as well then aggregate sα and
tα into a single abstract state; else, if sα has an own-
label path to tα, then aggregate sα, tα, and all states on
the path into a single abstract state.

Intuitively, (1) is sound as, with persistence of own-
label paths, the strongly connected components will still be
strongly connected at the end of the M&S process so are
equivalent with respect to solvability. (2) is sound because,
with VG ⊆ W , abstract goal states remain goal states, so
there is no need to distinguish them and no need to distin-
guish states that have a persistent path to them. For formal
proof, our previous result on ModLabelA-shrinking is suffi-
cient:

Lemma 2 If a pair of abstract states is aggregated
by OwnPath-shrinking, then it would be aggregated by
ModLabelA-shrinking.

Proof: For rule (1), as the aggregated states are strongly
connected with own-label transitions, they would inherit
each other’s outgoing transitions; if any of them is a goal
state, all would be marked as goal states. Hence they would
become bisimilar, and be aggregated.

For rule (2), say sα and tα are aggregated. Then tα is an
abstract goal state, and as VG ⊆ W , its outgoing transitions
would be removed by goal-label pruning. If sα is not already
a goal, as there is an own-label path from sα to tα and tα
is a goal, label inheritance would mark sα as a goal. So
all outgoing transitions would be removed from sα as well,
making the two states bisimilar. �

Together with Theorem 1, this lemma immediately im-
plies:

Theorem 2 OwnPath-shrinking is safe.

Once all variables are merged in (so all labels are own-
labels), rule (2) will aggregate the entire solvable part of the
state space into a single abstract state. Also, if a variable
v has no incoming edges in the causal graph and a strongly
connected DTG, then, when v is merged in, all its values are
strongly connected by own-labels, so rule (1) will aggregate
all values of v into a single abstract state. In our implementa-
tion, such variables v are ignored in the M&S construction.5

ModLabelA-shrinking can be exponentially stronger than
OwnPath+A-shrinking, which can be exponentially stronger
than using just bisimulation: (the proof is in the TR)

5Such v are exactly those that satisfy Helmert’s (Helmert
2006a) “safe abstraction” condition, so in that sense our techniques
subsume that condition. The same is not true of Haslum’s (Haslum
2007) generalized condition (his Theorem 1), which exploits values
of v that are neither “externally required” nor “externally caused”.
It remains an open question whether Haslum’s condition can be
adapted to yield additional safe shrinking in M&S.

Theorem 3 There exist families of planning tasks {Πn}
and merging strategies so that M&S abstractions are ex-
ponentially smaller with ModLabelA-shrinking than with
OwnPath+A-shrinking. The same is true for OwnPath+A-
shrinking and A-shrinking.

K-Catching Bisimulation
Let us finally considerK 6= A. This is important as catching
less actions can substantially reduce bisimulation size, and
as approximate methods choosing the actions to catch will
be our primary method for generating approximate unsolv-
ability heuristics.

Definition 7 A subset K of actions is safe, or path preserv-
ing, if removing all transitions not labeled by an action from
K does not render any solvable state in Θ unsolvable. K
is shortest-path preserving if, for every solvable s in Θ, K
contains an action a starting a shortest solution path from
s.

Being shortest-path preserving obviously is a sufficient
condition for being path preserving, and is sometimes useful
as an approximation because actions can be selected locally
on a per-state basis.6

Theorem 4 If K is safe, then K-shrinking is safe.

Proof: Say β is any safe abstraction. Denote by ΘK the con-
crete state space where all non-K transitions are removed.
As solvability in ΘK is the same as in Θ, β viewed as an
abstraction on ΘK is safe. By definition, any K-catching
bisimulation γ of Θβ is a bisimulation of Θβ

K . Hence, by
Corollary 2, γ is safe as an abstraction of ΘK . Now, view-
ing γ as an abstraction on Θ, since solvability in ΘK is the
same as in Θ, γ is safe as we needed to prove. �

Practical M&S Strategies
Finding K guaranteed to be safe is not feasible (we would
need to construct the concrete state space Θ first). Katz et
al. (Katz, Hoffmann, and Helmert 2012) introduced two ap-
proximation strategies. We experimented with these as well
as a variety of modified ones adapted to our context. The
only one that turned out to be relevant empirically (i. e., for
proving unsolvability effectively) is Intermediate Abstrac-
tion (IntAbs): Run A-shrinking until abstraction size has
reached a parameter M . The labels are collected on that
abstraction, and M&S continues with K-shrinking. M con-
trols a trade-off as actions affecting only yet-to-be-merged
variables form self-loops so will not be collected. This strat-
egy was proposed by Katz et al. already. We proceed in
the same way, but where Katz et al. collect all labels start-
ing optimal paths, we instead collect a path preserving label
set K. Trying to keep K small (finding minimum-size K
is NP-hard in the size of the abstract state space), we start

6Katz et al. define “globally relevant actions”K as the set of all
actions starting a cheapest path for any solvable s. They prove that,
with such K, K-shrinking yields perfect hα. They overlook that,
for that purpose, it would actually be enough to preserve at least
one optimal solution path for each s.

17

from K = ∅ and iteratively include the action rendering the
largest number of yet non-covered states solvable.

Like all previous works on M&S, we also use a param-
eter N which imposes an upper bound on abstraction size
throughout M&S.

Merging strategies have so far been largely neglected in
the planning literature: a grand total of 2 strategies has been
tried (although it was observed that they can be important
empirically). We conducted a comprehensive study in the
context of proving unsolvability. There are two plausible
main objectives for the merging strategy in that context: (a)
find an unsolvable variable subset quickly; and (b) make
transition labels empty (and thus own-labels in the current
abstraction) quickly, to yield smaller bisimulations and more
OwnPath-shrinking. We approximate these by lexicographic
combinations of simple preference rules:
Goal: Prefer goal variables over non-goal variables. This
addresses (a). It was used by Helmert et al. (Helmert,
Haslum, and Hoffmann 2007) to obtain larger goal distances
within the abstraction.
CG, CGRoot, and CGLeaf: Prefer variables with an outgo-
ing causal graph arc to an already selected variable. For CG-
Root and CGLeaf, if there are several such variables v, v′,
prefer v over v′ if, in the strongly connected components
(SCC) of the causal graph, that of v is ordered before that
of v′ (CGRoot), respectively behind that of v′ (CGLeaf).
This also addresses (a): unsolvability must involve con-
nected variables, and might involve “more influential” vari-
ables close to the causal graph roots (CGRoot), respectively
“more influenced” variables close to the causal graph leaves
(CGLeaf). Helmert et al. used just CG, for the same reason
as Goal.
Empty: Prefer variables merging which maximizes the
number of empty-label transitions leading to abstract goal
states. If there are several such variables v, prefer v max-
imizing the number of empty-label transitions, and if there
are several such variables v, prefer v maximizing the num-
ber of transitions whose labels contain v. This addresses (b).
It was not used in earlier works on M&S.
LevelRoot and LevelLeaf: Derived from FD’s full linear
order (Helmert 2006b). LevelRoot prefers variables “closest
to be causal graph roots”, and LevelLeaf prefers variables
“closest to be causal graph leaves”.

Variables are added one-by-one, always selecting a most
preferred one next. Ties remaining after all criteria were
applied are broken arbitrarily. For example, CGRoot-Goal-
Empty, after selecting a goal variable, selects all its causal
graph predecessors, preferring ones close to the root and
yielding many empty labels. We use at most one of CG,
CGRoot, and CGLeaf. We use at most one of LevelRoot
and LevelLeaf, and they are included only at the end as they
allow no more tie breaking. Finally, we do not use Goal at
the start as that yields very bad performance (selecting only
goal variables neither results in unsolvable sub-problems nor
in abstraction size reductions, often breaking our memory
limit before any other variable is selected). This leaves a
total of 81 possible merging strategies.

Experiments
There is no standard set of unsolvable benchmarks.
Bäckström et al. (Bäckström, Jonsson, and Ståhlberg 2013)
have made a start, but their set consists of only 6 instances.
We have vastly extended this, hoping to establish, or at
least seed, a standard.7 The benchmarks will be made
available for download, and a full description will be in
the TR. A brief summary follows. Mystery IPC’98: 9
unsolvable instances from the standard instance set (those
not detected by FD’s pre-processor). UnsNoMystery, Un-
sRovers, UnsTPP: As used by Nakhost et al. (Nakhost,
Hoffmann, and Müller 2012) (their “large” suites for No-
Mystery and Rovers) with instances scaled systematically on
“constrainedness” C, but using C ∈ {0.5, 0.6, 0.7, 0.8, 0.9}
where there are insufficient resources. UnsTiles: The slid-
ing tiles puzzle with initial states from the unsolvable part
of the state space; we used 10 8-Puzzle instances, and 10
(rectangular) “11-Puzzle” instances. UnsPegsol: As in the
net-benefit track of IPC’08, but with the traditional goal
state having only a single peg in the middle of the board (in
this setting, all these instances are unsolvable); we skipped
the 6 instances detected by FD’s pre-processor. 3UNSAT
(extended from (Bäckström, Jonsson, and Ståhlberg 2013)):
random unsolvable 3SAT formulas from the phase transi-
tion region, with n ∈ {5, 10, 15, 20, 25, 30} variables and 5
random instances per n value. Bottleneck (extended from
(Bäckström, Jonsson, and Ståhlberg 2013)): n agents travel
to individual goal positions on an n × n grid. Once a cell
has been visited, it becomes impassable. The agents all start
on the left-hand side, and there is a wall in the middle with
a hole of size m < n. We used n ∈ {4, 5, 6, 7, 8}, with all
m = 1, . . . , n− 1 for each n.

All our techniques are implemented in Fast Downward.
All experiments were run on a cluster of Intel E5-2660 ma-
chines running at 2.20 GHz, with runtime (memory) limits
of 30 minutes (4 GB). Similarly as Katz et al. (Katz, Hoff-
mann, and Helmert 2012), as a hypothetical experiment we
collected perfect label sets K, in instances small enough for
that purpose. We cannot describe this for lack of space. The
overall conclusion is that our label sets typically are smaller
than Katz et al.’s, yielding mostly moderate, and sometimes
strong, abstraction size reductions.

Consider Table 1. We compare against the main compet-
ing approaches for proving unsolvability, and we conduct
comprehensive experiments with our practical M&S strate-
gies. “Blind” is a heuristic that returns 0 on goal states
and 1 elsewhere; note that this dominates, in terms of dead-
end detection power vs. runtime overhead, any heuristic that
does not have the ability to detect dead ends, such as cer-
tain kinds of landmark-based heuristics (e. g., (Karpas and
Domshlak 2009)). Similarly, hmax is a canonical and cheap
heuristic whose dead-end detection power is equivalent to
hFF as well as the state-of-the-art admissible heuristic LM-

7Bäckström et al. considered two domains, “Grid” and
“Trucks”, that we do not adopt: Unsolvability is trivially detected
by h2, and the domains appear non-natural in using a “key cy-
cle” irrelevant to unsolvability (Grid) respectively consisting of two
completely separate sub-problems (Trucks).

18

BestOf KHH Own+K Merging Strategies
BDD N100k M100k A Own+A N1m M500k N100k M100k Own+A

domain (# instances) Blind hmax BJS H2 std H2 OldMrg Mrg1 OldMrg Mrg1 std H2 MLA std hmax stdKKHH hmaxKKHH std hmax Mrg1 Mrg2 Mrg3

Bottleneck (25) 10 21 10 10 10 15 10 10 5 5 5 10 5 9 15 4 4 10 21 5 11 7
3UNSAT (30) 15 15 0 0 15 15 15 15 15 15 15 15 14 14 14 12 15 15 15 15 12 15
Mystery (9) 2 2 6 9 3 9 2 6 1 6 6 9 5 6 6 6 6 6 6 6 1 1
UnsNoMystery (25) 0 0 8 0 5 14 23 23 25 25 25 25 15 25 25 25 25 25 25 25 25 23
UnsPegsol (24) 24 24 0 0 24 24 24 24 24 24 24 24 0 24 24 24 24 24 24 24 0 0
UnsRovers (25) 0 1 3 3 6 10 0 9 0 17 17 17 7 11 11 11 11 9 9 17 17 0
UnsTiles (20) 10 10 10 0 10 10 10 10 0 0 10 10 0 10 10 10 10 10 10 10 10 10
UnsTPP (25) 5 5 2 1 0 1 14 11 17 9 9 9 3 11 8 10 8 11 9 9 17 19

Total (183) 66 78 39 23 73 98 98 108 87 101 111 119 49 110 113 102 103 110 119 111 93 75

Table 1: Coverage results on unsolvable benchmarks, i. e., number of instances proved unsolvable within the time/memory
bounds. “Mrg1” stands for CGRoot-Goal-LevelLeaf, “Mrg2” for Empty-CGRoot-Goal-LevelLeaf, “Mrg3” for CGLeaf-Goal,
and “OldMrg” for the shrinking strategy of (Helmert, Haslum, and Hoffmann 2007).

cut (Helmert and Domshlak 2009). “H2” runs h2 (Haslum
and Geffner 2000) just once, on the initial state; we use the
implementation of Torralba and Alcázar’s recent work on
constrained BDDs (Torralba and Alcázar 2013), where h2
forms part of an extended FD pre-processor. “BDD H2”
are these constrained BDDs. “BDD std” is that implemen-
tation with all h2 parts switched off (thus representing a
standard BDD state space exhaustion). “(Bäckström, Jon-
sson, and Ståhlberg 2013)” is Bäckström et al.’s enumera-
tion of projections (their implementation in C#). We did not
run hm heuristics (for m > 2) (Haslum and Geffner 2000)
and pattern database heuristics (Haslum et al. 2007) because
they are dominated by “(Bäckström, Jonsson, and Ståhlberg
2013)” in Bäckström et al.’s paper (plus, the hm implemen-
tation in FD is extremely ineffective, and pattern databases
are not geared towards proving unsolvability); we leave a
detailed comparison to these heuristics for future work.

Regarding M&S strategies, “BestOf (Katz, Hoffmann,
and Helmert 2012)” is, for each of the two underlying merg-
ing strategies, the best-performing M&S configuration (in
terms of total coverage on our benchmarks) of the 12 ones
shown in Table 2 of (Katz, Hoffmann, and Helmert 2012);
the same configuration N=100k M=100k is best for both
merging strategies.8 “A” is for A-shrinking, “Own+A” for
OwnPath+A-shrinking, “MLA” for ModLabelA-shrinking,
and “Own+K” for OwnPath+K-shrinking. We run a strat-
egy geared towards selecting an accurate label set and not
doing much additional shrinking (N=1million M=500k),
and a strategy geared towards greedy label selection and
shrinking (N=100k M=100k, like in BestOf (Katz, Hoff-
mann, and Helmert 2012)). In the “hmax” variants of
Own+K, the heuristic we use is max(hmax, uα). In the
“K(Katz, Hoffmann, and Helmert 2012)” variants, we use
Katz et al.’s “globally relevant labels” (the best label selec-
tion method in (Katz, Hoffmann, and Helmert 2012)) instead
of our path preserving label set. All heuristic functions (ex-
cept h2) are run in greedy best-first search.

Let us first discuss merging strategies (rightmost part

8In (Katz, Hoffmann, and Helmert 2012), that configuration is
listed as “N=∞M=100k”, but there was a bug in the implemen-
tation causing it to behave exactly like N=100k M=100k.

of Table 1). For this part of the evaluation, we fixed
Own+A as a canonical well-performing shrinking strategy.
It turns out that, of the 81 possible merging strategies, 3
are enough to represent the highest coverage achieved in
every domain. CGRoot-Goal-LevelLeaf (Mrg1) has max-
imal total coverage, as well as maximal coverage in all
domains except Bottleneck and UnsTPP. Empty-CGRoot-
Goal-LevelLeaf (Mrg2) has maximal coverage among a total
of 13 merging strategies that achieve coverage 11 and 17 in
Bottleneck and UnsTPP, respectively. CGLeaf-Goal (Mrg3)
is the only strategy with coverage > 17 in UnsTPP. The rea-
sons for this behavior are fairly idiosyncratic per domain.
CGRoot-Goal-LevelLeaf seems to make a good compromise
between “influential” and “influenced” variables (note here
how these two conflicting directions are traded against each
other via a preference for “more influential” variables in CG-
Root and a preference for “more influenced” variables in
LevelLeaf).

For the evaluation of shrinking strategies (middle part of
Table 1), we fixed the best merging strategy (Mrg1). The
only exceptions are BestOf KHH and A, where we also ran
the best previous merging strategy (“OldMrg”), for compar-
ison.

The competing approaches (leftmost part of Table 1) are
clearly outperformed by M&S. Coverage in most cases is
dominated either by Own+A or by Own+K with N=100k
M=100k. The most notable exception is hmax, which is best
in Bottleneck. The “H2” column for Own+A employs Tor-
ralba and Alcázar’s (Torralba and Alcázar 2013) extended
FD pre-processor. This shows that Own+A benefits as well,
though not as drastically as BDD H2, because in difference
to that approach which uses h2 mutexes to prune the BDDs,
we do not use these mutexes within the M&S abstraction;
doing so is a topic for future work.

The closest competitors are the previous M&S configura-
tions, i. e., BestOf KHH and A. From the OldMrg vs. Mrg1
columns, the importance of our new merging strategies is
immediately apparent.

For OwnPath-shrinking, compare “A Mrg1” vs. “Own+A
std” (which differ only in not using vs. using OwnPath-
shrinking). Own+A has a coverage advantage, but only
due to the sliding tiles puzzle. Apart from that domain,

19

commonly OwnPath+K
solved N1m M500k N100k M100k

domain instances hmax std hmax std hmax

Bottleneck 9 1844.61 1.45 21560.89 2.74 28022.86
3UNSAT 14 3.18 ∞ ∞ ∞ ∞
Mystery 2 5.26 ∞ ∞ ∞ ∞

UnsPegsol 24 1.84 1.01 1.86 1.01 1.86
UnsTiles 10 1.00 1.00 1.00 1.00 1.00
UnsTPP 4 49.99 ∞ ∞ 4450.88 4572.16

Table 2: Number of expansions relative to blind search:
Median, over instances commonly solved by all shown ap-
proaches, of the ratio blind/X, taken to be∞ where X has 0
expansions.

OwnPath-shrinking yields significant advantages in NoMys-
tery, and moderate advantages in Bottleneck. This does not
result in increased coverage here, but results in increased
coverage, e. g., in Nakhost et al.’s (Nakhost, Hoffmann, and
Müller 2012) “small” NoMystery test suite (which contains
less packages etc. but 2 trucks instead of 1): Coverage goes
up from 84% to 100% when C is close to 1, i. e., when there
is just not enough fuel. In our other domains, OwnPath-
shrinking has no effect at all. The picture is similar for
approximate strategies, i. e., for (OwnPath+)K-shrinking.
ModLabelA-shrinking (MLA), on the other hand, yields
some reduction in all domains except UnsPegSol, but never
pays off due to the overhead it incurs.

For the effect of our new label catching strategy, con-
sider the Own+K part of the table. When using Katz et al.’s
“globally relevant labels” (K(Katz, Hoffmann, and Helmert
2012)), leaving everything else the same (in particular still
using OwnPath-shrinking), coverage remains the same for
N=100k M=100k and hence no separate data is shown. But
performance does become considerably weaker for N=1m
M=500k. Katz et al.’s method, while selecting more labels
resulting in more expensive abstractions, does not provide
more accurate estimates. This is drastic in Bottleneck, re-
ducing coverage, and yields larger total runtimes in all other
domains (except 3UNSAT with hmax) as well, most signifi-
cantly in UnsPegSol with a mean of 200 vs. 76 seconds.

Table 2 sheds some light on the number of expansions re-
quired by approximate approaches (imperfect unsolvability
heuristics). In difference to hmax, our M&S strategies yield
excellent dead-end detectors in half of these domains. In
Bottleneck, where hmax is drastically better, combining both
heuristics yields an advantage (which does not pay off in to-
tal runtime, due to the abstraction overhead). The intended
advantage of N1m M500k over N100k M100k, yielding a
more accurate heuristic, manifests itself in UnsTPP, as well
as in 3UNSAT and UnsPegsol (not visible in the median)
and UnsRovers (not contained in this table for lack of com-
monly solved instances).

Conclusion
A crystal clear message from our experiments is that heuris-
tic search, in particular with M&S heuristics, is a viable
method to prove unsolvability in planning. It clearly beats

BDDs, a method traditionally used for state space exhaus-
tion. The empirical impact of our merging strategies is good.
Our theory results (i. e., OwnPath-shrinking) yield signif-
icant advantages in 2 of 8 domains. It remains an open
question whether that can be improved, e. g., by approxi-
mating ModLabelA-shrinking more tightly or by exploiting
Haslum’s (Haslum 2007) notions.

The big open lines of course are the use of unsolvability
heuristics for dead-end detection on solvable tasks (we had
limited success with this so far), and tailoring other heuris-
tics to unsolvability detection. An example that immediately
springs to mind are semi-relaxed plan heuristics obtained
from explicit compilation of a fact conjunction set C (Key-
der, Hoffmann, and Haslum 2012), where (a) unsolvability
heuristics correspond to hmax so are easier to extract, and (b)
one may tailor the selection of C.

References
Bäckström, C.; Jonsson, P.; and Ståhlberg, S. 2013. Fast
detection of unsolvable planning instances using local con-
sistency. In Helmert, M., and Röger, G., eds., Proceed-
ings of the 6th Annual Symposium on Combinatorial Search
(SOCS’13), 29–37. AAAI Press.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2013. A
hybrid LP-RPG heuristic for modelling numeric resource
flows in planning. Journal of Artificial Intelligence Research
46:343–412.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. In
Valmari, A., ed., Proceedings of the 13th International SPIN
Workshop (SPIN 2006), volume 3925 of Lecture Notes in
Computer Science, 19–34. Springer-Verlag.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2009. Directed
model checking with distance-preserving abstractions. STTT
11(1):27–37.
Edelkamp, S.; Lluch-Lafuente, A.; and Leue, S. 2004.
Directed explicit-state model checking in the validation of
communication protocols. International Journal on Soft-
ware Tools for Technology.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5-
6):619–668.
Haslum, P., and Geffner, H. 2000. Admissible heuris-
tics for optimal planning. In Chien, S.; Kambhampati, R.;
and Knoblock, C., eds., Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS-00), 140–149. Breckenridge, CO: AAAI Press,
Menlo Park.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Howe, A.,
and Holte, R. C., eds., Proceedings of the 22nd National
Conference of the American Association for Artificial In-
telligence (AAAI-07), 1007–1012. Vancouver, BC, Canada:
AAAI Press.

20

Haslum, P. 2007. Reducing accidental complexity in
planning problems. In Veloso, M., ed., Proceedings of
the 20th International Joint Conference on Artificial Intel-
ligence (IJCAI-07), 1898–1903. Hyderabad, India: Morgan
Kaufmann.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
Association for Computing Machinery. Accepted.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Boddy, M.; Fox, M.; and Thiebaux, S., eds., Proceedings of
the 17th International Conference on Automated Planning
and Scheduling (ICAPS’07), 176–183. Providence, Rhode
Island, USA: Morgan Kaufmann.
Helmert, M. 2006a. Fast (diagonally) downward. In IPC
2006 planner abstracts.
Helmert, M. 2006b. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J.; Kissmann, P.; and Torralba, A. 2014. “Dis-
tance”? Who Cares? Tailoring merge-and-shrink heuristics
to detect unsolvability. Technical report, Saarland Univer-
sity. Available at http://fai.cs.uni-saarland.
de/hoffmann/papers/tr14.pdf.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In Boutilier, C., ed., Proceedings of the 21st
International Joint Conference on Artificial Intelligence (IJ-
CAI 2009), 1728–1733. Pasadena, California, USA: Morgan
Kaufmann.
Katz, M., and Hoffmann, J. 2013. Red-black relaxed plan
heuristics reloaded. In Helmert, M., and Röger, G., eds.,
Proceedings of the 6th Annual Symposium on Combinatorial
Search (SOCS’13), 105–113. AAAI Press.
Katz, M.; Hoffmann, J.; and Helmert, M. 2012. How to
relax a bisimulation? In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’12), 101–109. AAAI Press.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’12), 128–136. AAAI Press.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A monte carlo random walk approach.
In Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B.,
eds., Proceedings of the 22nd International Conference on

Automated Planning and Scheduling (ICAPS’12), 181–189.
AAAI Press.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Torralba, A., and Alcázar, V. 2013. Constrained sym-
bolic search: On mutexes, BDD minimization and more. In
Helmert, M., and Röger, G., eds., Proceedings of the 6th An-
nual Symposium on Combinatorial Search (SOCS’13), 175–
183. AAAI Press.

21

Learning Pruning Rules for Heuristic Search Planning

Michal Krajňanský and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{krajnansky,hoffmann}@cs. uni-saarland.de

Olivier Buffet
INRIA / Université de Lorraine

Nancy, France
olivier.buffet@loria.fr

Alan Fern
Oregon State University

Corvallis, USA
afern@eecs.oregonstate.edu

Abstract

When it comes to learning control knowledge for planning,
most works focus on “how to do it” knowledge which is then
used to make decisions regarding which actions should be
applied in which state. We pursue the opposite approach of
learning “how to not do it” knowledge, used to make deci-
sions regarding which actions should not be applied in which
state. Our intuition is that “bad actions” are often easier
to characterize than “good” ones. An obvious application,
which has not been considered by the few prior works on
learning bad actions, is to use such learned knowledge as
action pruning rules in heuristic search planning. Fixing a
canonical rule language and an off-the-shelf learning tool, we
explore a novel method for generating training data, and im-
plement rule evaluators in state-of-the-art planners. The ex-
periments show that the learned rules can yield dramatic sav-
ings, even when the native pruning rules of these planners,
i.e., preferred operators, are already switched on.

Introduction
Learning can be applied to planning in manifold ways
(see (Celorrio et al. 2012) for a recent overview). To
name a few, existing approaches include learning of ac-
tion models (e.g., (Walsh and Littman 2008)), learning to
predict planner performance (e.g., (Roberts and Howe 2009;
Cenamor, de la Rosa, and Fernández 2013)), learning macro
actions (e.g., (Botea et al. 2005; Newton et al. 2007; Coles
and Smith 2007)), learning to improve a heuristic (e.g.,
(Yoon, Fern, and Givan 2008; Xu, Fern, and Yoon 2009;
Virseda, Borrajo, and Alcázar 2013)), learning which heuris-
tic to use when (Domshlak, Karpas, and Markovitch 2012),
and learning portfolio configurations (e.g., (Núñez, Borrajo,
and López 2012; Seipp et al. 2012)).

The approach we pursue here is the venerable (i.e., old)
idea of learning control knowledge, in the sense of “domain-
dependent information about the structure of plans”. That
approach has a long tradition, focusing almost entirely on
“how to do it” knowledge, mostly learning representations
of closed-loop action-selection policies or open-loop macro
actions. Learned policies are often used for search-free plan
generation (e.g., (Khardon 1999; Martin and Geffner 2000;
Yoon, Fern, and Givan 2002; Fern, Yoon, and Givan 2006;
Gretton 2007; Xu, Fern, and Yoon 2010; de la Rosa et
al. 2011; Srivastava, Immerman, and Zilberstein 2012)),

while learned macros are typically integrated into com-
plete heuristic search algorithms (e.g., (Botea et al. 2005;
Newton et al. 2007; Coles and Smith 2007)). However,
recentwork has also used learned policies for macro gen-
eration during search (e.g., (Yoon, Fern, and Givan 2008;
de la Rosa et al. 2011)).

In this work, we pursue an alternative approach of learn-
ing “how to not do it” knowledge. Consider, e.g., Sokoban.
Finding the “good” actions in many critical states is very
hard to do, as it effectively entails search or already know-
ing what the solution is. In contrast, with a bit of practice
it is often easy to avoid clearly “bad” actions (like, blocking
an exit) based on simple features of the state. A plausible
hypothesis therefore is that it may be easier to learn a rep-
resentation that is able to reliably identify some of the bad
actions in a state, compared to learning to reliably select a
good action.1

Indeed, in the literature on search, pruning rules – con-
ditions under which the search discards an applicable ac-
tion – play a prominent role. Temporal logic pruning rules
are highly successful in hand-tailored planning with TLPlan
(Bacchus and Kabanza 2000) and TALPlanner (Kvarnström
and Magnusson 2003). Pruning rules derived as a side effect
of computing a heuristic function, commonly referred to as
helpful actions or preferred operators, are of paramount im-
portance to the performance of domain-independent heuris-
tic search planners like FF (Hoffmann and Nebel 2001), Fast
Downward (Helmert 2006), and LAMA (Richter and West-
phal 2010). In fact, it has been found that such pruning typ-
ically is more important to performance than the differences
between many of the heuristic functions that have been de-
veloped (Richter and Helmert 2009).

Despite the prominence of pruning from a search perspec-
tive, hardly any research has been done on learning to char-
acterize bad actions (presumably due to the traditional focus
on learning stand-alone knowledge as opposed to helping

1Note the “some” here: learning to reliably identify all bad ac-
tions is equivalent to learning to identify all good actions. Our
focus is on learning a subset of the bad actions. From a machine
learning perspective, this corresponds to the precision-recall trade-
off. We are willing to sacrifice recall (the percentage of bad actions
that are pruned), in favor of precision (the percentage of pruned
actions that are bad). This makes sense as it avoids removing solu-
tions from the search space.

22

a search algorithm). To the best of our knowledge, there
are exactly two such prior works. Considering SAT-based
planning, Huang et al. (Huang, Selman, and Kautz 2000)
learn simple datalog-style conjunctive pruning rules, con-
veniently expressed in the form of additional clauses. They
find this method to be very effective empirically, with speed-
ups of up to two orders of magnitude on a collection of
mostly transport-type domains (although, from today’s per-
spective, it should be mentioned that the original planner, but
not the one using the pruning rules, is time-step optimal).
More recently, de la Rosa and McIlraith (de la Rosa and
McIlraith 2011) tackled the long-standing question of how
to automatically derive the control knowledge for TLPlan
and TALPlanner. Accordingly, their pruning rules are for-
mulated in linear temporal logic (LTL); they introduce tech-
niques to automatically generate derived predicates to ex-
pand the feature space for these rules. Experiments in three
domains show that these rules provide for performance com-
petitive with that of hand-written ones.

Against this background, our work is easy to describe:
Like de la Rosa and McIlraith, we hook onto the search
literature in attempting to learn a prominent form of prun-
ing; while de la Rosa and McIlraith considered TLPlan, we
consider action pruning (à la preferred operators) in heuris-
tic search planning. The idea is to let that powerful search
framework do the job of finding the “good” actions, reducing
our job to helping out with quickly discarding the bad ones.
Like Huang et al., we concentrate on simple datalog-style
conjunctive pruning rules, the motivation being to determine
first how far such a simple framework carries. (More com-
plex frameworks, and in particular the application of de la
Rosa and McIlraith’s rules in heuristic search planning, are
left open as future topics.) We also diverge from prior work
in the generation of training data, which we derive compre-
hensively from all optimal states as opposed to just the states
visited by one (or a subset of) solutions.

As it turns out, our simple approach is quite promising.
Experimenting with the IPC’11 learning track benchmarks,
we obtain dramatic speed-ups over standard search configu-
rations in Fast Downward, on several domains. The speed-
ups are counter-balanced by equally dramatic losses on other
domains, but a straightforward portfolio approach suffices to
combine the complementary strengths of the different con-
figurations involved.

We next introduce our notations. We then detail our fea-
tures for learning, the generation of training data, our for-
mulation of pruning rules and how they are being learned,
as well as their usage during the search. We present our ex-
periments and conclude.

Preliminaries
Our approach requires that states be represented as sets of in-
stantiated first-order atoms (so we can learn first-order con-
junctive pruning conditions), that actions are instantiated ac-
tion schemas (so the pruning conditions can be interpreted
as rules disallowing particular schema instantiations in a
given state), and that the first-order predicates and the action
schemas are shared across the entire planning domain (so
the rules can be transferred across instances of the domain).

Apart from this, we don’t need to make any assumptions, in
particular as to how exactly action schemas are represented
and how their semantics is defined.

Our assumptions are obviously satisfied by sequential
planning in all variants of deterministic non-metric non-
temporal PDDL. Our pruning rules are designed for use dur-
ing a forward search. In our concrete implementation, we
build on FF (Hoffmann and Nebel 2001) and Fast Down-
ward (FD) (Helmert 2006). In what follows, we introduce
minimal notation as will be needed to describe our tech-
niques and their use in forward search.

We presume a fixed planning domainD, associated with a
set P of first-order predicates, each p ∈ P with arity arityp;
we identify p with a string (its “name”). D is furthermore
associated with a set A of action schemas, each of which
has the form a[X] where a is the schema’s name and X is
a tuple of variables; we will sometimes identify X with the
set of variables it contains.

A first-order atom has the form p[X] where p ∈ P and
X is an arityp-tuple of variables; like for action schemas,
we will sometimes identify X with the set of variables it
contains. A first-order literal l[X] is either a first-order atom
p[X] (a positive literal), or a negated first-order atom ¬p[X]
(a negative literal).

An instance Π of the domainD comes with a setO of ob-
jects. A ground atom then has the form p[o1, . . . , ok] where
p ∈ P , oi ∈ O, and k = arityp. Ground literals are de-
fined in the obvious manner. A ground action has the form
a[o1, . . . , ok] where a[X] ∈ A, oi ∈ O, and k = |X|; we
will often denote ground actions simply with “a”. A state s
is a set of ground atoms.

Each domain instance Π is furthermore associated with a
state I called the initial state, and with a set G of ground
atoms called the goal. A state s is a goal state if G ⊆ s.

If s is a state and a is a ground action, then we assume
that there is some criterion stating whether a is applicable
to s, and what the resulting state of applying a to s is. A
solution (or plan) for a domain instance is a sequence of
ground actions that is iteratively applicable to I , and whose
iterated application results in a goal state. The solution is
optimal if its length is minimal among all solutions. (For
simplicity, we do not consider more general action costs,
although our approach is applicable to these in principle.)

Features
A basic decision is which features to use as input for the
learning algorithm. Many previous works on learning con-
trol knowledge for states (e.g., (Yoon, Fern, and Givan 2008;
Xu, Fern, and Yoon 2010; de la Rosa et al. 2011; de la Rosa
and McIlraith 2011; Virseda, Borrajo, and Alcázar 2013))
used features different from the state itself, or in addition to
the state itself. We did not do that for now, as the simpler
approach already led to good results. However, of course,
whether an action is “good” or “bad” often depends on the
goal. As the goal is not reflected in the states during a for-
ward search, we need to augment the states with that infor-
mation.

Given a domain instance Π and a predicate p, denote by
Goal(p) some new predicate unique to p (in our implemen-

23

tation, Goal(p) prefixes p’s name with the string “Goal -”),
and with the same arity as p. The augmented predicates are
obtained as P ∪{Goal(p) | p ∈ P}. Given a state s in Π, the
augmented state is obtained as s ∪ {Goal(p)[o1, . . . , ok] |
p[o1, . . . , ok] ∈ G}whereG is the instance’s goal. In words,
we make goal-indicator copies of the predicates, and intro-
duce the respective ground atoms into the states. We assume
from now on that this operation has been performed, with-
out explicitly using the word “augmented”. The input to
the learning algorithm are (augmented) states, the learned
rules employ (augmented) predicates, and the rule usage is
based on evaluating these (augmented) predicates against
(augmented) states during the search.

For example, in a transportation domain with pred-
icate at[x, y], we introduce the augmented predicate
Goal -at[x, y]. If at[o1, c2] ∈ G is a goal atom, we augment
all states with Goal -at[o1, c2]. In our experiments, the ma-
jority of the learned rules (≥ 70% in 5 of 9 domains) contain
at least one augmented predicate in the rule condition.

Generating the Training Data
The pruning rules we wish to learn are supposed to repre-
sent, given a state s, what are the “bad action choices”, i.e.,
which applicable ground actions should not be expanded by
the search. But when is an action “bad” in a state? How
should we design the training data?

Almost all prior approaches to learning control knowl-
edge (e.g., (Khardon 1999; Martin and Geffner 2000;
Yoon, Fern, and Givan 2002; Fern, Yoon, and Givan 2006;
Yoon, Fern, and Givan 2008; Xu, Fern, and Yoon 2010))
answer that question by choosing a set of training problem
instances, generating a single plan for each, and extracting
the training data from that plan. In case of learning which
actions should be applied in which kinds of states, in par-
ticular, it is basically assumed that the choices made by the
plan – the action a applied in any state the plan s visits –
are “good”, and every other action a′ applicable to these
states s is “bad”. Intuitively, the “good” part is justified as
the training plan works for its instance, but the “bad” part
ignores the fact that other plans might have worked just as
well, resulting in noisy training data. Some prior approaches
partly counter-act this by removing unnecessary ordering
constraints from the plan, thus effectively considering a sub-
set of equally good plans. However, those approaches are
incomplete and can still mislabel “good” actions as “bad”.
Herein, we employ a more radical approach based on gener-
ating all optimal plans.

We assume any planning tool that parses domainD and an
instance Π, that provides the machinery to run forward state
space search, and that provides an admissible heuristic func-
tion h. To generate the training data, we use A∗ with small
modifications. Precisely, our base algorithm is the standard
one for admissible (but potentially inconsistent) heuristics:
best-first search on g + h where g is path length; maintain-
ing a pointer to the parent node in each search node; dupli-
cate pruning against all generated states, updating the parent
pointer (and re-opening the node if it was closed already)
if the new path is cheaper. We modify two aspects of this

algorithm, namely (a) the termination condition and (b) the
maintenance of parent pointers.

For (a), instead of terminating when the first solution is
found, we stop the search only when the best node in the
open list has g(s) + h(s) > g∗ where g∗ is the length of the
optimal solution (which we found beforehand). For (b), in-
stead of maintaining just one pointer to the best parent found
so far, we maintain a list of pointers to all such parents.
Thanks to (a), as g(s) +h(s) is a lower bound on the cost of
any solution through s, and as all other open nodes have at
least value g + h, upon termination we must have generated
all optimal solutions. Thanks to (b), at that time we can find
the set S∗ of all states on optimal plans very easily: Simply
start at the goal states and backchain over all parent pointers,
collecting all states along the way until reaching the initial
state. The training data then is:
• Good examples E+: Every pair (s, a) of state s ∈ S∗

and ground action a applicable to s where the outcome
state s′ of applying a to s is a member of S∗.

• Bad examples E−: Every pair (s, a) of state s ∈ S∗ and
ground action a applicable to s where the outcome state
s′ of applying a to s is not a member of S∗.

Given several training instances, E+, respectively E−, are
obtained simply as the union of E+, respectively E−, over
all those instances.

To our knowledge, the only prior work taking a similar
direction is that of de la Rosa et al. (de la Rosa et al. 2011).
They generate all optimal plans using a depth-first branch
and bound search with no duplicate pruning. A subset of
these plans is then selected according to a ranking criterion,
and the training data is generated from that subset. The latter
step, i.e. the training data read off the solutions, is similar to
ours, corresponding basically to a subset of S∗ (we did not
investigate yet whether such subset selection could be ben-
eficial for our approach as well). The search step employed
by de la Rosa et al. is unnecessarily ineffective as the same
training data could be generated using our A∗-based method,
which does include duplicate pruning (a crucial advantage
for search performance in many planning domains).

We will refer to the above as the
• conservative training data (i.e.based on all optimal

plans), contrasted with what we call
• greedy training data.
The latter is oriented closely at the bulk of previous ap-
proaches: For the greedy data we take S∗ to be the states
along a single optimal plan only, otherwise applying the
same definition ofE+ andE−. In other words, in the greedy
training data, (s, a) is “good” if the optimal plan used ap-
plies a to s, and is “bad” if the optimal plan passed through
s but applied an action a′ 6= a.

Note that above all actions in each state of S∗ are included
in either E+ or E−. We refer to this as the
• all-operators training data, contrasted with what we call
• preferred-operators training data.
In the latter, E+ and E− are defined as above, but are
restricted to the subset of state/action pairs (s, a) where

24

s ∈ S∗, and ground action a is applicable to s and is a
helpful action for s (according to the relaxed plan heuristic
hFF (Hoffmann and Nebel 2001)). Knowledge learned using
this modified training data will be used only within searches
that already employ this kind of action pruning: The idea
is to focus the rule learning on those aspects missed by this
native pruning rule.

Similarly to de la Rosa et al. (de la Rosa et al. 2011), in our
implementation the training data generation is approximate
in the sense that we use the relaxed plan heuristic hFF as our
heuristic h. hFF is not in general admissible, but in practice
it typically does not over-estimate (hFF is usually close to
h+ (Hoffmann 2005)). Hence this configuration is viable in
terms of runtime and scalability(strong admissible heuristics
like LM-cut (Helmert and Domshlak 2009) are much slower
than hFF), and in terms of the typical quality of the training
data generated.

There is an apparent mismatch between the distribution of
states used to create the training data (only states on optimal
plans) and the distribution of states that will be encountered
during search (both optimal and sub-optimal states). Why
then should we expect the rules to generalize properly when
used in the context of search?

In general, there is no reason for that expectation, beyond
the intuition that bad actions on optimal states will typically
be bad also on sub-optimal ones sharing the relevant state
features. It would certainly be worthwhile to try training
on intelligently selected suboptimal states, similar in spirit
to recent work on learning from imitation (Ross and Bag-
nell 2010). Note though that, as long as the pruning on the
optimal states retains the optimal plans (which is what we
are trying to achieve when learning from conservative data),
even arbitrary pruning decisions at suboptimal states do not
impact the availability of optimal plans in the search space.

Learning the Pruning Rules
Our objective is to learn some representation R, in a form
that generalizes across instances of the same domain D, so
thatR covers a large fraction of bad examples inE− without
covering any of the good examples E+. We want to use
R for pruning during search, where on any search state s,
an applicable ground action a will not be expanded in case
(s, a) is covered by R. It remains to define what kind of
representation will underlie R, what it means to “cover”
a state/action pair (s, a), and how R will be learned. We
consider these in turn.

As previously advertized, we choose to represent R in the
form of a set of pruning rules. Each rule r[Y] ∈ R takes the
form r[Y] =

¬a[X]⇐ l1[X1] ∧ · · · ∧ ln[Xn]

where a[X] is an action schema from the domain D, li[Xi]
are first-order literals, and Y = X ∪ ⋃

iXi is the set of
all variables occuring in the rule. In other words, we asso-
ciate each action schema with conjunctive conditions identi-
fying circumstances under which the schema is to be consid-
ered “bad” and should be pruned. As usual, we will some-
times refer to ¬a[X] as the rule’s head and to the condition
l1[X1] ∧ · · · ∧ ln[Xn] as its body.

We choose this simple representation for precisely that
virtue: simplicity. Our approach is (relatively) simple to
implement and use, and as we shall see can yield excellent
results.

Given a domain instance with object set O, and a pruning
rule r[Y] ∈ R, a grounding of r[Y] takes the form r =

¬a[o1, . . . , ok]⇐ l1[o11, . . . , o
k1
1] ∧ · · · ∧ ln[o1n, . . . , o

kn
n]

where oj = oj
′

i′ whenever X and Xi′ share the same vari-
able at position j respectively j′, and oji = oj

′

i′ whenever Xi

and Xi′ share the same variable at position j respectively
j′. We refer to such r as a ground pruning rule. In other
words, ground pruning rules are obtained by substituting the
variables of pruning rules with the objects of the domain in-
stance under consideration.

Assume now a state s and a ground action a applicable to
s. A ground pruning rule r = [¬a′ ⇐ l1 ∧ · · · ∧ ln] covers
(s, a) if a′ = a and s |= l1 ∧ · · · ∧ ln. A pruning rule r[Y]
covers (s, a) if there exists a grounding of r[Y] that covers
(s, a). A set R of pruning rules covers (s, a) if one of its
member rules does.

With these definitions in hand, our learning task – learn a
set of pruning rules R which covers as many bad examples
in E− as possible without covering any of the good exam-
ples E+ – is a typical inductive logic programming (ILP)
(Muggleton 1991)problem: We need to learn a set of logic
programming rules that explains the observations as given
by our training data examples. It is thus viable to use off-the-
shelf tool support. We chose the well-known Aleph toolbox
(Srinivasan 1999). (Exploring application-specific ILP algo-
rithms for our setting is an open topic.)

In a nutshell, in our context, Aleph proceeds as follows:
1. If E− = ∅, stop. Else, select an example (s, a) ∈ E−.
2. Construct the “bottom clause”, i.e., the most specific con-

junction of literals that covers (s, a) and is within the lan-
guage restrictions imposed. (See below for the restric-
tions we applied.)

3. Search for a subset of the bottom clause yielding a rule
r[Y] which covers (s, a), does not cover any example
fromE+, and has maximal score (covers many examples
from E−).

4. Add r[Y] to the rule set, and remove all examples from
E− covered by it. Goto 1.

Note that our form of ILP is simple in that there is no recur-
sion. The rule heads (the action schemas) are from a fixed
and known set separate from the predicates to be used in the
rule bodies. Aleph offers support for this simply by separate
lists of potential rule heads respectively potential body lit-
erals. These lists also allow experimentation with different
language variants for the rule bodies:
• Positive vs. mixed conditions: We optionally restrict

the rule conditions to contain only positive literals, re-
ferring to the respective variant as “positive” respectively
“mixed”. The intuition is that negative condition literals
sometimes allow more concise representations of situa-
tions, but their presence also has the potential to unneces-
sarily blow up the search space for learning.

25

• With vs. without inequality constraints: As specified
above, equal variables in a rule will always be instantiated
with the same object. But, per default, different variables
also may be instantiated with the same object. Aleph al-
lows “x 6= y” body literals to prevent this from happen-
ing. Similarly to the above, such inequality constraints
may sometimes help, but may also increase the difficulty
of Aleph’s search for good rules.

As the two options can be independently switched on or off,
we have a total of four condition language variants. We will
refer to these by P, M, P6=, and M 6= in the obvious manner.

We restrict negative condition literals, including literals
of the form x 6= y, to use bound variables only: In any
rule r[Y] learned, whenever variable x occurs in a negative
condition literal, then x must also occur in either a posi-
tive condition literal or in the rule’s head.2 Intuitively, this
prevents negative literals from having excessive coverage by
instantiating an unbound variable with all values that do not
occur in a state (e.g., “¬at[x, y]” collects all but one city y
for every object x). Note that, in our context, head variables
are considered to be bound as their instantiation will come
from the ground action a whose “bad” or “good” nature we
will be checking.

Aleph furthermore allows various forms of fine-grained
control over its search algorithm. We used the default setting
for all except two parameters. First, the rule length bound re-
stricts the search space to conditions with at most L literals.
We empirically found this parameter to be of paramount im-
portance for the runtime performance of learning. Further-
more, we found that L = 6 was an almost universally good
“magic” setting of this parameter in our context: L > 6
rarely ever lead to better-performing rules, i.e., to rules with
more pruning power than those learned for L = 6; and
L < 6 very frequently lead to much worse-performing rules.
We thus fixed L = 6, and use this setting throughout the
experiments reported. Second, minimum coverage restricts
the search space to rules that cover at least C examples
from E−. We did not run extensive experiments examining
this parameter, and fixed it to C = 2 to allow for a max-
imally fine-grained representation of the training examples
(refraining only from inserting a rule for the sake of a single
state/action pair).

Using the Pruning Rules
Given a domain instance Π, a state s during forward search
on Π, and an action a applicable to s, we need to test whether
R covers (s, a). If the answer is “no”, proceed as usual; if
the answer is “yes”, prune a, i.e., do not generate the result-
ing state.

The issue here is computational efficiency: We have to
pose the question “does R cover (s, a)?” not only for ev-
ery state s during a combinatorial search, but even for ev-
ery action a applicable to s. So it is of paramount impor-

2We implemented this restriction via the “input/output” tags
Aleph allows in the lists of potential rule heads and body literals.
We did not use these tags for any other purpose than the one de-
scribed, so we omit a description of their more general syntax and
semantics.

tance for that test to be fast. Indeed, we must avoid the infa-
mous utility problem (Minton 1990), identified in early work
on learning for planning, where the overhead of evaluating
the learned knowledge would often dominate the potential
gains.

Unfortunately, the problem underlying the test is NP-
complete: For rule heads with no variables, and rule bod-
ies with only positive literals, we are facing the well-known
problem of evaluating a Boolean conjunctive query (the rule
body) against a database (the state) (Chandra and Merlin
1977). More precisely, the problem is NP-complete when
considering arbitrary-size rule bodies (“combined complex-
ity” in database theory). When fixing the rule body size,
as we do in our work (remember that L = 6), the problem
becomes polynomial-time solvable (“data complexity”), i.e.,
exponential in the fixed bound. For our bound 6, this is of
course still way too costly with a naı̈ve solution enumerating
all rule groundings. We employ backtracking in the space of
partial groundings, using unification to generate only partial
groundings that match the state and ground action in ques-
tion. In particular, a key advantage in practice is that, typi-
cally, many of the rule variables occur in the head and will
thus be fixed by the ground action a already, substantially
narrowing down the search space.

For the sake of clarity, let us fill in a few details. Say
that s is a state, a[o1, . . . , ok] is a ground action, and
¬a[x1, . . . , xk] ⇐ l1[X1] ∧ · · · ∧ ln[Xn] is a pruning rule
for the respective action schema. We view the positive re-
spectively negative body literals as sets of atoms, denoted
LP respectively LN . With α := {(x1, o1), . . . , (xk, ok)},
we set LP := α(LP) and LN := α(LN), i.e., we apply
the partial assignment dictated by the ground action to every
atom. We then call the following recursive procedure:

if LP 6= ∅ then
select l ∈ LP

for all q ∈ s unifiable with l via partial assignment β do
if recursive call on β(LP \ {l}) and β(LN) succeeds then

succeed
endif

endfor
fail

else /* LP = ∅ */
if LN ∩ s = ∅ then succeed else fail endif

endif

The algorithm iteratively processes the atoms in LP .
When we reach LN , i.e., when all positive body literals have
already been processed, all variables must have been instan-
tiated because negative literals use bound variables only (cf.
previous section). So the negative part of the condition is
now a set of ground atoms and can be tested simply in terms
of its intersection with the state s.

We use two simple heuristics to improve runtime. Within
each rule condition, we order predicates with higher arity
up front so that many variables will be instantiated quickly.
Across rules, we dynamically adapt the order of evaluation.
For each rule r we maintain its “success count”, i.e., the
number of times r fired (pruned out an action). Whenever r
fires, we compare its success count with that of the preceding
rule r′; if the count for r is higher, r and r′ get switched.

26

This simple operation takes constant time but can be quite
effective.

Experiments
We use the benchmark domains from the learning track of
IPC’11. All experiments were run on a cluster of Intel
E5-2660 machines running at 2.20 GHz. We limited run-
time for training data generation to 15 minutes (per task),
and for rule learning to 30 minutes (per domain, config-
uration, and action schema). To obtain the training data,
we manually played with the generator parameters to find
maximally large instances for which the learning process
was feasible within these limits. We produced 8–20 train-
ing instances per domain and training data variant (i.e., con-
servative vs. greedy). Handling sufficiently large training
instances turned out to be a challenge in Gripper, Rovers,
Satellite and TPP. For example, in Gripper the biggest train-
ing instances contain 3 grippers, 3 rooms and 3 objects; for
Rovers, our training instances either have a single rover, or
only few waypoints/objectives. We ran all four condition
language variants – P, M, P6=, and M 6= – on the same train-
ing data. We show data only for the language variants with
inequality constraints, i.e., for P 6= and M6=), as these gener-
ally performed better.

all-operators preferred-operators
Conservative Greedy Conservative Greedy
P 6= M 6= P6= M6= P6= M 6= P 6= M6=

L # L # L # L # L # L # L # L
Barman 14 2.7 5 2.4 17 2.1 17 1.8 7 2.9 5 2.4 8 2.1 8 1.5
Blocksworld 29 4.4 0 — 61 3.8 23 2.7 28 4.3 0 — 46 3.7 21 2.7
Depots 2 4.5 1 4 16 3.3 10 2.8 4 4.8 2 4 12 3.4 9 3.1
Gripper 27 4.9 1 4 26 4.1 23 3.2 20 4.8 9 4 17 4.2 11 3.4
Parking 92 3.4 51 2.8 39 2.6 31 2.2 71 3.3 48 2.8 20 2.6 18 2.1
Rover 30 2.2 18 1.8 45 1.8 36 1.6 3 2 3 2 14 1.7 16 1.7
Satellite 27 3.2 26 3 25 2.6 22 2.2 12 3.4 12 3 9 3 9 2.6
Spanner 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
TPP 13 2.5 10 2.4 18 2.6 21 2.6 6 2.8 5 2.8 11 2.7 12 2.8

Table 1: Statistics regarding the rule sets learned. “#”: num-
ber of rules; “L”: average rule length (number of rule body
literals).

Table 1 shows statistics about the learned rule sets. One
clear observation is that fewer rules tend to be learned when
using preferred-operators training data. This makes sense
simply as that training data is smaller. A look at rule length
shows that rules tend to be short except in a few cases. A
notable extreme behavior occurs in Spanner, where we learn
a single three-literal pruning rule, essentially instructing the
planner to not leave the room without taking along all the
spanners. As it turns out, this is enough to render the bench-
mark trivial for heuristic search planners. We get back to
this below.

We implemented parsers for our pruning rules, and usage
during search, in FF (Hoffmann and Nebel 2001) and Fast
Downward (FD) (Helmert 2006). We report data only for
FD; that for FF is qualitatively similar. To evaluate the ef-
fect of our rules when using/not using the native pruning,
as “base planners” we run FD with hFF in single-queue lazy

greedy best-first search (FD1), respectively in the same con-
figuration but with a second open list for states resulting
from preferred operators (FD2). To evaluate the effect of our
rules on a representation of the state of the art in runtime, we
run (the FD implementation of) the first search iteration of
LAMA (Richter and Westphal 2010), which also is a dual-
queue configuration where one open list does, and one does
not, use the native pruning. As we noticed that, sometimes,
FD’s boosting (giving a higher preference to the preferred-
operators queue), is detrimental to performance, we also ex-
perimented with configurations not using such boosting.

In both dual-queue configurations, we apply our learned
pruning rules only to the preferred-operators queue, keep-
ing the other “complete” queue intact. The preferred-
operators training data is used in these cases. For FD1,
where we apply the rules to a single queue not using pre-
ferred operators, we use the all-operators training data.

For the experiments on test instances, we used runtime
(memory) limits of 30 minutes (4 GB). We used the original
test instances from IPC’11 for all domains except Gripper
and Depots, where LAMA was unable to solve more than
a single instance (with or without our rules). We generated
smaller test instances using the generators provided, using
about half as many crates than the IPC’11 test instances in
Depots, and cutting all size parameters by about half in Grip-
per.

Table 2 gives a summary of the results. Considering
the top parts of the tables (FD-default with boosting where
applicable), for 4 out of 9 domains with FD1, for 4 do-
mains with FD2, and for 4 domains with LAMA, the best
coverage is obtained by one of our rule-pruning configura-
tions. Many of these improvements are dramatic: 2 domains
(FD1: Barman and Spanner), 3 domains (FD2: Barman,
Blocksworld, and Parking), respectively 1 domain (LAMA:
Barman). When switching the boosting off in FD2 and
LAMA, a further dramatic improvement occurs in Satel-
lite (note also that, overall, the baselines suffer a lot more
from the lack of boosting than those configurations using our
pruning rules). Altogether, our pruning rules help in differ-
ent ways for different base planners, and can yield dramatic
improvements in 5 out of the 9 IPC’11 domains.

The Achilles heel lies in the word “can” here: While there
are many great results, they are spread out across the dif-
ferent configurations. We did not find a single configura-
tion that combines these advantages. Furthermore, on the
two domains where our pruning techniques are detrimental
– Rovers and TPP – we lose dramatically, so that, for the de-
fault (boosted) configurations of FD2 and LAMA, in overall
coverage we end up doing substantially worse.

In other words, our pruning techniques (a) have high vari-
ance and are sensitive to small configuration details, and (b)
often are highly complementary to standard heuristic search
planning techniques. Canonical remedies for this are auto-
tuning, learning a configuration per-domain, and/or port-
folios, employing combinations of configurations. Indeed,
from that perspective, both (a) and (b) could be good news,
especially as other satisficing heuristic search planning tech-
niques have a tendency to be strong in similar domains.

A comprehensive investigation of auto-tuning and port-

27

FD1 (hFF) FD2 (dual queue hFF+ preferred operators)
base pl. Cons P6= Cons M6= Greedy P 6= Greedy M6= base planner Cons P6= Cons M 6= Greedy P6= Greedy M6=

C C ¬S C ¬S C ¬S C ¬S C T E C T E RT C T E RT C T E RT C T E RT
Barman (30) 0 27 0 0 0 0 0 0 0 14 609.6 271972 13 12.9 28.9 63% 23 17.1 39.2 57% 27 1.0 1.4 47% 21 1.6 2.3 45%
Blocksworld (30) 0 0 0 0 0 0 18 1 0 19 37.4 19916 18 0.6 1.0 54% 19 1.2 1.0 0% 1 0.0 0.0 85% 27 3.6 3.4 17%
Depots (30) 13 13 0 13 0 13 12 13 11 18 48.2 111266 18 0.7 1.1 33% 18 0.8 1.0 20% 23 1.6 2.1 18% 21 3.2 3.5 18%
Gripper (30) 13 0 0 15 0 0 23 0 20 29 3.9 2956 19 0.0 0.1 95% 26 0.0 0.1 90% 19 0.0 0.3 96% 17 0.0 0.2 84%
Parking (30) 1 3 0 4 0 0 30 0 30 7 642.5 16961 8 0.5 0.5 6% 6 0.8 0.8 5% 25 35.5 15.2 2% 14 15.3 11.8 1%
Rover (30) 0 0 29 0 3 0 1 0 0 30 41.9 22682 11 0.0 0.1 91% 12 0.0 0.1 91% 3 0.0 0.1 94% 13 0.0 0.1 83%
Satellite (30) 0 0 0 0 0 0 0 0 1 3 752.3 51741 0 — — — 0 — — — 2 0.5 0.7 54% 0 — — —
Spanner (30) 0 30 0 30 0 30 0 30 0 0 — — 0 — — — 0 — — — 0 — — — 0 — — —
TPP (30) 0 0 0 0 0 0 0 0 0 29 232.5 13057 0 — — — 0 — — — 0 — — — 0 — — —∑

(270) 27 73 29 62 3 43 84 44 62 149 87 104 100 113

no FD preferred operators boosting
Satellite (30) 2 1009,0 68253 0 — — — 12 1,1 11,1 92% 0 — — — 16 3,4 23,2 84%∑

(270) 53 50 65 80 72

LAMA (first iteration) AutoTune Portfolios
base planner Cons P6= Cons M6= Greedy P 6= Greedy M6= Seq-Uniform Seq-Hand

C T E C T E RT C T E RT C T E RT C T E RT C C C
Barman (30) 7 648.1 151749 30 23.8 51.1 53% 30 5.0 9.7 44% 22 0.8 1.3 38% 21 0.8 1.3 36% 23 30 30
Blocksworld (30) 27 63.5 13093 24 0.7 1.0 45% 27 1.3 1.0 0% 6 0.3 0.6 55% 30 14.2 13.5 19% 27 27 28
Depots (30) 23 43.2 37299 22 0.9 1.2 35% 25 0.9 1.0 25% 26 7.0 9.9 22% 25 15.3 17.3 22% 23 24 25
Gripper (30) 29 6.4 3122 9 0.0 0.0 85% 16 0.0 0.0 87% 21 0.0 0.4 93% 24 0.0 0.2 76% 29 28 29
Parking (30) 26 699.3 3669 10 0.4 0.2 7% 16 1.4 1.2 7% 29 10.2 5.5 2% 28 11.3 6.1 2% 28 30 30
Rover (30) 29 211.2 28899 9 0.1 0.2 78% 10 0.1 0.2 80% 0 — — — 7 0.1 0.1 65% 30 29 29
Satellite (30) 4 986.7 34739 0 — — — 0 — — — 0 — — — 0 — — — 3 13 16
Spanner (30) 0 — — 0 — — — 0 — — — 0 — — — 0 — — — 30 30 30
TPP (30) 20 360.5 13262 0 — — — 0 — — — 0 — — — 0 — — — 29 18 18∑

(270) 165 104 124 104 135 222 229 235

no FD preferred operators boosting
Satellite (30) 3 819,7 32301 0 — — — 22 4,1 26,4 85% 1 0,4 0,8 73% 23 4,2 14,0 78%∑

(270) 84 80 106 95 125

Table 2: Performance overview. “C”: coverage; “¬S”: all solutions pruned out (search space exhausted); “T” search time
and “E” number of expanded states (median for base planner, median ratio “base-planner/rules-planner” for planners using our
rules); “RT”: median percentage of total time spent evaluating rules. For each base planner, best coverage results are highlighted
in boldface. By default, FD’s preferred operators queue in FD2 and LAMA is boosted; we show partial results switching that
boosting off. For explanation of the “AutoTune” and “Portfolios” data, see text.

folios is beyond the scope of this paper, but to give a
first impression we report preliminary data in Table 2 (bot-
tom right), based on the configuration space {FD1, FD2,
LAMA} × {P, M, P6=, M 6=} × {boost, no-boost}. For “Au-
toTune”, we created medium-size training data (in between
training data and test data size) for each domain, and se-
lected the configuration minimizing summed-up search time
on that data. For “Portfolios”, we created sequential portfo-
lios of four configurations, namely FD1 Cons P6=, FD2 base
planner (boosted), LAMA Cons P6= (boosted), and LAMA
Greedy M6= not boosted. For “Seq-Uniform” each of these
gets 1/4 of the runtime (i.e., 450 seconds); for “Seq-Hand”,
we played with the runtime assignments a bit, ending up
with 30, 490, 590, and 690 seconds respectively. Despite
the comparatively little effort invested, these auto-tuned and
portfolio planners perform vastly better than any of the com-
ponents, including LAMA.

Regarding rule content and its effect on search, the most
striking, and easiest to analyze, example is Spanner. Failing
to take a sufficient number of spanners to tighten all nuts is
the major source of search with delete relaxation heuristics.
Our single learned rule contains sufficient knowledge to get

rid of that, enabling FD1 to solve every instance in a few
seconds. This does not work for FD2 and LAMA because
their preferred operators prune actions taking spanners (the
relaxed plan makes do with a single one), so that the com-
bined pruning (preferred operators and our rule) removes
the plan. We made an attempt to remedy this by pruning
with our rules on one queue and with preferred operators on
the other, but this did not work either (presumably because,
making initial progress on the heuristic value, the preferred
operators queue gets boosted). The simpler and more suc-
cessful option is to use a portfolio, cf. above.

Regarding conservative vs. greedy training data, consider
FD1. As that search does not employ a complete “back-up”
search queue, if our pruning is too strict then no solution
can be found. The “¬S” columns vividly illustrate the risk
incurred. Note that, in Parking, while the greedy rules prune
out all solutions on FD1 (the same happens when training
them on the preferred-operators training data), they yield
dramatic improvements for FD2, and significant improve-
ments for LAMA. It is not clear to us what causes this.

Regarding the overhead for rule evaluation, the “RT”
columns for LAMA show that this can be critical in Grip-

28

per, Rovers, and Satellite. Comparing this to Table 1 (right
half), we do see that Gripper tends to have long rules, which
complies with our observation. On the other hand, for ex-
ample, Parking has more and longer rules than Rovers, but
its evaluation overhead is much smaller. Further research is
needed to better understand these phenomena.

For TPP, where none of the configurations using our rules
can solve anything and so Table 1 does not provide any in-
dication what the problem is, observations on smaller ex-
amples suggest that solutions otherwise found quickly are
pruned: the FD1 search space became larger when switch-
ing on the rule usage.

Conclusion
We realized a straightforward idea – using off-the-shelf ILP
for learning conjunctive pruning rules acting like preferred
operators in heuristic search planning – that hadn’t been
tried yet. The results are quite good, with substantial to dra-
matic improvements across several domains, yielding high
potential for use in portfolios. Together with the simplicity
of the approach, this strongly suggests that further research
on the matter may be worthwhile. The most immediate open
lines in our view are to (a) systematically explore the design
of complementary configurations and portfolios thereof, as
well as (b) understanding the behavior of the technique in
more detail.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1-2):123–191.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research 24:581–621.
Celorrio, S. J.; de la Rosa, T.; Fernández, S.; Fernández,
F.; and Borrajo, D. 2012. A review of machine learning
for automated planning. Knowledge Engineering Review
27(4):433–467.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2013.
Learning predictive models to configure planning portfolios.
In Proceedings of the ICAPS Workshop on Planning and
Learning (PAL’13).
Chandra, A. K., and Merlin, P. M. 1977. Optimal imple-
mentation of conjunctive queries in relational data bases. In
Proceedings of the 9th ACM Symposium on the Theory of
Computation, 77–90.
Coles, A., and Smith, A. 2007. Marvin: A heuristic search
planner with online macro-action learning. Journal of Arti-
ficial Intelligence Research 28:119–156.
de la Rosa, T., and McIlraith, S. 2011. Learning domain
control knowledge for TLPlan and beyond. In Proceedings
of the ICAPS Workshop on Planning and Learning (PAL’11).
de la Rosa, T.; Celorrio, S. J.; Fuentetaja, R.; and Borrajo, D.
2011. Scaling up heuristic planning with relational decision
trees. Journal of Artificial Intelligence Research 40:767–
813.

Domshlak, C.; Karpas, E.; and Markovitch, S. 2012. Online
speedup learning for optimal planning. Journal of Artificial
Intelligence Research 44:709–755.
Fern, A.; Yoon, S. W.; and Givan, R. 2006. Approximate
policy iteration with a policy language bias: Solving rela-
tional Markov decision processes. Journal of Artificial In-
telligence Research 25:75–118.
Gretton, C. 2007. Gradient-based relational reinforcement-
learning of temporally extended policies. In Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS’07).
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2005. Where ‘ignoring delete lists’ works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.
Huang, Y.-C.; Selman, B.; and Kautz, H. A. 2000. Learning
declarative control rules for constraint-based planning. In
Langley, P., ed., Proceedings of the 17th International Con-
ference on Machine Learning (ICML-00), 415–422. Stan-
ford University, Stanford, USA: Morgan Kaufmann.
Khardon, R. 1999. Learning action strategies for planning
domains. Artificial Intelligence 113(1-2):125–148.
Kvarnström, J., and Magnusson, M. 2003. TALplanner
in the third international planning competition: Extensions
and control rules. Journal of Artificial Intelligence Research
20:343–377.
Martin, M., and Geffner, H. 2000. Learning generalized
policies in planning using concept languages. In Cohn, A.;
Giunchiglia, F.; and Selman, B., eds., Principles of Knowl-
edge Representation and Reasoning: Proceedings of the 7th
International Conference (KR-00), 667–677. Breckenridge,
CO, USA: Morgan Kaufmann.
Minton, S. 1990. Quantitative results concerning the util-
ity of explanation-based learning. Artificial Intelligence
42(2):363–391.
Muggleton, S. 1991. Inductive logic programming. New
Generation Computing 8(4):295–318.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning macro-actions for arbitrary planners and domains.
In Boddy, M.; Fox, M.; and Thiebaux, S., eds., Proceedings
of the 17th International Conference on Automated Planning
and Scheduling (ICAPS’07), 256–263. Providence, Rhode
Island, USA: Morgan Kaufmann.
Núñez, S.; Borrajo, D.; and López, C. L. 2012. Performance
analysis of planning portfolios. In Borrajo, D.; Felner, A.;
Korf, R.; Likhachev, M.; Linares López, C.; Ruml, W.; and

29

Sturtevant, N., eds., Proceedings of the 5th Annual Sympo-
sium on Combinatorial Search (SOCS’12). AAAI Press.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), 273–280. AAAI Press.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Roberts, M., and Howe, A. 2009. Learning from planner
performance. Artificial Intelligence 173(5-6):536–561.
Ross, S., and Bagnell, D. 2010. Efficient reductions for
imitation learning. In International Conference on Artificial
Intelligence and Statistics, 661–668.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012.
Learning portfolios of automatically tuned planners. In
Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B.,
eds., Proceedings of the 22nd International Conference on
Automated Planning and Scheduling (ICAPS’12). AAAI
Press.
Srinivasan, A. 1999. The Aleph manual. Available from
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2012. Ap-
plicability conditions for plans with loops: Computability
results and algorithms. Artificial Intelligence 191-192:1–19.
Virseda, J.; Borrajo, D.; and Alcázar, V. 2013. Learning
heuristic functions for cost-based planning. In Proceedings
of the ICAPS Workshop on Planning and Learning (PAL’13).
Walsh, T. J., and Littman, M. L. 2008. Efficient learning
of action schemas and web-service descriptions. In Fox,
D., and Gomes, C., eds., Proceedings of the 23rd National
Conference of the American Association for Artificial Intel-
ligence (AAAI-08), 714–719. Chicago, Illinois, USA: AAAI
Press.
Xu, Y.; Fern, A.; and Yoon, S. 2009. Learning linear ranking
functions for beam search with application to planning. The
Journal of Machine Learning Research 10:1571–1610.
Xu, Y.; Fern, A.; and Yoon, S. W. 2010. Iterative learn-
ing of weighted rule sets for greedy search. In Brafman,
R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A., eds.,
Proceedings of the 20th International Conference on Au-
tomated Planning and Scheduling (ICAPS’10), 201–208.
AAAI Press.
Yoon, S. W.; Fern, A.; and Givan, R. 2002. Inductive policy
selection for first-order MDPs. In Darwiche, A., and Fried-
man, N., eds., Proceedings of the 18th International Confer-
ence on Uncertainty in AI (UAI-02), 568–576. Edmonton,
Alberta, Canada: Morgan Kaufmann.
Yoon, S. W.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning. Journal of Machine
Learning Research 9:683–718.

30

What Does it Take to Render h+(ΠC) Perfect?

Jörg Hoffmann and Marcel Steinmetz
Saarland University

Saarbrücken, Germany
hoffmann@cs.uni-saarland.de, s9mrstei@stud.uni-saarland.de

Patrik Haslum
The Australian National University & NICTA

Canberra, Australia
patrik.haslum@anu.edu.au

Abstract

It is well-known that h+(ΠC) is perfect in the limit, i. e., we
can always choose C so that h+(ΠC) = h∗. But the proof
is trivial (select C as the set of all conjunctions), and com-
pletely ignores the actual power of h+(ΠC), basically pre-
tending that h+ is the same as h1. It is thus interesting to ask:
Can we characterize the power of h+(ΠC) more accurately?
How large does C have to be, under which circumstances?
We present first results towards answering these questions.
We introduce a “direct” characterization of h+(ΠC), in terms
of equations, not employing a compilation step. We iden-
tify a first tractable fragment (similar to fork causal graphs)
where size-2 conjunctions suffice to render h+(ΠC) perfect.
We present results comparing h+(ΠC) to alternative par-
tial delete relaxation methods (red-black planning and fluent
merging). We finally present a number of wild speculations
as to what might be interesting to investigate in the future.

Disclaimer: We are enthusiastic about the research direc-
tion, but our work as yet raises far more questions than an-
swers. We think that HSDIP is a great forum to discuss this
big riddle, and we hope that other researchers may feel com-
pelled to look at it.

Introduction
Haslum’s (2009) work on compiling fact conjunctions into
the planning task, allowing to simulate hm via h1, led a few
years later to a partial delete relaxation method able to inter-
polate all the way between h+ and h∗: The ΠC compilation
(Haslum 2012) allows to select any subset C of fact con-
junctions, and outputs a compiled task ΠC so that h+(ΠC)
is admissible and perfect in the limit, i. e., we can always
choose C so that h+(ΠC) = h∗.

The size of ΠC is worst-case exponential in |C|, which
has been solved via a slightly weaker compilation ΠC

ce (Key-
der, Hoffmann, and Haslum 2012) exploiting conditional ef-
fects, but for the sake of simplicity we abstract from that
issue here and consider only h+(ΠC). Our primary ob-
jective is to scratch the itch that results from reading the
proof of h+(ΠC) convergence: The proof is derived from
the inequalities (a) hm ≤ h1(ΠC) when C contains all
m-tuples, and (b) h1(ΠC) ≤ h+(ΠC). In other words,
h+(ΠC) convergence is inherited from that of hm which is
completely impractical (set m to the total number of facts).

The proof completely ignores the actual added power of
h+(ΠC), namely (a) being able to choose C freely, as well
as (b) the advantage of h+ over h1!

Another way to say this is that our theory so far is
completely disconnected from practice, where of course
h+(ΠC) with C being all fact pairs will in most cases be
a much better heuristic than h2. Can we reconcile the theory
with practice?1 Can we characterize more accurately the cir-
cumstances under which h+(ΠC) becomes perfect? When
does that require C to be exponentially large, and when is
polynomial-size C enough? Can we exploit such insights to
choose C in a targeted manner?

We believe that these are interesting research questions.
We are not so sure about the significance of our answers so
far. Certainly, we are nowhere near answering the last ques-
tion, i. e., it is unclear how (and whether at all) our results
so far can be made useful in practice. Our hope is that other
HSDIP researchers will find our questions and partial an-
swers inspiring, leading to interesting discussions and, even-
tually, better progress on this subject.

After preliminaries (notations, ΠC compilation), we make
a few simple observations about the size of C depending
on the value of h∗. We then introduce a “direct” charac-
terization of h+(ΠC), in terms of equations, that does not
need to go via a compilation step (as a side effect, this also
yields a somewhat novel view on h+). Towards an anal-
ysis of “tractable fragments”, i. e., planning sub-classes in
which polynomial-size C suffices to render h+(ΠC) per-
fect, we introduce a first such fragment similar to fork causal
graphs, where size-2 conjunctions suffice. We present re-
sults comparing h+(ΠC) to alternative partial delete relax-
ation methods, namely red-black planning (Katz, Hoffmann,
and Domshlak 2013b; 2013a; Katz and Hoffmann 2013) and
fluent merging (van den Briel, Kambhampati, and Vossen
2007; Seipp and Helmert 2011). We close the paper (“con-
clusion”) with a number of wild speculations as to what
might be interesting to investigate in the future.

1To be fair, it should be said that, while the above proof is given
by both Haslum (2012) and Keyder et al. (2012), Haslum also gives
an alternative proof via convergence of iterative relaxed plan re-
finement. The latter proof, however, involves excluding all flawed
relaxed plans one-by-one, which does not seem to be any more di-
rectly illuminating regarding the practical power of h+(ΠC).

31

Preliminaries
In difference to prior works on ΠC , we use an FDR frame-
work. Planning tasks are tuples Π = (V,A, I,G) of vari-
ables, actions, initial state, and goal, each action a being a
pair (pre(a), eff (a)) as usual. We consider uniform costs
only (i. e., all action costs are 1). We refer to variable/value
pairs as facts, and we perceive (partial) variable assignments
as sets of facts. The set of all facts in a planning task is de-
noted F . We will from now on assume this setup tacitly, i. e.,
we won’t repeat it in formal claims etc.

We say that a set X of facts is consistent if there does not
exist a variable v so that X contains more than one value for
v. Otherwise, we say that X is contradictory.

When we talk about heuristic functions h, we mean their
value h(I) in the initial state (i. e., for the moment we do
not consider renderingh+(ΠC) perfect across all states). By
h(Π′), we denote a heuristic function for Π whose value is
given by applying h in a modified task Π′. It is sometimes
of advantage to make explicit that h is a heuristic computed
on Π itself; we will denote that by h(Π).

The delete relaxation in FDR, and thus h+ in our setup,
is defined by interpreting states as fact sets allowed to be
contradictory, and where applying action a to state s yields
the outcome state s ∪ eff (a); the initial state is the same as
before. Intuitively, this just means that we are interpreting
the effect list eff (a) exactly like the add lists in STRIPS.

The ΠC compilation and its relatives are based on intro-
ducing π-fluents of the form πc, each of which represents a
conjunction c of facts. In the context of FDR, πc is a Boolean
variable; we will treat it like a STRIPS fact, e. g., we write
πc ∈ s if πc is true in s, and πc 6∈ s otherwise. We identify
conjunctions with fact sets. For fact setsX , we use the short-
handXC = X∪{πc | c ∈ C∧c ⊆ X}. In other words,XC

consists of the set of facts X itself, together with all facts πc
representing conjunctions c ∈ C such that c ⊆ X . With
this, ΠC can be defined as follows:

Definition 1 (The ΠC compilation) Given a set C of con-
junctions, ΠC is the planning task (V C , AC , IC , GC),
where V C = V ∪ {πc | c ∈ C}, and AC contains an action
aC

′
for every pair a ∈ A, C ′ ⊆ C such that

• for all c′ ∈ C ′, eff (a)∩ c′ 6= ∅, and eff (a)∪ c′ is consis-
tent.

Here, aC
′

is given by

• pre(aC
′
) = (pre(a) ∪⋃c′∈C′(c′ \ eff (a)))C , and

• eff (aC
′
) = eff (a) ∪ {πc′ | c′ ∈ C ′}.

This definition, apart from using FDR instead of STRIPS,
diverges from Haslum’s (2012) in three ways. We do not
demand C ′ to be “downward closed”, i. e., to contain all c′
subsumed by C ′; we do not automatically include πc′ facts
relying on non-deleted preconditions; and we do not include
any delete effects. None of these changes have any conse-
quences for the results we present. The first just introduces
some superfluous actions, the second change means that we
need to include these πc′ facts explicitly into C ′, and the
third change is made as such effects are irrelevant to h+

which is our exclusive focus here.

We denote by Cm := {c ⊆ F | |c| ≤ m} the set of all
size-≤ m conjunctions. We denote ΠC with C = Cm by
ΠCm. We will often consider ΠCm only, abstracting from
the ability of ΠC to choose an arbitary C. The underly-
ing intuition/hypothesis is that, in most cases, this abstrac-
tion level will suffice to determine the desired distinction
between polynomial-size C and exponentially large C.

We will sometimes employ regression-based characteri-
zations of h∗ and h+. The regression of fact set g over ac-
tion a, R(g, a), is defined if eff (a) ∩ g 6= ∅ and eff (a) ∪ g
is consistent.2 If R(g, a) is defined, then R(g, a) = (g \
eff (a)) ∪ pre(a); otherwise, we write R(g, a) = ⊥.

Obviously, h∗ = h(G) where h(g), for a set g of facts, is
the function that satisfies h(g) =
{

0 g ⊆ I
1 + mina∈A,R(g,a)6=⊥ h(R(g, a)) otherwise (1)

Similarly, h+ = h(G) where h(g), for a set g of facts, is the
function that satisfies h(g) =

{
0 g ⊆ I
1 + mina∈A,eff (a)∩g 6=∅
h((g \ eff (a)) ∪ pre(a)) otherwise

(2)

Under the delete relaxation, a sub-goal g can be achieved
through action a iff part of it is achieved by a’s effect, re-
gardless of any contradictions that may be present.

Remember finally that hm is defined as hm = h(G)
where h(g), for a set g of facts, is the function that satis-
fies h(g) =




0 g ⊆ I
1 + mina∈A,R(g,a)6=⊥ hm(R(g, a)) |g| ≤ m
maxg′⊆g,|g′|≤m hm(g′) otherwise

(3)

The Size of C vs. the Value of h∗

A possible starting point for thinking about the size of C
is comparing it to the value of h∗. A trivial observation is
immediately made:

Proposition 1 If h+(ΠC) < ∞, then h+(ΠC) − h+(Π) ≤
|C|.

This holds simply because a relaxed plan needs to achieve
every fact (including π-fluents) at most once. We get:

Proposition 2 If, in a planning task family {Πn} whose size
relates polynomially to n, h∗ grows exponentially in n, then
so must C in order to render h+(ΠC) perfect.

Denoting by Fn the set of facts in Πn, with Proposition 1
we have |C| >= h∗(Πn)− Fn, showing this claim.

Proposition 2 opens the question whether there exist cases
with polynomial h∗, but where super-polynomial growth of
C is needed nevertheless. The answer is a qualified “yes”:

2It is sometimes required also that (g \ eff (a)) ∪ pre(a) is
consistent. The two definitions are equivalent as contradictory sub-
goals will be unreachable anyhow. We use the simpler definition as
it is closer to h+ and its relatives.

32

Proposition 3 There exist planning task families {Πn}
whose size relates polynomially to n, where h∗ grows poly-
nomially in n for solvable tasks, but where (unless P=NP)
C must grow super-polynomially in n in order to render
h+(ΠC) perfect.
Proof: Simply encode SAT into a planning task whose size
relates polynomially to the number n of clauses, and where
a plan consists of choosing a value for each variable, then
evaluating that all clauses are satisfied. Then h∗ grows poly-
nomially in n for solvable tasks. Assume that polynomial-
sized C suffices to render h+(ΠC) perfect. As relaxed plan
existence is equivalent to h1 < ∞, we could then in poly-
nomial time decide whether or not h∗ = h+(ΠC) < ∞,
yielding P=NP.

Proposition 3 is only a “qualified” yes because its setup
is not fair: Whereas we require h∗ to grow polynomially
only on solvable tasks (ignoring the ∞ cases), we require
h+(ΠC) to be perfect everywhere, including the ∞ cases.
For solvable SAT instances, h+(ΠC) might very well get
perfect with small C already – or, at least, the current proof
makes no statement about that.

Open Question 1 Do there exist families of solvable tasks
{Πn} whose size relates polynomially to n, where h∗

grows polynomially in n, but where C must grow super-
polynomially in n to render h+(ΠC) perfect? Most ex-
tremely, where on top of this h∗ can be computed in poly-
nomial time?

We conjecture that the answer to this one is “yes”, but our
proof attempts so far did not succeed. Note here that the sim-
ple proof of Proposition 3 above relies crucially on needing
to test only whether h+(ΠC) = ∞, which can be done in
polynomial time. On solvable tasks, as demanded in Open
Question 1, perfect h+(ΠC) will be finite, so even for small
C it is NP-hard to decide whether a given bound is met. For
illustration: Say that, in the proof of Proposition 3, we in-
troduce a “side route” in the SAT encoding, rendering unsat
cases solvable but via a longer plan. Then we can still read
off sat vs. unsat from perfect h+(ΠC), but we can no longer
do so in polynomial time, so do not get a contradiction to the
hardness of SAT.

Characterizing h+(ΠC) w/o Compilation
Trying to lead proofs about h+(ΠC), it can be annoying that
one always has to do the mapping from original task to com-
piled task first. To make do without this, we now character-
ize h+(ΠC) directly in terms of the original planning task.
Focusing on ΠCm only for the moment, h+(ΠCm) can be
understood as the following hybrid of hm and h+:

Definition 2 (Marrying hm with h+: hm+) The criti-
cal path delete relaxation heuristic hm+ is defined as
hm+ := hm+({G}), where hm+(G), for a set G of fact sets,
is the function that satisfies hm+(G) =




0 ∀g ∈ G : g ⊆ I
1 + mina∈A,∅6=G′⊆{g∈G|R(g,a)6=⊥}
hm+((G \ G′) ∪ {⋃g∈G′ R(g, a)}) ∀g ∈ G : |g| ≤ m

hm+(
⋃

g∈G{g′ ⊆ g | |g′| ≤ m}) otherwise

The underlying idea here is that the delete relaxation can
be understood as allowing to achieve sub-goals separately:
We worry only about the part of the sub-goal we can sup-
port, not about other parts that the same action may contra-
dict. For m = 1, this means to ignore “delete lists” alto-
gether as the same action never both supports and contra-
dicts a single fact. For m > 1, we have to adequately (non-
contradictingly) achieve all size-m sub-goals. That general-
ization is exactly the one made by h+(ΠCm). Definition 2
captures this by splitting up the goal (initially, the global
goal fact set of the planning task) into all size-≤ m sub-goals
in the bottom case. For any given action in the middle case,
these sub-goals are regressed separately, so each must be
achieved non-contradictingly but contradictions across sub-
goals are ignored.

There are two important subtleties in Definition 2, which
distinguish it from what we would have to write in order to
capture ΠC

ce instead of ΠC . First, we hand over the union⋃
g∈G′ R(g, a) of the regressed sub-goals, forcing achieve-

ment of all these conditions conjunctively, like in ΠC when
selecting C ′, for aC

′
, to correspond to the set of conjunc-

tions G′. In particular, taking the union will give rise to
cross-dependencies arising from several size-≤ m sub-goals
g ∈ G′ (“cross-context π-fluents” in the parlance of Keyder
et al. (2012)). To capture ΠC

ce , we can instead hand over each
sub-goal g ∈ G′ separately. Second, in the minimization, we
minimize over pairs of action a and achieved sub-goal set
G′, as opposed to minimizing only over a and forcing G′ to
be maximal, i. e., setting G′ = {g ∈ G | R(g, a) 6= ⊥}.
The latter would be suitable for capturing ΠC

ce , where there
is no point in leaving out a “possible benefit” of the action
a. In ΠC , that is not so because larger G′ may give rise to
additional cross-dependencies. For example, if eff a = {p}
and G = {{p, q1}, {p, q2}} where q1 and q2 are impossible
to achieve together, then G′ = {{p, q1}, {p, q2}} leads to the
unsolvable sub-goal {{q1, q2}}, while G′ = {{p, q1}} leads
to the sub-goal {{q1}, {p, q2}}which is solvable because we
can achieve each of q1 and {p, q2} separately.

To prove that Definition 2 does indeed capture h+(ΠCm),
we start with the simple case m = 1, which will be em-
ployed below in the proof for the general case:

Theorem 1 h+ = h1+.
Proof: We show that, for m = 1, the hm+ equation simpli-
fies to Equation 2. For m = 1, the bottom case just splits G
up into its single goal facts. Hence the internal structure of
G – the fact subsets it contains – does not matter; it matters
only which facts are contained in any of these fact subsets.
We can thus perceive G as a set goal facts, equivalently re-
writing the equation to:
{

0 ∀g ∈ G : g ∈ I
1 + mina∈A,∅6=G′⊆{g∈G|R({g},a)6=⊥}
h1+((G \ G′) ∪⋃g∈G′ R({g}, a)) otherwise

For a single goal fact g ∈ G′, R({g}, a) is defined iff g ∈
eff (a). Thus we can re-write the above to:
{

0 ∀g ∈ G : g ∈ I
1 + mina∈A,∅6=G′⊆G∩eff (a)

h1+((G \ G′) ∪⋃g∈G′ R({g}, a)) otherwise

33

Next, consider the regressed goal (G\G′)∪⋃g∈G′ R({g}, a).
For each g ∈ G′, R({g}, a) = pre(a). Thus the regressed
goal is (G \ G′) ∪ pre(a), giving us:

{
0 ∀g ∈ G : g ∈ I
1 + mina∈A,∅6=G′⊆G∩eff (a)

h1+((G \ G′) ∪ pre(a)) otherwise

Observe that there is no point in choosing G′ ⊂ G ∩ eff (a),
i. e., using a to achieve a strict subset of its possible benefit
G ∩ eff (a), because that can only lead to a larger sub-goal
(G \ G′) ∪ pre(a). So we equivalently obtain:

{
0 ∀g ∈ G : g ∈ I
1 + mina∈A,∅6=G′=G∩eff (a)

h1+((G \ G′) ∪ pre(a)) otherwise

With minimal re-writing, this turns into:
{

0 G ⊆ I
1 + mina∈A,∅6=G∩eff (a)

h1+((G \ eff (a)) ∪ pre(a)) otherwise

This last equation is obviously equivalent to Equation 2,
proving the claim.

For m = 1, ΠCm = Π so h+ = h+(ΠCm) and by The-
orem 1 we get h+(ΠCm) = hm+(Π) as desired. We now
generalize this to arbitrary m:

Theorem 2 h+(ΠCm) = hm+(Π).
Proof Sketch: By Theorem 1, for any Π we have h+(Π) =
h1+(Π). Applying this to Π := ΠCm, we get h+(ΠCm) =
h1+(ΠCm). It thus suffices to prove that h1+(ΠCm) =
hm+(Π). This is straightforward (but notationally cum-
bersome) based on comparing two equations, characterizing
h1+(ΠCm) respectively hm+(Π).

For h1+(ΠCm), our equation (called Equation I) simply
applies Definition 2 to ΠCm:




0 ∀g ∈ G : g ⊆ IC
1 + minaC′∈AC ,∅6=G′⊆{g∈G|R(g,aC′)6=⊥}
hm+((G \ G′) ∪ {⋃g∈G′ R(g, aC

′
)}) ∀g ∈ G : |g| ≤ 1

hm+(
⋃

g∈G{g′ ⊆ g | |g′| = 1}) otherwise

For hm+(Π), we need to do a little more work as we
need to get rid of an irrelevant conceptual difference be-
tween ΠCm and the equation defining hm+: Whereas the
latter splits up sub-goals only if their size is greater than m,
ΠCm always includes all possible π-fluents, even into sub-
goals of size ≤ m. Our new equation (called Equation II)
modifies Definition 2 to do the same. We call G completed
if, for all g ∈ G, every g′ ⊆ g with |g′| ≤ m is contained in
G as well:




0 ∀g ∈ G : g ⊆ I
1 + mina∈A,∅6=G′⊆{g∈G|R(g,a)6=⊥}
hm+((G \ G′) ∪ {⋃g∈G′ R(g, a)})

G is completed and ∀g ∈ G : |g| ≤ m
hm+(

⋃
g∈G{g′ ⊆ g | |g′| ≤ m}) otherwise

This is equivalent because we only add subsumed sub-goals.
Viewing each of Equations I and II as a tree whose root

node is the “initializing call” containing the goal of the

planning task, we show that the two trees are isomorphic.
Namely, using the suffixes [I] and [II] to identify the tree,
whenever the middle case applies we have:

(∗) G[I] = {{πg} | g ∈ G[II]}

To understand this intuitively, consider Equation II. This
works on size-≤ m sub-goals. Equation I works on single-
ton π-fluents representing size-≤ m sub-goals. The original
goal G gets split up into size-≤ m subsets in II, vs. the π-
fluents GC in I, so we have (*). A sub-goal g[I] = πg in
I can be regressed through aC

′
iff a achieves part of g and

contradicts none of it; the same condition is applied in II.
So the set G′ of sub-goals tackled by a in II corresponds via
(*) with that tackled by aC

′
in I. Finally, with G′ having (*),

the regressed sub-goal in I collects pre(a) and g \ eff (a)
for all πg ∈ G′; the same is done in II, so (*) is preserved,
concluding the proof.

We remark that, from known results about h+(ΠCm),
Theorem 2 implies that both hm ≤ hm+ and h+ ≤ hm+:
The marriage of hm with h+ yields a heuristic stronger than
each of its sources, as one would expect.

Regarding dead-end detection power, it is easy to see that
hm+ = ∞ iff hm = ∞, i. e., like for m = 1, the dead-end
detection power of hm+ is the same as that of the corre-
sponding critical-path heuristic.3

The above can be generalized to deal with arbitrayC, i. e.,
to compute hC+ = h+(ΠC) using arbitrary ΠC instead of
ΠCm: In the bottom case of Definition 2, instead of split-
ting up into all size-m subsets, split up into the sets c ∈ C
(adapting the condition for the middle case accordingly to
∀g ∈ G∃c ∈ C : g ⊆ c).

Despite these niceties, we can’t help but record:

Open Question 2 What is this good for?

We see two potential uses: (a) as a more direct way to for-
mulate h+(ΠC) and thus ease leading proofs about its prop-
erties; and (b) as a more direct way to compute h+(ΠC),
not necessitating a compilation step and thus being more
efficient. Regarding (a), we haven’t found any use case
yet. Regarding (b), the most immediate idea is to extract
“h2FF” from a planning graph in a similar manner as for hFF

from a relaxed planning graph, considering pairs of sub-goal
facts instead of single facts, following the correspondence
between the equations characterizing h2+ vs. h1+. How-
ever, there is no need for these equations to come up with
h2FF, and indeed Alcazar et al. (2013) already devised, im-
plemented, and tested a variant of this idea, simply from the
perspective of extending hFF to correspond to ΠC2. As Al-
cazar et al. also already pointed out, “hmFF” for arbitrary m
can be computed from hm respectively from an m-planning
graph maintaining size-m mutexes. From that perspective,
the main value of our work here is providing a theory back-
ground towards understanding and extending that technique.

3Similarly, for any C whose largest conjunction has size m,
h+(ΠC) =∞ only if hm =∞.

34

It appears straightforward to extend hmFF to arbitrary con-
junction sets C. A more tricky question, that might be an-
swered using our formalization, is how exactly hmFF relates
to the previous techniques hFF(ΠC) vs. hFF(ΠC

ce).

Causal Graphs et al.
We now get back to the core motivation of this work,
“scratching the itch”. The aim is to understand under what
circumstances “small” (i. e., polynomial-size) C is enough
to render h+(ΠC) perfect. As an approach towards an-
swering that question, we have taken the line of identifying
causal graph (CG) fragments (plus restrictions on the DTGs
as needed) where h+(ΠC2) is perfect. In other words, adopt
distinction lines as in many previous works on tractability,
and see how far they carry when using only fact pairs.

The restriction to fact pairs is a bit arbitrary and mainly
practically motivated. In particular, Keyder et al.’s (2012)
implementation of semi-relaxed plan heuristics uses a subset
of fact pairs. Then again, using all fact pairs in that imple-
mentation typically is infeasible, so we’re still on the ideal-
ized side in our theory. In any case, the far more limiting fact
here is that we got stopped in tracks right at the beginning.
Having in mind initially to kill fork CGs quickly and then
move on to more interesting quarters, we ended up spending
lots of time racking our brains about even very small exten-
sions to fork CGs, and indeed quite some time about fork
CGs themselves.

What follows is thus a very simple fragment that we did
manage to analyze. We remark that the proof is derived
from a proof for (a generalization of) the VisitAll domain,
for which also selecting all fact pairs is enough to render
h+(ΠC) perfect.

We presume the reader is familiar with fork causal graphs.
We will denote them here as planning tasks with a single
“root variable” x, and with n “leaf” variables y1, . . . , yn.
The actions moving x do not have any preconditions on vari-
ables other than x, while the actions moving yi may have
preconditions on both yi and x. So far, this is the standard
fork CG setup. We impose the additional restriction, for all
yi, that yi is Boolean and that there is only a single action
affecting yi. This essentially means that achieving the goal
for yi comes down to reaching a particular node in DTGx

(namely the one forming the precondition for yi). We fur-
thermore impose the restriction that x has no own goal, i. e.,
solving the task is just about moving the leaves into place
(we will show later on that this restriction can be lifted, at
least partially), and that every action moving x has a pre-
condition on x.

We assume WLOG that initially each yi is false, that the
goal for each yi is to be true (if yi has no goal we can re-
move it without affecting either of h∗ or h+(ΠC)), and that
the action for each yi does have a precondition on x (else yi
moves independently and can be removed affecting h∗ and
h+(ΠC) in exactly the same way) and no precondition on yi
(that precondition could only be yi = False, which is al-
ready true anyhow and thus affects neither h∗ nor h+(ΠC)).

We denote the DTG of x as a graph DTGx = (N,E)
where the nodes N are the x values and the edges E corre-
spond to the actions moving x. We denote by ni ∈ N the

precondition on x of the action moving yi, and by Ny the
union of all ni, i. e., those nodes we need to reach. We de-
note by n0 the initial value of x. We denote facts x = n
simply by n, and we denote facts yi = True simply by yi.
We denote actions moving x by go(d, d′), and actions mov-
ing yi by do(i).

We refer to the class of planning tasks just described as
simple forks with binary leaves.

Theorem 3 h+(ΠC2) is perfect for simple forks with binary
leaves.

The proof of this theorem is via a series of lemmas. First,
it is easy to see that h2-mutexes are recognized by ΠC2:

Lemma 1 If h2({p, q}) = ∞, then πp,q is unreachable in
ΠC2.

This is simply because ΠC2 captures support paths for all
pairs of facts, just like h2 does.

The following lemmas are basically concerned with paths,
through the graph (N,E), that must be present in a relaxed
plan for ΠC2. In the proofs, we will not explicitly distin-
guish the compiled actions in ΠC2 from the original actions
they are based on; instead, we will just talk about what pre-
conditions are needed (will be present in ΠC2) if the orig-
inal action a is to add a particular π-fluent πc, i. e., if the
corresponding conjunction c is added into the set C ′ for the
compiled action aC

′
.

The first lemma is a simple observation about achieving a
pair of facts of the form “have yi and now at n”. Namely, to
get that pair, we first need to get yi and then move along a
path to n:

Lemma 2 Let Π be a simple fork with binary leaves, and let
~a = 〈a1, . . . , am〉 be any sequence of actions applicable in
ΠC2. Let sk be the state that results from executing the prefix
〈a1, . . . , ak〉. If πyi,n ∈ sk, then 〈a1, . . . , ak〉 contains a
subsequence of actions that form a directed path in (N,E)
from ni to n.
Proof: By induction on k. The base case, k = 0, is trivial,
as it does not contain any πyi,n. Assume the claim holds for
all j < k. The induction step proves it holds for k as well.

If πyi,n ∈ sk, this either means that πyi,n ∈ sk−1 (cov-
ered by induction hypothesis), or that ak adds πyi,n. Say
first that ak = do(i). Then πyi,n can only be added if the
compiled action has the precondition πni,n (only the yi part
can be added, n must have been true beforehand already).
With Lemma 1, we must have ni = n or else the compiled
action’s precondition would be unreachable, in contradiction
to applicability. But then, the directed path from ni to n is
empty and the claim holds trivially.

Say now that ak = go(d, d′). Then πyi,n can only be
added if ak = go(d, n) (only the n part can be added, yi
must have been true beforehand already). But that compiled
action has the precondition πyi,d, so by induction hypothesis
〈a1, . . . , ak−1〉 contains a subsequence of actions that form
a directed path from ni to d in (N,E). Adding ak to that
subsequence forms the desired path from ni to n.

Our next lemma exploits the previous observation to show
that any relaxed plan for ΠC2 must, for every pair of the

35

target nodes Ny , contain a directed path between these two
nodes in some order:4

Lemma 3 Let Π be a simple fork with binary leaves, and
let ~a = 〈a1, . . . , am〉 be a relaxed plan for ΠC2. Then, for
every ni 6= nj ∈ Ny , there is a subsequence of actions in ~a
that form a directed path in (N,E) either from ni to nj or
from nj to ni.

Proof: The goal in ΠC2 contains πyi,yj . The only compiled
actions which can achieve this are (1) do(i) with precon-
dition πyj ,ni (only the yi part can be added, yj must have
been true beforehand already), or (2) do(j) with precon-
dition πyi,nj

(only the yj part can be added, yi must have
been true beforehand already). Thus ~a must contain either
of these two compiled actions. If ~a contains (i) do(i) with
precondition πyj ,ni

, then by Lemma 2 ~a contains a subse-
quence of actions that form a directed path in (N,E) from
nj to ni, showing the claim. Similarly for (2).

We are now finally ready to prove Theorem 3 itself, by
exploiting Lemma 3 in an argument as to how a relaxed plan
can move through DTGx:

Proof:[of Theorem 3] Let Π be a simple fork with binary
leaves, and let ~a = 〈a1, . . . , am〉 be a relaxed plan for ΠC2.
It suffices to prove that there exists a subsequence of ~a that
is a plan for Π.

By Lemma 3, for each pair of nodes ni, nj ∈ Ny , ~a con-
tains a path from from ni to nj or vice versa. Hence, the
graph

Ty = 〈Ny, {(ni, nj) | a path from ni to nj is in ~a}〉
(or a subgraph of it, should ~a happen to contain paths in
both directions between some pairs of nodes) is a tourna-
ment graph, and therefore must contain a Hamiltonian path,
i.e., a directed path that visits every node (exactly once,
in the graph Ty).5 Furthermore, ~a must contain a path
from n0 to every ni, as otherwise it could not achieve yi.
Hence, a subsequence of ~a must form a contiguous path,
n0, ni1 , . . . , nin , through the nodes inNy . Although in~a the
do(i) actions can be applied at any time point after passing
through ni, whereas a plan for Π must apply do(i) exactly
when it is at ni, the summed-up cost for applying all these
actions is the same, proving the claim.

Having concluded this proof, the immediate question is
whether all the restrictions on Π, such as the root variable
having no own goal, and every action moving it having a
precondition, are necessary.

4As a reminder: Being a relaxed plan for ΠC2 is the same as
being a plan for ΠC2, as we do not include any delete effects in our
definition of the compilation here. We include the “relaxed” in the
hope that being explicit is clearer.

5A tournament graph on n nodes is any directed graph obtained
by assigning a direction to every edge in a complete undirected
graph of size n. The proof that such graphs must contain a Hamil-
tonian path is due to Rédei (1934). A proof can be found in, e.g.,
the textbook by Moon (1968), or at http://en.wikipedia.
org/wiki/Tournament_(graph_theory).

Some of the restrictions can be relaxed. For example, if
the root variable x has a goal value, nx, and nx 6= ni for all
ni ∈ Ny , the theorem still holds. The goal of ΠC2 includes
πyi,nx

, for all ni ∈ Ny , so by Lemma 2 any relaxed plan ~a
contains a path from ni to nx. Thus, adding nx to the graph
Ty in the proof above still leaves it a tournament graph, and
because all edges between nx and other nodes are (or can be
chosen to be) directed towards nx, this node can appear last
in the Hamiltonian path.

The restriction to a single root variable “target node” per
leaf variable (i.e., a single precondition x = ni common to
actions that achieve yi = True), on the other hand, is indeed
necessary: if there are two options for achieving a fact yi,
we can construct a graph which allows relaxed plans in ΠC2

to cheat, by achieving pairs πyi,yj
and πyi,yl

on separate
branches of a directed tree. As a simple example, suppose
there are three leaf variables, y1, y2 and y3, and DTGx is
the following graph:

0

1 2

3 1′

where 0 is the initial state of x, action do(i) has precon-
dition x = i, but there is an additional action do′(1) with
precondition x = 1′ (and effect y1 = True). In ΠC2,
the relaxed plan go(0, 1), do(1), go(1, 3), do(3) achieves
πy1,y3

, go(0, 2), do(2), go(2, 3), do(3) achieves πy2,y3
and

go(0, 2), do(2), go(2, 1′), do′(1) achieves πy1,y2
, and hence

the concatenation of all three achieves the goal. But the real
problem has no solution.

Many of the other questions surrounding the restrictions
in Theorem 3 do appear easy to answer, while a few may be
hard. The reason we do not yet have answers is that most of
our time was spent considering a slighly more general frag-
ment than fork causal graphs, namely a more direct general-
ization of the VisitAll domain, where moving the root vari-
able may have arbitrary side effects on subsets of Boolean
leaf variables. This setting, it turned out, is substantially
more complex to analyze.

In any case, the real open question remains:

Open Question 3 Can the approach of analyzing CG-
based tractable fragments ever be brought up to a level suit-
able for targeted selection of C in practice?

Our idea here is, if for sufficiently large/many fragments
of planning we know exactly which C are needed to ren-
der h+(ΠC) perfect, then we may be able to use these as
“building blocks” for selection methods with a strong the-
ory justification. In particular, for fact-pair cases, the idea
would be to not necessarily consider all fact pairs but just
the minimal subsets required.

Our speed of progress so far, and counter-examples iden-
tified for very simple fragments of planning, suggests that
this approach is challenging to say the least, doomed per-
haps. But the jury is still out. We speculate some more in
the conclusion, and for now get back to some actual results:

36

h+(ΠC) vs. Red-Black vs. Fluent Merging
A different way to approach the power of h+(ΠC) is to com-
pare it with other partial delete relaxation methods, i. e., al-
ternative methods able to interpolate all the way between h+
and h∗. Exactly two such alternative methods are known, at
this time: red-black planning (Katz, Hoffmann, and Domsh-
lak 2013b; 2013a; Katz and Hoffmann 2013) and fluent
merging (van den Briel, Kambhampati, and Vossen 2007;
Seipp and Helmert 2011). Which of these approaches can
simulate which other ones, i. e., compute an at least as good
heuristic, with polynomial overhead?

As fluent merging necessitates the use of 0-cost actions,
in what follows we consider the arbitrary-costs case. The
answers to the question we are posing are the same anyhow
when assuming uniform costs (for those cases where that
assumption is possible).

In fluent merging, we choose a subsetM ⊆ V of variables
to merge, and replace them with a single variable vM whose
domain is the cross-product of the domains of v ∈ M .6
Every action a that touches any v ∈ M is then replaced
by a set of actions resulting from the enumeration of pos-
sible precondition/effect values of vM (i. e., states over M)
that match a’s precondition and effect. That is, we com-
plete eff (a) with an assignment p to the remaining variables,
where p matches pre(a); we complete pre(a) with the same
assignment p on variables not occuring in eff (a), and with
an arbitrary assignment on those variables that do occur in
eff (a). If M touches the goal, then an artificial goal value
is introduced for vM , reached by an artificial 0-cost action
from every assignment to M that complies with the goal.
Denote the resulting heuristic, i. e., the length of an optimal
relaxed plan in the pre-merged task, by hMerge+. It hasn’t
to our knowledge been noted before, but is obvious, that for
M = V we get hMerge+ = h∗ (so indeed this is an “interpo-
lation method” in the sense above).

In red-black planning, we “delete-relax” only a subset
V R of the finite-domain state variables (the “red” ones),
applying the original semantics to the remaining variables
V B (the “black” ones). That is, red variables accumulate
their values (eff (a) gets added to the state) while the black
variables switch between their values (eff (a) over-writes
the state). Denote the resulting heuristic, i. e., the length
of an optimal red-black plan, by hRB+. Obviously, setting
V B = ∅ we get hRB+ = h+, and setting V R = ∅ we
get hRB+ = h∗. The known “tractable fragments” (i. e.,
polynomial-time satisficing red-black plan generation) re-
quire (a) a fixed number of black variables each with fixed
domain size, or (b) an acyclic black causal graph (projection
of the causal graph onto V B) where each black variable has
only invertible value transitions in its DTG.

It is not completely clear what “polynomial overhead”
should be taken to mean in this context. We choose to ignore
the complexity of optimal partially-relaxed-plan generation,
which makes sense as this underlies all three frameworks

6Note that this is a restricted version of the technique, merging
only a single subset of variables. One can instead merge several
subsets, potentially with overlaps between them. We restrict out-
selves to the simpler variant in what follows.

and will be approximated by satisficing partially-relaxed-
plan generation just like in the standard delete relaxation.
Given this, “polynomial overhead” for fluent merging means
that |M | is fixed; for h+(ΠC) we take it to mean that |C|
is polynomially bounded.7 For red-black planning, we take
“polynomial overhead” to mean “inside a known tractable
fragment”; this is not fair as there may be yet unknown
tractable fragments, but it is the best we can do for now.

As per this simulation framework, it turns out that all three
approaches are orthogonal, with a single exception:

Theorem 4 None of h+(ΠC), red-black planning, and flu-
ent merging can simulate any other with polynomial over-
head, except that h+(ΠC) simulates fluent merging on M
when setting C to contain all fact conjunctions c over M
(including c mentioning the same variable more than once).

Proof Sketch: To see that red-black planning cannot simu-
late either of h+(ΠC) or fluent merging, it suffices to con-
struct an example whose only “flaw” is small and easy to
fix, but outside a known tractable fragment. This can be
based, e. g., on having to buy a car, consuming a piece of
gold, but the goal being to have both the car and the gold.
Merging the two variables (car and gold) yields hMerge+ =
h∗ =∞, and a single conjunction yields h+(ΠC) =∞. For
hRB+ =∞ we would need both variables to be black, yield-
ing a cyclic causal graph; it is easy to scale variable domains
and the number of variables so that neither hMerge+ = h∗ nor
h+(ΠC) = h∗ is affected.
h+(ΠC) cannot simulate red-black planning because

there are planning tasks whose causal graphs are lines (in
particular, DAGs) and all of whose variables are invertible,
but where h∗ is exponentially large. This is tractable for
hRB+ = h∗ (using a succinct plan representation), but is not
tractable for h+(ΠC) by Proposition 2.

Fluent merging cannot simulate red-black planning be-
cause sometimes painting a single variable black suffices
whereas we would need to merge all variables to obtain
hMerge+ = h∗. One such example is “star-shaped switches”,
where a robot starts in the middle node of a star graph, has
to move to every leaf node turning on a switch, and has to
be back in the middle at the end. Painting the robot variable
black obviously gives hRB+ = h∗. However, ifM leaves out
a single variable then hMerge+ < h∗. This is obvious for the
robot variable. If switch variable v 6∈M , then a relaxed plan
can solve vM as appropriate (switching all other switches on
and moving back to the middle), then move outwards to v’s
node and switch it on, but not move back to the middle as the
two goals “other-switches-on-and-robot-at-middle” as well
as “switch-v-on” are both already true.

The same example shows that fluent merging cannot sim-
ulate h+(ΠC), as by Theorem 3 we have h+(ΠC2) = h∗.

Consider finally the only positive result. Denoting the
pre-merged task by ΠM , our proof considers an optimal

7We ignore the exponential growth of ΠC in |C| because (a)
this can be largely fixed using ΠC

ce (Keyder, Hoffmann, and Haslum
2012), and (b) it appears that alternate methods for computing ap-
proximations of h+(ΠC), not going via a compilation, can avoid
that blow-up altogether, cf. our comments below Open Question 2.

37

relaxed plan ~a = 〈aC
′
1

1 , . . . , a
C′

n
n 〉 for ΠC , and shows that

we can transform ~a step-by-step into a relaxed plan ~aM =
〈aM1 , . . . , aMn 〉 for ΠM based on the same actions ai from
the original planning task. Then ~aM has the same cost as ~a,
implying that h+(ΠM) ≤ h+(ΠC) as we need to prove.

While that idea sounds simple, spelling it out was unex-
pectedly cumbersome, taking us a few iterations and ending
up being a full page long in this format (perhaps there are
simpler proofs). Omitting the details, consider the structure
of relaxed plans in ΠC vs. ΠM . In the latter, the M -states
visited form a tree, the root being the initial state, actions aMi
connecting to any M -state already visited. But what is the
structure in ΠC? While it is easy to see that eachC ′i contains
at most one full assignment to M (otherwise the precondi-
tion would contain an unreachable mutex pair, of different
values for the same variable), nothing forces the C ′i to in-
clude any full assignment. So the structure of ~a is less rigid
as that of relaxed plans in ΠM , making commitments only
where necessary. Our proof shows how to instantiate these
partial commitments to full commitments, extending each
C ′i to correspond exactly to a full assignment to M : At the
initial state, the commitment is full already. Every action i
must have a preceding action r(i) adding the π-fluent corre-
sponding to aC

′
i

i ’s entire set of precondition facts. Assuming
that C ′r(i) has been fully committed already, we can extend
the partial commitment made by C ′i accordingly.

We would like to note that, for once, there are no open
questions left here. Except of course what would happen
were we to identify further tractable fragments of red-black
planning, and whether more general variants of fluent merg-
ing (several variable subsets with potential overlaps) make a
difference. As that is not “open enough” for the spirit of this
paper, we now get into open questions for real:

Some Wild Speculations (aka “Conclusion”)
Disregarding issues such as exponential separations between
the different variants of ΠC , or the role of mutex pruning
(removing actions with known mutexes in the precondition)
in all this, let us focus our speculation on the questions
we started out with: Can we characterize more accurately
the circumstances under which h+(ΠC) becomes perfect?
When does that require C to be exponentially large, and
when is polynomial-size C enough?

Our most direct answer to these questions is Theorem 3,
tractability of a restricted fork fragment. While our orig-
inal plan had been to extend that result “bottom-up”, prov-
ing tractability of different/ever larger fragments, the effort it
took to analyze even slightly larger fragments suggests that
perhaps a “top-down” approach might be more suitable:

Open Question 4 Can we identify easily testable sufficient
conditions for some subset D of conjunctions to not be re-
quired for rendering h+(ΠC) perfect?

For example, if there is no undirected CG path between
two variables, then presumably we do not need to include
conjunctions involving both. But what if there is no directed
CG path between them?

Or perhaps we can make progress by considering particu-
lar benchmark domains:

Open Question 5 In which IPC benchmarks is h2+, i. e.,
h+(ΠC) with C being all fact pairs, perfect? In those do-
mains where it isn’t, how does the search topology (local
minima, exit distances, unrecognized dead-ends) differ from
that known for h+ (Hoffmann 2005)?

A major source of speculations is whether we can some-
how identify structural criteria – based on whatever notions,
not necessarily efficiently testable – under which h+(ΠC)
becomes perfect. Let us start with the most plausible one:

Open Question 6 Say that a task Π is “m-decomposable”
if there exists a partitioning {Vi} of its variables whose
largest Vi has size m, and where the length of an optimal
plan for Π is equal to the sum of lengths of optimal plans for
the projections onto Vi. Is hm+ perfect?

While that is more like a conjecture than an open question,
its practical use is doubtful: If we have m-decomposability,
then basically we can split up the planning task into its
pieces and have no need for a global heuristic addressing the
whole task. Unless, of course, we don’t actually know what
the decomposition is, only its size; but that seems unlikely
to happen in practice (?)

We close the paper with what are probably our two most
speculative open questions. One is basically an attempt to
answer Open Question 2:

Open Question 7 Can syntactical criteria be identified
which imply that the hm+ equation simplifies to Equation 1?

We haven’t got any idea how to do this; it should be said
though that we did not spend much time trying.

Finally, thinking about the size of conjunctions needed
often corresponds to thinking about “the value of how many
variables we need to remember in order to avoid cheating”.
The “remembering” here corresponds to deleted values that
are required again later on. The number of variables af-
fected in this way intuitively corresponds to a “level of in-
terference”. For example, in VisitAll (and other fork-like
domains) the only variable whose value we need to remem-
ber is the robot (the root of the fork); in puzzles, by contrast,
achieving a desired value may typically involve deleting ar-
bitrarily many other desired values. Taking “level of inter-
ference” m to be the maximal number of variables affected
while achieving a target value, plus one for the target vari-
able itself, the question is:

Open Question 8 Say that a task Π has level of interference
m (whatever that means, exactly). Is hm+ perfect?

We are looking forward to some answers in the future,
apologize for posing so many un-answered questions, and
thank you for not having laid the paper aside before reaching
this sentence.

Acknowledgments. We thank the anonymous reviewer (aka
Malte Helmert) for many detailed and helpful comments.

38

References
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R.
2013. Revisiting regression in planning. In Rossi, F., ed.,
Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI’13), 2254–2260. AAAI Press.
Haslum, P. 2009. hm(P) = h1(Pm): Alternative character-
isations of the generalisation from hmax to hm. In Gerevini,
A.; Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), 354–357. AAAI Press.
Haslum, P. 2012. Incremental lower bounds for additive
cost planning problems. In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’12), 74–82. AAAI Press.
Hoffmann, J. 2005. Where ‘ignoring delete lists’ works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.
Katz, M., and Hoffmann, J. 2013. Red-black relaxed plan
heuristics reloaded. In Helmert, M., and Röger, G., eds.,
Proceedings of the 6th Annual Symposium on Combinatorial
Search (SOCS’13), 105–113. AAAI Press.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013a. Red-
black relaxed plan heuristics. In desJardins, M., and
Littman, M., eds., Proceedings of the 27th National Confer-
ence of the American Association for Artificial Intelligence
(AAAI’13), 489–495. Bellevue, WA, USA: AAAI Press.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013b. Who
said we need to relax all variables? In Borrajo, D.; Fratini,
S.; Kambhampati, S.; and Oddi, A., eds., Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling (ICAPS’13), 126–134. Rome, Italy: AAAI
Press.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’12), 128–136. AAAI Press.
Moon, J. W. 1968. Topics on Tournaments. Holt, Rine-
hart and Winston, Inc. http://www.gutenberg.org/
ebooks/42833.
Rédei, L. 1934. Ein kombinatorischer satz. Acta. Litt.
Szeged 7:39–43.
Seipp, J., and Helmert, M. 2011. Fluent merging for classi-
cal planning problems. In ICAPS 2011 Workshop on Knowl-
edge Engineering for Planning and Scheduling, 47–53.
van den Briel, M.; Kambhampati, S.; and Vossen, T. 2007.
Fluent merging: A general technique to improve reachability
heuristics and factored planning. In ICAPS 2007 Workshop
on Heuristics for Domain-Independent Planning: Progress,
Ideas, Limitations, Challenges.

39

Pushing the Limits of Partial Delete Relaxation: Red-Black DAG Heuristics

Michael Katz
IBM Haifa Research Labs

Haifa, Israel
katzm@il.ibm.com

Jörg Hoffmann
Saarland University

Saarbrücken, Germany
hoffmann@cs.uni-saarland.de

Abstract

Red-black planning is a systematic approach to partial delete
relaxation, taking into account some of the delete effects:
Red variables take the relaxed (value-accumulating) seman-
tics, while black variables take the regular semantics. Prior
work on red-black plan heuristics has identified a powerful
tractable fragment requiring the black causal graph – the
projection of the causal graph onto the black variables – to
be a DAG; but all implementations so far use a much sim-
pler fragment where the black causal graph is required to not
contain any arcs at all. We close that gap here, and we de-
sign techniques aimed at making red-black plans executable,
short-cutting the search. Our experiments show that these
techniques can yield significant improvements on those IPC
benchmarks where non-trivial DAG black causal graphs exist.

Introduction
The delete relaxation, where state variables accumulate their
values rather than switching between them, has played a
key role in the success of satisficing planning systems,
e. g. (Bonet and Geffner 2001; Hoffmann and Nebel 2001;
Richter and Westphal 2010). Still, the delete relaxation
has well-known pitfalls, for example the fundamental in-
ability to account for moves back and forth (as done, e. g.,
by vehicles in transportation). It has thus been an ac-
tively researched question from the outset how to take some
deletes into account, e. g. (Fox and Long 2001; Gerevini,
Saetti, and Serina 2003; Helmert 2004; Helmert and Geffner
2008; Baier and Botea 2009; Cai, Hoffmann, and Helmert
2009; Haslum 2012; Keyder, Hoffmann, and Haslum 2012).
Herein, we continue the most recent attempt, red-black
planning (Katz, Hoffmann, and Domshlak 2013b; 2013a;
Katz and Hoffmann 2013) where a subset of red state vari-
ables takes on the relaxed value-accumulating semantics,
while the other black variables retain the regular semantics.

Katz et al. (2013b) introduced the red-black framework
and conducted a theoretical investigation of tractability. Fol-
lowing up on this (2013a), they devised practical red-black
plan heuristics, non-admissible heuristics generated by re-
pairing fully delete-relaxed plans into red-black plans. Ob-
serving that this technique often suffers from dramatic over-
estimation incurred by following arbitrary decisions taken
in delete-relaxed plans, Katz and Hoffmann (2013) refined
the approach to rely less on such decisions, yielding a more

flexible algorithm delivering better search guidance.
The black causal graph is the projection of the causal

graph onto the black variables only. Both Katz et al.
(2013a) and Katz and Hoffmann (2013) exploit, in theory,
a tractable fragment characterized by DAG black causal
graphs, but confine themselves to arc-empty black causal
graphs – no arcs at all – in practice. Thus current red-
black plan heuristics are based on a simplistic, almost trivial,
tractable fragment of red-black planning. We herein close
that gap, designing red-black DAG heuristics exploiting the
full tractable fragment previously identified. To that end,
we augment Katz and Hoffmann’s implementation with a
DAG-planning algorithm (executed several times within ev-
ery call to the heuristic function). We devise some enhance-
ments targeted at making the resulting red-black plans exe-
cutable in the real task, stopping the search if they succeed in
reaching the goal. In experiments on the relevant IPC bench-
marks, we find that the gained informativity often pays off,
reducing search and improving overall performance.

Background
Our approach is placed in the finite-domain representa-
tion (FDR) framework. To save space, we introduce FDR
and its delete-relaxation as special cases of red-black plan-
ning. A red-black (RB) planning task is a tuple Π =
〈V B, V R, A, I,G〉. V B is a set of black state variables and
V R is a set of red state variables, where V B ∩ V R = ∅ and
each v ∈ V := V B ∪ V R is associated with a finite domain
D(v). The initial state I is a complete assignment to V , the
goal G is a partial assignment to V . Each action a is a pair
〈pre(a), eff(a)〉 of partial assignments to V called precon-
dition and effect. We often refer to (partial) assignments as
sets of facts, i. e., variable-value pairs v = d. For a partial
assignment p, V(p) denotes the subset of V instantiated by
p. For V ′ ⊆ V(p), p[V ′] denotes the value of V ′ in p.

A state s assigns each v ∈ V a non-empty subset
s[v] ⊆ D(v), where |s[v]| = 1 for all v ∈ V B. An ac-
tion a is applicable in state s if pre(a)[v] ∈ s[v] for all
v ∈ V(pre(a)). Applying a in s changes the value of
v ∈ V(eff(a))∩V B to {eff(a)[v]}, and changes the value of
v ∈ V(eff(a))∩V R to s[v]∪{eff(a)[v]}. By sJ〈a1, . . . , ak〉K
we denote the state obtained from sequential application of
a1, . . . , ak. An action sequence 〈a1, . . . , ak〉 is a plan if
G[v] ∈ IJ〈a1, . . . , ak〉K[v] for all v ∈ V(G).

40

Π is a finite-domain representation (FDR) planning
task if V R = ∅, and is a monotonic finite-domain rep-
resentation (MFDR) planning task if V B = ∅. Plans for
MFDR tasks (i. e., for delete-relaxed tasks) can be generated
in polynomial time. A key part of many satisficing plan-
ning systems is based on exploiting this property for deriv-
ing heuristic estimates, via delete-relaxing the task at hand.
Generalizing this to red-black planning, the red-black re-
laxation of an FDR task Π relative to V R is the RB task
Π∗+V R = 〈V \ V R, V R, A, I,G〉. A plan for Π∗+V R is a red-
black plan for Π, and the length of a shortest possible red-
black plan is denoted h∗+V R(Π). For arbitrary states s, h∗+V R(s)

is defined via the RB task 〈V \V R, V R, A, s,G〉. If V R = V ,
then red-black plans are relaxed plans, and h∗+V R coincides
with the optimal delete relaxation heuristic h+.

T

C DB

F

A

(a) (b)

Figure 1: An example (a), and its causal graph (b).

In Figure 1, truck T needs to transport each package X ∈
{A,B,C,D} to its respective goal location x ∈ {a, b, c, d}.
The truck can only carry one package at a time, encoded
by a Boolean variable F (“free”). A real plan has length
15 (8 loads/unloads, 7 drives), a relaxed plan has length 12
(4 drives suffice as there is no need to drive back). If we
paint (only) T black, then h∗+V R(I) = 15 as desired, but red-
black plans may not be applicable in the real task, because
F is still red so we can load several packages consecutively.
Painting T and F black, that possibility disappears.1

Tractable fragments of red-black planning have been
identified using standard structures. The causal graph CGΠ

of Π is a digraph with vertices V . An arc (v, v′) is in
CGΠ if v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a))∪ V(pre(a))]×V(eff(a)). The domain
transition graph DTGΠ(v) of a variable v ∈ V is a labeled
digraph with vertices D(v). The graph has an arc (d, d′) in-
duced by action a if eff(a)[v] = d′, and either pre(a)[v] = d
or v 6∈ V(pre(a)). The arc is labeled with its outside condi-
tion pre(a)[V \ {v}] and its outside effect eff(a)[V \ {v}].

The black causal graph CGB
Π of Π is the sub-graph of

CGΠ induced by V B. An arc (d, d′) is relaxed side effects
invertible, RSE-invertible for short, if there exists an arc
(d′, d) with outside condition φ′ ⊆ φ∪ψ where φ and ψ are
the outside condition respectively outside effect of (d, d′).
A variable v is RSE-invertible if all arcs in DTGΠ(v) are
RSE-invertible, and an RB task is RSE-invertible if all its
black variables are. Prior work on red-black plan heuristics
proved that plan generation for RSE-invertible RB tasks with
DAG (acyclic) black causal graphs is tractable, but used the

1Indeed, all optimal red-black plans (but not some non-optimal
ones) then are real plans. We will get back to this below: As we
shall see, the ability to increase red-black plan applicability is a
main advantage of our red-black DAG heuristics over the simpler
red-black plan heuristics devised in earlier work.

Algorithm : REDBLACKPLANNING(Π, R+)
main
π ← 〈〉
while R 6⊇ R+

do

8>>><>>>:
A′ = {a ∈ A | pre(a) ⊆ B ∪R, eff(a) ∩ (R+ \R) 6= ∅}
Select a ∈ A′

if pre(a)[V B] 6⊆ IJπK
then π ← π ◦ ACHIEVE(pre(a)[V B])

π ← π ◦ 〈a〉
if G[V B] 6⊆ IJπK

then π ← π ◦ ACHIEVE(G[V B])
return π

procedure ACHIEVE(g)
IB ← IJπK[V B];GB ← g
AB ← {aB | a ∈ A, aB = 〈pre(a)[V B], eff(a)[V B]〉,

pre(a) ⊆ B ∪R}
ΠB ← 〈V B, AB, IB, GB〉
return DAGPLANNING(ΠB)

Figure 2: Katz and Hoffmann’s (2013) red-black planning
algorithm (abbreviated; for explanations see text).

much simpler fragment restricted to arc-empty black causal
graphs in practice. In Figure 1, both T and F are RSE-
invertible; if we paint only T black then the black causal
graph is arc-empty, and if we paint both T and F black then
the black causal graph is (not arc-empty but) a DAG.

Red-Black DAG Heuristics
As indicated, we augment Katz and Hoffmann’s (2013) im-
plementation with a DAG-planning algorithm. To provide
the context, Figure 2 shows (the main parts of) Katz and
Hoffmann’s pseudo-code. The algorithm assumes as in-
put the set R+ of preconditions and goals on red vari-
ables in a fully delete-relaxed plan, i. e., R+ = G[V R] ∪⋃
a∈π+ pre(a)[V R] where π+ is a relaxed plan for Π. It then

successively selects achieving actions for R+, until all these
red facts are true. Throughout the algorithm, R denotes the
set of red facts already achieved by the current red-black
plan prefix π; B denotes the set of black variable values
that can be achieved using only red outside conditions from
R. We have omitted the (simple) maintenance of R and B
here as it is not needed to understand the present paper.

For each action a ∈ A′ selected to achieve new facts from
R+, and for the global goal condition at the end, there may
be black variables that do not have the required values. For
example, say we paint T and F black in Figure 1. Then R+

will have the form {A = T,A = a,B = T,B = b, C =
T,C = c,D = T,D = d}. In the initial state, A′ will
contain only load actions. Say we execute a =load(A, init),
entering A = T into R and thus including unload(A, a) into
A′ in the next iteration. Trying to execute that action, we
find that its black precondition T = a is not satisfied. The
call to ACHIEVE({T = a}) is responsible for rectifying this.

ACHIEVE(g) creates a task ΠB over Π’s black variables,
asking to achieve g. As Katz and Hoffmann showed, ΠB

is solvable, has a DAG causal graph, and has strongly con-
nected DTGs (when restricting to actions a where pre(a) ⊆
IJπK). From this and Theorem 4.4 of Chen and Gimenez
(2010), it directly follows that a plan for ΠB, in a succinct

41

Algorithm : DAGPLANNING(ΠB)
main
πB ← 〈〉
for i = n downto 1

do

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

// Denote πB = 〈a1, . . . , ak〉
d← I[vi]
for j = 1 to k

do

8><>:
πj ← 〈〉
if pre(aj)[vi] is defined

then

πj ← πvi(d, pre(aj)[vi])
d← pre(aj)[vi]

πk+1 ← 〈〉
if G[vi] is defined

then πk+1 ← πvi(d,G[vi])
πB ← π1 · 〈a1〉 · . . . · πk · 〈ak〉 · πk+1

return πB

Figure 3: Planning algorithm for FDR tasks ΠB with
DAG causal graph CGΠB and strongly connected DTGs.
v1, . . . , vn is an ordering of variables V consistent with the
topology of CGΠB . πv(d, d

′) denotes an action sequence
constituting a shortest path in DTGv(Π) from d to d′.

plan representation, can be generated in polynomial time.
The “succinct plan representation” just mentioned con-

sists of recursive macro actions for pairs of initial-
value/other-value within each variable’s DTG; it is required
as plans for ΠB may be exponentially long. Chen and
Gimenez’ algorithm handling these macros involves the ex-
haustive enumeration of shortest paths for the mentioned
value pairs in all DTGs, and it returns highly redundant plans
moving precondition variables back to their initial value in
between every two requests. For example, if a truck unloads
two packages at the same location, then it is moved back to
its start location in between the two unload actions.

Katz and Hoffmann (2013) shunned the complexity of
DAG planning, and considered ΠB with arc-empty causal
graphs, solving which is trivial. In our work, after explor-
ing a few options, we decided to use the simple algorithm
in Figure 3: Starting at the leaf variables and working up to
the roots, the partial plan πB is augmented with plan frag-
ments bringing the supporting variables into place (a similar
algorithm was mentioned, but not used, by Helmert (2006)).

Proposition 1 The algorithm DAGPLANNING(ΠB) is
sound and complete, and its runtime is polynomial in the
size of ΠB and the length of the plan πB returned.

Note here that the length of πB is worst-case expo-
nential in the size of ΠB, and so is the runtime of
DAGPLANNING(ΠB). We trade the theoretical worst-case
efficiency of Chen and Gimenez’ algorithm against the prac-
tical advantage of not having to rely on exhaustive compu-
tation of shortest paths – anew for every call of DAGPLAN-
NING, with “initial values” and DTGs from ΠB – for input
tasks ΠB that typically have small plans (achieving the next
action’s black preconditions) anyhow.2

2One could estimate DAG plan length (e. g., using Helmert’s
(2006) causal graph heuristic), computing a red-black plan length
estimate only. But that would forgo the possibility to actually exe-
cute DAG red-black plans, which is a key advantage in practice.

Unlike the macro-based algorithm of Chen and Gimenez,
our DAGPLANNING algorithm does not superfluously keep
switching supporting variables back to their initial values.
But it is not especially clever, either: If variable v0 supports
two otherwise independent leaf variables v1 and v2, then the
sub-plans for v1 and v2 will be inserted sequentially into
πB, losing any potential for synergies in the values of v0 re-
quired. We developed a more flexible algorithm addressing
that weakness through using a partially-ordered πB, but that
algorithm resulted in significantly worse empirical perfor-
mance, so we do not include it here.

Enhancing Red-Black Plan Applicability
One crucial advantage of red-black plans, over fully-delete
relaxed plans, is that they have a much higher chance of ac-
tually working for the original planning task. This is es-
pecially so for the more powerful DAG red-black plans we
generate here. In Figure 1, as already mentioned, if we paint
just T black then the red-black plan might work; but if we
paint both T and F black – moving to a non-trivial DAG
black causal graph – then every optimal red-black plan defi-
nitely works. A simple possibility for exploiting this, already
implemented in Katz and Hoffmann’s (2013) earlier work,
is to stop search if the red-black plan generated for a search
state s is a plan for s in the original task.

There is a catch here, though – the red-black plans we
generate are not optimal and thus are not guaranteed to ex-
ecute in Figure 1. In our experiments, we observed that the
red-black plans often were not executable due to simple rea-
sons. We fixed this by augmenting the algorithms with the
two following applicability enhancements.

(1) Say that, as above, R+ = {A = T,A = a,B =
T,B = b, C = T,C = c,D = T,D = d} and
REDBLACKPLANNING started by selecting load(A, init).
Unload(A, a) might be next, but the algorithm might
just as well select load(B, init). With T and F black,
load(B, init) has the black precondition F = true. Calling
ACHIEVE({F = true}) will obtain that precondition using
unload(A, init). Note here that variableA is red so the detri-
mental side effect is ignored. The same phenomenon may
occur in any domain with renewable resources (like trans-
portation capacity). We tackle it by giving a preference to
actions a ∈ A′ getting whose black preconditions does not
involve deleting R+ facts already achieved beforehand. To
avoid excessive overhead, we approximate this by recording,
in a pre-process, which red facts may be deleted by moving
each black variable, and prefer an action if none of its black
preconditions may incur any such side effects.

(2) Our second enhancement pertains to the DTG paths
chosen for the black precondition variables in DAGPLAN-
NING (after REDBLACKPLANNING has already selected the
next action). The red outside conditions are by design all
reached (contained in R), but we can prefer paths whose red
outside conditions are “active”, i. e., true when executing the
current red-black plan prefix in the real task. (E.g., if a ca-
pacity variable is red, then this will prefer loads/unloads that
use the actual capacity instead of an arbitrary one.) In some
special cases, non-active red outside conditions can be easily
fixed by inserting additional supporting actions.

42

Coverage Evaluations hFF/Own DLS hFF/DLS Coverage DL Eval hFF/DL
Domain hFF K12 K13 EAS ELS DAS DLS K12 K13 EAS ELS DAS DLS Init Plan Time -S -(1,2) -(2) -S -(1,2) -(2)

Barman 20 17 18 13 20 20 20 20 3.4 1.6 6 67.8 6 67.8 0 0.9 56.8 20 20 20 6 67.8 67.8
Driverlog 20 20 20 20 20 20 20 20 1.3 2 1 1.1 1.1 1 1 1 1 19 20 20 0.9 1 1
Elevators 20 20 18 17 20 18 20 20 1.2 1.5 1.2 1.6 1.5 5920 20 1.1 15.5 18 20 20 1.4 2911 5920
Gripper 20 20 20 20 20 20 20 20 1 0.7 4.2 1 344 344 20 1 1 20 20 20 3.7 344 344
Rovers 29 29 29 29 29 29 29 29 1.1 1.2 1.2 1.2 1.4 1.4 1 1 0.8 29 29 29 1.1 1.4 1.4
Tidybot 20 13 10 16 12 13 12 13 2.2 1.3 1.2 1.1 1.2 1.1 0 1 0.8 12 13 12 1 1.1 1.1
Transport 20 10 10 10 11 11 20 20 0.6 1.2 1 0.9 3.4 3071 20 1.5 8.3 15 16 20 0.8 33.2 3071
Trucks 30 19 15 14 18 18 18 18 0.5 0.9 1.1 1.1 0.5 0.5 0 1 0.5 18 18 18 0.5 0.5 0.5
Sum 179 148 140 139 150 149 159 160 62 151 156 159

Table 1: Experiments results. Ratios: median over instances solved by both planners involved. Explanations see text.

Experiments
The experiments were run on Intel Xeon CPU E5-2660
machines, with time (memory) limits of 30 minutes (2
GB). We ran all IPC STRIPS benchmark instances whose
causal graphs have at least one directed arc (v, v′) between
RSE-invertible variables v and v′, with no backwards arc
(v′, v). These are exactly the tasks for which there exists
a choice of black variables so that (a) the resulting red-
black planning task is inside the tractable fragment, and (b)
the black causal graph is a non-arc-empty DAG. The do-
mains/instances where that happens are as shown in Table 1.
For IPC’08 domains also used in IPC’11, we used only the
IPC’11 version. For simplicity, we consider uniform costs
throughout (i. e., we ignore action costs where specified).

We compare our DAG heuristics against Katz and Hoff-
mann’s (2013) arc-Empty ones, and against two variants
of Keyder et al.’s (2012) partial delete relaxation heuris-
tics: K12 is best in their published experiments, K13 is best
in more recent (yet unpublished) experiments. S stops the
search if a red-black plan works for the original planning
task. Our baseline is the hFF heuristic implemented in Fast
Downward. All configurations run greedy best-first search
with lazy evaluation and a second open list for states re-
sulting from preferred operators (Helmert 2006). All red-
black heuristics return the same preferred operators as hFF:
This enhances comparability; we found that changing the
preferred operators was typically not beneficial anyway.

Katz and Hoffmann explored a variety of painting strate-
gies, i. e., strategies for selecting the black variables. We
kept this simple here because, as we noticed, there actu-
ally is little choice, at least when accepting the rationale that
we should paint black as many variables as possible: In all
our domains except Tidybot, there are at most 2 possible
paintings per task. To illustrate, consider Figure 1: We can
paint T and F black, or paint T and the packages black.
All other paintings either do not yield a DAG black causal
graph, or are not set-inclusion maximal among such paint-
ings. We thus adopted only Katz and Hoffmann’s 3 basic
strategies, ordering the variables either by incident arcs (A),
or by conflicts (C), or by causal graph level (L), and itera-
tively painting variables red until the black causal graph is
a DAG (Katz and Hoffmann’s original strategies continue
until that graph is arc-Empty). A works best for Katz and
Hoffmann’s heuristics (both here and in their experiments),
and L works best for ours, so we show data for these two.

Consider Table 1 from left to right. Our red-black DAG
heuristics have the edge in coverage, thanks to excelling in

Transport and being reliably good across these domains. For
search space size (number of state evaluations, i. e., calls to
the heuristic function), there are smallish differences in half
of the domains, and huge differences in the other half: Under
the L painting strategy, in Barman the arc-Empty heuristic
already does well, and in Elevators, Gripper, and Transport
our new DAG heuristic excels. A look at the “DLS Init” col-
umn, i. e., the number of instances solved by S in the initial
state (without any search), shows that the latter 3 domains
are exactly those where the superior applicability of DAG
red-black plans makes the difference. Column “hFF/DLS
Plan” shows that the plans found using DLS (even when
constructed within the heuristic by S) are about as good as
those found using hFF. Column “hFF/DLS Time” shows
that the search space reductions do pay off in total runtime,
except in Gripper (where all except K12 and K13 terminate
in split seconds). The maximum speed-ups are 413 in Bar-
man, 7.5 in Driverlog, 722 in Elevators, 12.9 in Tidybot, and
683 in Transport (none in the other domains); the maximum
slow-down factors are 1.2 in Barman, 25 in Driverlog, 4.8 in
Rovers, 4 in Tidybot, and 625 in Trucks.

The remainder of Table 1 sheds light on the contribution
of stop search in DLS: -S switches stop search off, -(1,2)
leaves it on but switches both applicability enhancements
off, -(2) switches only enhancement (2) off.3 We see that
stop search helps even in domains (Driverlog, Tidybot) not
solved directly in the initial state, and we see that the supe-
rior coverage in Transport is half due to the more informed
heuristic, and half due to stop search with enhancement (1).

To further investigate the effect of stop search, we gen-
erated additional instances of the three domains that are
fully solved directly in the initial state. Table 2 summa-
rizes the results for additional 100 instances of increasing
size in each of the three domains, namely Elevators, Gripper,
and Transport. Focusing on our best performer, we com-
pare DLS to both switching stop search off and our base
FF heuristic. Note that DLS still solves all, even extremely
large4 instances directly in the initial state. Switching S off
drastically reduces coverage without improving plan length.
Comparing to FF, the picture is similar. Due to a large num-
ber of evaluations, even the much faster heuristic times out

3The data for -(1) is left out of Table 1 as it is equal to that
for -(1,2). Enhancement (2) has more impact in other (non-DAG)
domains, especially NoMystery and Zenotravel, where S solves 8
respectively 19 more tasks directly with (2) than without it.

4Largest Gripper instance has 3942 balls.

43

Coverage Evals hFF/Own Plan hFF/Own Time hFF/Own
FF DLS DL DLS DL DLS DL DLS DL

Elevators 100 38 100 31 10788.00 1.28 1.12 1.06 28.33 0.63
Gripper 100 47 100 52 148778.00 68.59 1.00 1.00 34.14 0.75
Transport 100 30 100 26 4150.00 0.79 1.44 1.10 13.78 0.53
Sum 300 115 300 109 10788.00 1.28 1.12 1.06 28.33 0.63

Table 2: Experiments results. Coverage, evaluations, plan length, and total time for generated instances. Ratios: median over
instances solved by both planners involved.

before finding a solution. Interestingly, in Gripper, DL has
linear search space5. However, even in such case, due to
the costly per node evaluation time of DL, large enough in-
stances are not solved under the 30 minutes time bound.

Conclusion
Our work provides one more step on the road towards
systematic interpolation between delete-relaxed and non-
relaxed (real) planning. Our experience, as reflected by the
presented experiments, suggests that the key advantage of
heavy interpolation may lie in the ability to produce approx-
imate plans that are very close to real plans (or that already
are real plans). We believe that further progress will be
achieved by developing search methods exploiting that abil-
ity in a targeted manner, for example by using partially re-
laxed plans to initialize plan-space searches (e. g., (Nguyen
and Kambhampati 2001; Gerevini, Saetti, and Serina 2003)).

References
Baier, J. A., and Botea, A. 2009. Improving planning per-
formance using low-conflict relaxed plans. In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), 10–17. AAAI Press.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Cai, D.; Hoffmann, J.; and Helmert, M. 2009. Enhanc-
ing the context-enhanced additive heuristic with precedence
constraints. In Gerevini, A.; Howe, A.; Cesta, A.; and Re-
fanidis, I., eds., Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS’09),
50–57. AAAI Press.
Chen, H., and Giménez, O. 2010. Causal graphs and struc-
turally restricted planning. Journal of Computer and System
Sciences 76(7):579–592.
Fox, M., and Long, D. 2001. Stan4: A hybrid planning
strategy based on subproblem abstraction. The AI Magazine
22(3):81–84.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research 20:239–290.
Haslum, P. 2012. Incremental lower bounds for additive
cost planning problems. In Bonet, B.; McCluskey, L.; Silva,

5So does FF heuristic when using enhanced hill climbing search
and helpful actions in FF planning system.

J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’12), 74–82. AAAI Press.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the
18th International Conference on Automated Planning and
Scheduling (ICAPS’08), 140–147. AAAI Press.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Koenig, S.; Zilberstein, S.; and Koehler,
J., eds., Proceedings of the 14th International Conference on
Automated Planning and Scheduling (ICAPS’04), 161–170.
Whistler, Canada: Morgan Kaufmann.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Katz, M., and Hoffmann, J. 2013. Red-black relaxed plan
heuristics reloaded. In Helmert, M., and Röger, G., eds.,
Proceedings of the 6th Annual Symposium on Combinatorial
Search (SOCS’13), 105–113. AAAI Press.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013a. Red-
black relaxed plan heuristics. In desJardins, M., and
Littman, M., eds., Proceedings of the 27th National Confer-
ence of the American Association for Artificial Intelligence
(AAAI’13), 489–495. Bellevue, WA, USA: AAAI Press.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013b. Who
said we need to relax all variables? In Borrajo, D.; Fratini,
S.; Kambhampati, S.; and Oddi, A., eds., Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling (ICAPS’13), 126–134. Rome, Italy: AAAI
Press.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In Bonet, B.; McCluskey, L.; Silva,
J. R.; and Williams, B., eds., Proceedings of the 22nd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’12), 128–136. AAAI Press.
Nguyen, X., and Kambhampati, S. 2001. Reviving par-
tial order planning. In Nebel, B., ed., Proceedings of
the 17th International Joint Conference on Artificial Intel-
ligence (IJCAI-01), 459–464. Seattle, Washington, USA:
Morgan Kaufmann.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.

44

Landmarks in Oversubscription Planning

Vitaly Mirkis and Carmel Domshlak
Technion, Haifa, Israel.

{mirkis@tx}{dcarmel@ie}.technion.ac.il

Abstract

In the basic setup of oversubscription planning (OSP), the
objective is to achieve an as valuable as possible subset of
goals within a fixed allowance of the total action cost (Smith
2004). Continuing from the recent successes in exploit-
ing logical goal-reachability landmarks in classical planning,
we develop a framework for exploiting such landmarks in
heuristic-search OSP. We show how standard landmarks of
certain classical planning tasks can be compiled into the OSP
task of interest, resulting in an equivalent OSP task with a
lower budget, and thus with a smaller search space. We then
show how such landmark-based task enrichment can be com-
bined in a mutually stratifying way with the BFBB search
used for OSP planning. Our empirical evaluation confirms
the effectiveness of the proposed landmark-based budget re-
duction scheme.

INTRODUCTION
In most general terms, deterministic planning is a problem of
finding paths in large-scale yet concisely represented state-
transition systems. In what these days is called classical
planning (Fikes and Nilsson 1971), the task is to find an
as cost-effective path as possible to a goal-satisfying state.
In contrast, in what Smith (Smith 2004) baptized as “over-
subscription” planning (OSP), the task is to find an as goal-
effective (or valuable) state as possible via a cost-satisfying
path. In other words, the hard constraint of classical plan-
ning translates to only preference in OSP, and the hard con-
straint of OSP translates to only preference in classical plan-
ning. Finally, in “optimal” classical planning and OSP,
the tasks are further constrained to finding only most cost-
effective paths and most goal-effective states, respectively.

Together, classical planning and OSP constitute the most
fundamental variants of deterministic planning, with many
other variants of deterministic planning being defined in
terms of mixing and relaxing the two. For instance, “net-
benefit” planning tries to achieve both (classical) cost-
effectiveness of the path and (OSP) goal-effectiveness of the
end-state by additively combining the two measures, but at
the same time, it relaxes the hard constraints of (classical)
goal-satisfaction and (OSP) cost-satisfaction (Sanchez and
Kambhampati 2005; Baier, Bacchus, and McIlraith 2007;

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Bonet and Geffner 2008; Benton, Do, and Kambhampati
2009; Coles and Coles 2011; Keyder and Geffner 2009).
Another popular setup is “cost-bounded” planning, in which
both (classical) goal-satisfaction and (OSP) cost-satisfaction
are pursued, but both (classical) cost-effectiveness of the
path and (OSP) goal-effectiveness of the end-state are re-
laxed/ignored (Thayer and Ruml 2011; Thayer et al. 2012;
Haslum 2013; Haslum and Geffner 2001; Hoffmann et al.
2007; Gerevini, Saetti, and Serina 2008; Nakhost, Hoff-
mann, and Müller 2012).

While OSP has been advocated over the years on par
with classical planning, so far, the theory and practice of
the latter have been studied and advanced much more in-
tensively. The remarkable success and continuing progress
of heuristic-search solvers for classical planning is one no-
table example. Primary enablers of this success are the ad-
vances in domain-independent approximations, or heuris-
tics, of the cost needed to achieve a goal state from a
given state. With our focus here on optimal planning, two
classes of approximation techniques have been found espe-
cially useful in the context of optimal classical planning:
those based on state-space abstractions (Edelkamp 2001;
Haslum et al. 2007; Helmert, Haslum, and Hoffmann 2007;
Katz and Domshlak 2010a) and these based on logical land-
marks for goal reachability (Karpas and Domshlak 2009;
Helmert and Domshlak 2009; Domshlak, Katz, and Lefler
2012; Bonet and Helmert 2010; Pommerening and Helmert
2013).

Considering OSP as heuristic search, a question is then
whether some similar-in-spirit (yet possibly mathematically
different) approximation techniques can be developed for
heuristic-search OSP. Recently, the authors provided the first
affirmative answer to this question in the context of abstrac-
tions by developing the actual notion of OSP abstractions,
investigating the complexity of working with them for the
purpose of heuristic approximation, and demonstrating em-
pirically that using OSP abstraction heuristics within a best-
first branch-and-bound (BFBB) search can be extremely ef-
fective in practice (Mirkis and Domshlak 2013). In contrast,
the prospects of goal-reachability landmarks in heuristic-
search OSP have not been investigated yet.

This is precisely the contribution of this paper: First, we
introduce and study ε-landmarks, the logical properties of
OSP plans that achieve valuable states. We show that ε-

45

landmarks correspond to regular landmarks of certain clas-
sical planning tasks that can be (straightforwardly) derived
from the OSP tasks of interest. We then show how such
ε-landmarks can be compiled into the OSP task of inter-
est, resulting in an equivalent OSP task, but with a stricter
cost satisfaction constraint, and thus with a smaller effective
search space. Finally, we show how such landmark-based
task enrichment can be combined in a mutually stratifying
way with the BFBB search used for OSP planning, result-
ing in an incremental procedure that interleaves search and
landmark discovery. The entire framework is independent of
the OSP planner specifics, and in particular, of the heuristic
functions it employs. Our empirical evaluation on a large
set of OSP tasks confirms the effectiveness of the proposed
approach.

PRELIMINARIES
Since both OSP and classical planning tasks are discussed
in the paper, we use a formalism that is based on the stan-
dard STRIPS formalism with non-negative operator costs
(cf. (Helmert and Domshlak 2009)), extended to OSP in line
with the notation of our earlier paper on OSP (Mirkis and
Domshlak 2013).

Planning Tasks. A planning task structure is given by
a pair 〈V,O〉, where V is a finite set of propositional state
variables, and O is a finite set of operators. State variables
are also called propositions or facts. A state s ∈ 2V is
a subset of facts, representing the propositions which are
currently true. Each operator o ∈ O is associated with
preconditions pre(o) ⊆ V , add effects add(o) ⊆ V , and
delete effects del(o) ⊆ V . Applying an operator o in s
results in state (s \ del(o)) ∪ add(o), which we denote as
sJoK. The notation is only defined if o is applicable in s,
i.e., if pre(o) ⊆ s. Applying a sequence 〈o1, . . . , ok〉 of
operators to a state is defined inductively as sJεK := s and
sJ〈o1, . . . , ok〉K := (sJ〈o1, . . . , ok−1〉K)JokK.

A classical planning task Π = 〈V,O; I,G, cost〉 extends
its structure 〈V,O〉 with an initial state I ⊆ V , a goal
G ⊆ V , and a real-valued, nonnegative operator cost func-
tion cost : O → R0+. An operator sequence π is called an
s-plan if it is applicable in s, and G ⊆ sJπK. The cost of
s-plan π is cost(π) :=

∑
o∈π cost(o), and π is optimal if its

cost is minimal among all s-plans. The objective in classi-
cal planning is to find an I-plan of as low cost as possible
or prove that no I-plan exists. Optimal classical planning is
devoted to searching for optimal I-plans only.

An oversubscription planning (OSP) task Π =
〈V,O; I, cost, u, b〉 extends its structure 〈V,O〉 with four
components: an initial state I ⊆ V and an operator cost
function cost : O → R0+ as above, plus a succinctly
represented and efficiently computable state value function
u : S → R0+, and a cost budget b ∈ R0+. In what fol-
lows, we assume u(s) =

∑
v∈s u(v), i.e., the value of state

s is the sum of (mutually independent) values of proposi-
tions which are true in s. Conceptually, our results equally
apply to general value functions, but the complexity of cer-
tain construction steps may vary between different families
of value functions.

In OSP, an operator sequence π is called an s-plan if it
is applicable in s, and

∑
o∈π cost(o) ≤ b. While even an

empty operator sequence is an s-plan for any state s, the ob-
jective in OSP is to find an I-plan that achieves as valuable
a state as possible. By û(π) we refer to the value of the
end-state of π, that is, û(π) = u(sJπK). Optimal OSP is de-
voted to searching for optimal I-plans only: An s-plan π is
optimal if û(π) is maximal among all the s-plans.

Heuristics. The two major ingredients of any heuristic-
search planner are its search algorithm and heuristic func-
tion. In classical planning, the heuristic is typically a func-
tion h : 2V → R0+ ∪ {∞}, with h(s) estimating the cost
h∗(s) of optimal s-plans. A heuristic h is admissible if it is
lower-bounding, i.e., h(s) ≤ h∗(s) for all states s. All com-
mon heuristic search algorithms for optimal classical plan-
ning, such as A∗, require admissible heuristics.

In OSP, a heuristic is a function h : 2V × R0+ → R0+,
with h(s, b) estimating the value h∗(s, b) of optimal s-plans
under cost budget b. A heuristic h is admissible if it is upper-
bounding, i.e., h(s, b) ≥ h∗(s, b) for all states s and all cost
budgets b. Here as well, search algorithms for optimal OSP,
such as best-first branch-and-bound (BFBB) discussed later
on in detail, require admissible heuristics.

Landmarks in Classical Planning. For a state s in a clas-
sical planning task Π, a landmark is a property of operator
sequences that is satisfied by all s-plans (Hoffmann, Porte-
ous, and Sebastia 2004). For instance, a fact landmark for
a state s is a fact that is true at some point in every s-plan.
Several admissible landmark heuristics have been shown as
extremely effective in optimal classical planning (Karpas
and Domshlak 2009; Helmert and Domshlak 2009; Bonet
and Helmert 2010; Pommerening and Helmert 2013). These
heuristics use extended notions of landmarks which are sub-
sumed by disjunctive action landmarks. Each such land-
mark is a set of operators such that every s-plan contains at
least one action from that set. In what follows we consider
this popular notion of landmarks, and simply refer to dis-
junctive action landmarks for a state s as s-landmarks. For
ease of presentation, most of our discussion will take place
in the context of landmarks for the initial state of the task,
and these will simply be referred to as landmarks (for Π).

Deciding whether an operator set L ⊂ O is a land-
mark for classical planning task Π is PSPACE-hard (Por-
teous, Sebastia, and Hoffmann 2001). Therefore, all land-
mark heuristics employ methods for landmark discovery that
are polynomial-time, sound, but incomplete. In what fol-
lows we assume access to such a procedure; the actual way
the landmarks are discovered is tangential to our contribu-
tion. For a set L of s-landmarks, a landmark cost function
lcost : L → R0+ is admissible if

∑
L∈L lcost(L) ≤ h∗(s).

For a singleton setL = {L}, lcost(L) := mino∈L cost(o) is
a natural admissible landmark cost function, and it extends
directly to non-singleton sets of pairwise disjoint landmarks.
For more general sets of landmarks, lcost can be devised (in
polynomial time) via operator cost partitioning (Katz and
Domshlak 2010b), either given L (Karpas and Domshlak
2009), or within the actual process of generating L (Helmert
and Domshlak 2009).

46

“BRING ME SOMETHING” LANDMARKS
While landmarks play an important role in (both satisficing
and optimal) classical planning, so far they have not been ex-
ploited in OSP. At first glance, this is probably no surprise:
Since landmarks must hold in all plans, and the empty oper-
ator sequence is always a plan for any OSP task, the notion
of landmark does not seem useful here.

Having said that, consider the anytime “output improve-
ment” property of the forward-search branch-and-bound al-
gorithms used for heuristic-search OSP. The empty plan is
not interesting there not only because it is useless, but also
because it is “found” by the search algorithm right at the get-
go. In general, at all stages of the search, anytime algorithms
likeBFBB maintain the best-so-far solution π, and prune all
branches that promise value lower or equal to û(π). Hence,
in principle, such algorithms may benefit from information
about properties that are “satisfied by all plans with value
larger than x.” Unfortunately, it is not yet clear how the ma-
chinery for discovering classical planning landmarks can be
adapted to discovery of such “value landmarks” while pre-
serving polynomial-time complexity on general OSPs and
arbitrary lower bounds x.

Looking at what is needed and what is available, our goal
here is to exploit this machinery as it is. While the value of
different s-plans in an OSP task Π varies between zero and
the value of the optimal s-plan (which may also be zero), let
an ε-landmark for state s be any property that is satisfied by
any s-plan π that achieves something valuable. For instance,
with the disjunctive action landmarks we use here, if L ⊆ O
is an ε-landmark for s, then every s-plan π with û(π) > 0
contains an operator from L. In what follows, unless stated
otherwise, we focus on ε-landmarks for (the initial state of)
Π.

Given an OSP task Π = 〈V,O; I, cost, u, b〉, let a clas-
sical planning task Πε = 〈Vε, Oε; Iε, costε, Gε〉 be con-
structed as Vε = V ∪ {g}, Iε = I , Gε = {g}, and
Oε = O∪Og , where, for each proposition v with u(v) > 0,
Og contains an operator ov with pre(ov) = {v}, add(ov) =
{g}, del(ov) = ∅, and costε(ov) = 0. For all the origi-
nal operators o ∈ O, costε(o) = cost(o). In other words,
Πε extends the structure of Π with a set of zero-cost ac-
tions such that applying any of them indicates achieving a
positive value in Π. In what follows, we refer to Πε as the ε-
compilation of Π. Constructing Πε from Π is trivially poly-
nomial time, and it allows us to discover ε-landmarks for
Π using the standard machinery for classical planning land-
mark discovery.

Theorem 1 For any OSP task Π, any landmark L for Πε

such that L ⊆ O is an ε-landmark for Π.

With Theorem 1 in hand,1 we can now derive ε-landmarks
for Π using any method for classical planning landmark
extraction, such as that employed by the LAMA plan-
ner (Richter, Helmert, and Westphal 2008) or the LM-
Cut family of techniques (Helmert and Domshlak 2009;

1Due to space limitations, all proofs are delegated to a full tech-
nical report (Mirkis and Domshlak 2014).

BFBB (Π = 〈V,O; I, cost, u, b〉)
open := new max-heap ordered by f(n) = h(s[n], b− g(n))
open.insert(make-root-node(I))
closed:= ∅; best-cost:= ∅
initialize best solution n∗ := I
while not open.empty()

n := open.pop-max()
if f(n) ≤ u(s[n∗]): break
if s[n] 6∈ closed or g(n) < best-cost(s[n]):
closed:= closed ∪ {s[n]}
best-cost(s[n]) := g(n)
foreach o ∈ O(s[n]):

n′ := make-node(s[n]JoK)
if g(n′) > b or f(n′) ≤ u(s[n∗]): continue
if u(s[n′]) > u(s[n∗]): update n∗ := n′

open.insert(n′)
return n∗

Figure 1: Best-first branch-and-bound (BFBB) search for
OSP

Bonet and Helmert 2010). However, at first glance, the dis-
criminative power of knowing “what is needed to achieve
something valuable" seems to be negligible when it comes
to deriving effective heuristic estimates for OSP. The good
news is that, in OSP, such information can be effectively ex-
ploited in a slightly different way.

ε-Landmarks and Budget Reduction
In the same way that A∗ constitutes a canonical heuristic-
search algorithm for optimal classical planning, anytime
best-first branch-and-bound (BFBB) probably constitutes
such an algorithm for optimal OSP.2 Figure 1 depicts a
pseudo-code description of BFBB. s[n] there denotes the
state associated with search node n. In BFBB for OSP, a
node n with maximum evaluation function h(s[n], b−g(n))
is selected from the OPEN list. The duplicate detection
and reopening mechanisms in BFBB are similar to those
in A∗. In addition, BFBB maintains the best solution n∗
found so far and uses it to prune all generated nodes eval-
uated no higher than u(s[n∗]). Likewise, complying with
the semantics of OSP, all generated nodes n with cost-so-far
g(n) higher than the problem’s budget b are also immedi-
ately pruned. When the OPEN list becomes empty or the
node n selected from the list promises less than the lower
bound, BFBB returns (the plan associated with) the best so-
lution n∗, and if h is admissible, i.e., the h-based pruning
of the generated nodes is sound, then the returned plan is
guaranteed to be optimal.

Now, consider a schematic example of searching for
an optimal plan for an OPS task Π with budget b, us-
ing BFBB with an admissible heuristic h. Suppose that
there is only one sequence of (all unit-cost) operators, π =
〈o1, o2, . . . , ob+1〉, applicable in the initial state of Π, and
that the only positive value state along π is its end-state.
While clearly no value higher than zero can be achieved

2BFBB is also extensively used for net-benefit planning (Ben-
ton, van den Briel, and Kambhampati 2007; Coles and Coles 2011;
Do et al. 2007), as well as some other variants of determinis-
tic planning (Bonet and Geffner 2008; Brafman and Chernyavsky
2005).

47

in Π under the given budget of b, the search will con-
tinue beyond the initial state, unless h(I, ·) counts the cost
of all the b + 1 actions of π. Now, suppose that h(I, ·)
counts only the cost of {oi, . . . , ob+1} for some i > 0, but
{o1}, {o2}, . . . , {oi−1} are all discovered to be ε-landmarks
for Π. Given that, suppose that we modify Π by (a) set-
ting the cost of operators o1, o2, . . . , oi−1 to zero, and (b)
reducing the budget to b − i + 1. This modification seems
to preserve the semantics of Π, while on the modified task,
BFBB with the same heuristic h will prune the initial state
and thus establish without any search that the empty plan is
an optimal plan for Π. Of course, the way Π is modified
in this example is as simplistic as the example itself. Yet,
this example does motivate the idea of landmark-based bud-
get reduction for OSP, as well as illustrates the basic idea
behind the generically sound task modifications that we dis-
cuss next.

Let Π = 〈V,O; I, cost, u, b〉 be an OSP task, L =
{L1, . . . , Ln} be a set of pairwise disjoint ε-landmarks
for Π, and lcost be an admissible landmark cost func-
tion from L. Given that, a new OSP task ΠL =
〈VL, OL; IL, costL, uL, bL〉 with budget bL = b −∑n
i=1 lcost(Li) is constructed as follows. The set of vari-

ables VL = V ∪ {vL1 , . . . , vLn} extends V with a new
proposition per ε-landmark in L. These new propositions
are all initially true, and IL = I∪{vL1

, . . . , vLn
}. The value

function uL = u remains unchanged—the new propositions
do not affect the value of the states. Finally, the operator set
is extended asOL = O∪⋃n

i=1OLi
, withOLi

containing an
operator o for each o ∈ Li, with pre(o) = pre(o) ∪ {vLi

},
add(o) = add(o), del(o) = del(o) ∪ {vLi

}, and, impor-
tantly, costL(o) = cost(o) − lcost(Li). In other words,
ΠL extends the structure of Π by mirroring the operators of
each ε-landmark Li with their “lcost(Li) cheaper" versions,
while ensuring that these cheaper operators can be applied
no more than once along an operator sequence from the ini-
tial state. At the same time, introduction of these discounted
operators for Li is compensated for by reducing the budget
by precisely lcost(Li), leading to effective equivalence be-
tween Π and ΠL.

Theorem 2 Let Π = 〈V,O; I, cost, u, b〉 be an OSP task,
L be a set of pairwise disjoint ε-landmarks for Π, lcost be
an admissible landmark cost function from L, and ΠL be
the respective budget reducing compilation of Π. For every
π for Π with û(π) > 0, there is a plan πL for ΠL with
û(πL) = û(π), and vice versa.

The above budget reducing compilation of Π to ΠL is
clearly polynomial time. Putting things together, we can see
that the compile-and-BFBB procedure depicted in Figure 2
(1) generates an ε-compilation Πε of Π, (2) uses off-the-
shelf tools for classical planning to generate a set of land-
marks L for Πε and an admissible landmark cost function
lcost, and (3) compiles (L, lcost) into Π, obtaining an OSP
task ΠL. The optimal solution for ΠL (and thus for Π) is
then searched for using a search algorithm for optimal OSP
such as BFBB.

Before we proceed to consider more general sets of land-
marks, a few comments concerning the setup of Theorem 2

compile-and-BFBB (Π = 〈V,O; I, cost, u, b〉)
Πε = ε-compilation of Π
L := a set of landmarks for Πε

lcost := admissible landmark cost function for L
ΠL∗ := budget reducing compilation of (L, lcost) into Π
n∗ := BFBB(ΠL∗)
return plan for Π associated with n∗

Figure 2: BFBB search with landmark-based budget reduc-
tion

are now probably in place. First, if the reduced budget bL
turns out to be lower than the cost of the cheapest action
applicable in the initial state, then no search is needed, and
the empty plan can be reported as optimal right away. Sec-
ond, zero-cost landmarks are useless in our compilation as
much as they are useless in deriving landmark heuristics for
optimal planning. Hence, lcost in what follows is assumed
to be strictly positive. Third, having both o and o applica-
ble at a state of Πε brings no benefits yet adds branching
to the search. Hence, in our implementation, for each land-
mark Li ∈ L and each operator o ∈ Li, the precondition
of o in OL is extended with {¬vLi}. It is not hard to ver-
ify that this extension3 preserves the correctness of ΠL in
terms of Theorem 2. Finally, if the value of the initial state
is not zero, that is, the empty plan has some positive value,
then ε-compilation Πε of Π will have no positive cost land-
marks at all. However, this can easily be fixed by consider-
ing as “valuable" only facts v such that both u(v) > 0 and
v 6∈ I . For now we put this difficulty aside and assume that
û(ε) = 0. Later, however, we come back to consider it more
systematically.

Non-Disjoint ε-Landmarks
While the compilation ΠL above is sound for pairwise dis-
joint landmarks, this is not so for more general sets of ε-
landmarks. For example, consider a planning task Π in
which, for some operator o, we have cost(o) = b, û(〈o〉) >
0, and û(π) = 0 for all other operator sequences π 6= 〈o〉.
That is, a value greater than zero is achievable in Π, but
only via the operator o. Suppose now that our set of ε-
landmarks for Π is L = {L1, . . . , Ln}, n > 1, and that
all of these ε-landmarks contain o. In this case, while the
budget in ΠL is bL = b − ∑n

i=1 lcost(Li), the cost of
the cheapest replica o of o, that is, the cost of the cheap-
est operator sequence achieving a non-zero value in Π, is
cost(o)−minni=1 lcost(Li) > bL. Hence, no state with pos-
itive value will be reachable from IL in ΠL, and thus Π and
ΠL are not “value equivalent" in the sense of Theorem 2.

Since non-disjoint landmarks can bring more informa-
tion, and they are typical to outputs of standard tech-
niques for landmark extraction in classical planning, we
now present a different, slightly more involved, compila-
tion that is both polynomial and sound for arbitrary sets
of ε-landmarks. Let Π = 〈V,O; I, cost, u, b〉 be an OSP
task, L = {L1, . . . , Ln} be a set of ε-landmarks for Π, and
lcost be an admissible landmark cost function from L. For

3This modification requires augmenting our STRIPS-like for-
malism with negative preconditions, but this augmentation is
straightforward.

48

each operator o, let L(o) denote the set of all landmarks
in L that contain o. Given that, a new OSP task ΠL∗ =
〈VL∗ , OL∗ ; IL∗ , costL∗ , uL∗ , bL∗〉 is constructed as follows.
Similarly to ΠL, we have bL∗ = b − ∑n

i=1 lcost(Li),
VL∗ = V ∪ {vL1

, . . . , vLn
}, IL∗ = I ∪ {vL1

, . . . , vLn
},

and uL∗ = u. The operator set OL∗ extends O with two sets
of operators:
• For each operator o ∈ O that participates in some land-

mark from L, OL∗ contains an action o with pre(o) =
pre(o) ∪ {vL | L ∈ L(o)}, add(o) = add(o), del(o) =
del(o) ∪ {vL | L ∈ L(o)}, costL∗(o) = cost(o) −∑
L∈L(o) lcost(L).

• For each L ∈ L, OL∗ contains an action get(L)
with pre(get(L)) = {¬vL}, add(get(L)) = {vL},
del(get(L)) = ∅, costL∗(get(L)) = lcost(L).
For example, let L = {L1, L2, L3}, L1 = {a, b},

L2 = {b, c}, L3 = {a, c}, with all operators having the
cost of 2, and let lcost(L1) = lcost(L2) = lcost(L3) =
1. In ΠL∗ , we have VL∗ = V ∪ {vL1

, vL2
, vL3
} and

OL∗ = O ∪ {a, b, c, get(L1), get(L2), get(L3)}, with, e.g.,
pre(a) = pre(a) ∪ {vL1

, vL3
}, add(a) = add(a), del(a) =

del(a) ∪ {vL1
, vL3
}, and costL∗(a) = 0, and, for get(L1),

pre(get(L1)) = del(get(L1)) = ∅, add(get(L1)) = {vL1},
and costL∗(get(L1)) = 1.

Theorem 3 Let Π = 〈V,O; I, cost, u, b〉 be an OSP task
and ΠL∗ a budget reducing compilation of Π. For every
π for Π with û(π) > 0, there is a plan πL∗ for ΠL∗ with
û(πL∗) = û(π), and vice versa.

ε-LANDMARKS & INCREMENTAL BFBB
As we discussed earlier, if the value of the initial state is not
zero, i.e., the empty plan has some positive value, then the
basic ε-compilation Πε of Π will have no positive cost land-
marks at all. In passing we noted that this small problem
can be remedied by considering as “valuable" only facts v
such that both u(v) > 0 and v 6∈ I . We now consider this
aspect of OSP more closely, and show how ε-landmarks dis-
covery and incremental revelation of plans by BFBB can be
combined in a mutually stratifying way.

Let Π = 〈V,O; I, cost, u, b〉 be the OSP task of our inter-
est, and suppose we are given a set of plans π1, . . . , πn for Π.
If so, then we are no longer interested in searching for plans
that “achieve something," but in searching for plans that
achieve something beyond what π1, . . . , πn already achieve.
For 1 ≤ i ≤ n, let si = IJπiK be the end-state of πi, and for
any set of propositions s ⊆ V , let goods(s) ⊆ s be the set of
all facts v ∈ s such that u(v) > 0. If a new plan π with end-
state s achieves something beyond what π1, . . . , πn already
achieve, then goods(s) \ goods(si) 6= ∅ for all 1 ≤ i ≤ n.

We now put this observation to work. Given an OSP task
Π = 〈V,O; I, cost, u, b〉 and a set of reference states Sref =
{s1, . . . , sn} of Π, let a classical planning task Π(ε,Sref) =
〈Vε, Oε; Iε, Gε, costε〉 be constructed as follows. The vari-
able set Vε = V ∪ {x1, . . . , xn, search, collect} extends V
with a new proposition per state in Sref, plus two auxiliary
control variables. In the initial state, all the new variables
but search are false, i.e., Iε = I ∪ {search}, and the goal is

inc-compile-and-BFBB (Π = 〈V,O; I, cost, u, b〉)
initialize global variables:

n∗ := I // best solution so far
Sref := {I} // current reference states

loop:
Π(ε,Sref) = (ε, Sref)-compilation of Π
L := a set of landmarks for Π(ε,Sref)

lcost := admissible landmark cost function from L
ΠL∗ := budget reducing compilation of (L, lcost) into Π
if inc-BFBB(ΠL∗ , Sref, n

∗) = done:
return plan for Π associated with n∗

inc-BFBB (Π, Sref, n
∗)

open := new max-heap ordered by f(n) = h(s[n], b− g(n))
open.insert(make-root-node(I))
closed:= ∅ best-cost:= ∅;
while not open.empty()

n := open.pop-max()
if goods(s[n]) 6⊆ goods(s′) for all s′ ∈ Sref:
Sref := Sref ∪ {s[n]}
if termination criterion: return updated

if f(n) ≤ u(s[n∗]): break
// . . .
// similar to BFBB in Figure 1

return done

Figure 3: Iterative BFBB with landmark enhancement

Gε = {x1, . . . , xn}. The operator set Oε contains three sets
of operators: First, each operator o ∈ O is represented in Oε
by an operator o, with the only difference between o and o
(including cost) being that pre(o) = pre(o) ∪ {search}. We
denote this set of new operators o by O. Second, for each
si ∈ Sref and each value-carrying fact g that is not in si,
i.e., for each g ∈ goods(V) \ si, Oε contains a zero-cost ac-
tion oi,g with pre(oi,g) = {g, collect}, add(oi,g) = {xi},
del(oi,g) = ∅. Finally, Oε contains a zero-cost action
finish with pre(finish) = ∅, del(finish) = {search}, and
add(finish) = {collect}.

It is easy to verify that (1) the goal Gε cannot be achieved
without applying the finish operator, (2) the operators o can
be applied only before finish , and (3) the subgoal achieving
operators oi,g can be applied only after finish . Hence, the
first part of any plan for Π(ε,Sref) determines a plan for Π,
and the second part “verifies” that the end-state of that plan
achieves a subset of value-carrying propositions goods(V)
that is included in no state from Sref.4

Theorem 4 Let Π = 〈V,O; I, cost, u, b〉 be an OSP task,
Sref = {s1, . . . , sn} ⊆ 2V be a subset of Π’s states, and
L be a landmark for Π(ε,Sref) such that L ⊆ O. For any
plan π for Π such that goods(IJπK) \ goods(si) 6= ∅ for all
si ∈ Sref, π contains an instance of at least one operator
from L′ = {o | o ∈ L}.

Theorem 4 allows us to define an iterative version of
BFBB, successive iterations of which correspond to running
the regular BFBB on successively more informed (ε, Sref)-
compilations of Π, with the states discovered at iteration i

4This “plan in two parts" technique appears to be helpful in
many planning formalism compilations; see, e.g., (Keyder and
Geffner 2009).

49

making the (ε, Sref)-compilation used at iteration i+ 1 more
informed. The respective procedure inc-compile-and-BFBB
is depicted in Figure 3. This procedure maintains a set of
reference states Sref and the best solution so far n∗, and
loops over calls to inc-BFBB, a modified version of BFBB.
At each iteration of the loop, inc-BFBB is called with an
(ε, Sref)-compilation of Π, created on the basis of the cur-
rent Sref and n∗, and it is provided with access to both Sref
and n∗. The reference set Sref is then extended by inc-BFBB
with all the non-redundant value-carrying states discovered
during the search, and n∗ is updated if the search discovers
nodes of higher value.

If and when the OPEN list becomes empty or the
node n selected from the list promises less than the
lower bound, inc-BFBB returns an indicator, done, that
the best solution n∗ found so far, across the iterations
of inc-compile-and-BFBB, is optimal. In that case,
inc-compile-and-BFBB leaves its loop and extracts that op-
timal plan from n∗. However, inc-BFBB may also termi-
nate in a different way, if a certain complementary termi-
nation criterion is satisfied. The latter criterion comes to
assess whether the updates to Sref performed in the current
session of BFBB warrant updating the (ε, Sref)-compilation
and restarting the search.5 If terminated this way, inc-BFBB
returns a respective indicator, and inc-compile-and-BFBB
goes into another iteration of its loop, with the updated Sref
and n∗.

EMPIRICAL EVALUATION
We have implemented a prototype heuristic-search OSP
solver on top of the Fast Downward planner (Helmert 2006).
The implementation included6:
• (ε, Sref)-compilation of OSP tasks Π for arbitrary sets of

reference states Sref;
• Generation of disjunctive action landmarks for (ε, Sref)-

compilations using the LM-Cut procedure (Helmert and
Domshlak 2009) of Fast Downward;

• The incremental BFBB procedure
inc-compile-and-BFBB from the previous section,
with the search termination criterion being satisfied
(only) if the examined node n improves over current
value lower bound; and

• An additive abstraction heuristic from the framework of
Mirkis and Domshlak (Mirkis and Domshlak 2013), in-
corporating (i) an ad hoc action cost partition over k pro-
jections of the planning task onto connected subsets of
ancestors of the respective k goal variables in the causal
graph, and (ii) a value partition that associates the value of
each goal (only) with the respective projection. The size
of each projection was limited to 1000 abstract states.
After some preliminary evaluation, we also added two

(optimality preserving) enhancements to the search. First,
5While the optimality of the algorithm holds for any such ter-

mination condition, the latter should greatly affect the runtime ef-
ficiency of the algorithm.

6We are not aware of any other domain-independent planner for
optimal OSP.

the auxiliary variables of our compilations increase the di-
mensionality of the problem, and this is well known to
negatively affect the quality of the projection abstractions.
Hence, we devised the projections with respect to the orig-
inal OSP problem Π, and the open list was ordered as
if the search is done on the original problem, that is, by
h(s[n]↓V , b− g(n) +

∑
vL 6∈s[n] lcost(L)), where s[n]↓V is

the projection of the state s[n] on the variables of the original
OSP task Π. This change in heuristic evaluation is sound, as
Theorem 3 in particular implies that any admissible heuristic
for Π is also an admissible heuristic for ΠL∗ , and vice versa.
Second, when a new node n is generated, we check whether
g(n) +

∑
vL 6∈s[n] lcost(L) ≥ g(n′) +

∑
vL 6∈s[n′] lcost(L),

for some previously generated node n′ that corresponds to
the same state of the original problem Π, i.e., s[n′]↓V =
s[n]↓V . If so, then n is pruned right away. Optimality
preservation of this enhancement is established in (Mirkis
and Domshlak 2014).

Since, unlike classical and net-benefit planning, OSP
lacks standard benchmarks for comparative evaluation, we
have cast in this role the STRIPS classical planning do-
mains from the International Planning Competitions (IPC)
1998-2006. This “translation" to OSP was done by associ-
ating a separate unit-value with each sub-goal. The evalua-
tion included the regular BFBB planning for Π, solving Π
using landmark-based compilation via compile-and-BFBB,
and the straightforward setting of inc-compile-and-BFBB
described above. All three approaches were evaluated un-
der the blind heuristic and the additive abstraction heuristic
as above.

Figure 4 depicts the results of our evaluation in terms
of expanded nodes on all the aforementioned IPC tasks for
which we could determine offline the minimal cost needed to
achieve all the goals in the task. Each task was approached
under four different budgets, corresponding to 25%, 50%,
75%, and 100% of the minimal cost needed to achieve all
the goals in the task, and each run was restricted to 10 min-
utes. Figures 4(a) and 4(b) compare the performance of
BFBB and compile-and-BFBB with blind (a) and abstrac-
tion (b) heuristics. Figures 4(c) and 4(d) provide a similar
comparison between BFBB and inc-compile-and-BFBB. 7

As Figure 4 shows, the results are satisfactory. With no
informative heuristic guidance at all, the number of nodes
expanded by compile-and-BFBB was typically much lower
than the number of nodes expanded by BFBB, with the dif-
ference reaching three orders of magnitude more than once.
Of the 760 task/budget pairs behind Figure 4a, 81 pairs were
solved by compile-and-BFBB with no search at all (by prov-
ing that no plan can achieve value higher than that of the ini-
tial state), while, unsurprisingly, only 4 of these tasks were
solved with no search by BFBB.

As expected, the value of landmark-based budget re-
duction is lower when the search is equipped with a
meaningful heuristic (Figure 4b). Yet, even with our
abstraction heuristic in hand, the number of nodes ex-

7We do not compare here between the running times, but the
per-node CPU time overhead due to landmark-based budget reduc-
tion was ≤ 10%.

50

101 103 105 107
100

102

104

106

108 unsolved

un
so

lv
ed

BFBB

co
m
p
il
e-
a
n
d

-B
F
B
B

(a)

airport
blocks
depot

driverlog
freecell

grid
gripper
logistics
miconic
mystery

openstacks
rovers

satellite
tpp

trucks
pipesworld
psr-small
zenotravel

101 103 105 107
100

102

104

106

108 unsolved

un
so

lv
ed

BFBB

co
m
p
il
e-
a
n
d

-B
F
B
B

(b)

100 101 102 103 104 105 106 107
100

102

104

106

BFBB

in
c-
co

m
p
il
e-
a
n
d

-B
F
B
B

(c)

100 101 102 103 104 105 106 107
100

102

104

106

BFBB

in
c-
co

m
p
il
e-
a
n
d

-B
F
B
B

(d)

Figure 4: Comparative view of empirical results in terms of expanded nodes: (a) & (b) BFBB vs. compile-and-BFBB, (c) &
(d) BFBB vs. inc-compile-and-BFBB, with blind ((a) & (c)) and additive projections ((b) & (d)) heuristics

panded by compile-and-BFBB was often substantially
lower than the number of nodes expanded by BFBB.
Here, BFBB and compile-and-BFBB solved with no
search 39 and 85 task/budget pairs, respectively. Fi-
nally, despite the rather ad hoc setting of our incre-
mental inc-compile-and-BFBB procedure, switching from
compile-and-BFBB to inc-compile-and-BFBB was typi-
cally beneficial, though much deeper investigation and de-
velopment of inc-compile-and-BFBB is obviously still re-
quired.

References
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2007. A
heuristic search approach to planning with temporally ex-
tended preferences. In IJCAI, 1808–1815.
Benton, J.; Do, M.; and Kambhampati, S. 2009. Anytime
heuristic search for partial satisfaction planning. AIJ 173(5-
6):562–592.
Benton, J.; van den Briel, M.; and Kambhampati, S. 2007.
A hybrid linear programming and relaxed plan heuristic for
partial satisfaction planning problems. In ICAPS, 34–41.
Bonet, B., and Geffner, H. 2008. Heuristics for planning

with penalties and rewards formulated in logic and com-
puted through circuits. AIJ 172(12–13):1579–1604.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In ECAI, 329–334.
Brafman, R., and Chernyavsky, Y. 2005. Planning with
goal preferences and constraints. In ICAPS, 182–191.
Coles, A. J., and Coles, A. 2011. LPRPG-P: Relaxed plan
heuristics for planning with preferences. In ICAPS, 26–33.
Do, M. B.; Benton, J.; van den Briel, M.; and Kambham-
pati, S. 2007. Planning with goal utility dependencies. In
IJCAI, 1872–1878.
Domshlak, C.; Katz, M.; and Lefler, S. 2012. Landmark-
enhanced abstraction heuristics. AIJ 189:48–68.
Edelkamp, S. 2001. Planning with pattern databases. In
ECP, 13–24.
Fikes, R. E., and Nilsson, N. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. AIJ 2:189–208.
Gerevini, A.; Saetti, A.; and Serina, I. 2008. An ap-
proach to efficient planning with numerical fluents and
multi-criteria plan quality. AIJ 172(8–9):899–944.

51

Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. In ECP, 121–132.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI,
1007–1012.
Haslum, P. 2013. Heuristics for bounded-cost search. In
ICAPS, 312–316.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS, 162–169.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
abstraction heuristics for optimal sequential planning. In
ICAPS, 200–207.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J.; Gomes, C. P.; Selman, B.; and Kautz, H. A.
2007. SAT encodings of state-space reachability problems
in numeric domains. In IJCAI, 1918–1923.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. JAIR 22:215–278.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI, 1728–1733.
Katz, M., and Domshlak, C. 2010a. Implicit abstraction
heuristics. JAIR 39:51–126.
Katz, M., and Domshlak, C. 2010b. Optimal admissible
composition of abstraction heuristics. AIJ 174:767–798.
Keyder, E., and Geffner, H. 2009. Soft goals can be com-
piled away. JAIR 36:547–556.
Mirkis, V., and Domshlak, C. 2013. Abstractions for over-
subscription planning. In ICAPS, 153–161.
Mirkis, V., and Domshlak, C. 2014. Landmarks in oversub-
scription planning. Technical Report IE/IS-2014-01, Tech-
nion.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012.
Resource-constrained planning: A Monte Carlo random
walk approach. In ICAPS, 181–189.
Pommerening, F., and Helmert, M. 2013. Incremental LM-
Cut. In ICAPS, 162–170.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning.
In ECP, 37–49.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In AAAI, 975–982.
Sanchez, R., and Kambhampati, S. 2005. Planning graph
heuristics for selecting objectives in over-subscription
planning problems. In ICAPS, 192–201.
Smith, D. 2004. Choosing objectives in over-subscription
planning. In ICAPS, 393–401.
Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
IJCAI, 674–679.

Thayer, J. T.; Stern, R. T.; Felner, A.; and Ruml, W. 2012.
Faster bounded-cost search using inadmissible estimates.
In ICAPS, 270–278.

52

Adding Local Exploration to Greedy Best-First Search in Satisficing Planning

Fan Xie and Martin Müller and Robert Holte
Computing Science, University of Alberta

Edmonton, Canada
{fxie2,mmueller,rholte}@ualberta.ca

Abstract

Greedy Best-First Search (GBFS) is a powerful algorithm at
the heart of many state of the art satisficing planners. One
major weakness of GBFS is its behavior in so-called uninfor-
mative heuristic regions (UHRs) - parts of the search space
in which no heuristic provides guidance towards states with
improved heuristic values.
This work analyzes the problem of UHRs in planning in de-
tail, and proposes a two level search framework as a solution.
In Greedy Best-First Search with Local Exploration (GBFS-
LE), a local exploration is started within a global GBFS
whenever the search seems stuck in UHRs.
Two different local exploration strategies are developed and
evaluated experimentally: Local GBFS (LS) and Local Ran-
dom Walk Search (LRW). The two new planners LAMA-LS
and LAMA-LRW integrate these strategies into the GBFS
component of LAMA-2011. Both are shown to yield clear
improvements in terms of both coverage and search time on
standard International Planning Competition benchmarks, es-
pecially for domains that are proven to have unbounded or
large UHRs.1

Introduction
In the latest International Planning Competition IPC-2011
(García-Olaya, Jiménez, and Linares López 2011), the plan-
ner LAMA-2011 (Richter and Westphal 2010) was the clear
winner of the sequential satisficing track, by both measures
of coverage and plan quality. LAMA-2011 finds a first so-
lution using Greedy Best-First Search (GBFS) (Bonet and
Geffner 2001; Helmert 2006) with popular enhancements
such as Preferred Operators, Deferred Evaluation (Richter
and Helmert 2009) and Multi-Heuristic search (Richter and
Westphal 2010). Solutions are improved using restarting
weighted A*.

GBFS always expands a node n that is closest to a goal
state according to a heuristic h. While GBFS makes no
guarantees about solution quality, it can often find a solu-
tion quickly. The performance of GBFS strongly depends
on the quality of h. Misleading or uninformative heuristics
can massively increase its running time.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Another version of this paper is published in AAAI 2014 (Xie,
Müller, and Holte 2014)

The main focus of this paper is on one such problem with
GBFS: uninformative heuristic regions (UHRs), which in-
cludes local minima and plateaus. A local minimum is a state
with minimum h-value within a local region which is not
a global minimum. A plateau is an area of the state space
where all states have the same heuristic value. GBFS, be-
cause of its open list, can get stuck in multiple UHRs at the
same time.

Figure 1: Overview of h+ topology (Hoffmann 2011). Do-
mains with unrecognized dead ends are not shown.

Hoffmann has studied the problem of UHRs for the case
of the optimal relaxation heuristic h+ (Hoffmann 2005;
2011). He classified a large number of planning benchmarks,
shown in Figure 1, according to their maximum exit distance
from plateaus and local minima, and by whether dead ends
exist and are recognized by h+. The current work proposes
local exploration to improve GBFS. The focus of the analy-
sis is on domains with a large or even unbounded maximum
exit distance for plateaus and local minima, but without un-
recognized dead ends. In these domains, there exists a plan
from each state in an UHR (with h+ <∞).

As an example, the IPC domain 2004-notankage has no
dead ends, but contains unbounded plateaus and local min-
ima (Hoffmann 2011). Instance #21 shown in Figure 2
serves to illustrate a case of bad search behavior in GBFS
due to UHRs. The figure plots the current minimum heuris-
tic value hmin in the closed list on the x-axis against the
log-scale cumulative search time needed to first reach hmin.
The solid line is for GBFS with hFF . The two huge increases

53

Figure 2: Cumulative search time (in seconds) of GBFS,
GBFS-LS and GBFS-LRW with hFF for first reaching a
given hmin in 2004-notankage #21.

in search time, with the largest (763 seconds) for the step
from hmin = 2 to hmin = 1, correspond to times when
the search is stalled in multiple UHRs. Since the large ma-
jority of overall search time is used to inefficiently find an
escape from UHRs, it seems natural to try switching to a
secondary search strategy which is better at escaping. Such
ideas have been tried several times before. This related work
is reviewed and compared in the next section.

The current paper introduces a framework which adds a
local search algorithm to GBFS in order to improve its be-
havior in UHRs. Two such algorithms, local GBFS (LS(n))
and local random walks (LRW(n)), are designed to find
quicker escapes from UHRs, starting from a node n within
the UHRs. The main contributions of this work are:

• An analysis of the problem of UHRs in GBFS, and its
consequences for limiting the performance of GBFS in
current benchmark problems in satisficing planning.

• A new search framework, Greedy Best-First Search with
Local Exploration (GBFS-LE), which runs a separate lo-
cal search whenever the main global GBFS seems to be
stuck. Two concrete local search algorithms, local GBFS
(LS) and local random walks (LRW), are shown to be less
sensitive to UHRs and when incorporated into GBFS are
shown to outperform the baseline by a substantial margin
over the IPC benchmarks.

• An analysis of the connection between Hoffmann’s theo-
retical results on local search topology (Hoffmann 2005;
2011) and the performance of adding local exploration
into GBFS.

The remainder of the paper is organized as follows: after
a brief review of previous work on strategies for escaping
from UHR, the new search framework GBFS-LE is intro-
duced, compared with related work, and evaluated experi-
mentally on IPC domains. A discussion of possible future
work includes perspectives for addressing the early mistakes
problem within GBFS-LE.

Search Strategies for Escaping UHRs
There are several approaches to attack the UHR prob-
lem. Better quality heuristics (Hoffmann and Nebel 2001;
Helmert 2004; Helmert and Geffner 2008) can shrink the
size of UHRs, as can combining several heuristics (Richter
and Westphal 2010; Röger and Helmert 2010). Additional
knowledge from heuristic computation or from problem
structure can be utilized in order to escape from UHRs.
Examples are helpful actions (Hoffmann and Nebel 2001)
and explorative probes (Lipovetzky and Geffner 2011). The
third popular approach is to develop search algorithms that
are less sensitive to flaws in heuristics. Algorithms which
add a global exploration component to the search, which
is especially important for escaping from unrecognized
dead ends, include restarting (Nakhost and Müller 2009;
Coles, Fox, and Smith 2007) and non-greedy node expan-
sion (Valenzano et al. 2014; Imai and Kishimoto 2011;
Xie et al. 2014). The current paper focuses on another direc-
tion: adding a local exploration component to the globally
greedy GBFS algorithm.

The planner Marvin adds machine-learned plateau-
escaping macro-actions to enforced hill-climbing (Coles and
Smith 2007). YAHSP constructs macro actions from FF’s
relaxed planning graph (Vidal 2004). Identidem adds explo-
ration by expanding a sequence of actions chosen probabilis-
tically, and proposes a framework for escaping from local
minima in local-search forward-chaining planning (Coles,
Fox, and Smith 2007). Arvand (Nakhost and Müller 2009)
uses random walks to explore quickly and deeply. Arvand-
LS (Xie, Nakhost, and Müller 2012) combines random
walks with local greedy best-first search, while Roamer (Lu
et al. 2011) adds exploration to LAMA-2008 by using fixed-
length random walks. Nakhost and Müller’s analysis (2012)
shows that while random walks outperform GBFS in many
plateau escape problems, they fail badly in domains such as
Sokoban, where a precise action sequence must be found to
escape. However, while escaping from UHRs has been well
studied in the context of these local search based planners,
there is comparatively little research on how to use search
for escaping UHRs in the context of GBFS. This paper be-
gins to fill this gap.

GBFS-LE: GBFS with Local Exploration
The new technique of Greedy Best-First Search with Local
Exploration (GBFS-LE) uses local exploration whenever a
global GBFS (G-GBFS) seems stuck. If G-GBFS fails to
improve its minimum heuristic value hmin for a fixed num-
ber of node expansions, then GBFS-LE runs a small local
search for exploration, LocalExplore(n), from the best node
n in a global-level open list. Algorithm 1 shows GBFS-LE.
STALL_SIZE and MAX_LOCAL_TRY, used at Line 24, are
parameters which control the tradeoff between global search
and local exploration.

The main change from GBFS is the call to LocalEx-
plore(n) at Line 26 whenever there has been no improve-
ment in heuristic value over the last STALL_SIZE node ex-
pansions.

Two local exploration strategies were tested. The first is

54

Algorithm 1 GBFS-LE
Input Initial state I , goal states G
Parameter STALL_SIZE, MAX_LOCAL_TRY
Output A solution plan

1: if h(I) <∞ then
2: (open, hmin)← ([I], h(I))
3: end if
4: stalled ← 0; nuLocalTry ← 0
5: while open 6= ∅ do
6: n← open.remove_min(){FIFO tie-breaking}
7: if n ∈ G then
8: return plan from I to n
9: end if

10: closed.insert(n)
11: for each v ∈ successors(n) do
12: if v 6∈ closed then
13: if h(v) <∞ then
14: open.insert(v, h(v))
15: if hmin > h(v) then
16: hmin ← h(v)
17: stalled ← 0; nuLocalTry ← 0
18: else
19: stalled ← stalled + 1
20: end if
21: end if
22: end if
23: end for
24: if stalled = STALL_SIZE

and nuLocalTry < MAX_LOCAL_TRY then
25: n← open.peek_min()
26: LocalExplore(n){local GBFS or random walks}
27: stalled ← 0; nuLocalTry ← nuLocalTry + 1
28: end if
29: end while

local GBFS search starting from node n, LocalExplore(n) =
LS(n), which shares the closed list of G-GBFS, but main-
tains its own separate open list local_open that is cleared
before each local search. LS(n), as shown in Algorithm 2,
succeeds if it finds a node v with h(v) < hmin at Line 16 be-
fore it exceeds the LSSIZE limit. In any case, the remaining
nodes in local_open are merged into the global open list. A
local search tree grown from a single node n is much more
focused and grows deep much more quickly than the global
open list in G-GBFS. It also restricts the search to a single
plateau, while G-GBFS can get stuck when exploring many
separate plateaus simultaneously. Both G-GBFS and LS(n)
use a first-in-first-out tie-breaking rule, since last-in-first-out
did not work well: it often led to long aimless walks within
a UHR.

The second local exploration strategy tested is local ran-
dom walk search, LocalExplore(n) = LRW(n), as shown in
Algorithm 3. The implementation of random walks from the
Arvand planner (Nakhost and Müller 2009; Nakhost et al.
2011) is used. LRW (n) runs up to a pre-set number of
random walks starting from node n, and evaluates only the
endpoint of each walk using hFF . All intermediate states

Algorithm 2 LS(n), local GBFS
Input state n, goal states G, hmin{global variable}, open,
closed
Parameter LSSIZE

1: local_open ← [n]
2: h_improved← false
3: for i = 1 to LSSIZE do
4: if local_open = ∅ then
5: return
6: end if
7: n← local_open.remove_min() {FIFO

tie-breaking}
8: if n ∈ G then
9: return plan from I to n

10: end if
11: closed.insert(n)
12: for each v ∈ successors(n) do
13: if v 6∈ closed then
14: if h(v) <∞ then
15: local_open .insert(v, h(v))
16: if hmin > h(v) then
17: hmin ← h(v)
18: h_improved← true
19: end if
20: end if
21: end if
22: end for
23: if h_improved then
24: break
25: end if
26: end for
27: merge(open,local_open)
28: return

are checked for whether they are goal states. Like LS(n),
LRW (n) succeeds if it finds a node v with h(v) < hmin

within its exploration limit at Line 15. In this case, v is added
to the global open list, and the path from n to v is stored for
future plan extraction. In case of failure, unlike LS(n), no
information is kept.

Parameters, as in Arvand-2011, are expressed as a tu-
ple (len_walk , e_rate, e_period ,WalkType) (Nakhost and
Müller 2009). Random walk length scaling is controlled
by an initial walk length of len_walk , an extension rate
of e_rate and an extension period of NUMWALKS ∗
e_period . This is very different from Roamer, which uses
fixed length random walks. WalkType defines two different
strategies for action selecting at Line 8: Monte Carlo Help-
ful Actions (MHA), which bias random walks by helpful ac-
tions, and pure random (PURE). For example, in configura-
tion (1, 2, 0.1,MHA) all random walks use the MHA walk
type, and if hmin does not improve for NUMWALKS ∗ 0.1
random walks, then the length of walks, len_walk , which
starts at 1, will be doubled. LRW was tested with the fol-
lowing two configurations: (1, 2, 0.1,MHA), which is used
with preferred operators, and (1, 2, 0.1,PURE).

The example of Figure 2 is solved much faster, in around

55

Algorithm 3 LRW (n), local random walk
Input state n, goal states G, hmin{global variable}, open
Parameter LSSIZE

1: for i = 1 to LSSIZE do
2: s← n
3: for j = 1 to LENGTH_WALK do
4: A← ApplicableActions(s)
5: if A = ∅ then
6: break
7: end if
8: a← SelectAnActionFrom(A)
9: s← apply(s, a)

10: if s ∈ G then
11: open.insert(s, h(s))
12: return
13: end if
14: end for
15: if h(s) < hmin then
16: open.insert(s, h(s))
17: break
18: end if
19: end for
20: return

1 second, by both GBFS-LS and GBFS-LRW, while GBFS
needs 771 seconds. The three algorithms built exactly the
same search trees until they first achieved the minimum h-
value 6. The local GBFS in GBFS-LS, because it could focus
on one branch, found a 5 step path that decreases the mini-
mum h-value using only 10 expansions. The h-values along
the path were 6, 7, 7, 6 and 4, showing an initial increase
before decreasing. h-values along GBFS-LRW’s path also
increased before decreasing. In contrast, GBFS gets stuck
in multiple separate h-plateaus since it needs to expand over
10000 nodes with h-value 6, which were distributed in many
different parts of the search tree. Only after exhausting these,
it expands the first node with h = 7. In this example, the lo-
cal explorations, which expand or visit higher h-value nodes
earlier, massively speed up the escape from UHRs.

There are several major differences between GBFS-LS
and GBFS-LRW. GBFS-LS keeps all the information gath-
ered during local searches by copying its nodes into the
global open list at the end. GBFS-LRW keeps only end-
points that improve hmin and the paths leading to them. This
causes a difference in how often the local search should be
called. For GBFS-LS, it is generally safe to do more lo-
cal search, while over-use of local search in GBFS-LRW
can waste search effort2. This suggests using more conser-
vative settings for the parameters MAX_LOCAL_TRY and
LSSIZE in LRW(n). The two algorithms also explore UHRs
very differently. LS(n) systematically searches the subtree of
n, while LRW(n) samples paths leading from n sparsely but
deeply.

2Each step in a random walk generates all children and ran-
domly picks one, which is only slightly cheaper than one expansion
by LS when Deferred Evaluation is applied.

Experimental Results
Experiments were run on a set of 2112 problems in 54 do-
mains from the seven International Planning Competitions
which are publicly available3, using one core of a 2.8 GHz
machine with 4 GB memory and 30 minutes per instance.
Results for planners which use randomization are averaged
over five runs. All planners are implemented on the Fast
Downward code base FD-2011 (Helmert 2006). The trans-
lation from PDDL to SAS+ was done only once, and this
common preprocessing time is not counted in the 30 min-
utes. Parameters were set as follows: STALL_SIZE = 1000
for both algorithms. (MAX_LOCAL_TRY, LSSIZE) = (100,
1000) for GBFS-LS and (10, 100) for GBFS-LRW.

Local Search Topology for h+

For the purpose of experiments on UHRs, the detailed classi-
fication by h+ of Figure 1 can be coarsened into three broad
categories:

• Unrecognized-Deadend: 195 problems from 4 domains
with unrecognized dead ends: Mystery, Mprime, Freecell
and Airport.

• Large-UHR: 383 problems from domains with UHRs
which are large or of unbounded exit distance, but with
recognized dead ends: column 3 in Figure 1, plus the top
two rows of columns 1 and 2.

• Small-UHR: 669 problems from domains without UHRs,
or with only small UHRs, corresponding to columns 1 and
2 in the bottom row of Figure 1.

Note, problems from these three categories are only a sub-
set of the total 2112 problems. Only a part of the 54 domains
were analyzed by Hoffmann (2011).

Performance of Baseline Algorithms
The baseline study evaluates GBFS, GBFS-LS and GBFS-
LRW without the common planning enhancements of pre-
ferred operators, deferred evaluation and multi-heuristics.
Three widely used planning heuristics are tested: FF (Hoff-
mann and Nebel 2001), causal graph (CG) (Helmert 2004)
and context-enhanced additive (CEA) (Helmert and Geffner
2008). We use the distance-base versions for the three
heuristics. They estimate the length of a solution path start-
ing from the evaluated state. Table 1 shows the coverage
on all 2112 IPC instances. Both GBFS-LS and GBFS-LRW
outperform GBFS by a substantial margin for all 3 heuris-
tics.

Heuristic GBFS GBFS-LS GBFS-LRW
FF 1561 1657 1619.4
CG 1513 1602 1573.2
CEA 1498 1603 1615.2

Table 1: IPC coverage out of 2112 for GBFS with and with-
out local exploration, and three standard heuristics.

3Our IPC test set does not include Hanoi, Ferry and Simple-Tsp
from Figure 1.

56

(a) GBFS(X) vs GBFS-LS(Y) (b) GBFS(X) vs GBFS-LRW(Y)

Figure 3: Comparison of time usage of the three baseline algorithms. 10000 corresponds to runs that timed out or ran out of
memory. Results shown for one typical run of GBFS-LRW.

Benchmarks GBFS GBFS-LS GBFS-LRW
UR-Deadend(195) 162 162(0.0%) 169(3.7%)
Large-UHR(383) 195 214(9.7 %) 225(15.3%)
Small-UHR(669) 634 637 (0.5%) 641(1.1%)

Table 2: Coverage comparison on the three domain cate-
gories for GBFS and GBFS-LE with hFF . UR-Deadend is
short for Unrecognized-Deadend. The same typical run in
Figure 3 is used for GBFS-LRW. Numbers in parentheses
show coverage improvements compared to GBFS.

Figure 3 compares the time usage of the two proposed
algorithms with GBFS using hFF over all IPC benchmarks.
Every point in the figure represents one instance, plotting the
search time for GBFS on the x-axis against GBFS-LS (left)
and GBFS-LRW (right) on the y-axis. Only problems for
which both algorithms need at least 0.1 seconds are shown.
Points below the main diagonal represent instances that the
new algorithms solve faster than GBFS. For ease of compar-
ison, additional reference lines indicate 2×, 10× and 50×
relative speed. Data points within a factor of 2 are shown in
grey in order to highlight the instances with substantial dif-
ferences. Problems that were only solved by one algorithm
within the 1800 second time limit are included at x = 10000
or y = 10000. Both new algorithms show substantial im-
provements in search time over GBFS.

Figure 4 restricts the comparison to Unrecognized-
Deadend, Large-UHR and Small-UHR respectively. Table
2 shows the overall coverages. In Large-UHR, GBFS-LS
and GBFS-LRW solve 19 (+9.7%) and 30 (+15.3%) more
problems than GBFS (195/383) respectively. Both outper-
form GBFS in search time. However, in Small-UHR, GBFS-
LS and GBFS-LRW only solve 3 (+0.5%) and 7 (+1.1%)
more problems than GBFS (634/669), and there is very lit-
tle difference in search time among the three algorithms.
This result clearly illustrates the relationship between the
size of UHRs and the performance of the two local ex-
ploration techniques. For Unrecognized-Deadend, GBFS-

LS is slightly slower than GBFS with the same coverage
(162/195), while GBFS-LRW is slightly faster and solves
7 (+3.7%) more problems. The effect of local exploration
on the performance in the case of unrecognized dead-ends is
not clear-cut.

Performance with Search Enhancements
Experiments in this section test the two proposed algorithms
when three common planning enhancements are added: De-
ferred Evaluation, Preferred Operators and Multiple Heuris-
tics. hFF is used as the primary heuristic in all cases.

• Deferred Evaluation delays state evaluation and uses the
parent’s heuristic value in the priority queue (Richter and
Helmert 2009). This technique is used in G-GBFS and
LS(n), but not in the endpoint-only evaluation of random
walks in LRW(n).

• The Preferred Operators enhancement keeps states
reached via a preferred operator, such as helpful actions
in hFF , in an additional open list (Richter and Helmert
2009). An extra preferred open list is also added to
LS(n). Boosting with default parameter 1000 is used,
and Preferred Operator first ordering is used for tie-
breaking as in LAMA-2011 (Richter and Westphal 2010).
In LRW (n), preferred operators are used in form of
the Monte Carlo with Helpful Actions (MHA) technique
(Nakhost and Müller 2009), which biases random walks
towards using operators which are often preferred.

• The Multi-Heuristics approach maintains additional open
lists in which states are evaluated by other heuristic
functions. Because of its proven strong performance
in LAMA, the Landmark count heuristic hlm (Richter,
Helmert, and Westphal 2008) is used as the second heuris-
tic. Both G-GBFS and LS(n) use a round robin strategy for
picking the next node to expand. In Fast Downward, hlm
is calculated incrementally from the parent node. When
Multi-Heuristics is applied to GBFS-LRW, the LRW (n)
part still uses hFF because the path-dependent landmark

57

(a) Unrecognized-Deadend (b) Large-UHR (c) Small-UHR

Figure 4: Comparison of time usage of the three baseline algorithms over the three different categories. 10000 corresponds to
runs that timed out or ran out of memory. Results shown for one typical run of GBFS-LRW, which is selected by comparing
all 5 runs and picking the most typical one. They are all very similar.

computation was not implemented for random walks.
When LRW (n) finds an heuristically improved state s,
GBFS-LRW evaluates and expands all states along the
path to s in order to allow the path-dependent compu-
tation of hlm(s) in G-GBFS. Without Multi-Heuristics,
only s itself is inserted to the open list.

Table 3 shows the experimental results on all IPC do-
mains. Used as a single enhancement, Preferred Operators
improves all three algorithms. Deferred Evaluation improves
GBFS-LS and GBFS-LRW, but fails for GBFS, mainly due
to plateaus caused by the less informative node evaluation
(Richter and Helmert 2009). In GBFS-LS and GBFS-LRW,
the benefit of faster search outweighs the weaker evalua-
tion. Multi-Heuristics strongly improves GBFS and GBFS-
LS, but is only a modest success in GBFS-LRW. This is not
surprising since LRW(n) does not use hlm, and in order to
evaluate the new best states generated by LRW(n) with hlm
in G-GBFS, all nodes on the random walk path need to be
evaluated, which degrades performance. When combining
two enhancements, all three algorithms achieve their best
performance with Preferred Operators plus Deferred Evalu-
ation. Figure 5 compares the time usage of the three algo-
rithms in this case.

Comparing State of the Art Planners in terms of
Coverage and Search Time
The final row in Table 3 shows coverage results when all
three enhancements are applied. The performance compar-
isons in this section use this best known configuration in
terms of coverage for three algorithms based on GBFS,
GBFS-LS and GBFS-LRW, which closely correspond to the
“coverage-only” first phase of the LAMA-2011 planner:

Enhancement GBFS GBFS-LS GBFS-LRW
(none) 1561 1657 1619.4
PO 1826 1851 1827.4
DE 1535 1721 1635
MH 1851 1874 1688.4
PO + DE 1871 1889 1880.6
PO + MH 1850 1874 1854.2
DE + MH 1660 1764 1730.2
PO + DE + MH 1913 1931 1925.4

Table 3: Number of instances solved with search enhance-
ments, out of 2112. PO = Preferred Operators, DE = De-
ferred Evaluation, MH = Multi-Heuristic.

• LAMA-2011: only the first GBFS iteration of LAMA
is run, with deferred evaluation, preferred operators and
multi-heuristics with hFF and hlm (Richter and Westphal
2010).

• LAMA-LS: Configured like LAMA-2011, but with
GBFS replaced by GBFS-LS.

• LAMA-LRW: GBFS in LAMA-2011 is replaced by
GBFS-LRW.

Table 4 shows the coverage results per domain. LAMA-
LS has the best overall coverage, 18 more than LAMA-2011,
closely followed by LAMA-LRW. LAMA-LS solves more
problems in 7 of the 10 domains where LAMA and LAMA-
LS differ in coverage. This number for LAMA-LRW is 7
out of 11. Although LAMA-LRW uses a randomized algo-
rithm, our 5 runs for LAMA-LRW had quite stable results:
1927, 1924, 1926, 1924 and 1926. By comparison, adding
the landmark count heuristic, which differentiates LAMA-

58

GBFS-PO&DE(x) vs GBFS-LS-PO&DE(y) GBFS-PO&DE(x) vs GBFS-LRW-PO&DE(y)

Figure 5: Comparison of time usage of the three baseline algorithms with Preferred Operators and Deferred Evaluation. 10000
corresponds to runs that timed out or ran out of memory. A typical single run of GBFS-LRW-PO&DE is shown.

(a) LAMA-2011(X) VS LAMA-LS(Y) (b) LAMA-2011(X) VS LAMA-LRW(Y)

Figure 6: Comparison of time usage of LAMA-2011 with LAMA-LS and LAMA-LRW. A typical single run is used for LAMA-
LRW.

2011 from other planners based on the Fast Downward code
base, improves the coverage of LAMA-2011 by 42, from
1871 to 1913.

Using the same format as Figure 3 for baseline GBFS,
Figure 6 compares the search time of the three planners
over the IPC benchmark. Both LAMA-LS and LAMA-
LRW show a clear overall improvement over LAMA-2011
in terms of speed. In Figure 7, the benefit of local explo-
ration for search time in Large-UHR still holds even with all
enhancements on. Both LAMA-LS and LAMA-LRW solve
12 more problems (4.1%) than LAMA-2011’s 290/383 in
Large-UHR, while in Small-UHR they solve 1 and 2 fewer
problems respectively than LAMA-2011’s 646/669. Table 5
compares coverages of the three planners over different cat-
egories.

For further comparison, the coverage results of some
other strong planners from IPC-2011 on the same hardware
are: FDSS-2 solves 1912/2112, Arvand 1878.4/2112, Lama-
2008 1809/2112, fd-auto-tune-2 1747/2112, and Probe

1706/1968 (failed on the ":derive" keyword in 144 prob-
lems).

Although the local explorations are inclined to increase
the solution length, the influence is not clear-cut since they
also solve more problems. The IPC-2011 style plan quality
scores for LAMA-2011, LAMA-LS and LAMA-LRW are
1898.0, 1899.6 and 1900.5.

Conclusions and Future Work
While local exploration has been investigated before in the
context of local search planners, it also serves to facilitate
escaping from UHRs for greedy best-first search. The new
framework of GBFS-LE, GBFS with Local Exploration, has
been tested successfully in two different realizations, adding
local greedy best-first search in GBFS-LS and random walks
in GBFS-LRW.

Future work should explore more types of local search
such as FF’s enforced hill-climbing (Hoffmann and Nebel
2001), and try to combine different local exploration meth-

59

(a) Unrecognized-Deadend (b) Large-UHR (c) Small-UHR

Figure 7: Comparison of time usage of LAMA-2011 with LAMA-LS and LAMA-LRW over the three different categories. A
typical single run is used for LAMA-LRW.

Domain Size LAMA-2011 LAMA-LS LAMA-LRW
00-miconic-ful 150 136 136 135.6
02-depot 22 20 20 19.6
02-freecell 80 78 79 78 .2
04-airport-str 50 32 34 32.8
04-notankage 50 44 43 44
04-optical-tel 48 4 6 4
04-philosoph 48 39 47 47.8
04-satellite 36 36 35 35
06-storage 30 18 23 21
06-tankage 50 41 41 42
08-transport 30 29 30 29.6
11-floortile 20 6 5 6
11-parking 20 18 20 16.8
11-transport 20 16 16 17
All others 1396 1396 1396 1396
Total 2112 1913 1931 1925.4
Unsolved 199 181 186.6

Table 4: Domains with different coverage for the three plan-
ners. 33 domains with 100% coverage and 7 further domains
with identical coverage for all planners are not shown.

Benchmarks LAMA-2011 LAMA-LS LAMA-LRW
UR-Deadend(195) 164 166(1.2%) 165(0.6%)
Large-UHR(383) 290 302(4.1 %) 302(4.1%)
Small-UHR(669) 646 645 (-0.2%) 641(-0.3%)

Table 5: Coverages over the three domain categories for
LAMA-2011, LAMA-LS and LAMA-LRW. UR-Deadend
is short for Unrecognized-Deadend. The same typical run in
Figure 6 is used for LAMA-LRW. Numbers in parentheses
show coverage improvements compared to LAMA-2011.

ods in a principled way. One open problem of GBFS-LE
is that it does not have a mechanism for dealing with un-
recognized dead-ends. Local exploration in GBFS-LE al-
ways starts from the heuristically most promising state in
the global open list, which might be mostly filled with nodes
from such dead-ends. In domains such as 2011-nomystery
(Nakhost, Hoffmann, and Müller 2012), almost all explo-
ration will occur within such dead ends and therefore be
useless. It would be interesting to combine GBFS-LE with
an algorithm for increased global-level exploration, such as
DBFS (Imai and Kishimoto 2011) and Type-GBFS (Xie et
al. 2014).

Acknowledgements
The authors wish to thank the anonymous referees for their
valuable advice. This research was supported by GRAND
NCE, a Canadian federally funded Network of Centres of
Excellence, NSERC, the Natural Sciences and Engineering
Research Council of Canada, and AITF, Alberta Innovates
Technology Futures.

References
Bonet, B., and Geffner, H. 2001. Heuristic search planner
2.0. AI Magazine 22(3):77–80.
Coles, A., and Smith, A. 2007. Marvin: A heuristic search
planner with online macro-action learning. Journal of Arti-
ficial Intelligence Research 28:119–156.
Coles, A.; Fox, M.; and Smith, A. 2007. A new local-
search algorithm for forward-chaining planning. In Boddy,
M. S.; Fox, M.; and Thiébaux, S., eds., Proceedings of the
17th International Conference on Automated Planning and
Scheduling (ICAPS-2007), 89–96.

60

García-Olaya, A.; Jiménez, S.; and Linares López, C., eds.
2011. The 2011 International Planning Competition.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E. A., eds., Proceedings of the
18th International Conference on Automated Planning and
Scheduling (ICAPS-2008), 140–147.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Zilberstein, S.; Koehler, J.; and Koenig,
S., eds., Proceedings of the 14th International Confer-
ence on Automated Planning and Scheduling (ICAPS-2004),
161–170.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2005. Where ‘ignoring delete lists’ works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.
Hoffmann, J. 2011. Where ignoring delete lists works, part
II: Causal graphs. In Bacchus, F.; Domshlak, C.; Edelkamp,
S.; and Helmert, M., eds., Proceedings of the 21st Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2011), 98–105.
Imai, T., and Kishimoto, A. 2011. A novel technique for
avoiding plateaus of greedy best-first search in satisficing
planning. In Burgard, W., and Roth, D., eds., Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence
(AAAI-2011), 985–991.
Lipovetzky, N., and Geffner, H. 2011. Searching for plans
with carefully designed probes. In Bacchus, F.; Domshlak,
C.; Edelkamp, S.; and Helmert, M., eds., Proceedings of the
21st International Conference on Automated Planning and
Scheduling (ICAPS-2011), 154–161.
Lu, Q.; Xu, Y.; Huang, R.; and Chen, Y. 2011. The Roamer
planner random-walk assisted best-first search. In García-
Olaya, A.; Jiménez, S.; and Linares López, C., eds., The
2011 International Planning Competition, 73–76.
Nakhost, H., and Müller, M. 2009. Monte-Carlo exploration
for deterministic planning. In Walsh, T., ed., Proceedings of
the Twenty-First International Joint Conference on Artificial
Intelligence (IJCAI’09), 1766–1771.
Nakhost, H., and Müller, M. 2012. A theoretical framework
for studying random walk planning. In Borrajo, D.; Felner,
A.; Korf, R. E.; Likhachev, M.; López, C. L.; Ruml, W.; and
Sturtevant, N. R., eds., Proceedings of the Fifth Annual Sym-
posium on Combinatorial Search (SOCS-2012), 57–64.
Nakhost, H.; Müller, M.; Valenzano, R.; and Xie, F. 2011.
Arvand: the art of random walks. In García-Olaya, A.;
Jiménez, S.; and Linares López, C., eds., The 2011 Inter-
national Planning Competition, 15–16.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A Monte Carlo random walk ap-
proach. In McCluskey, L.; Williams, B.; Silva, J. R.; and

Bonet, B., eds., Proceedings of the Twenty-Second Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2012), 181–189.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Gerevini, A.;
Howe, A. E.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the 19th International Conference on Automated Planning
and Scheduling (ICAPS-2009), 273–280.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Fox, D., and Gomes, C. P., eds., Pro-
ceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence (AAAI-2008), 975–982.
Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds., Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS-2010), 246–
249.
Valenzano, R.; Schaeffer, J.; Sturtevant, N.; and Xie, F.
2014. A comparison of knowledge-based GBFS enhance-
ments and knowledge-free exploration. In Proceedings of
the 24th International Conference on Automated Planning
and Scheduling (ICAPS-2014).
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Zilberstein, S.; Koehler, J.; and Koenig, S., eds.,
Proceedings of the 14th International Conference on Auto-
mated Planning and Scheduling (ICAPS-2004), 150–160.
Xie, F.; Müller, M.; Holte, R.; and Imai, T. 2014. Type-
based exploration with multiple search queues for satisficing
planning. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI-2014).
Xie, F.; Müller, M.; and Holte, R. 2014. Adding local ex-
ploration to greedy best-first search in satisficing planning.
In Proceedings of the 28th AAAI Conference on Artificial
Intelligence (AAAI-2014).
Xie, F.; Nakhost, H.; and Müller, M. 2012. Planning
via random walk-driven local search. In McCluskey, L.;
Williams, B.; Silva, J. R.; and Bonet, B., eds., Proceeed-
ings of the Twenty-Second International Conference on Au-
tomated Planning and Scheduling (ICAPS-2012), 315–322.

61

Type-based Exploration with Multiple Search Queues
for Satisficing Planning

Fan Xie and Martin Müller and Robert Holte
Computing Science, University of Alberta

Edmonton, Canada
{fxie2, mmueller, robert.holte}@ualberta.ca

Tatsuya Imai
Tokyo Institute of Technology

Tokyo, Japan
imai7@is.titech.ac.jp

Abstract

Utilizing multiple queues in Greedy Best-First Search
(GBFS) has been proven to be a very effective approach
to satisficing planning. Successful techniques include extra
queues based on Helpful Actions (or Preferred Operators),
as well as using Multiple Heuristics. One weakness of all
standard GBFS algorithms is their lack of exploration. All
queues used in these methods work as priority queues sorted
by heuristic values. Therefore, misleading heuristics, espe-
cially early in the search process, can cause the search to be-
come ineffective.
Type systems, as introduced for heuristic search by Lelis et
al, are a development of ideas for exploration related to the
classic stratified sampling approach. The current work intro-
duces a search algorithm that utilizes type systems in a new
way – for exploration within a GBFS multiqueue framework
in satisficing planning.
A careful case study shows the benefits of such exploration
for overcoming deficiencies of the heuristic. The proposed
new baseline algorithm Type-GBFS solves almost 200 more
problems than baseline GBFS over all International Planning
Competition problems. Type-LAMA, a new planner which
integrates Type-GBFS into LAMA-2011, solves 36.8 more
problems than LAMA-2011.1

Introduction
In the latest International Planning Competition (IPC) IPC-
2011 (García-Olaya, Jiménez, and Linares López 2011), the
planner LAMA-2011 (Richter and Westphal 2010) was the
clear winner of the sequential satisficing track, by both mea-
sures of coverage and plan quality. LAMA-2011 finds a first
solution using Greedy Best-First Search (GBFS) (Bonet and
Geffner 2001; Helmert 2006) with popular enhancements
such as Preferred Operators (Richter and Helmert 2009),
Deferred Evaluation (Richter and Helmert 2009) and Multi-
Heuristic (Richter and Westphal 2010).

GBFS always expands a node n that is closest to a goal
state according to a heuristic h. While GBFS makes no guar-
antees about solution quality, it can often find a solution

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Another version of this paper is published in AAAI-2014 (Xie
et al. 2014).

quickly. GBFS’s performance strongly depends on h. Mis-
leading or uninformative heuristics can result in massive in-
creases in the time and memory complexity of search.

Two of the three enhancements above, Preferred Oper-
ators and Multi-Heuristic, are implemented in a Multiple
Queue Search framework (Helmert 2006). Separate prior-
ity queues are used to hold different sets of nodes, or keep
them sorted according to different heuristics. Still, each
queue is sorted based on some heuristic h, and is used in
a greedy fashion by the search, which always expands a
node with minimum h-value from one of the queues. This
makes search vulnerable to the misleading heuristic prob-
lem, where it can stall in bad subtrees, which contain large
local minima or plateaus but do not lead to a solution.
Adding exploration to a search algorithm is one way to at-
tack this problem.

Previous approaches to this problem of GBFS with mis-
leading heuristics include K-BFS (Felner, Kraus, and Korf
2003), which expands the first k best nodes in a single pri-
ority queue and adds all their successors, and Diverse-BFS
(Imai and Kishimoto 2011), which expands extra nodes with
non-minimal h-values or at shallow levels of the search
tree. Another simple algorithm is ε-GBFS (Valenzano et al.
2014), which expands a node selected uniformly at random
from the open list with probability ε. All these algorithms
add an element of exploration.

The current paper proposes and evaluates a simple yet
very effective way of adding exploration based on a type sys-
tem (Lelis, Zilles, and Holte 2013). The major contributions
are:

1. An analysis of the weaknesses of previous simple explo-
ration schemes. and a non-greedy approach to exploration
based on a simple type system.

2. A search algorithm under the framework of multiple-
queue search named Type-GBFS which uses a type sys-
tem for exploration, and the corresponding planner Type-
LAMA, which replaces the GBFS component of LAMA-
2011 by Type-GBFS.

3. Detailed experiments on IPC benchmarks, which demon-
strate that baseline Type-GBFS solves substantially more
problems than baseline GBFS, and that this superiority
also holds when adding most combinations of standard
planning enhancements. Type-LAMA with all such en-

62

hancements outperforms LAMA-2011.

The discussion starts with a review of Multiple Queue
Search and the problems caused by misleading heuristics in
best-first algorithms. An analysis of ε-GBFS shows that its
exploration suffers from closely following the distribution
of h-values in the open list. A simple type system based on
both g- and h-values of each node is proposed as a remedy
and shown to lead to better exploration. Experiments on the
baseline as well as state of the art planners confirm that this
leads to significant progress in coverage.

Background: Multiple Queue Search and
Early Mistakes in GBFS

Multiple Queue Search

Two of the most important enhancements for satisficing
planning, Preferred Operators and Multi-Heuristics, are
based on Multiple Queue Search (Helmert 2006; Röger and
Helmert 2010). When more than one heuristic is used in the
search algorithm, Multiple Queue Search uses one priority
queue for each heuristic, and selects the next node to expand
from these queues in a round-robin manner. Queue boost-
ing (Helmert 2006) can be used to assign priorities to dif-
ferent queues. Once a node is expanded, all its successors
are evaluated by all heuristics, and put into every queue with
the corresponding value. For Preferred Operators (or Helpful
Actions), one additional priority queue per heuristic is used,
which contains only the successors generated by a preferred
operator. The algorithm again selects nodes in a round-robin
manner from all queues, but boosts the preferred operator
queue(s). The search benefits both from focusing more on
usually relevant actions, and from reaching greater depths
more quickly because of the smaller effective branching fac-
tor in the preferred queues.

Early Mistakes caused by Misleading Heuristics

Early mistakes are mistakes in search direction at shallow
levels of the search tree caused by sibling nodes being ex-
panded in the wrong order. This happens when the root node
of a bad subtree, which contains no solution or only hard-
to-find solutions, has a lower heuristic value than a sibling
which would lead to a quick solution.

The 2011-Nomystery domain from IPC-2011 is a typ-
ical example where delete-relaxation heuristics systemati-
cally make early mistakes (Nakhost, Hoffmann, and Müller
2012). In this transportation domain with limited non-
replenishable fuel, delete-relaxation heuristics such as hFF

ignore the crucial aspect of fuel consumption, which makes
the heuristic overoptimistic and misleading, and results in
large unrecognized dead-ends in the search space. Bad sub-
trees in the search tree, which over-consume fuel early on,
are searched exhaustively, before any good subtrees which
consume less fuel and can lead to a solution are explored.
As a result, while the random walk-based planner Arvand
with its focus on exploration solved 19 out of 20 nomystery
instances in IPC-2011, LAMA-2011 solved only 10.

Exploration bias in the Open List: Two Case
Studies

Previous exploration methods in GBFS suffer from biasing
their exploration heavily towards the neighborhood of nodes
in the open list. In the case of early mistakes, the large
majority of these nodes is in useless regions of the search
space. Consider the nodes in the regular hFF (Hoffmann
and Nebel 2001) open list of LAMA-2011 while solving the
problem 2011-nomystery #12. Figure 1(a) shows snapshots
of their h-value distribution after 2,000, 10,000 and 50,000
nodes expanded. In the figure, the x-axis represents differ-
ent heuristic values and the y-axis represents the number
of nodes with a specific h value in the open list. The solu-
tion eventually found by LAMA-2011 goes through a single
node n in this 50,000 node list, with h(n) = 18. This node is
marked with an asterisk in the figure. Over 99% of the nodes
in the open list have lower h-values, and will be expanded
first, along with much of their subtrees. However, in this ex-
ample, none of those nodes leads to a solution. The open list
is flooded with a large number of useless nodes with unde-
tected dead ends.
ε-GBFS (Valenzano et al. 2014) samples nodes uniformly

over the whole open list. This is not too useful when entries
are heavily clustered in bad subtrees. In the example above,
ε-GBFS has a less than 1% probability to pick a node with
h-value 18 or more in its exploration step, which itself is
only executed with probability ε. Furthermore, the algorithm
must potentially select several good successor nodes before
making measurable progress towards a solution by finding
an exit node with a lower h-value.

The instance 2011-nomystery #12, with 6 locations and
6 packages, has a relatively small search space, and both
GBFS and ε-GBFS eventually solve it after exhaustively
enumerating the dead ends. However, a larger problem like
2011-nomystery #19, with 13 locations and 13 packages,
is completely out of reach for GBFS or ε-GBFS. This in-
stance was solved by only 2 planners in IPC-2011. Figure
1(b) shows the h-value distribution in LAMA-2011’s reg-
ular hFF queue after 20,000, 100,000 and 500,000 nodes.
The node with h = 39 from a solution found by Arvand-
2011 (Nakhost and Müller 2009) is marked at the far right
tail of the distribution in the figure.

Adding Exploration via a Type System
Can the open list be sampled in a way that avoids the over-
concentration on a cluster of very similar nodes? A type sys-
tem (Lelis, Zilles, and Holte 2013), which is based on earlier
ideas of stratified sampling (Chen 1992), is one possible ap-
proach.

Type System
A type system is defined as follows:

Definition 1 (Lelis, Zilles, and Holte 2013) Let S be the set
of nodes in search space. T = {t1, . . . , tn} is a type system
for S if T is a disjoint partitioning of S. For every s ∈ S,
T (s) denotes the unique t ∈ T with s ∈ S.

63

(a) h-values in nomystery #12 (b) h-values in nomystery #19

Figure 1: (a)(b): h-value distribution in the regular hFF open list of LAMA-2011.

Types can be defined using any property of nodes. The
simple type system used here defines the type of a node s
in terms of its h-value for different heuristics h, and its g-
value. A simple and successful choice is the pair T (s) =
(hFF (s), g(s)). The intuition behind such type systems is
that they can roughly differentiate between nodes in differ-
ent search regions, and help explore away from the nodes
where GBFS gets stuck.

Figure 2(a) views a LAMA-2011 search of instance 2011-
nomystery #19 through the lens of a (hFF , g) type system.
The horizontal x- and y-axes represent hFF -values and g-
values respectively. The number of nodes in the open list
with a specific (hFF , g) type is plotted on the vertical z-axis.
The graph shows the frequency of each type in the regular
hFF open list of LAMA-2011 at the time when the open
list first reaches 100,000 nodes. After initial rapid progress,
search has stalled around a single huge peak. Most of the
open list is filled with a large number of useless nodes.

Type-GBFS: Adding a Type System to GBFS
Type-GBFS uses a simple two level type bucket data struc-
ture tb which organizes its nodes in buckets according to
their type. Type bucket-based node selection works as fol-
lows: First, pick a bucket b uniformly at random from among
all the non-empty buckets. Then pick a node n uniformly at
random from all the nodes in b. Type-GBFS alternately ex-
pands a node from from the regular open list O and from tb,
and each new node is added to both O and tb.

Multi-Heuristic type systems (h1(s), h2(s),) have
been explored before using a Pareto set approach (Röger and
Helmert 2010). The main differences of their approach are:
1) only Pareto Optimal buckets are selected; 2) the proba-
bility of selecting each Pareto optimal bucket is proportional
to the number of nodes it contains; 3) only heuristics are
used to define types, whereas the current approach also con-
siders g and potentially any other relevant information; and
4) nodes in a bucket are selected deterministically in FIFO
order, not uniformly at random.

Diverse Best-First Search (DBFS) (Imai and Kishimoto

Algorithm 1 TypeBuckets.Insert(n)
Input TypeBuckets b, node n

1: t← T (n)
2: if not b.types.Contains(t) then
3: b.types.Insert(t)
4: end if
5: b.nodes[t].Insert(n)
6: return

Algorithm 2 TypeBuckets.SelectNode()
Input TypeBuckets b
Output Node n

1: t← b.types.SelectRandom()
2: n← b.nodes[t].SelectRandom()
3: b.nodes[t].Remove(n)
4: if b.nodes[t].IsEmpty() then
5: b.types.Remove(t)
6: end if
7: return n

2011) is another closely related high performance search
algorithm which includes an exploration component. This
two-level search algorithm uses a global open list OG, a lo-
cal open list OL and a shared closed list.

Like Type-GBFS with the (hFF (s), g(s)) type system,
DBFS picks nodes based on their h- and g-values. There are
three major differences between these algorithms. 1) DBFS
performs a sequence of local searches while Type-GBFS
defines a single global search; 2) DBFS uses g to restrict
its node selection, while Type-GBFS can use g as part of
its type system; 3) DBFS biases its node selection using h,
while the type buckets in Type-GBFS sample uniformly over
all types.

64

(a) (h, g)-distribution in 2011-nomystery #19 for LAMA (b) ε-GBFS(ε = 0.5)

(c) Type-GBFS (d) DBFS

Figure 2: (a): distribution of types in the regular hFF open list of LAMA-2011 after 100,000 nodes in 2011-nomystery #19.
(b)(c)(d): distribution of types over the first 20,000 nodes expanded by the exploring phase (ε-exploration or type buckets) of
ε-GBFS(ε = 0.5), Type-GBFS and DBFS.

Exploration in Type-GBFS, ε-GBFS and DBFS
Type-GBFS and ε-GBFS with ε = 0.5 both spend half their
search effort on exploration. However, the distribution of
types of the explored nodes is very different. In Nomystery-
2011 #19, GBFS in LAMA-2011 grows the single peak
shown in Figure 2(a). Figure 2(b-d) show the frequency of
explored node types for ε-GBFS with ε = 0.5, Type-GBFS2

and DBFS after 20,000 nodes in the same format. Note that
while Figure 1 shows the distribution of all nodes in the open
list, Figure 2 shows the types of only those nodes that were
chosen in the exploration step3.
ε-GBFS mainly explores nodes close to the GBFS peak

types, while Type-GBFS explores much more uniformly
over the space of types. DBFS explores more types than ε-
GBFS. Unlike type buckets in Type-GBFS, which sample
types uniformly, DBFS is biased towards low h and high g

2Some explored types are outside the (h, g) range shown in Fig-
ure 2(b).

3Unlike ε-GBFS and Type-GBFS, there is no clear exploration
step in DBFS. All visited nodes are shown in the figure.

values.
Note that the z-axis scales are different for the three plots.

The single most explored type contains around 800 nodes
for ε-GBFS and 600 for DBFS, but only 40 for Type-GBFS.
The presence or absence of exploration helps explain the rel-
ative performance in 2011-Nomystery. The coverage for the
20 instances of this domain for one typical run with 4 GB
memory and 30 minutes per instance is 9 for GBFS, 11 for
ε-GBFS with ε = 0.5, 17 for Type-GBFS and 18 for DBFS.
Table 1 shows detailed search time results. While ε-GBFS
slightly improves over GBFS, Type-GBFS outperforms both
other algorithms. DBFS’s exploration strategy also performs
very well in 2011-Nomystery.

Experiments
The experiments use a set of 2112 problems (54 domains)
from the seven International Planning Competitions, and
were run on an 8-core 2.8 GHz machine with 4 GB memory
and 30 minutes per instance. Results for planners which use
randomization are averaged over five runs. All algorithms

65

problem# GBFS ε-GBFS, ε = 0.5 Type-GBFS DBFS
1 0.02 0.03 0.03 0.02
2 0.03 0.54 0.32 0.05
3 58.97 0.1 3.45 1.17
4 42.7 100.85 9.11 2.05
5 31.47 54.21 1.9 1.36
6 1.44 DNF 79.92 8.21
7 160.54 466.89 121.2 3.56
8 DNF DNF 1257.13 249.84
9 DNF 18.46 32.78 33.23

10 DNF DNF 382.24 971.4
11 0.3 0.06 0.19 0.11
12 2.24 2.78 2.9 0.28
13 DNF 19.73 1.54 7.42
14 DNF 639.35 9.41 4.64
15 DNF DNF 11.72 1.09
16 DNF DNF 26.25 19.65
17 DNF DNF DNF DNF
18 DNF DNF DNF DNF
19 DNF DNF 460.62 396.18
20 DNF DNF DNF 1287.59

total 9 11 17 18

Table 1: The search time (in seconds) of GBFS, ε-GBFS
(0.5), Type-GBFS and DBFS on IPC-2011 Nomystery.
"DNF" means "did not finish" within 30 minutes with 4G
of memory.

are implemented using the Fast Downward code base FD-
2011 (Helmert 2006). The translation from PDDL to SAS+
was done only once, and this common preprocessing time is
not counted in the 30 minutes.

Performance of Baseline Algorithms
The baseline study evaluates the two algorithms GBFS
and Type-GBFS without the common planning enhance-
ments of preferred operators, deferred evaluation and multi-
heuristics. It uses three popular planning heuristics - FF
(Hoffmann and Nebel 2001), causal graph (CG) (Helmert
2004) and context-enhanced additive (CEA) (Helmert and
Geffner 2008). We use the distance-base versions for the
three heuristics. They estimate the length of a solution path
starting from the evaluated state. Table 2 shows the cover-
age results. Type-GBFS outperforms GBFS by a substantial
margin for each tested heuristic.

Heuristic GBFS Type-GBFS
FF 1561 1755.6
CG 1513 1691.4
CEA 1498 1678.8

Table 2: Baseline GBFS vs. Type-GBFS - coverage of 2112
IPC instances.

Figure 3 compares the time performance of the baseline
algorithms with hFF . Every data point represents one in-
stance, with the search times for GBFS on the x-axis plotted
against Type-GBFS on the y-axis. Only problems for which
both algorithms need at least 0.1 seconds are shown.

Points below the main diagonal represent instances that
Type-GBFS solves faster than GBFS. For ease of compar-

ison, additional reference lines indicate 2×, 10× and 50×
relative speed. Data points within a factor of 2 are greyed
out in order to highlight the instances with substantial dif-
ferences. Problems that were only solved by one algorithm
within the 1800 second time limit are included at x = 10000
or y = 10000.

Beyond solving almost 200 more problems, Type-GBFS
shows a substantial advantage over GBFS in search time for
problems solved by both planners. There are many more
problems where Type-GBFS outperforms GBFS by more
than a factor of 10 or 50 than vice versa. Still, while Type-
GBFS outperforms GBFS overall, it does not dominate it
on a per-instance basis. Sometimes the extra exploration of
Type-GBFS wastes time or even leads the search astray for
a while.

Figure 3: Search time of baseline GBFS and Type-GBFS
with the hFF heuristic on IPC. Results of one typical run for
Type-GBFS shown.

Figure 4: Comparison of search times of GBFS and Type-
GBFS with FF heuristic, Deferred Evaluation and Preferred
Operators. Similar to Figure 3, we use the results of a typical
run for Type-GBFS with DE&PO.

66

Performance with Different Enhancements
How do GBFS and Type-GBFS compare when common
planning enhancements are added? All combinations of De-
ferred Evaluation, Preferred Operators and Multiple Heuris-
tics are tested, with hFF as the primary heuristic.

• With Deferred Evaluation, nodes are not evaluated be-
fore adding them to open lists and type buckets. Instead,
the heuristic value of their parents is used (Richter and
Helmert 2009).

• With Preferred Operators, nodes that are reached via
preferred operators, such as helpful actions in hFF , are
also stored in a separate open list (Richter and Helmert
2009). Boosting of preferred open lists with a parameter
of 1000 is used as in LAMA-2011 (Richter and Westphal
2010). In case of deferred evaluation, preferred operators
are ranked before other siblings for tie-breaking, using the
so-called pref_first ordering (Richter and Westphal 2010).
Type-GBFS uses only a single set of type buckets for all
nodes. There are no separate type buckets containing pre-
ferred nodes only.

• Multi-Heuristics maintains multiple priority queues
sorted by different heuristics. Following LAMA, the
Landmark count heuristic hlm (Richter, Helmert, and
Westphal 2008) is used as the second heuristic here. Type-
GBFS with Multi-Heuristics uses two open lists, one for
each heuristic, plus type buckets for the (hFF , g) type sys-
tem.

When both Multi-Heuristic and Preferred Operators are
applied, GBFS uses four queues, two regular and two pre-
ferred ones. Type-GBFS uses the same queues plus (hFF , g)
type buckets.

Enhancement GBFS Type-GBFS
(none) 1561 1755.6
PO 1826 1848.6
DE 1535 1834.6
MH 1851 1789.8
PO + DE 1871 1906.4
PO + MH 1850 1846.2
DE + MH 1660 1729.0
PO + DE + MH 1913 1949.8

Table 3: Number of IPC tasks solved out of 2112. PO = Pre-
ferred Operators, DE = Deferred Evaluation, MH = Multi-
Heuristic.

Table 3 shows the experimental results on IPC domains
for all 8 combinations of enhancements. When used as
a single enhancement, Preferred Operators and Multiple
Heuristic improve both algorithms. Deferred Evaluation also
strongly improves Type-GBFS, but causes a slight decrease
in coverage for GBFS, mainly due to plateaus caused by
the less informative node evaluation (Richter and Helmert
2009). Apparently, Type-GBFS gets stuck in such plateaus
less often.

When combining any two enhancements, both algorithms
achieve their best performance with Preferred Operators
plus Deferred Evaluation, as observed for GBFS in Richter

and Helmert’s work (2009). Figure 4 shows details of time
usage for GBFS and Type-GBFS for this combination. Mul-
tiple Heuristics have a negative effect on Type-GBFS when
combined with either Preferred Operators or Deferred Eval-
uation, but work very well when combined with both. Find-
ing an explanation for this surprising behavior is left as fu-
ture work. The last row in Table 3 lists coverage results when
all three enhancements are applied as in LAMA.

Comparing State of the Art Planners in Terms of
Coverage and Search Time
The performance comparison in this section includes the fol-
lowing planners:

• LAMA-2011: only the first iteration of LAMA using
GBFS is run, with deferred evaluation, preferred opera-
tors and multi-heuristics (hFF , hlm) (Richter and West-
phal 2010).

• Type-LAMA: LAMA-2011 with GBFS replaced by
Type-GBFS, uses the same four queues as LAMA-2011,
plus (hFF , g) type buckets.

• DBFS2: DBFS2 (Imai and Kishimoto 2011), an en-
hanced version of DBFS which adds a second global
open list for preferred operators only, was re-implemented
by Imai on the LAMA-2011 code base, which is much
stronger than the LAMA-2008 code base used in (Imai
and Kishimoto 2011). The parameters P = 0.1, T = 0.5
from the same paper are used.

LAMA-2011 and Type-LAMA correspond to PO+DE+MH
in Table 3.

Table 4 shows detailed coverage differences of these three
planners. Type-LAMA outperforms the other two planners,
solving 36.8 more problems than LAMA-2011 and 54.4
more than DBFS2. The 5 runs for Type-LAMA had nearly
identical coverage of 1952, 1950, 1950, 1948 and 1949.
The percentage of unsolved problems is reduced from 9.4%
for LAMA to 7.6%. This is comparable to the improve-
ment from adding the Landmark count heuristic (Richter
and Westphal 2010) - from 11.4% to 9.4% unsolved. Con-
sidering that only the hardest problems were left unsolved,
adding the type system makes the planner substantially
stronger.

Figures 5(a) and (b) compare the search time of Type-
LAMA against LAMA-2011 and DBFS2 in the manner de-
scribed for Figure 3. Between Type-LAMA and LAMA-
2011, many results are very close, presumably for instances
where exploration plays only a small role. Type-LAMA has
a large time advantage of over 10× more often. Results for
Type-LAMA and DBFS2 are much more diverse. Besides its
coverage advantage, Type-LAMA also wins the time com-
parison for a large number of instances by factors of over
2×, 10× and 50×.

For further comparison, the coverage results of some
other strong planners from IPC-2011 on the same hardware
are: FDSS-2 solves 1912/2112, Probe 1706/1968 (failed on
":derive" keyword in 144 problems), Arvand 1878.4/2112,
fd-auto-tune-2 1747/2112, and Lama-2008 1809/2112.

67

(a) Lama-2011 (x) vs. Type-LAMA (y) (b) DBFS2 (x) vs. Type-LAMA (y)

Figure 5: Comparison of search time. Type-LAMA vs. Lama-2011 (left) and DBFS2 (right). using typical single runs of Type-
GBFS, Type-LAMA and DBFS2.

domain size LAMA-2011 Type-LAMA DBFS2
98-logistics 35 35 35 34
98-mystery 30 19 19 19
00-miconic-full 150 136 139 138.6
02-depot 22 20 21.6 18.2
02-freecell 80 78 77.8 79.8
04-airport-strips 50 32 34.6 41
04-notankage 50 44 44 43.2
04-optical-tele 48 4 5.4 5
04-philosopher 48 39 48 48
04-psr-large 50 32 31.6 15.6
04-satellite 36 36 35.2 27
06-pathways 30 30 30 28.4
06-storage 30 18 23.8 23.4
06-tankage 50 41 42 36.8
06-trucks-strips 30 14 20.8 24
08-scanalyzer 30 30 30 29.6
08-sokoban 30 28 27 28
08-transport 30 29 30 29.8
08-woodworking 30 30 29.8 30
11-elevators 20 20 20 18.8
11-floortile 20 6 5.6 7.6
11-nomystery 20 10 17.8 17.8
11-openstacks 20 20 20 12.8
11-parking 20 18 17.6 12.6
11-scanalyzer 20 20 20 19.8
11-sokoban 20 19 18.2 18
11-tidybot 20 16 16.4 16.2
11-transport 20 16 15.6 12.4
11-visitall 20 20 20 7
Total 2112 1913 1949.8 1895.4
Unsolved - 199 162.2 216.6

Table 4: Number of instances solved. 25 domains with 100%
coverage for all three planners omitted.

Although type buckets cause some change in solution
costs, the influence is not clear-cut. If we compare LAMA-
2011 and one typical run Type-LAMA’s results, there are
1907 problems solved by both planners. The IPC scores for

LAMA-2011 and Type-LAMA are 1895.1 vs 1892.5, only
2.6 difference over the 1907 problems. For 1698 problems,
both planners achieve the same solution cost.

Effect of Different Type Systems

The results above for both Type-GBFS and Type-LAMA are
for the (hFF, g) type system. Table 5 summarizes results for
these two planners when using several other simple type sys-
tems. (1) is the trivial single-type system T (s) = 1.

Among single-element type systems, (g) performs better
than either heuristic, and (hlm) solves around 10 more prob-
lems than (hFF). Since Type-GBFS only uses hFF , hlm is
only tested for Type-LAMA.

Compared to GBFS, (g) explores much more on nodes
with low g-values, typically at shallow levels of the search
tree. Many such nodes will be expanded very late in GBFS.
In contrast, an (h)-only type system focuses on exploring
different estimated goal distances and ignores g. Interest-
ingly, (g) is even slightly better than (hFF , g) in Type-
GBFS, but (hFF , g) is better in Type-LAMA. Among two-
element type systems, (hFF , g) and (hlm , g) are the top
two configurations, while (hFF , hlm) is just slightly better
than (hlm). The three-element type system (hFF , hlm , g) is
worse and might be too fine-grained for this test set. The
question of the right granularity is important and needs fur-
ther study.

Type T-GBFS T-LAMA Type T-LAMA
none 1561 1913 (hlm) 1921.6
(1) 1529.6 1916.2 (hlm , g) 1942.4
(g) 1758.2 1935.0 (hFF , hlm) 1925.6

(hFF) 1729.0 1918.6 (hFF , hlm , g) 1939.0
(hFF , g) 1755.6 1949.8

Table 5: Coverage of Type-GBFS (T-GBFS) and Type-
LAMA (T-LAMA) with simple type systems.

68

Type-LAMA Works Better as an Integrated
System than as a Simple Portfolio
This experiment compares Type-LAMA, which integrates
type-based exploration directly into LAMA’s search process,
with a portfolio which independently runs LAMA and a sim-
ple type-based planner ST . ST selects nodes exclusively
from type buckets, using a (hFF , g) type system as defined
above. For consistency with LAMA, Deferred Evaluation is
used for type buckets as well.

By itself, ST solves 1266 out of 2112 IPC problems. Con-
sider a portfolio planner that uses x seconds for LAMA-
2011, followed by 1800−x seconds for ST . The best cover-
age of 1926 is achieved for x = 1279. Type-LAMA , whose
performance is shown as a horizontal line near the top of
the plot, solves 23.8 problems more than this best portfolio.
This shows the synergy between exploitation-based search
in LAMA and exploration using a type system.

Figure 6: Coverage of LAMA+ST portfolio planner with
varying time allocation.

Conclusion and Future Work
The primary contributions of this paper are an investiga-
tion of the problem of inefficient exploration in previous
GBFS-type planners, and the solution of using type-based
exploration. The new algorithm Type-GBFS samples nodes
uniformly over a type system instead of uniformly over all
nodes in an open list. By replacing GBFS with Type-GBFS,
the planner Type-LAMA can solve 36.8 more problems than
LAMA-2011 on average, decreasing the number of unsolved
problems over all past IPC domains from 199 to 162.2.

One obvious direction for future work is to test many
more type systems, including others proposed by Lelis,
Zilles and Holte (2013). Different forms of boosting and
non-uniform exploration of different types could also be in-
vestigated. Regarding experimental results, it is unclear why
the combination of multiple heuristics with either one of pre-
ferred operators and deferred evaluation fails, and yet suc-
ceeds when combined with both.

One potential problem of Type-LAMA is that the type
system might not be able to explore deeply enough when

the distance from current nodes in the open list to heuris-
tically promising nodes is large. One potential solution for
this problem is to use a larger local search (Imai and Kishi-
moto 2011; Xie, Müller, and Holte 2014), or other forms
of exploration such as random walks (Nakhost and Müller
2009).

Acknowledgements
The authors wish to thank the anonymous referees for their
valuable advice. This research was supported by GRAND
NCE, a Canadian federally funded Network of Centres of
Excellence, NSERC, the Natural Sciences and Engineering
Research Council of Canada, AITF, Alberta Innovates Tech-
nology Futures, and Grant-in-Aid for JSPS Fellows, Japan
Society for the Promotion of Science.

References
Bonet, B., and Geffner, H. 2001. Heuristic search planner
2.0. AI Magazine 22(3):77–80.
Chen, P. C. 1992. Heuristic sampling: A method for pre-
dicting the performance of tree searching programs. SIAM
J. Comput. 21(2):295–315.
Felner, A.; Kraus, S.; and Korf, R. E. 2003. KBFS: K-best-
first search. Ann. Math. Artif. Intell. 39(1-2):19–39.
García-Olaya, A.; Jiménez, S.; and Linares López, C., eds.
2011. The 2011 International Planning Competition. Uni-
versidad Carlos III de Madrid.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E. A., eds., Proceedings of the
18th International Conference on Automated Planning and
Scheduling (ICAPS-2008), 140–147.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Zilberstein, S.; Koehler, J.; and Koenig,
S., eds., Proceedings of the 14th International Confer-
ence on Automated Planning and Scheduling (ICAPS-2004),
161–170.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Imai, T., and Kishimoto, A. 2011. A novel technique for
avoiding plateaus of greedy best-first search in satisficing
planning. In Burgard, W., and Roth, D., eds., Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence
(AAAI-2011), 985–991.
Lelis, L. H. S.; Zilles, S.; and Holte, R. C. 2013. Strat-
ified tree search: a novel suboptimal heuristic search algo-
rithm. In Gini, M. L.; Shehory, O.; Ito, T.; and Jonker, C. M.,
eds., Proceeding of the 12th International Conference on
Autonomous Agents and Multi-Agent Systems, 555–562.
Nakhost, H., and Müller, M. 2009. Monte-Carlo exploration
for deterministic planning. In Walsh, T., ed., Proceedings of
the 22nd International Joint Conference on Artificial Intelli-
gence (IJCAI-2011), 1766–1771.

69

Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A Monte Carlo random walk ap-
proach. In McCluskey, L.; Williams, B.; Silva, J. R.; and
Bonet, B., eds., Proceedings of the Twenty-Second Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2012), 181–189.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Gerevini, A.;
Howe, A. E.; Cesta, A.; and Refanidis, I., eds., Proceedings
of the 19th International Conference on Automated Planning
and Scheduling (ICAPS-2009), 273–280.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Rintanen, J.; Nebel, B.; Beck, J. C.;
and Hansen, E. A., eds., Proceedings of the 18th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2008), 975–982.
Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds., Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS-2010), 246–
249.
Valenzano, R.; Schaeffer, J.; Sturtevant, N.; and Xie, F.
2014. A comparison of knowledge-based GBFS enhance-
ments and knowledge-free exploration. In Proceedings of
the 24th International Conference on Automated Planning
and Scheduling (ICAPS-2014).
Xie, F.; Müller, M.; Holte, R.; and Imai, T. 2014. Type-
based exploration with multiple search queues for satisficing
planning. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI-2014).
Xie, F.; Müller, M.; and Holte, R. 2014. Adding local ex-
ploration to greedy best-first search in satisficing planning.
In Proceedings of the 28th AAAI Conference on Artificial
Intelligence (AAAI-2014).

70

A Practical, Integer-Linear Programming Model for the Delete-Relaxation in
Cost-Optimal Planning

Tatsuya Imai
Tokyo Institute of Technology

Japan

Alex Fukunaga
The University of Tokyo

Japan

Abstract
We propose a new integer-linear programming model for the
delete relaxation in cost-optimal planning. While a naive
formulation of the delete relaxation as IP is impractical,
our model incorporates landmarks and relevance-based con-
straints, resulting in an IP that can be used to directly solve the
delete relaxation. We show that our IP model outperforms the
previous state-of-the-art solver for delete-free problems. We
then use LP relaxation of the IP as a heuristics for a forward
search planner, and show that our LP-based solver is compet-
itive with the state-of-the-art for cost-optimal planning.
[This is the HSDIP workshop version of a paper that will
appear in ECAI-2014 (Imai and Fukunaga 2014) (identi-
cal except for formatting). When citing this work please
cite the ECAI paper.]

1 Introduction
The delete relaxation of a classical planning problem is a
relaxation of a planning problem such that all deletions are
eliminated from its operators. It is clear that h+, the optimal
value of the delete relaxation of a planning instance is an
admissible, lower bound on the cost of the optimal cost plan
for the instance.

In cost-optimal planning, while h+ is known to be more
accurate than commonly used heuristics such as landmark-
cut (Helmert and Domshlak 2009), current planners to not
directly compute h+ because the extra search efficiency
gained from using h+ is offset by the high cost of comput-
ing h+. In fact, computing h+ is known to be NP-complete
(Bylander 1994). As far as we are aware, the first use of h+

inside a cost-optimal planner was by Betz and Helmert (Betz
and Helmert 2009), who implemented domain-specific im-
plementations of h+ for several domains. Haslum eval-
uated the use of a domain-independent algorithm for h+

(Haslum, Slaney, and Thiébaux 2012) as the heuristic func-
tion for cost-optimal planning, and found that the perfor-
mance was relatively poor (Haslum 2012). In recent years,
there have been several advances in the computation of h+

(Gefen and Brafman 2012; Pommerening and Helmert 2012;
Haslum, Slaney, and Thiébaux 2012).

A somewhat separate line of research is the increasing use
of integer/linear programming (ILP) in domain-independent

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

planning. The earliest use of linear programming (LP) in
domain-independent planning that we are aware of was by
Bylander, who used an LP encoding of planning as a heuris-
tic function for a partial order planner (Bylander 1997).
Briel and Kambhampati formulated and solved planning as
an integer program (IP) (van den Briel and Kambhampati
2005). Recently, instead of modeling and directly solving
planning as an IP, LP relaxations have been used to com-
pute admissible heuristics in a search algorithm, including a
network flow a LP heuristic for branch-and-bound (van den
Briel, Vossen, and Kambhampati 2008), a heuristic for A*

based on the state equations in SAS+ (Bonet 2013), and
most recently, an LP encoding of a broad framework for
operator-counting heuristics (Pommerening et al. 2014). IP
has also been used to compute hitting sets as part of the
computation of h+ in delete-free planning (in an improved
version of the algorithm described in (Haslum, Slaney, and
Thiébaux 2012), (Haslum 2014).

In this paper, we propose a new, integer/linear program-
ming approach to computing h+. While a straightforward
ILP model for h+ is often intractable and not useful in prac-
tice, we developed an enhanced model, IPe(T +), which in-
corporates landmark constraints for the delete relaxation, as
well as relevance analysis to significantly decrease the num-
ber of variables. We show that IPe(T +) allows significantly
faster computation of h+ compared to the state of the art.

Then, we consider the use of h+ as a heuristic for A* in a
cost-optimal, domain-independent planner. We further aug-
ment IPe(T +) with constraints that consider some delete ef-
fects, as well as constraints for cycle avoidance, resulting
in a new admissible heuristic which dominates h+. Since
IPe(T +) is an IP, its LP relaxation, LPe(T +), is also an ad-
missible heuristic for domain-independent problem. Since
even LPe(T +) can be quite expensive, the ILP model can be
further relaxed by omitting a subset of its constraints, result-
ing in LPe

tr(T
+), an LP for the “relaxed” delete relaxation.

We empirically evaluate the ILP models by embedding
them as heuristics in an A*-based planner. We implemented
a simple method for automatically selecting which LP for-
mulation to use as the heuristic, based on a comparison of
their values at the root node. The resulting planner performs
comparably to the state-of-the-art, cost-optimal planners,
Fast-Downward with the landmark-cut heuristic (Helmert
and Domshlak 2009) and Fast-Downward using the hy-

71

brid bisimulation merge-and-shrink heuristic (Nissim, Hoff-
mann, and Helmert 2011).

The rest of the paper is organized as follows. Section 2
proposes the basic ILP model for h+. Section 3 describes
enhancements to the ILP model which significantly speeds
up computation of h+. Section 4 augments the ILP model
by adding counting constraints, which results in a IP bound
that dominates h+. Section 5 summarizes the relationship
among ILP models, and describes a simple method for se-
lecting which model to apply to a given problem instance.
Section 6, experimentally evaluates the proposed ILP mod-
els, as well as a portfolio approach that automatically selects
one of the ILP models.

2 ILP model for h+

A STRIPS planning task is defined by a 4-tuple T =
〈P, A, I, G〉. P is a set of propositions. A is a set of ac-
tions. A state is represented by a subset of P , and ap-
plying an action to a state adds some propositions and re-
moves some propositions in the state. Each action a ∈ A
is composed of three subsets of P , 〈pre(a), add(a), del(a)〉
which are called the preconditions, add effects, and delete
effects. An action a is applicable to a state S iff it satis-
fies pre(a) ⊆ S. By applying a to S, propositions in S
change from S to S(a) = ((S \del(a))∪add(a)). For a se-
quence of actions π = (a0, · · · , an), we use S(π) to denote
((((S \ del(a0)) ∪ add(a0)) \ del(a1)) ∪ · · ·) ∪ add(an).

Let I ⊆ P be the initial state and G ⊆ P the goal.
The target of a planning task is to find a sequence of ac-
tions to transform I to a state S that satisfies G ⊆ S.
Formally, a feasible solution, i.e., a plan, is a sequence of
actions π = (a0, · · · , an) that satisfies (i) ∀i, pre(ai) ⊆
I((a0, · · · , ai−1)), and (ii) G ⊆ I(π). The target of a cost-
optimal STRIPS planning is to find a shortest plan, or to find
a plan π that minimizes

∑
a∈π c(a) when the non-negative

cost c(a) of each action a is defined.
The delete relaxation of a task T , denoted by T +, is a

task 〈P, A+, I, G〉 where A+ is a set of delete-free actions
defined as A+ = {〈pre(a), add(a), ∅〉 | a ∈ A}. We also
use T + to denote a task that is delete-free from the beginning
without being relaxed.

2.1 ILP formulation of a delete-free problem
We formulate a delete free task T + = 〈P, A+, I, G〉 as an
integer-linear program. IP(T +) denotes the IP problem de-
rived from T +, and we use π∗ = (a∗

0, · · · , a∗
n) to denote

an optimal plan for T + derived from an optimal solution of
IP(T +). Similarly LP(T +) denotes the LP relaxation of
IP(T +). Note that for any feasible and non-redundant (i.e.,
same actions appear only once) solution of IP(T +) (not just
the optimal solution), we can derive a corresponding, feasi-
ble plan for T + that has same cost as the IP(T +) solution.

First, we define the variables of IP(T +). In addition to
being able to derive a plan from IP(T +), there always exists
a injective mapping from a feasible non-redundant plan to
an IP(T +) solution. Thus, we also show the feasible assign-
ments of variables that can be derived from a feasible plan
of T +, as well as the meanings and roles of the variables.

proposition: ∀p ∈ P, U(p) ∈ {0, 1}. U(p) = 1 iff p ∈
I(π∗).

action: ∀a ∈ A, U(a) ∈ {0, 1}. U(a) = 1 iff a ∈ π∗ holds.

add effect: ∀a ∈ A, ∀p ∈ add(a), E(a, p) ∈ {0, 1}.
E(a, p) = 1 iff a ∈ π∗ holds and a achieves p first.

time (proposition): ∀p ∈ P, T (p) ∈ {0, · · · , |A|}. T (p) =
t when p ∈ I(π∗) and p is added by a∗

t−1 first. T (p) = 0
for p 6∈ I(π∗).

time (action): ∀a ∈ A, T (a) ∈ {0, · · · , |A|−1}. T (a) = t
when a = a∗

t . T (a) = |A| − 1 when a 6∈ π∗.

initial proposition: ∀p ∈ P, I(p) ∈ {0, 1}. I(p) = 1 iff
p ∈ I .

If p ∈ P appears more than once, use first indices for T (p).
Variables I(p) are auxiliary variables for computing h+. Al-
though they are redundant when solving a delete-free task
only one time, they are useful to avoid reconstructing con-
straints for each state when IP(T +) or LP(T +) are embed-
ded as a heuristic function in a forward-search planner and
called for each state.

The objective function seeks to minimize∑
a∈A c(a)U(a).
Because of this objective function, the cost of an IP so-

lution is equal to the cost of the corresponding (delete-free)
plan.

Finally we define following six constraints.

1. ∀p ∈ G, U(p) = 1.

2. ∀a ∈ A, ∀p ∈ pre(a), U(p) ≥ U(a).

3. ∀a ∈ A, ∀p ∈ add(a), U(a) ≥ E(a, p).

4. ∀p ∈ P, I(p) +
∑

a∈A s.t.p∈add(a) E(a, p) ≥ U(p).

5. ∀a ∈ A, ∀p ∈ pre(a), T (p) ≤ T (a).

6. ∀a ∈ A, ∀p ∈ add(a), T (a)+1 ≤ T (p)+(|A|+1)(1−
E(a, p)).

There exists a feasible plan only if IP(T +) has a feasible
solution. When IP(T +) is solved optimally, an optimal plan
for T + is obtained according to following lemma. For a
variable V of IP(T +), VF describes the assignment of V on
a solution F of IP(T +).

Proposition 1. Given a feasible solution F for IP(T +),
the action sequence obtained by ordering actions in the set
{a | U(a)F = 1} in ascending order of T (a)F is a feasible
plan for T +.

Proof: At first we show that π satisfies the condition (ii)
of a plan (i.e., G ⊆ I(π)) by proof of contradiction. Assume
that there exists a proposition g ∈ G that satisfies g 6∈ I(π).
There exists no action achieving g in π according to the as-
sumption. Since F is a solution of IP(T +), U(g)F = 1
holds according the constraint 1. Since g 6∈ I(π) deduces
g 6∈ I , I(g)F = 0. Therefore, to satisfy the condition 4,
there must exist an action a ∈ A that satisfies g ∈ add(a)
and E(a, g)F = 1. However, to satisfy the constraint 3,
U(a)F = 1 has to hold. This means a ∈ π, and this contra-
dicts the assumption.

72

Next we show that π satisfies condition (i) (i.e.,
∀i, pre(ai) ⊆ I((a0, · · · , ai−1))). For the base case of in-
ductive proof, assume that there exists a proposition p ∈ P
satisfying p ∈ pre(a0) and p 6∈ I . Since a0 ∈ π, U(a0)F =
1 has to hold, and U(p)F = 1 has to hold according to the
constraint U(p)F ≥ U(a0)F . Then, similar to the proof of
condition (ii), there must exist an action a ∈ A that satis-
fies p ∈ add(a), U(a)F = 1, and E(a, p)F = 1. However,
to satisfy constraint 5, T (p) ≤ T (a0) has to be true, and
T (a) + 1 ≤ T (p) has to hold to satisfy condition 6. There-
fore we have U(a)F = 1 and T (a) < T (a0), but a0 is the
first action of π, a contradiction.

Similar to the case of i = 0, when i > 0, if pre(ai) ⊆
I((a0, · · · , ai−1)) is not true, there must exist an action a 6∈
(a0, · · · , ai−1) that satisfies U(a)F = 1 and T (a) < T (ai),
contradicting the fact that ai is the i-th action of the se-
quence π. ✷

3 Enhancements for ILP model
In this section, we introduce some variable elimination tech-
niques and some modifications of constraints. As we will
show in the experimental results, these enhancements sig-
nificantly reduce the time to solve IP(T +) and LP(T +).
Some of the enhancements are adopted into our IP frame-
work from previous work in planning research. In particular,
landmarks, which have been extensively studied in recent
years, play very important role.

Note that while some of the enhancements introduce cuts
that render some solutions of IP(T +) mapped from feasi-
ble plans infeasible, at least one optimal plan will always
remain.

3.1 Landmark Extraction and Substitution
A landmark is an element which needs to be used in every
feasible solution. We use two kinds of landmarks, called fact
landmarks and action landmarks as in (Gefen and Brafman
2012). A fact landmark of a planning task T is a proposition
that becomes true on some state of every feasible plan, and
an action landmark of a planning task T is an action that
is included in every feasible plan. We also say that a fact
or action landmark l is a landmark of a proposition p if l
is a landmark of the task 〈P, A, I, {p}〉. Similarly we also
say that a landmark l is a landmark of an action a if l is a
landmark of the task 〈P, A, I, pre(a)〉. In the IP model of
a delete-free task T +, if a proposition p is a fact landmark,
then we can substitute U(p) = 1. Similarly, if an action a is
an action landmark, then we can substitute U(a) = 1.

In this work, we extract some kinds of action landmarks
and fact landmarks according to following facts. The con-
trapositions of these propositions are clearly true.

Proposition 2. Given a feasible delete-free task T +, an
action a ∈ A is an action landmark of T + if the task
〈P, A \ {a}, I, G〉 is infeasible.

Proposition 3. Given a feasible delete-free task T +, a
proposition p ∈ P is a fact landmark of T + if the task〈
P, A \ Aadd

p , I \ {p}, G
〉

is infeasible, where Aadd
p is de-

fined as Aadd
p = {a | p ∈ add(a)}.

Zhu et al. defined a kind of fact landmark called causal
landmark (Zhu and Givan 2003). A proposition p is a causal
landmark if

〈
P, A \ Apre

p , I \ {p}, G
〉

is infeasible, where
Apre

p = {a | p ∈ pre(a)}. If
〈
P, A \ Apre

p , I \ {p}, G
〉

does not have any solution, then
〈
P, A \ Aadd

p , I \ {p}, G
〉

is also infeasible, therefore using Aadd
p instead of Apre

p can
extract larger set of fact landmarks. Keyder et al. proposed
AND-OR graph based landmark extracting method general-
ized from a causal landmark extracting algorithm proposed
Zhu et al. (Keyder, Richter, and Helmert 2010). We use
similar algorithm to extract both of our fact landmarks and
action landmarks.

3.2 Relevance Analysis
Backchaining relevance analysis is widely used to eliminate
irrelevant propositions and actions of a task. An action a is
relevant if (i) add(a) ∩ G 6= ∅, or (ii) there exists a rele-
vant action a′ satisfying add(a) ∩ pre(a′) 6= ∅. A propo-
sition p is relevant if (i) p ∈ G, or (ii) there exists a rel-
evant action a and p ∈ pre(a) holds. In addition to this,
as Haslum et al. noted, it is sufficient to consider relevance
with respect to only a subset of first achievers of add effect
(Haslum, Slaney, and Thiébaux 2012). Although they de-
fined a first achiever by achievability of a proposition, it is
completely equivalent to the following definition: an action
a is a first achiever of a proposition p if p ∈ add(a) and p
is not a fact landmark of a. When we use fadd(a) to denote
{p ∈ add(a) | a is a first achiever of p}, it is sufficient to use
fadd instead of add on the above definition of relevance.

If a ∈ A or p ∈ P is not relevant, we can eliminate a
variable as U(a) = 0 or U(p) = 0. In addition to this, if
p ∈ add(a) but a is not a first achiever of p, we can eliminate
a variable as E(a, p) = 0.

3.3 Dominated Action Elimination
On a delete-free task, if two actions have same add effect,
then it is clearly sufficient to use at most one of two ac-
tions. Here we introduce a technique that eliminates an use-
less action (dominated action) extending this idea. If there
exists a dominated action a, we can eliminate a variable as
U(a) = 0. We omit the proof due to space.

Proposition 4. Given a feasible delete-free task T +, there
exists an optimal plan that does not contains a ∈ A if there
exists an action a′ ∈ A satisfying following: (i) fadd(a) ⊆
fadd(a′), (ii) for any p ∈ pre(a′), p is a fact landmark of a
or p ∈ I , and (iii) c(a) ≥ c(a′).

Robinson proposed similar constraints for a MaxSAT-
based planner, but his condition is stricter than condition (ii)
(Robinson 2012).

3.4 Immediate Action Application
On a delete-free task T +, applying some types of actions to
the initial state do not hurt optimality. We adopt to use an ac-
tion with cost zero as (Gefen and Brafman 2011) and an ac-
tion landmark as (Gefen and Brafman 2012) to this enhance-
ment. For a delete-free task T +, if an action a ∈ A satisfies

73

c(a) = 0 and pre(a) ⊆ I , then a sequence made by connect-
ing a before an optimal plan of 〈P, A \ {a}, I ∪ add(a), G〉
is an optimal plan of T +. Similarly, if an action a is an ac-
tion landmark of T + and a is applicable to I , you can apply
a to I immediately.

For IP(T +), variables T (p) for p ∈ I can be eliminated
by substituting zero. Given a sequence of immediate appli-
cable actions (a0, · · · , ak) (it must be a correct applicable
sequence), we can eliminate some variables as follows: (i)
U(ai) = 1, (ii) T (ai) = i, (iii) ∀p ∈ pre(ai), U(p) = 1, and
(iv) ∀p ∈ add(ai) \ I((a0, · · · , ai−1)), U(p) = 1, T (p) = i
and E(ai, p) = 1.

3.5 Iterative Application of Variable Eliminations
The variable elimination techniques described above can in-
teract synergistically with each other resulting in a cascade
of eliminations. For example, landmarks increase non rele-
vant add effects, which increases dominated actions, which
can result in new landmarks. Therefore, we used a itera-
tive variable eliminating algorithm which applies elimina-
tions until quiescence.

A full landmark extraction pass after each variable elimi-
nation would be extremely expensive, but landmark extrac-
tion can be implemented incrementally. Hence we perform a
complete landmark extraction once for each state, and after
that, the incremental extraction is executed after each vari-
able reduction.

3.6 Inverse action constraints
We define the following inverse relationship between a pair
of actions for a delete-free task T +. For two actions a1, a2 ∈
A, a1 is an inverse action of a2 if it satisfies following: (i)
add(a1) ⊆ pre(a2), and (ii) add(a2) ⊆ pre(a1). By the
definition, it is clear that if a1 is an inverse action of a2,
then a2 is an inverse action of a1. Inverse actions satisfy
following fact (proof omitted due to space).
Proposition 5. For a delete-free task T +, a feasible solution
π = (a0, · · · , an) is not optimal if ai ∈ π is an inverse
action of aj ∈ π and both of ai and aj have non-zero cost.

Let inv(a, p) denote the set of inverse actions of an action
a which have p as add effect. There are several possible
ways to use above proposition (e.g., U(a) + U(a′) ≤ 1, for
all a′ ∈ inv(a)). On IP(T +), due to avoid adding a huge
number of constraints, we modify constraint 2 as follows:

2. ∀a ∈ A, ∀p ∈ pre(a), U(p)− ∑
a′∈inv(a,p) E(a′, p) ≥

U(a).
We use e (e.g. LPe(T +)) to denotes the ILP after all of

the reductions in Sections 3.1-3.6 have been applied.

3.7 Constraint Relaxation
So far in this section, we have presented enhancements
which seek to speed up the computation of h+. As we show
experimentally in Section 6, computing IP(T +) or LP(T +)
remains relatively expensive, even if we use all of the en-
hancements described above.

Thus, we introduce a relaxation for IP(T +). We call
IP(T +) without constraints 5 and 6 time-relaxed IP(T +),

denoted IPtr(T
+). Similarly we call LP(T +) without same

constraints time-relaxed LP(T +), denoted LPtr(T
+). It can

be seen that if the relevance of propositions and actions has
an ordering (i.e. it does not have a cycle) on T +, then
the optimal costs of IP(T +) and LP(T +) are the same as
the optimal costs of IPtr(T

+) and LPtr(T
+) respectively.

We shall show experimentally in Section 6.1 that the relax-
ation is quite tight (i.e., IP(T +) and IPtr(T

+) often have
the same cost), and that IPtr(T

+) can be computed signif-
icantly faster than IP(T +). LP(T +), LPe(T +), IPe(T +)
have same behavior.

4 Counting Constraints
So far, we have concentrated on efficient computation of h+,
and all of our relaxations are bounded by h+. However, our
IP model can be extended with constraints regarding delete
effects. By adding variables and constraints related to delete
effects of actions, our model can also calculate lower bounds
on the number of times each action must be applied. New
variables are defined as follows:

• ∀a ∈ A, N (a) ∈ {0, 1, · · ·} : N (a) = n iff a is used n
times.

• ∀p ∈ P, G(p) ∈ {0, 1} : G(p) = 1 iff p ∈ G.

G(p) is also an auxiliary variable as I(p). New constraints
are defined as follows:

7. ∀a ∈ A, N (a) ≥ U(a).

8. ∀p ∈ P, G(p) +
∑

p∈predel(a) N (a) ≤ I(p) +∑
p∈add(a) N (a),

where predel(a) = pre(a) ∩ del(a). Finally, the objective
function is modified so as to minimize

∑
a∈A c(a)N (a).

These constraints correspond to the net change constraints
that were recently proposed in (Pommerening et al. 2014),
as well as the action order relaxation in (van den Briel et al.
2007), (both are based on SAS+ formulations). Intuitively,
the final constraint states that the number of times actions
adding p are used must be equal to or larger than the number
of times actions requiring and deleting p same time are used.
Given a non delete-free task T , we use IP(T) to denote an IP
problem composed of IP(T +) and above new variables and
constraints. We also use LP and tr as same as corresponding
relaxations for IP(T +). For any T and any feasible plan π
for T , there exists a feasible solution of IP(T) with same
cost as π, since the delete relaxation of π is a feasible plan of
T +. Hence the optimal cost of naive IP(T) is an admissible
heuristic for T .

Unfortunately these new constraints conflict with domi-
nated action elimination and zero cost immediate action ap-
plication. When counting constraint is used, it is necessary
to disable zero cost immediate action applying and to mod-
ify the condition of dominated action: an action a is a dom-
inated action of action a′ if (i) add(a) ⊆ add(a′), (ii) for
any p ∈ pre(a′), p is a fact landmark of a or p ∈ I , (iii)
c(a) ≥ c(a′), and (iv) pre(a′) ∩ del(a′) ⊆ pre(a) ∩ del(a).
On the other hand, following fact ensures that other enhance-
ments do not hurt admissibility of IP(T). We omit detailed
discussion due to space. We also use e (e.g. LPe(T)) to

74

denotes the ILP after all of the valid reductions have been
applied.

Proposition 6. Given a task T , let IPe(T +) be a variable-
reduced IP for T +, and IPe(T) be an IP made from
IPe(T +) with counting constraints. For any feasible solu-
tion π of T , if there exists a solution of IPe(T +) derived
from a subsequence of π+, then there exists a feasible solu-
tion of IPe(T) that has same cost as π.

5 Relationship among the ILP bounds
Based on the definitions, we know that: IPtr(T

+) ≤
IPe

tr(T
+) ≤ IP(T +) = IPe(T +) ≤ IP(T) = IPe(T).

As for the LP relaxations, we know that LP(T +) ≤
LPe(T +), LPe

tr(T
+) ≤ LPe(T +), LPe

tr(T) ≤ LPe(T),
and LPe

tr(T) ≤ LPe(T). However, LPe(T) does not al-
ways dominate LPe(T +) since sets of eliminated variables
are different because of dominated action elimination and
zero-cost immediate action application. Figure 1 illustrates
the dominance relationships among the bounds.

LPtr(T
+)

LPe(T+) IP(T+) = IPe(T+) =aaa IPe(T) LPe(T)

IPtr(T) LPtr(T) IPtr(T
+)

LPtr(T
+) IPtr(T

+)

LP(T+)

e e e e

h+

Figure 1: Dominance relationships. Edge Li → Lj indi-
cates “Li ≤ Lj”. The 4 highlighted LP’s are used in the
A*/autoconf in Tables 2-3.

5.1 Automatic bound selection for each problem
While LPe

tr(T
+) and LPe

tr(T) are dominated by LPe(T +)
and LPe(T), respectively, the time-relaxed LPs are signif-
icantly cheaper to compute than their non-relaxed counter-
parts. Similarly, although IPe(T) dominates IPe(T +), it is
possible for LPe(T +) to be larger than LPe(T). Thus, we
have a set of 4 viable LP heuristics, none of which dominate
the others when considering both accuracy and time. The
“best” choice to optimize this tradeoff between heuristic ac-
curacy and node expansion rate depends on the problem in-
stance.

We implemented a simple mechanism for automatically
selecting the LP to be used for each problem. First, we com-
pute LPe(T +), LPe(T), LPe

tr(T
+), LPe

tr(T) for the prob-
lem instance (i.e., at the root node of the A* search). We then
select one based on the following rule: Choose the heuristic
with the highest value. Break ties by choosing the heuristic
that is cheapest to compute. Although the “cheapest” heuris-
tic could be identified according to the cpu time to compute
each heuristic, for many problems, the computations are too
fast for robust timing measurements, so we simply break
ties in order of LPe

tr(T
+), LPe

tr(T), LPe(T +), LPe(T) (be-
cause this ordering usually accurately reflects the timing or-
der). A more sophisticated method for heuristic selection
may result in better performance (c.f. (Domshlak, Karpas,
and Markovitch 2012)), and is an avenue for future work.

6 Experimental Evaluation
Below, all experiments used the CPLEX 12.6 solver to
solve integer linear programs. All experiments were single-
threaded and executed on a Xeon E5-2650, 2.6GHz. We
used a set of 1,366 IPC benchmark problems (from 1998 to
2011) distributed with Fast Downward. Our planner can cur-
rently handle the subset of PDDL which includes STRIPS,
types, and action-costs. The full list of domains and # of
instances per domain is shown in Table 3.

6.1 Comparison of ILP Bounds
We evaluate the quality of the integer/linear programming
bounds by evaluating the optimal costs computed for these
bounds.

First, we compute the ratio between the optimal cost of
the LP relaxation and the IP (Figure 2). We take the ceiling
of the LP cost, because the IPC benchmarks have integer
costs. As shown in Table 2, the gap between the LP and
IP relaxation are quite small. In fact, for the majority of
problems, the gap between the rounded-up LP value and IP
value is 0 for IPe(T +), IPe(T), IPe

tr(T
+), IPe

tr(T), so the
LP relaxation is frequently a perfect approximation of h+.

Next, to understand the impact of various sets of con-
straints in the ILP formulations, Table 1 compares pairs of IP
and LP formulations. The IP ratio for IP(T +) vs IPe(T +)
is always 1 because they both compute h+. However, on al-
most every single domain, the LP value of the extended for-
mulation LPe(T +) is significantly better (higher) than the
basic formulation LP(T +), indicating that variable elim-
ination and the additional constraints serve to tighten the
LP bound. Thus, the enhancements to the basic model de-
scribed in Section 3 provide a significant benefit. LPe(T)
tends to be higher than LPe(T +), indicating that that count-
ing constraints enhances accuracy; note that in some cases
LPe(T +) is higher than LPe(T). The time-relaxations
LPe

tr(T
+) and LPe

tr(T) are usually very close to LPe(T +)
and LPe(T), indicating that the time relaxation achieves a
good tradeoff between computation cost and accuracy.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

[0:0.2) [0.2:0.4) [0.4:0.6) [0.6:0.8) [0.8:1.0) [1:1]

pe
rc

en
ta

ge
 o

f i
ns

ta
nc

es

LP/IP

LP(T+) (777)
LPe(T+) (1,141)
LPe(T) (973)
LPe

tr(T
+) (1,323)

LPe
tr(T) (1,261)

Figure 2: Ratio between the optimal costs of the IP’s and
their LP relaxations, categorized into buckets. [x:y) = “% of
instances where the LP/IP ratio is in the range [x:y).

6.2 Evaluating ILP for Delete-free planning
To evaluate the speed of our ILP approach, we com-
pared IPe(T +) with Haslum et al.’s h+ algorithm (Haslum,
Slaney, and Thiébaux 2012) (“HST”), which is one of the
state-of-the art solvers for the delete relaxation, of a set of
1,346 IPC benchmarks from the Fast Downward benchmark

75

Table 1: Comparison of bounds: il+ = ILP(T +), ile+ = ILPe(T +), ile = ILPe(T), ile+tr = ILPe
tr(T

+), iletr = ILPe
tr(T).

il+ / ile+ ile / ile+ ile+tr / ile+ iletr / ile

LP IP LP IP LP IP LP IP
airport .53 1.00 .99 1.00 .99 .99 1.00 .99
blocks .92 1.00 .92 .92 1.00 1.00 1.00 1.00
depot .54 1.00 .93 .99 .99 .92 1.00 .99
driverlog .97 1.00 .91 .95 .96 .84 1.00 .96
elevators-opt08 .39 1.00 1.16 .96 .97 .64 1.00 .70
elevators-opt11 .36 1.00 1.17 .96 .96 .62 1.00 .73
floortile-opt11 .99 1.00 .93 .94 1.00 .97 1.00 .98
freecell .48 1.00 1.01 1.00 .97 .92 1.00 .98
grid - - .79 .85 .98 .79 1.00 .88
gripper 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
logistics98 .54 1.00 .89 1.00 .98 .88 1.00 1.00
logistics00 .47 1.00 .99 1.00 .99 .99 1.00 1.00
miconic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
movie 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
no-mprime .58 1.00 1.10 .97 .88 .66 1.00 .94
no-mystery .58 1.00 1.03 .98 .92 .72 1.00 .96
nomystery-opt11 .97 1.00 .97 .97 1.00 1.00 1.00 1.00
openstacks .38 1.00 1.00 1.00 1.00 1.00 1.00 1.00
openstacks-opt08 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
openstacks-opt11 - - 1.00 1.00 1.00 1.00 1.00 1.00
parcprinter-08 .99 1.00 .92 .92 1.00 1.00 1.00 1.00
parcprinter-opt11 .99 1.00 .94 .94 1.00 1.00 1.00 1.00
parking-opt11 .90 1.00 .97 .97 .94 .87 .94 .86
pegsol-08 0 1.00 .81 .72 1.00 .68 1.00 .86
pegsol-opt11 0 1.00 .88 .73 1.00 .67 1.00 .86
pipes-notankage .62 1.00 .94 .95 .92 .83 .97 .90
pipes-tankage .62 1.00 .95 .96 .98 .87 1.00 .96
psr-small .87 1.00 .38 .38 1.00 1.00 1.00 1.00
rovers .63 1.00 .86 .77 1.00 1.00 1.00 1.00
satellite .99 1.00 .99 .99 1.00 1.00 1.00 1.00
scanalyzer-08 1.00 1.00 1.00 1.00 1.00 .96 1.00 1.00
scanalyzer-opt11 1.00 1.00 1.00 1.00 1.00 .96 1.00 1.00
sokoban-opt08 .37 1.00 .88 .87 .99 .95 .99 .94
sokoban-opt11 .34 1.00 .90 .88 .99 .97 1.00 .96
storage .55 1.00 .95 .91 1.00 1.00 1.00 1.00
transport-opt08 .26 1.00 3.42 1.00 .99 .36 1.00 .58
transport-opt11 - - - - .99 .43 - -
visitall-opt11 1.00 1.00 .95 .93 .99 .97 .99 .95
woodworking08 .81 1.00 .94 .94 1.00 1.00 1.00 1.00
woodworking11 .80 1.00 .94 .94 1.00 1.00 1.00 1.00
zenotravel .99 1.00 .92 .98 .96 .90 1.00 .99

76

suite. Both solvers were run with a 15-minute time limit on
each instance. The most recent version of HST was config-
ured to use CPLEX to solve the hitting set subproblem, as
suggested by Haslum (Haslum 2014).

The number of delete-free, relaxed instances that are
solved by both planner is 905. HST solved 1,117 in-
stances, and IPe(T +) solved 1,186 instances. IPe(T +) was
faster than HST on 575 instances, and HST was faster than
IPe(T +) on 330 instances. Figure 3 shows the ratio of run-
times of HST to our solver, sorted in increasing order of the
ratio, time(HST’s h+)/time(IPe(T +)). The horizontal axis
is the cumulative number of instances. Overall, IPe(T +)
outperform the state-of-the-art delete-free solver and indi-
cates that direct computation of h+ using integer program-
ming is a viable approach (at least for computing h+ once
for each problem).

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900

tim
e(

H
S

T
)

/ t
im

e(
IP

e (T
+
))

Number of problems

Figure 3: Computation of h+: Comparison of IPe(T +) and
HST on delete-free, relaxed problems

6.3 Evaluating h+-based heuristics in a
cost-optimal planner

We embedded the ILP model into a A*-based, cost-optimal
forward search planner. We first compared various config-
urations of our planner, as well as several configurations of
Fast Downward (FD), given 5 minutes per problem instance
and a 2GB memory limit. For the FD bisimulation merge-
and-shrink heuristic, we use the IPC2011 hybrid bisimula-
tion m&s configuration (seq-opt-merge-and-shrink).1
The # of problems solved by each configuration is shown in
Table 2.

As shown in Table 2, the basic IP model performs the
worst, and is comparable to A*/h+. As noted in (Haslum
2012), straightforward use of h+ as a heuristic is unsuc-
cessful (significantly worse than FD using hmax). How-
ever, the addition of landmark constraints is sufficient to
significantly increase the number of solved problems com-
pared to A*/h+, and A*/IPe(T +), outperforms hmax and
can be considered a somewhat useful heuristic. The time-
relaxation results in significantly increases performance
compared to A*/IPe(T +) and A*/IPe(T). In addition,
for all IP models, A* search using their corresponding
LP relaxations as the heuristic function performs signifi-
cantly better than directly using the IP as the A* heuristic.
A*/LPe(T +), A*/LPe

tr(T
+), and A*/LPe

tr(T), are all com-
petitive with the bisimulation merge-and-shrink heuristic.

1While this is tuned for 30 minutes and suboptimal for 5 min-
utes, we wanted to use the same configuration as in the 30-minute
experiments below.

While A*/LPe(T), does not perform quite as well, there are
some problems where A*/LPe(T) performs best. Finally,
A*/autoconf, which uses LP heuristic selection (Section 5.1)
performs quite well, significantly better than its 4 compo-
nents (LPe(T +), LPe

tr(T
+), LPe

tr(T), LPe(T)).
Table 3 compares the coverage following algorithms

on the IPC benchmark suite with 30 minute CPU time
limit and 2GB memory limit: (1) A*/autoconf, which
uses the LP heuristic selection mechanism described
in Section 5.1 to choose among LPe(T +), LPe(T),
LPe

tr(T
+), LPe

tr(T), (2) FD using the Landmark Cut
heuristic (Helmert and Domshlak 2009), and (3) FD us-
ing the IPC2011 bisimulation merge-and-shrink configu-
ration (seq-opt-merge-and-shrink)(Nissim, Hoff-
mann, and Helmert 2011).

Our results indicate that A*/autoconf is competitive with
both Fast Downward using Landmark Cut, as well as the
IPC2011 Merge-and-shrink portfolio configuration. None
of these planners dominate the others, and each planner per-
forms the best on some subset of domains. Compared to
the two other methods, A*/autoconf seems to perform par-
ticularly well on the freecell, parcprinter, rovers, trucks,
and woodworking domains. A*/h+(Haslum, Slaney, and
Thiébaux 2012) solved 443 problems with a 30-minute time
limit, which is significantly less coverage than than our LP-
based planners with a 5-minute time limit (Table 2).

As described in Section 5.1, A*/autoconf selects the LP
heuristic to use for each problem based on a comparison
of LP values at the root node. LPe

tr(T
+) was selected on

755 problems, LPe
tr(T) on 447 problems, LPe(T +) on 119

problems, and LPe(T) on 25 problems. On the remaining
20 problems, A*/autoconf timed out during LP computations
for the bound selection process at the root node, indicating
that for some difficult problems, the LP computation can be
prohibitively expensive.

7 Conclusion
This paper proposed a new, integer-linear programming
formulation of the delete relaxation h+ for cost-optimal,
domain-independent planning. The major contribution of
this paper are: (1) We propose an enhanced IP model for
h+ using landmarks, relevance analysis, and action elim-
ination, which is outperforms one of the previous state-
of-the-art techniques for computing h+ (Haslum, Slaney,
and Thiébaux 2012); (2) We showed that the LP relax-
ations of the IP models are quite tight; and (3) We embed-
ded our relaxed LPs in a A*-based forward search planner,
A*/autoconf. We showed that A* search using LPe(T +),
LPe

tr(T
+), or LPe

tr(T) as its heuristic is competitive with
the hybrid bisimulation merge-and-shrink heuristic (Nissim,
Hoffmann, and Helmert 2011). Using a simple rule to select
from among LPe(T +), LPe(T), and LPe

tr(T
+), LPe

tr(T),
A*/autoconf is competitive with the landmark cut heuris-
tic. A*/autoconf performs well in some domains where other
planners perform poorly, so our ILP-based methods are com-
plementary to previous heuristics.

While it has long been believed that h+ is too expensive
to be useful as a heuristic for forward-search based plan-
ning, our work demonstrates that an LP relaxation of h+

77

Table 2: IPC benchmark problems: # solved with 5 minute time limit.
Configuration # solved Description
FD/LM-cut 746 Landmark Cut (seq-opt-lmcut)
FD/M&S IPC2011 687 IPC 2011 Merge-and-Shrink (Nissim, Hoffmann, and Helmert 2011)
FD/hmax 551 hmax

A*/h+ 342 hsp f planner using A* and h+ heuristic (Haslum, Slaney, and Thiébaux 2012; Haslum 2012)
A*/IP(T+) 358 basic IP formulation for h+

A*/LP(T+) 477 LP relaxation of IP(T+)
A*/IP(T+)+land 425 IP(T+) + Landmarks
A*/LP(T+)+land 564 LP relaxation of IP(T+)

A*/IPe(T+) 582 IP(T+) with all enhancements in Sections 3.1-3.6
A*/LPe(T+) 652 LP relaxation of IPe(T+)

A*/IPe(T) 463 IPe(T+) with counting constraints (Section 4)
A*/LPe(T) 608 LP relaxation of IPe(T)

A*/IPe
tr(T

+) 606 time-relaxation (Section 3.7) of IPe(T+)
A*/LPe

tr(T
+) 674 LP relaxation of IPe

tr(T
+)

A*/IPe
tr(T) 554 time-relaxation of IPe(T)

A*/LPe
tr(T) 661 LP relaxation of IPe

tr(T)
A*/autoconf 722 Automated selection of LP at root node(Section 5.1)

can achieve the right tradeoff of speed and accuracy to be
the basis of a new class of heuristics for domain-independent
planning. Integrating additional constraints to derive heuris-
tics more accurate than h+ (e.g., the inclusion of net change
constraints (Pommerening et al. 2014) in Section 4) offers
many directions for future work.

Acknowledgments
Thanks to Patrik Haslum for assistance with his code for
computing h+ and his hsp f planner. This research was
supported by a JSPS Grant-in-Aid for JSPS Fellows and a
JSPS KAKENHI grant.

References
Betz, C., and Helmert, M. 2009. Planning with h+ in theory and
practice. In KI 2009. Springer. 9–16.
Bonet, B. 2013. An admissible heuristic for SAS+ planning ob-
tained from the state equation. In Proc. IJCAI, 2268–2274.
Bylander, T. 1994. The Computational Complexity of Proposi-
tional STRIPS Planning. Artificial Intelligence 69(1–2):165–204.
Bylander, T. 1997. A linear programming heuristic for optimal
planning. In AAAI/IAAI, 694–699. Citeseer.
Domshlak, C.; Karpas, E.; and Markovitch, S. 2012. Online
speedup learning for optimal planning. JAIR 44:709–755.
Gefen, A., and Brafman, R. 2011. The minimal seed set problem.
In ICAPS, 319–322.
Gefen, A., and Brafman, R. 2012. Pruning methods for optimal
delete-free planning. In ICAPS, 56–64.
Haslum, P.; Slaney, J.; and Thiébaux, S. 2012. Minimal landmarks
for optimal delete-free planning. In ICAPS, 353–357.
Haslum, P. 2012. Incremental lower bounds for additive cost plan-
ning problems. In ICAPS, 74–82.
Haslum, P. 2014. Personal communication.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths
and abstractions: What’s the difference anyway? In ICAPS, 162–
169.

Imai, T., and Fukunaga, A. 2014. A practical, integer-linear pro-
gramming model for the delete-relaxation in cost-optimal planning.
In Proceedings of European Conference on Artificial Intelligence
(ECAI).
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and complete
landmarks for and/or graphs. In ECAI, 335–340.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Computing
perfect heuristics in polynomial time: On bisimulation and merge-
and-shrink abstraction in optimal planning. In IJCAI, 1983–1990.
Pommerening, F., and Helmert, M. 2012. Optimal planning for
delete-free tasks with incremental LM-cut. In ICAPS, 363–367.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B. 2014.
LP-based heuristics for cost-optimal planning. In ICAPS.
Robinson, N. 2012. Advancing Planning-as-Satisfiability. Ph.D.
Dissertation, Griffith University.
van den Briel, M., and Kambhampati, S. 2005. Optiplan: A planner
based on integer programming. JAIR 24:919–931.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen, T.
2007. An LP-based heuristic for optimal planning. In Proc. CP-
2007.
van den Briel, M.; Vossen, T.; and Kambhampati, S. 2008. Loosely
coupled formulation for automated planning: An integer program-
ming perspective. JAIR 31:217–257.
Zhu, L., and Givan, R. 2003. Landmark extraction via planning
graph propagation. ICAPS Doctoral Consortium 156–160.

78

Table 3: 30 minutes, 2GB RAM: “evals”=# of calls to heuristic function
Fast Downward LM-Cut Fast Downward M&S A* /autoconf

Domain (# problems) solved evals solved evals solved evals
airport(50) 28 13403 23 461855 25 4640
barman-opt11(20) 4 1614605 4 5944586 3 473561
blocks(35) 28 95630 28 880799 29 51523
depot(22) 7 261573 7 1746549 7 34046
driverlog(20) 14 245920 13 4355507 13 56933
elevators-opt08(30) 22 1189951 14 10132421 13 66011
elevators-opt11(20) 18 1196979 12 11811143 10 65695
floortile-opt11(20) 7 2354266 7 10771362 7 152836
freecell(80) 15 180560 19 6291413 45 2177
grid(5) 2 94701 3 11667600 3 14197
gripper(20) 7 1788827 20 3131130 6 404857
logistics98(35) 6 169645 5 6825245 7 143897
logistics00(28) 20 212998 20 3007288 20 212985
miconic(150) 141 16635 77 3872365 141 15087
movie(30) 30 29 30 29 30 31
no-mprime(35) 24 55549 22 1490714 18 7260
no-mystery(30) 16 880031 17 3725239 12 1105
nomystery-opt11(20) 14 20744 19 9951860 14 754
openstacks(30) 7 157100 7 202732 7 4973
openstacks-opt08(30) 19 3254361 21 6347048 11 165070
openstacks-opt11(20) 14 4412937 16 8326670 6 294006
parcprinter-08(30) 19 699592 17 3129238 29 668
parcprinter-opt11(20) 14 949416 13 4091925 20 854
parking-opt11(20) 3 435359 7 8044843 1 2991
pegsol-08(30) 27 224149 29 705639 26 85760
pegsol-opt11(20) 17 370401 19 1092529 16 151110
pipes-notankage(50) 17 234717 17 1777823 13 6021
pipes-tankage(50) 12 361767 16 2447552 7 1926
psr-small(50) 49 178328 50 221152 50 4056
rovers(40) 7 77783 8 3395947 11 209551
satellite(36) 7 155990 7 1890912 10 26897
scanalyzer-08(30) 15 259961 14 6785907 8 4374
scanalyzer-opt11(20) 12 324943 11 8636568 5 6975
sokoban-opt08(30) 30 669669 24 3938226 23 75743
sokoban-opt11(20) 20 173004 19 3338708 19 77681
storage(20) 15 86439 15 1006600 15 21598
transport-opt08(30) 11 16807 11 1158282 10 58616
transport-opt11(20) 6 30550 7 4473292 5 116375
trucks(30) 10 462320 8 8478357 15 61067
visitall-opt11(20) 11 1255455 16 129229 17 20378
woodworking08(30) 17 759825 14 876479 28 767
woodworking11(20) 12 1076372 9 1357935 18 699
zenotravel(20) 13 318142 12 6727643 12 16571
Total (1366) 787 727 785

79

Optimal Planning in the Presence of Conditional Effects:
Extending LM-Cut with Context Splitting

Gabriele Röger and Florian Pommerening and Malte Helmert
University of Basel, Switzerland

Abstract
The LM-Cut heuristic is currently the most successful heuris-
tic in optimal STRIPS planning but it cannot be applied in
the presence of conditional effects. Keyder, Hoffmann and
Haslum recently showed that the obvious extensions to such
effects ruin the nice theoretical properties of LM-Cut. We
propose a new method based on context splitting that pre-
serves these properties.

A revised version of this paper has been accepted at ECAI
(Röger, Pommerening, and Helmert 2014).

Introduction
The aim of classical planning is to find a sequence of actions
that leads from the current state of the world to some desired
state. Conditional effects enable situation-dependent behav-
ior of actions. For example, there can be a single action
stop-f in an elevator domain that boards waiting passengers
at floor f and disembarks all boarded passengers with des-
tination f . To describe such a behavior without conditional
effects, one would instead need specific actions for all differ-
ent situations of waiting and boarded passengers related to
this floor, or use some other formulation that applies several
actions to cause the same world change.

Conditional effects can be compiled away (Nebel 2000)
but such transformations have severe disadvantages: any
plan-preserving transformation leads to an exponential
blow-up of the size of the task description. An alterna-
tive compact compilation does not preserve the delete re-
laxation, which many heuristics such as the LM-Cut heuris-
tic (Helmert and Domshlak 2009) are based on. As a result,
these heuristics do not give good guidance on such compiled
tasks.

Haslum (2013) uses an incremental compilation approach
for solving delete-relaxed tasks optimally: starting from the
compact compilation (which can cause further relaxation), it
successively introduces the exponential transformation until
an optimal solution for the compiled task can be transformed
into a plan for the original task. In the worst case, this can
lead to the full exponential compilation.

We take the different approach of supporting conditional
effects natively in the heuristic computation. This is not un-
usual for inadmissible heuristics but among current admissi-
ble heuristics (which are required for cost-optimal planning)

the support is rather weak and a suitable extension to condi-
tional effects is not always obvious.

For the state-of-the-art LM-Cut heuristic (Helmert and
Domshlak 2009), Keyder et al. (2012) recently pointed out
that obvious extensions either render the heuristic inadmis-
sible or lose the dominance over the maximum heuristic
(Bonet and Geffner 2001).

We present an extension of the LM-Cut heuristic that pre-
serves both admissibility and dominance over the maximum
heuristic. For this purpose we introduce context splitting as
a new general technique which allows us to split up actions
in a tasks to distinguish different scenarios of their applica-
tion. We show how context splitting can be made useful for
the extension of the LM-Cut heuristic. After proving the de-
sired theoretical properties of the heuristic, we also evaluate
its performance empirically.

Background
We consider propositional STRIPS planning with action
costs, extended with conditional effects. In this formal-
ism, which we denote as STRIPSc, a task is given as a
tuple ⇧ = hF, A, I, G, costi where F is a set of proposi-
tional variables (or facts), A is a set of actions, I ✓ F is
the initial state, G ✓ F describes the goal, and the cost
function cost : A ! N0 defines the cost of each action.
A state s ✓ F of a task is given by the variables that
are true in this state. Every action a 2 A is given as a
pair a = hpre(a), eff(a)i. The precondition pre(a) ✓ F
defines when the action is applicable. The set of effects
eff(a) consists of conditional effects e, each given by a triple
hcond(e), add(e), del(e)i where all components are (possi-
bly empty) subsets of F . If all facts in the effect condition
cond(e) are true in the current state, the successor state is
determined by removing all facts in the delete effect del(e)
and adding the facts in the add effect add(e). Given an effect
e 2 eff(a), we use the notation act(e) to refer to the action
a.

Action a is applicable in state s if pre(a) ✓ s. The result-
ing successor state is

s[a] =
�
s \

[

e2eff(a) with
cond(e)✓s

del(e)
�
[

[

e2eff(a) with
cond(e)✓s

add(e)

A plan for a state s is a sequence of actions whose sequen-

80

tial application leads from s to a state s⇤ such that G ✓ s⇤.
A plan for the task is a plan for I . The cost of a plan is the
sum of the action costs as given by cost, and an optimal plan
is one with minimal cost. We denote the cost of an optimal
plan for s in task ⇧ with h⇤

⇧(s).
A task where all effect conditions are empty is a standard

STRIPS task (with action costs). In this case, we can com-
bine all add (and delete) effects of an action a to a single set
add(a) (and del(a)).

When introducing context splitting, we will briefly con-
sider the more general ADL formalism, where action pre-
conditions and effect conditions are arbitrary propositional
formulas over the task variables F . For a formal semantics,
we need to regard a state s ✓ F as a truth assignment T (s)
that assigns 1 to the variables in s and 0 to all other variables.
An action a is then applicable in a state s if T (s) |= pre(a)
and an effect e triggers if T (s) |= cond(e). If not explicitly
mentioned otherwise, we are talking about STRIPSc tasks.

The delete relaxation ⇧+ of a planning task ⇧ is equiva-
lent to ⇧ except that all delete effects are replaced with the
empty set. We call such a task delete-free. The cost of an
optimal plan for a state s in ⇧+ is denoted with h+(s) and
is an admissible estimate for h⇤

⇧(s) in ⇧. To simplify the
notation throughout this paper, we avoid making the state s
explicit in all definitions. Instead, we compute heuristic esti-
mates for a state s from a modified task ⇧s where we replace
the initial state with s. The heuristic estimate h(s) then only
depends on the task ⇧s and we can write h(⇧s) instead.

Since computing h+ is NP-complete (Bylander 1994),
it is often approximated by polynomial-time computable
heuristics. One such heuristic, which is dominated by h+

and therefore also admissible, is the maximum heuristic hmax

(Bonet and Geffner 2001). It assigns a value V max to vari-
ables and sets of variables. The value V max(P) of a non-
empty set of variables P ✓ F is the maximal value of any of
its elements: V max(P) = maxp2P V max(p). For the empty
set, V max(;) = 0. The value V max(p) of a variable p is 0 if
p is true in the initial state. Otherwise, it is the lowest es-
timated cost Cmax(e) of any effect e that achieves (adds) it:
V max(p) = min{e|p2add(e)} Cmax(e).1

The cost Cmax(e) of an effect e is the action cost plus
the value V max of all propositions that must be true for the
effect to trigger: Cmax(e) = cost(act(e)) + V max(cond(e) [
pre(act(e)))

The estimate of the maximum heuristic for the initial state
is the value V max of the goal: hmax(⇧) = V max(G).

Another admissible heuristic which is also based on
delete relaxation and dominates hmax is the LM-Cut heuristic
hLM-Cut (Helmert and Domshlak 2009). It relies on disjunc-
tive action landmarks which are sets of actions of which at
least one must occur in every plan. The LM-Cut heuristic is
only defined for STRIPS tasks (without conditional effects).

To simplify the presentation, we assume in the following
that the initial state consists of a single variable i and the goal

1Strictly speaking, V max is not well-defined in the presence of
0-cost actions. In this case, V max is the pointwise maximal func-
tion that satisfies the given properties. A unique maximum always
exists.

f2

f1

f0

A

B

Figure 1: Running example.

of a single variable g. If the task does not have this form, we
would introduce i and g as new variables and add a goal
action (having the original goal as precondition and adding
g) and an init action (requiring i, deleting i, and adding all
variables from the original initial state), both with cost 0.
We also require that every action has a precondition (if it is
originally empty, we can add an artificial precondition).

The hLM-Cut computation works in rounds: based on the
values V max, each round computes a disjunctive action land-
mark, accounts for its cost and adapts the task so that the
result will be admissible:

Definition 1 (Round of LM-Cut for STRIPS) Each
round of the LM-Cut algorithm for STRIPS works as
follows:

1. Compute V max for all variables. If V max(g) = 0 then
terminate.

2. Define a precondition choice function pcf that maps each
action to one of its precondition variables with a maximal
V max value.

3. Create the weighted, directed graph G = (V, E), where
V = F and E contains labeled edges for all actions a
from the selected precondition to each add effect: E =
{(pcf(a), a, v) | a 2 A, v 2 add(a)}. Each edge has
weight cost(a).
The goal zone Vg ✓ V consists of all nodes from which
one can reach the goal variable g via edges with weight 0.
The cut C contains all edges (v, a, v0) such that v 62 Vg ,
v0 2 Vg and v can be reached from i without traversing a
node in Vg .
The landmark L consists of all actions that occur as a
label in C.

4. Add the cost cmin of the cheapest action in L to the heuris-
tic value (which starts as 0).

5. Reduce the action costs of all actions in L by cmin.

Helmert and Domshlak (2009) call the graph G a justi-
fication graph of the current task because by the definition
of the precondition choice function and its construction, the
hmax value of a fact p is the cost of a cheapest (with respect
to the edge weights) path from i to p. This is relevant for
the proof that hLM-Cut dominates hmax, so we will retain this
property in our adaption to conditional effects.

Running Example
Throughout the paper we use a running example (Figure 1),
borrowed from Haslum (2013, Example 1). It is based on
a delete-free variant of the Miconic domain,2 where pas-

2Compared to the domain reported in our experiments, there are
no move actions and the stop action is delete-free, to get a simpler
example.

81

sengers are transported between floors by an elevator. In
this small example there are three floors (f0, f1, f2) and
two passengers (A and B). Passenger A wants to go from
f1 to f2 and passenger B from f2 to f1. The elevator
starts at f0. The possible actions are to stop at any floor
f which causes all passengers who start at f to board and
all boarded passengers with target f to disembark. This
is implemented by conditional effects: Each action stop-f
has a conditional effect board(p) = h;, {boarded(p)}, ;i
for each person p originated at f . The effect condition can
stay empty because in the delete-relaxed variant it is irrel-
evant whether we “re-board” a passenger who has already
been served. For each person who has f as destination floor,
the stop-f action has a conditional effect disembark(p) =
h{boarded(p)}, {served(p)}, ;i that marks p as served if she
was in the cabin. Both such actions, stop-f1 and stop-f2,
have no preconditions and a cost of 1.

An optimal plan for the example is
hstop-f1, stop-f2, stop-f1i. At least one stop action
must be used twice because the first application of such
an action can only trigger the effect causing the passenger
to board and not the one causing the other passenger to
disembark.

LM-Cut for Conditional Effects
We will now introduce a generic adaption of the LM-Cut al-
gorithm to STRIPSc tasks. As above, we assume that the in-
put task has a single initial variable i and a single goal atom
g. Moreover, we require without loss of generality that every
conditional effect in the task only adds a single variable. If
this is not the case, we can simply break up the conditional
effect accordingly.

Since we still want to compute a justification graph in ev-
ery round of the computation, we need to consider the effect
conditions in the (pre-) condition choice function. It is also
necessary that the cut in the graph distinguishes different
conditional effects of an action.

Definition 2 (Generic Round of LM-Cut for STRIPSc)
Each round of the LM-Cut algorithm for STRIPSc works as
follows:

1. Compute the V max values for all variables. If V max(g) =
0 then terminate.

2. Define a condition choice function ccf that maps each ef-
fect to a fact from the effect condition or its action’s pre-
condition that has a maximal V max value.

3. Create the justification graph G = (V, E), where V = F
and E contains edges for all conditional effects e from
the selected condition to the single add effect of e (labeled
with e). Each edge has weight cost(act(e)). The goal zone
Vg and the cut C are defined as in the standard STRIPS
case. The landmark L consist of all actions of which an
effect occurs as a label in C.

4. Add the cost cmin of the cheapest action in L to the heuris-
tic value (which starts as 0).

5. Adapt the task.

In our example, the generic LM-Cut algorithm would cal-
culate a V max value of 1 for each boarded(p) fact and a V max

value of 2 for each served(p) fact and the artificial goal fact
g. The condition choice function would select one served(p)
fact arbitrarily. Let us assume it selects served(A). The re-
sulting justification graph is show in Figure 2a (the continu-
ation in Figures 2b and 2c belongs to a later example). The
only effect achieving served(A) is disembark(A), which
will be the only effect in the cut. It belongs to the action
stop-f2, so we have L = {stop-f2} and cmin = 1.

The open question here is how to adapt the task. The most
obvious way would be to apply the same strategy as in the
STRIPS case and to reduce the costs of all actions in L. We
denote this instantiation of the algorithm by hLM-Cut

basic .
With this strategy stop-f2 is free of cost after the first

round in our example. In the second round the V max value
of both served(p) facts is 1 and one is selected arbitrarily
by the condition choice function. The discovered landmark
is either {board(A)} or {disembark(B)} depending on this
choice, but in both cases the cost of stop-f1 is reduced next.
After this round both stop actions are free of cost, the V max

value of the goal becomes 0, and the LM-Cut algorithm ter-
minates with a heuristic value of 2. In this example, the
hLM-Cut

basic estimate is still as high as V max(g) but this is not
guaranteed in general. Keyder et al. (2012) showed that
hLM-Cut

basic does not dominate hmax with an example task ⇧ for
which hLM-Cut

basic (⇧) < hmax(⇧).
They also considered a strategy where each conditional

effect is treated separately and showed that this leads to an
inadmissible heuristic. With this strategy LM-Cut would
run for 4 rounds in our example. It discovers the land-
marks {disembark(A)}, {disembark(B)}, {board(A)}, and
{board(B)} in an order that depends on the condition choice
function. The heuristic value of 4 is inadmissible because in-
creasing the heuristic value by 1 for each of these landmarks
ignores the fact that two effects can be achieved with one ac-
tion application. For example, board(B) and disembark(A)
can be achieved by stop-f2 if stop-f1 was executed before.

In the following sections, we will show how one can adapt
the task without sacrificing either admissibility or domi-
nance over hmax.

Context Splitting
Before we present the adaption specifically for the LM-Cut
heuristic, we would like to introduce context splitting as a
new general concept. For this, we briefly consider the more
general ADL formalism.

Actions behave differently if they are applied in different
scenarios (e. g., a conditional effect triggers only if the effect
condition is true). The core idea of context splitting is that
we can include such scenarios in the action preconditions,
splitting up an action into several ones with disjoint scenar-
ios. An extreme case of this general idea is the compilation
from STRIPSc to STRIPS by Nebel (2000). For each action,
it introduces new actions for each possible subset of effects
and adds a corresponding condition to the action precondi-
tion.

82

However, such scenario information can also be useful for
heuristic computations: if we account for an action applica-
tion in a heuristic computation, we often know that some
desired effects only trigger in a certain scenario. If the ac-
tion has other required effects that do not trigger at the same
time, we could account for its cost again for a later applica-
tion of the action.

In general, a context split is defined by the description of
a scenario. Such a description is given as a propositional
formula over the task variables, which we call the context.
If we split an action with a context, we introduce two new
actions, one requiring the context to be true, the other one
requiring it to be false.

Definition 3 (Context splitting) A context is a proposi-
tional formula. Context-splitting an action a with context
' means replacing a with two new actions of the same cost:
a' = hpre(a)^', eff(a)i and a¬' = hpre(a)^¬', eff(a)i.

Context splitting is a task transformation that does not af-
fect the optimal goal distance of any state:

Theorem 0.1 Let ⇧ be an ADL planning task with action
set A. For action a 2 A and context ', let a' and a¬' be
the two new actions resulting from context-splitting a with '.
Let ⇧0 denote the task that only differs from ⇧ in its action
set A0 = (A \ {a}) [{a', a¬'}.

For all states s of ⇧ (and ⇧0) it holds that h⇤
⇧(s) =

h⇤
⇧0(s).

Proof: We can associate every plan ⇡ for s in ⇧ with a plan
⇡0 for s in ⇧0 of the same cost and vice versa.

From ⇡0 to ⇡, we simply replace every occurrence of an
action a' or a¬' with the original action a. This is possi-
ble because these actions only differ in the precondition and
pre(a') |= pre(a) and pre(a¬') |= pre(a).

From ⇡ to ⇡0 we check for every occurrence of a if ' is
true in the state s0 in which action a is applied. If yes, we
replace a with a', otherwise we replace it with a¬'. These
actions will be applicable and have the same effect and cost
as the original action a.

The theorem ensures that an admissible heuristic estimate
for the transformed task is also an admissible estimate for
the original task.

Relaxed Context Splitting
The key idea of our adaption of the LM-Cut heuristic is to
reduce action costs only where necessary. After discovering
the landmark {disembark(A)} in our example we would like
to reduce the cost of stop-f2 whenever it is used in a way that
this effect triggers. If we stick to the original actions, how-
ever, we can only reduce the cost of the whole action, i. e.,
also in situations where the effect does not trigger because
A has not boarded yet. Another way of looking at this is that
we can reduce the cost of the original actions at most twice
before all actions are free of cost, so the heuristic value can
be at most 2 when no actions are modified. This is where
context splitting comes into play.

The context for each action should capture all situations
in which the LM-Cut heuristic accounts for its cost. This

is the case whenever one of its effects occurs as a label in
the cut C. So we need to formulate a context that covers all
situations in which one of the effects in the cut triggers. This
leads to the natural definition of the context as

'a =
_

(v,e,v0)2C with act(e)=a

cond(e).

If we split all actions in the LM-Cut landmark L with their
respective context, the set of actions {a'a

| a 2 L} will be a
landmark of the modified task. So we can admissibly count
the landmark cost, reduce the cost of all a'a , leave the cost
of all a¬'a unchanged, and proceed.

However, this idea cannot be implemented directly be-
cause we leave the STRIPSc formalism with the context
splitting. To see this, consider a context split of action a.

The precondition of the first new action a'a is of the form
pre(a) ^ (cond(e1) _ · · · _ cond(en)) for some conditional
effects e1, . . . , en 2 eff(a). Since the precondition pre(a)
and the effect conditions are all conjunctions of atoms, we
can break up the action into n new STRIPSc actions ae

'a
=

hpre(a)^cond(e), eff(a)i for e 2 {e1, . . . , en}. Whenever a
plan contains an action a'a , there would also be a plan using
an action ae

'a
instead and vice versa.

The problem arises from the second new action a¬'a

whose precondition in general cannot be expressed as a
negation-free formula. So we cannot easily reformulate
these actions in STRIPSc as we did with the actions a'a

.
As a solution, we propose relaxed context splitting which

ignores the condition ¬'a and simply preserves the original
action:

Definition 4 (Relaxed Context Splitting) Relaxed context
splitting of an action a with context ' adds a new action
a' = hpre(a) ^ ', eff(a)i with cost c(a) to the task.

Like unrelaxed context splitting, relaxed context splitting
preserves the goal distance of states. It also preserves the
value V max of all variables: in general, adding actions to a
task can only lead to a decrease of V max. However, in this
case a decrease cannot happen: the new actions have the
same effects and costs as the original ones but their precon-
dition is a superset of the original precondition. Therefore
the cost Cmax of the effects of the new action cannot be lower
than the one of the original effects, so no variable can be
achieved more cheaply.

Unfortunately, with relaxed context splitting the set of ac-
tions {a'a | a 2 L} is not a landmark of the modified task
because a plan could contain action a 2 L instead of a'a .
So we cannot obviously apply the cost adaption as proposed
at the beginning of this section. In the next section we will
show that we still can define an extension to LM-Cut based
on relaxed context splitting that preserves the desired prop-
erties of the heuristic.

LM-Cut with Relaxed Context Splitting
The key insight of our proposed heuristic is that we can
safely leave the cost of all actions unchanged in each round
of the LM-Cut computation as long as we add new reduced-
cost actions that “fit” the context of the cut.

83

Definition 5 (LM-Cut with relaxed context splitting)
The LM-Cut heuristic with relaxed context splitting
(hLM-Cut

context) instantiates the generic heuristic from Definition 2.
In the task adaption step, for every edge (v, e, v0) 2 C it ex-
tends the task with an action ae = hpre(a)[cond(e), eff(a)i
with cost(ae) = cost(a)� cmin, where a = act(e).

In our example, we discover the landmark
{disembark(A)} in the first round (Figure 2a). Since
there is only one effect in the cut, the disjunc-
tion in the context collapses to a single condition
'stop-f2

= cond(disembark(A)) = boarded(A). With
relaxed context splitting we create the new action
stop-f2

0 = stop-f2disembark(A) with the additional pre-
condition boarded(A) and the reduced cost 0.

In the next round (Figure 2b) we discover the landmark
{disembark(B)}, which is handled just like in the first round
and we add the action stop-f1

0 = stop-f1disembark(B) with the
additional precondition boarded(B) and the reduced cost 0.

In the final round (Figure 2c) the values V max of all
boarded(p) and served(p) facts and g are 1. The discovered
landmark consists of a single board-effect. Which of the two
is chosen depends on the condition choice function, but we
assume that board(A) is selected. Since this effect has no
condition, the context is 'stop-f1 = cond(board(A)) = >
and the newly added action stop-f1

00 is identical to stop-f1,
except that it is free of cost.

With this new action, the V max value of all facts now is 0.
In particular, boarded(B) can be reached from boarded(A)
with action stop-f2

0 without additional cost. The LM-Cut
algorithm stops with a perfect heuristic value of 3.

In the following, we will show that hLM-Cut
context is admissible

and dominates hmax.

Theorem 0.2 The LM-Cut heuristic with relaxed context
splitting (hLM-Cut

context) is admissible.

Proof: We will show that the optimal delete-relaxation
heuristic h+ dominates hLM-Cut

context . Since h+ is admissible, we
can conclude that hLM-Cut

context is also admissible.
If hmax(⇧) = 0, the LM-Cut algorithm directly terminates

with hLM-Cut(⇧) = 0, so there is nothing to show in this
case. Otherwise, let ⇧ and ⇧0 be the (relaxed) tasks before
and after a round of hLM-Cut

context , respectively. We will show that
h+(⇧) � cmin +h+(⇧0). The dominance of h+ then follows
from an inductive application of this argument.

Every atom (except i) of the task ⇧ can only be made true
by an effect of an incoming edge in the justification graph
and this effect only triggers if the source of the edge has
been true. So any plan of ⇧ must use all action effects of
some path from i to g in the justification graph and therefore
also at least one effect from the cut.

Let ⇡ = ha1, . . . , ani be an optimal plan for ⇧ and let
ai be the first action in this plan whose application triggers
an effect e from the cut. ⇧0 has an action a0

i = hpre(ai) [
cond(e), eff(ai)i with cost c(ai) � cmin. Since e triggers in
⇡, pre(ai) [cond(e) must be true after the application of
ha1, . . . , ai�1i. As ai and a0

i have the same effect, ⇡0 =
ha1, . . . , ai�1, a

0
i, ai+1, . . . , ani is a plan for ⇧0 that costs

cmin less than ⇡ and therefore h+(⇧0)  h+(⇧)� cmin.

i

boarded(A) (1)

boarded(B) (1)

served(A) (2)

served(B) (2)

g

board(A) (1)

board(B) (1)

disembark(A) (1)

disembark(B) (1)

(a) Round 1.

i

boarded(A) (1)

boarded(B) (1)

served(A) (1)

served(B) (2)

g

board(A) (1)

board(B) (1)

disembark(A) (1)
disembark(A)0 (0)

disembark(B) (1)

board(B)0 (0)

(b) Round 2.

i

boarded(A) (1)

boarded(B) (1)

served(A) (1)

served(B) (1)

g

board(A) (1)

board(B) (1)

disembark(A) (1)
disembark(A)0 (0)

disembark(B) (1)
disembark(B)0 (0)

board(B)0 (0)board(A)0 (0)

(c) Round 3.

Figure 2: Justification graphs in the LM-Cut rounds for
hLM-Cut

context on the example task. Action costs for effects and
V max values for facts are given in parentheses, edges in the
cut are bold.

The new heuristic is more informed than the maximum
heuristic:

Theorem 0.3 The LM-Cut heuristic with relaxed context
splitting (hLM-Cut

context) dominates hmax.

Proof: To increase clarity, in the following we denote the
V max value of a variable v in a task ⇧ by V max

⇧ (v).
If hmax(⇧) = 0 there is nothing to show. If hmax(⇧) > 0,

we again denote the original (relaxed) task by ⇧ and the
transformed one after one LM-Cut round by ⇧0. We show
that hmax(⇧)  cmin + hmax(⇧0). An inductive application
of this argument proves the theorem.

Let A and A0 denote the action sets of ⇧ and ⇧0, respec-
tively. Consider the standard algorithm for computing V max:
it uses a priority queue, initially containing the initial facts
with a priority 0. The algorithm successively pops a fact
with minimal priority from the queue and assigns it the pri-
ority as value V max if the fact has not already been popped
before. Whenever all relevant conditions of an effect e have
been popped, the algorithm enqueues its added fact f with
priority Cmax(e).

Let f 0 2 F be the first fact which is popped during the
V max
⇧0 computation that gets assigned a value V max

⇧0 (f 0) <
V max
⇧ (f 0), if such a fact exists. If g is popped before f 0 or no

such fact f 0 exists, then hmax(⇧) = V max
⇧ (g) = V max

⇧0 (g) =
hmax(⇧0) and there is nothing to show. In the following,
we assume that g is popped after f 0 and hence hmax(⇧0) =
V max
⇧0 (g) � V max

⇧0 (f 0).

84

Let e0 be the effect due to which f 0 had been enqueued.
Then e0 must be an effect of some newly added action a0 2
A0 \ A: since f 0 is the first value with a differing V max, the
change cannot be due to “cheaper” condition costs.

The action a0 must have been added because an effect
e (of an action a) occurred in the cut. Therefore, a0 =
hpre(a)[cond(e), eff(a)iwith cost cost(a0) = cost(a)�cmin
for some action a of ⇧ and effect e of a. Let f be the fact
added by e.

Since e was in the cut, f must have been in the goal
zone and therefore it holds that V max

⇧ (pre(a) [cond(e)) +
cost(a) � V max

⇧ (f) � V max
⇧ (g) = hmax(⇧) (*).

We can bound hmax(⇧) as follows:

hmax(⇧)  V max
⇧ (pre(a) [cond(e)) + cost(a) (1)

= V max
⇧0 (pre(a) [cond(e)) + cost(a) (2)

 V max
⇧0 (pre(a) [cond(e) [cond(e0)) + cost(a)

(3)

= V max
⇧0 (f 0) + cmin (4)

Statement (1) uses the previously derived bound (*).
Equation (2) holds as pre(a) [cond(e) is the precondi-
tion of a0 and hence all facts in this set must have been
popped before f 0 was enqueued by effect e0. Since f 0 is
the first popped fact for which V max

⇧ 6= V max
⇧0 it follows for

all p 2 pre(a) [cond(e) that V max
⇧ (p) = V max

⇧0 (p). Inequal-
ity (3) is due to V max(P)  V max(P 0) if P ✓ P 0. The last
line exploits that effect e0 of action a0 establishes the value
V max
⇧0 (f 0) and that cost(a0) = cost(a)� cmin.
Overall we have shown that hmax(⇧)  V max

⇧0 (f 0) + cmin.
Since we know from above that hmax(⇧0) � V max

⇧0 (f 0), it
holds that hmax(⇧)  hmax(⇧0) + cmin.

We have seen that hLM-Cut
context preserves the desired proper-

ties of the LM-Cut heuristic for STRIPS. In the next section
we will evaluate whether it also preserves its good perfor-
mance.

Experimental Evaluation
For the evaluation we use the same sets of domains T0 and
FSC as Haslum (2013). The T0 domains are generated by a
compilation from conformant to classical planning by Pala-
cios and Geffner (2009); the set FSC has been generated by
the finite-state controller synthesis compilation by Bonet et
al. (2009). In addition, we include tasks from the briefcase
world from the IPP benchmark collection (Köhler 1999).
We also use the Miconic simpleadl version from the bench-
mark set of the International Planning Competition (IPC-
2000) because it has conditional effects but no derived pred-
icates after grounding with Fast Downward.

We compare hmax and three variants of the LM-Cut
heuristic:

• our version hLM-Cut
context using relaxed context splitting,

• the version hLM-Cut
basic mentioned by Keyder et al. (2012) that

reduces the action cost of every action with an effect in the
cut and does not dominate hmax, and

100 101 102 103 104 105 106

100

101

102

103

104

105

106

hLM-Cut
basic

h
L
M

-C
u
t

co
n
te

x
t

briefcase
coins
comm
dispose

ged
grid-a1
grid-a2
grid-r
hall

miconic
sortnet

sortnet-alt
uts

Figure 3: Expansions (excluding the ones on the last f -
layer) of hLM-Cut

basic and hLM-Cut
context for the commonly solved tasks.

• the standard LM-Cut version hLM-Cut
standard (Helmert and

Domshlak 2009), which does not support conditional ef-
fects. For this variant, we transform the tasks with the
exponential compilation by Nebel (2000).
All heuristics were implemented in the Fast Downward

planning system (Helmert 2006), which separates the pre-
processing phase from the actual search phase. For each
phase, we set a time limit of 30 minutes and a memory limit
of 2 GB per task. The experiments were conducted on Intel
Xeon E5-2660 processors (2.2 GHz).

We first compare the two LM-Cut versions that support
conditional effects directly.

Figure 3 plots the number of A⇤ expansions of hLM-Cut
basic vs.

those of hLM-Cut
context for each task. As expected, context splitting

almost always gives equal or better guidance than the basic
approach. The only exception is the t0-grid-dispose domain
in which hLM-Cut

basic is superior.
To get a clearer idea of the difference of the heuristic es-

timates, we compare the heuristic values of the initial states
in Figure 4. The very high estimates in the t0-grid-dispose
domain render the results of the other tasks almost indistin-
guishable. For this reason, Figure 4b shows the same results
but only includes tasks where both heuristic estimates are
below 50. Overall, we note that the estimates of hLM-Cut

context are
much better than those of hLM-Cut

basic and in the t0-uts domain
they are always at least twice as high.

Since the results of the t0-grid-dispose domain stick out
negatively, we had a closer look at this domain to understand
the different performance. A deeper analysis of one task re-
veals that the variant with relaxed context splitting makes
unfavorable decisions when selecting one of several candi-
dates with maximal V max for the condition choice function.
As a result, effects that achieve different sub-goals end up
in one cut, and they all become cheaper in the next round.
A similar effect can also be observed with hLM-Cut

standard in the
STRIPS freecell domain.

Table 1 shows the number of solved instances for all
heuristics (omitting domains where no task was solved by
any heuristic). Note that hLM-Cut

standard cannot be directly com-
pared to the other heuristics based on these numbers because
it requires a compilation of the task that removes conditional
effects. The small numbers behind the domain names state

85

500 1,000 1,500

500

1,000

1,500

timeout

hLM-Cut
basic (⇧)

h
L
M

-C
u
t

co
n
te

x
t

(⇧
)

(a) All values.

10 20 30 40 50

10

20

30

40

50

hLM-Cut
basic (⇧)

h
L
M

-C
u
t

co
n
te

x
t

(⇧
)

(b) Heuristic values below 50.

adder
blocks

briefcase
coins
comm
dispose

ged
grid-a1
grid-a2
grid-r
hall

lookandgrab
miconic

push
sortnet

sortnet-alt
trash
uts

visualmarker

Figure 4: Heuristic values of the initial state for hLM-Cut
basic and hLM-Cut

context .

hLM-Cut
standard hmax hLM-Cut

basic hLM-Cut
context

briefcaseworld (9,50) 6 7 9 8
fsc-grid-a1 (0,16) - 2 2 2
fsc-grid-a2 (0,2) - 1 1 1
fsc-grid-r (0,16) - 15 15 13
fsc-hall (0,2) - 1 1 1
gedp-ds2ndp (0,24) - 18 12 12
miconic(149,150) 78 70 141 141
t0-coins (20,30) 14 10 14 14
t0-comm (25,25) 5 4 5 5
t0-grid-dispose (0,15) - 0 3 2
t0-grid-lookandgrab (0,1) - 1 1 0
t0-sortnet (0,5) - 2 2 2
t0-sortnet-alt (1,6) 1 4 4 4
t0-uts (6,29) 5 6 8 10
Sum (210,371) 109 141 218 215

Table 1: Coverage results.

for how many tasks the Fast Downward preprocessing phase
completed with and without the compilation. It is apparent
that – at least with the exponential transformation – compil-
ing away conditional effects and using a standard heuristic
is not competitive.

Except for the Miconic domain, which dominates the
summary results with its large number of tasks, the three
remaining heuristics are surprisingly close to each other and
each one is better than the others in some domain. While
hmax performs worst as expected, the better guidance of
hLM-Cut

context does not translate to higher coverage than hLM-Cut
basic

because it does not offset the additional time for the heuris-
tic evaluations. However, in the conclusion we will explain
how this might be resolvable in future work.

Conclusions and Future Work
We presented an extension of the LM-Cut heuristic to condi-
tional effects that is admissible and dominates the maximum
heuristic. For this purpose we introduced context splitting as
a new general concept of which we belief that it will prove

useful also for other applications.
One obstacle for the new heuristic is that it adds many

new actions in every round of its computation, which causes
computational overhead in the following rounds. However,
we hope that we can resolve this to some extent in future
work: in certain respects, the computation of hLM-Cut

context is
based on the individual conditional effects plus their action
precondition. From this perspective, the context split adds
many “equivalent” effects in every round. If it is possible
to represent them only once (similar to the way it is done
in an efficient hmax implementation), we expect a significant
speed-up of the computation.

To avoid unfavorable selections of the condition choice
function, it might be beneficial to deploy additional strate-
gies, such as preferring conditions that were not added by a
context split. As this paper focuses on the theoretical prop-
erties of the heuristics, we leave this topic for future work.

Acknowledgments
This work was supported by the German Research Foun-
dation (DFG) as part of the project “Kontrollwissen
für domänenunabhängige Planungssysteme” (KontWiss) by
DFG grant HE 5919/2-1.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Auto-
matic derivation of memoryless policies and finite-state con-
trollers using classical planners. In Gerevini, A.; Howe, A.;
Cesta, A.; and Refanidis, I., eds., Proceedings of the Nine-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2009), 34–41. AAAI Press.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence 69(1–
2):165–204.
Haslum, P. 2013. Optimal delete-relaxed (and semi-relaxed)
planning with conditional effects. In Rossi, F., ed., Proceed-

86

ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), 2291–2297.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-
relaxed plan heuristics. In McCluskey, L.; Williams, B.;
Silva, J. R.; and Bonet, B., eds., Proceedings of the Twenty-
Second International Conference on Automated Planning
and Scheduling (ICAPS 2012), 128–136. AAAI Press.
Köhler, J. 1999. Handling of conditional effects and nega-
tive goals in IPP. Technical Report 128, Institute for Com-
puter Science, Albert-Ludwigs-Universität, Freiburg, Ger-
many.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. Journal of Artificial
Intelligence Research 12:271–315.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
Journal of Artificial Intelligence Research 35:623–675.
Röger, G.; Pommerening, F.; and Helmert, M. 2014. Opti-
mal planning in the presence of conditional effects: Extend-
ing LM-Cut with context splitting. In Proceedings of the
21st European Conference on Artificial Intelligence (ECAI
2014).

87

Width-based Algorithms for Classical Planning: New Results

Nir Lipovetzky
The University of Melbourne

Melbourne, Australia
nir.lipovetzky@unimelb.edu.au

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, Spain
hector.geffner@upf.edu

Abstract

We have recently shown that classical planning prob-
lems can be characterized in terms of a width measure
that is bounded and small for most planning bench-
mark domains when goals are restricted to single atoms.
Two simple algorithms have been devised for exploit-
ing this structure: Iterated Width (IW) for achieving
atomic goals, that runs in time exponential in the prob-
lem width by performing a sequence of pruned breadth
first searches, and Serialized IW (SIW) that uses IW in a
greedy search for achieving conjunctive goals one goal
at a time. While SIW does not use heuristic estimators
of any sort, it manages to solve more problems than a
Greedy BFS using a heuristic like hadd. Yet, it does not
approach the performance of more recent planners like
LAMA. In this short paper, we introduce two simple ex-
tension to IW and SIW that narrow the performance gap
with state-of-the-art planners. The first involves chang-
ing the greedy search for achieving the goals one at a
time, by a depth-first search that is able to backtrack.
The second involves computing a relaxed plan once be-
fore going to the next subgoal for making the pruning in
the breadth-first procedure less agressive, while keep-
ing IW exponential in the width parameter. The empiri-
cal results are interesting as they follow from ideas that
are very different from those used in current planners.

A version of this short paper has been accepted at ECAI
(Lipovetzky and Geffner 2014)

Introduction
The main approach for domain independent planning is
based on heuristic search with heuristics derived automat-
ically from problems (McDermott 1996; Bonet and Geffner
2001). To this, recent planners add other ideas like help-
ful actions, landmarks, and multiqueue best-first search for
combining different heuristics (Hoffmann and Nebel 2001;
Helmert 2006; Richter and Westphal 2010). From a different
angle, we have recently shown that most of the benchmark
domains are easy when the goals contain single atoms, and
that otherwise, goals can be easily serialized (Lipovetzky
and Geffner 2012). More precisely, we showed that the for-
mer problems have a low width, and developed an algorithm,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Iterative Width (IW) that runs in time that is exponential
in the problem width by performing a sequence of pruned
breadth first searches. This algorithm is used in the con-
text of another algorithm, Serialized IW (SIW), that achieves
conjunctive goals by using IW greedily for achieving one
goal at a time. Surprisingly, the blind-search algorithm SIW
which has no heuristic guidance of any sort, performs better
than a greedy best-first search guided by delete-relaxation
heuristics. SIW, however, does not perform as well as the
most recent planners that incorporate other ideas as well.

In this short paper, we introduce two simple extensions
to IW and SIW that narrow the performance gap between
width-based algorithms and state-of-the-art planners. The
first extension involves changing the greedy search for
achieving the goals, one at a time, by a depth-first search
able to backtrack. The second involves computing a relaxed
plan once before going to the next subgoal for making the
pruning in the breadth-first procedure less aggressive, while
keeping IW exponential in the width parameter.

Preliminaries
We assume a STRIPS problem P = 〈F, I,O,G〉, where F
is the set of atoms, I is the set of atoms characterizing the
initial state, O is the set of actions, and G is the set of goal
atoms.

The algorithm Iterated Width or IW consists of a sequence
of calls IW(i) for i = 0, 1, . . . , |F | until the problem is
solved. Each iteration IW(i) is a breadth-first search that
prunes states that do not pass a novelty test; namely, for a
state s in IW(i) not to be pruned there must be a tuple t of
at most i atoms such that s is the first state generated in the
search that makes t true. The time complexities of IW(i) and
IW are O(ni) and O(nw) respectively where n is |F | and w
is the problem width. The width of existing domains is low
for atomic goals, and indeed, 89% of the benchmarks can be
solved by IW(2) when the goal is set to any of the atoms in
the goal (Lipovetzky and Geffner 2012). The width of the
benchmark domains with conjunctive goals, however, is not
low in general, yet such problems can be serialized.

The algorithm Serialized Iterative width or SIW uses IW
for serializing a problem into subproblems and for solv-
ing the subproblems. Basically, SIW uses IW to achieve
one atomic goal at a time, greedily, until all atomic goals
are achieved jointly. In between, atomic goals may be un-

88

GBFS SIW SIW+ FF DFS+ BFS(f) PROBE LAMA’11

Barman 0 0 17 0 20 20 20 20
Elevators 2 17 19 20 20 17 20 20
Floortile 3 0 0 2 0 6 5 5
NoMystery 6 0 0 5 4 15 6 10
Openstacks 14 5 20 20 20 16 14 20
Parcprinter 19 20 20 20 20 17 13 19
Parking 5 20 20 19 20 20 19 19
Pegsol 20 0 1 20 19 20 20 20
Scanalyzer 18 16 16 17 18 17 18 18
Sokoban 15 0 0 15 1 13 15 17
Tidybot 17 5 17 19 19 18 19 15
Transport 4 13 14 8 16 16 16 17
VisitAll 3 20 20 3 20 20 18 20
Woodworking 2 19 20 19 20 20 20 19

All 128 135 184 187 217 235 223 239

Table 1: Number of instances solved. Bold shows best performer.

done, but after each invocation of IW, each of the previ-
ously achieved goals must hold. SIW will thus never call
IW more than |G| times where |G| is the number of atomic
goals. SIW compares surprisingly well to a baseline heuris-
tic search planner based on greedy best-first search and the
hadd heuristic (Bonet and Geffner 2001), but doesn’t ap-
proach the performance of the most recent planners. For
this, a new planner BFS(f) was introduced that integrates
the novelty measure with helpful-actions, landmarks and
delete-relaxation heuristics (Lipovetzky and Geffner 2012).
Here we aim to achieve similar results but with different and
simpler ideas.

Extensions: IW+ and DFS(i)
The first extension, from IW to IW+ involves a slight change
in the pruning criterion in the breadth-first search IW(i) pro-
cedure. When the new procedure IW+(i) is called from a
state s, a relaxed plan from s is computed, so that the states
s′ generated by IW+(i) keep a count of the number of atoms
in the relaxed plan from s that have been achieved in the
way to s′. These atoms are the ones made true by actions
in the relaxed plan that do not hold in s. We say that state
s′ makes the extended tuple (t,m) true if s′ makes the tuple
t true and m is the the number of atoms in the relaxed plan
from s that are made true by the sequence of actions lead-
ing to s′ in IW+. For the state s′ in the breadth-first search
underlying IW+(i) not to be pruned, the new condition is
that there must be a tuple t with at most i atoms, such that
s′ is the first state in the search that makes the extended tu-
ple (t,m) true. An interesting property and motivation of
the IW+ algorithms is that all delete-free problems will be
solved efficiently, as they will be solved by IW+(1). The
same is not true of IW(1).

While the algorithm IW calls the algorithm IW(i) sequen-
tially, IW+ calls IW+(i) instead. The complexity of IW+

is O(nw+1) where w is the problem width, as in the worst
case, the number of atoms in a relaxed plan can be equal to

the number of fluents.
The second extension is a depth-first search algorithm that

extends the serialization of conjunctive goals made greedily
by SIW with the ability to backtrack. For this, the depth-
first search algorithm DFS(i) uses the positive integer pa-
rameter i to indicate that invocations of the IW+ procedure
should involve a sequence of IW+(0), IW+(1), . . . , IW+(i)
calls that should fail and lead to a backtrack when IW+(i)
fails to achieve one more atomic goal. SIW, on the other
hand, will keep trying IW(i+ 1), IW(i+ 2), and so on, and
will never backtrack.

DFS(i) can be understood as normal depth-first search
where the actions in each node are sets of “macro actions”
IW+(1), . . . , IW+(i) performed in order, such the children
resulting from the “macro actions” in IW+(k) applied in a
state s are the states s′ reachable by IW+(k) from s that
achieve all the goal atoms in s plus one.

Notice that while DFS(i) computes a relaxed plan once for
each IW+ call, DFS(i) does not use the relaxed plan for com-
puting heuristic estimates. Rather it uses the relaxed plans
to make the pruning in the breadth-first searches in IW+(i)
less aggressive, while keeping its complexity exponential in
the i parameter.

Experiments
The algorithm SIW+ is SIW with the IW procedure replaced
by IW+. Thus, SIW+ incorporates the first extension only,
while DFS(i) incorporates both extensions. In order to eval-
uate their performance, we include results for a baseline
heuristic search planner made of a greedy best-first search
(GBFS) driven by hadd (Bonet and Geffner 2001), and
state-of-the-art planners such as FF (Hoffmann and Nebel
2001), PROBE (Lipovetzky and Geffner 2011), LAMA-11
(Richter and Westphal 2010) and BFS(f). All planners are
run over the set of benchmarks from the last International
Planning Competition on a 2.40GHz Intel Processor, with
processing time or memory out of 30min and 2GB.

89

GBFS SIW SIW+ FF DFS+ BFS(f) PROBE LAMA’11

Barman T 0 0 3.59 0 4.52 15.51 16.56 10.18
Q 0 0 15.3 0 17.95 19.19 17.39 15.19

Elevators T 0.01 1.23 11.33 11.78 15.62 2.41 6.16 16.33
Q 1.14 15.24 10.83 19.44 10.93 12 14.62 18.24

Floortile T 0.06 0 0 0.59 0 3.26 2.2 2.8
Q 2.96 0 0 1.83 0 5.75 4.61 4.67

NoMystery T 1.59 0 0 5 0.08 12.04 2.52 9.48
Q 5.74 0 0 5 3.77 14.57 5.72 9.72

Openstacks T 0.64 1.73 15.72 11.62 19.88 1.99 1.64 13.94
Q 13.4 5 19.83 18.81 19.83 15.38 13.79 19.24

Parcprinter T 16.06 20 20 20 20 7.85 11.74 19
Q 18.9 19.01 19.01 19.79 19.01 16.01 12.88 18.31

Parking T 0.07 19.19 18.82 2.57 18.5 2.35 2.15 5.06
Q 2.53 19.53 19.36 10.94 19.42 10.72 6.27 10.68

Pegsol T 19.01 0 1 20 7.3 19.5 16.86 19.23
Q 17.89 0 1 17.93 17.1 18.99 18 17.92

Scanalyzer T 5.15 15.24 14.32 13.27 14.97 9.91 13.75 10.71
Q 14.81 13.48 13.4 15.82 14.88 14.04 16.56 14.86

Sokoban T 2.2 0 0 9.47 0.3 6.68 11.22 10.08
Q 9.66 0 0 13.83 0.93 10.58 10.29 13.23

Tidybot T 1.66 3.04 6.88 14.41 8.44 2.32 8.02 2.81
Q 13.04 4.86 14.77 14.43 15.81 15.31 16.46 12.54

Transport T 0.09 3.11 13.67 0.18 15.17 4.91 5.84 9.23
Q 2.66 11.79 12.27 6.04 13.38 14 11.14 15.82

VisitAll T 0.14 17.37 12.81 1.88 12.96 20 5.68 6.46
Q 0.25 19.5 19.5 1.58 19.5 20 14.39 14.69

Woodworking T 1.01 7.92 6.05 19 7.18 2.16 2.74 3.44
Q 2 17.47 17.88 16.97 17.81 19.86 20 15.51

All T 47.69 88.84 124.2 129.78 144.92 110.89 107.07 139.96
Q 104.98 125.88 163.15 162.41 190.91 206.49 182.12 200.62

Table 2: Time(T), and plan length (Q) of first solution as IPC scores. Bold shows best performer.

Interestingly, the results in Table 1 and 2 highlight the
big gap in performance reached by just considering the first
extension IW+ in the greedy serialization SIW+, reaching
indeed the performance of FF that uses helpful actions in
addition to heuristics and was the state-of-the-art planner
until few years ago. When the second extension is consid-
ered, the performance compares well with current state-of-
the-art planners that also incorporate multiple heuristics and
landmarks. Indeed, as shown in Table 2, even by having
a smaller coverage, DFS(i) has the highest IPC score1 in
terms of speed and doesn’t perform bad at all in terms of
the quality IPC score. DFS(i) backtracks mainly in Pegsol,
NoMystery, and Sokoban: 31000, 21217, and 137 times on
average.

1Score for each planner is the sum of T/T ∗ (Q/Q∗), where T
(Q) is solution time (length) divided by the fastest (shortest) solu-
tion found T ∗ (Q∗)

Conclusion
We have set to explore further the potential of classical plan-
ning algorithms based on width considerations. We have
shown how two simple extensions to the Iterated Width (IW)
and Serialized IW (SIW) algorithms introduced by Lipovet-
zky and Geffner result in a simple planner whose perfor-
mance approaches the performance of the best current plan-
ners. The planner is based on a depth-first search engine that
uses pruned breadth-first procedures as macros. The ideas
are thus very different than those that can be found in cur-
rent planners that usually rely on heuristic estimators, help-
ful actions, and landmarks, suggesting that they may deserve
further consideration.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129:5–33.

90

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Lipovetzky, N., and Geffner, H. 2011. Searching for
plans with carefully designed probes. In Proceedings of the
Twenty-First International Conference on Automated Plan-
ning and Scheduling (ICAPS 2011), 154–161.
Lipovetzky, N., and Geffner, H. 2012. Width and seri-
alization of classical planning problems. In Proceedings
of the Twentieth European Conference on Artificial Intelli-
gence (ECAI 2012), 540–545.
Lipovetzky, N., and Geffner, H. 2014. Width-based algo-
rithms for classical planning: New results. In Proceedings
of the Twenty-First European Conference on Artificial Intel-
ligence (ECAI 2014).
McDermott, D. 1996. A heuristic estimator for means-ends
analysis in planning. In Proceedings of the Third Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS-96).
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:122–177.

91

To reopen or not to reopen in the context of Weighted A∗?
Classfications of different trends

Vitali Sepetnitsky Ariel Felner Roni Stern
Information Systems Engineering

Ben-Gurion University
{sepetnit, ariel.felner1, roni.stern}@gmail.com

Abstract
This paper studies the tradeoffs between reopening and not
reopening nodes in the context of Weighted A∗ (WA∗). A
straightforward intuitive scenario is that reopening nodes re-
sults in finding shorter solutions than not reopening nodes, at
the cost of expanding more nodes. But, there are other sce-
narios where other tendencies occur. In this paper we classify
these tendencies and show an example graph where different
tendencies are evident only by varying the W parameter of
WA∗ and without changing the structure of the graph. We
then experimentally demonstrate the different tendencies on
variants of the sliding tile puzzle and on grid based maps.
Finally, we provide experimental support that intelligent re-
opening polices might lead to better performance. This is a
work in progress and we discuss several future directions.

Introduction
Weighted A∗

Since A∗ (Hart, Nilsson, and Raphael 1968) may run out
of memory and out of time, many search algorithms settle
for suboptimal solutions. The most famous, and perhaps
most simple suboptimal search algorithm is Weighted A∗

(WA∗) (Pohl 1970) – the focus of this paper.
Similar to A∗, WA∗ uses two data structures: OPEN

and CLOSED. Initially, OPEN contains only the start state
and CLOSED is empty. At every iteration, the algorithm
chooses the state in OPEN that minimizes the cost function
f(n) = g(n) + W · h(n), where g(n) is the cost of the
lowest cost path found so far from the start state to n, h(n)
is an admissible heuristic estimate of the cost of reaching
the goal from n, and W is a parameter. The chosen state is
expanded, generating its successors. The expanded state is
moved to CLOSED and its successors are inserted to OPEN.
WA∗ continues until a goal state is chosen for expansion or
OPEN is empty. As W grows, WA∗ is expected to find so-
lutions faster (but with decreasing quality) since nodes es-
timated to be close to the goal (with lower heuristic value)
become more attractive.1

Reopening of nodes in WA∗

Some states have multiple paths from the start state to them,
of different costs. It is well-known that A∗ with a consis-

1(Wilt and Ruml 2012) discussed some counter examples for
this general trend. See below.

tent heuristic (and thus the f -cost is monotonically increas-
ing) expands a state only after the lowest cost path to it was
found. This is not the case for non-monotonic f -functions
such as the one used by WA∗. In this case, a state n may be
generated with a smaller g-value, after it has been already
expanded, and inserted to CLOSED. At this point, it can be
removed from CLOSED and put back in OPEN – an action
called reopening. Reopening is optional; for every closed
state which is seen with a smaller g-value, a decision needs
to be made whether to reopen it or not. In the later case, the
newly seen state is just discarded. In this paper we focus on
the two extreme reopening polices: always reopen (AR) and
never reopen (NR).

Example of reopening
Figure 1a illustrates a reopening scenario with WA∗ for
W = 4 (denoted WA∗(4)). h-values (inside nodes) and
edge costs are shown. For now, assume that state D and its
connecting edges (all colored in gray) are not in the graph.
The graph has two paths from S to G, P1 = {S,A,C,G}
of cost 24, and P2 = {S,B,C,G} of cost 22. The first
sequence of nodes expanded by WA∗(4) is: {S(8), A(11),
C(19)} (numbers are f -values). OPEN now contains B(20)
and G(24). So, B is expanded and C is generated but now
with a better g-value of 5. With AR, C is reopened and re-
expanded. Then G is generated with f(G) = 22 and we
update OPEN accordingly. Finally, G is expanded and the
algorithm terminates and returns P2. Alternatively, with NR,
after expanding B, C will be seen but will be discarded and
not re-inserted to OPEN. In this case, G with f(G) = 24
will be expanded immediately and path P1 will be returned.

In our example, reopening produced a shorter path but ex-
panded more states (via the alternate shorter path). This is a
straightforward and intuitive scenario. Reopening improves
the solution as it allows finding better paths to previously
generated nodes. This comes at the cost of more nodes ex-
pansions caused by reopening as some nodes are expanded
more than once. However, there are scenarios where AR
finds longer solutions than NR and there are scenarios where
AR expands fewer states than NR.

In this paper we classify the different possible behaviors
into 9 different cases. We then show an example graph
where most of these cases exist by only varyingW and with-
out changing the structure of the graph. We then experimen-

92

P2

4

17

3

4 1

4

4

P1

POPT

(a) Different paths returned

P1

6

6

6

2

6

4

17

3

4 1

4

4

P2

POPT

(b) Different nodes expanded

Figure 1: Reopening examples

tally show that these cases are evident on common testbed
domains such as the sliding tile puzzle and grid-based maps.
Finally we provide evidence that more intelligent reopen-
ing polices can potentially improve the extreme AR and NR
policies.

Related work
The notion of reopening has been first introduced by (Pohl
1970) and discussed in a variety of papers there-
after (Likhachev, Gordon, and Thrun 2003; Hansen and
Zhou 2007; Thayer and Ruml 2008). For example, the pol-
icy of not allowing reopening (NR) in the context of A∗

ε
(Pearl and Kim 1982) and DWA∗ (Pohl 1973) was proposed
earlier (Ebendt and Drechsler 2009).

A number of authors discussed the influence of AR and
of NR on the path returned and on the number of expanded
nodes. For example, (Thayer and Ruml 2010) write that the
NR policy (referred to as “ignoring duplicates”) “can de-
crease solution quality, and even quality bounds for some
algorithms”. They also report that “ignoring duplicates
(= NR) allows . . . generating orders of magnitude fewer
nodes”. (Malima and Sabanovic 2007) write that “If reopen-
ing nodes is allowed it will produce a better and smoother
path, but it will take more time”. On the other hand other
authors recognized that other trends are also possible. For
example, (Hansen and Zhou 2007) discuss some reasons for
why AR may require fewer node expansions than NR in
some cases, but did not discuss the case where AR finds a
worse solutions than NR. We consider the full spectrum of
the relative performance of AR and NR.

The AR vs. NR dilemma is one choice that a WA∗ imple-
menter needs to consider. (Wilt and Ruml 2012) discussed
a complementing dilemma: what is the impact of increasing
W . While it is common to assume that higher W results
in a faster search, they showed that in several problem do-
mains the number of expanded nodes (often correlated with
runtime of finding the goal) is not monotonically decreasing
when W increases. They attempted to characterize in which
domains increasing W would not be effective by investigat-
ing the influence of various domain- and heuristic attributes.
While still an open question their results point out the im-
portance of the correlation between distance estimates (i.e.,
number of actions to the goal) and the used heuristic, which

estimates the cost of the actions that reach the goal2. In this
paper we do not investigate the impact of the W parameter,
but provide a systematic classification of the different possi-
ble relations between AR and NR, demonstrating them on an
example graph and experimentally on a number of domains.
Thus, our work is a step towards deciding when to use which
reopening policy (AR or NR), while (Wilt and Ruml 2012)
made a step towards deciding how to tune W .

Ranges of W with different behavior
Any possible relation between AR and NR can occur regard-
ing the path returned and the number of nodes expanded.
We show this now on our example graph. The different
trends can occur by only modifying the weight W but with-
out changing the structure of the graph.

Let P (AR) and P (NR) denote the cost of the path
returned by the AR and NR policies, respectively. Let
P+, P=, P− denote a win for AR (P (AR) < P (NR)),
a tie (P (AR) = P (NR)) and a win for NR (P (NR) <
P (AR)), respectively. Similarly, let N(AR) and N(NR)
denote the number of nodes expanded by the AR and NR
policies, respectively. Finally, let N+, N=, N− denote
a win for AR (N(AR) < N(NR)), a tie (N(AR) =
N(NR))and a win for NR (N(NR) ≤ N(AR)), respec-
tively. There are 3× 3 = 9 combinations and we use a four
character notation P ∗N∗ to denote these cases. For exam-
ple, P+N− denotes the case where in the path aspect (P),
AR is the winner, while in the nodes expanded aspect (N),
NR is the winner.

Discussion on the returned path
We first discus the returned path and then move to also dis-
cuss the number of nodes expanded.

Consider again the graph from Figure 1a but now also in-
cluding state D and the edges connected to it. This adds
a new path to the goal POPT = {S,A,D,G} with cost
11. For all possible values of W > 1, the first sequence
of nodes expanded is: {S,A,C,B}. In the last step, when
B is expanded, C is re-generated via a shorter path. If C is
reopened (AR), a better path to G will be found via path P2

2An admissible heuristic is an estimate that is a lower bound
on the lowest cost path to the goal, which in some domains is very
different from the number of actions to the goal.

93

(={S,B,C,G}). If C is not reopened (NR) it will be dis-
carded and P2 will never be found. In addition, if the search
finds a path to the goal with f(G) < f(D), then node D
will remain in OPEN and the optimal path to G, POPT , will
not be found. However, if D reaches the top of OPEN, it
will be expanded and POPT will be revealed. Therefore, the
f -value of B, D and G and their respective order in OPEN
determine the identity of the returned path.

We will show that different values of W cause different
expansion order of these nodes and as a consequence differ-
ent paths will be returned. There are four ranges for values
ofW > 1 that influence the identity of the returned path. We
label them by range 1 through range 4 as shown in Table 1.
These ranges and this table are discussed in depth below.

Discussion on the number of nodes expanded
We make additional changes to our graph in order to enrich
the ranges ofW to also have different tendencies in the node
expansions. The resulting graph is shown in Figure 1b. First,
we add a single stateE connected toC with an edge of 2 and
with h(E) = 1. Note that fP1

(E) = 9 +W (i.e., f(E) via
path P1) while fP2

(E) = 7 +W (i.e., f(E) via path P2).
Expanding E will not reveal a new path but will add 1 to
the node count every time a path from C to G is explored.
In addition, we add four states (X1,X2,X3,X4), connected
to S with edges of cost 6, each having h(Xi) = 4. Thus,
f(Xi) = 6 + 4 · W . Expanding the Xi nodes does not
reveal any new path to G, but adds 4 to the total expansion
count. Note that for every value ofW > 1 the following two
inequalities hold:

• (1:) f(D) > f(Xi) (as g(D) > g(Xi) and h(D) =
h(Xi)).

• (2:) f(D) > f(E) .

These two facts imply that if nodes Xi and E are ex-
panded, it must be before the expansion of D.

The four ranges mentioned above include subranges, de-
picted in the right part of Table 1, where theXi nodes are, or
are not, expanded by the AR and NR policies. Next, 7 out of
the 9 possibilities ({P+, P=, P−} × {N+, N=, N−}), are
demonstrated on the graph in Figure 1b, just by varying the
value of the W parameter. Since E and the Xi nodes never
influence the identity of the path returned, then, whenever
we talk about the lengths of the path returned, it is sufficient
to look at Figure 1a. When we want to show differences in
node expansions we will refer to Figure 1b.

(Range 1:) 1 ≤W < 3.75: Here W is small enough and
thus f(D) < 7 + 3.75 · 4 = 22. In this case, when D and
G (either with fP1

(G) = 24 or with fP2
(G) = 22) are in

OPEN, D is chosen for expansion. Thus, for this range of
W , POPT will be returned whether or not reopening is done.
This is shown in the left part of Table 1. Hence we label this
range as a P= range (shown in the P column).

Since states Xi will be expanded before D, both AR and
NR will expand them; this is indicated in the Xi column.
The AR and NR columns give the total number of nodes
expanded by these policies. There are two subranges here,
shown in the right part of Table 1, regarding node C.

(1a:) 1 ≤W < 3: Here W is so small that B is ex-
panded before C. Thus, C is seen again via P2 while it is
still in OPEN, before it was ever expanded. The dilemma of
whether to reopen C will not even occur. In this subrange,
both AR and NR are identical in both aspects (path length
and nodes expanded). Hence, this subrange is designated by
P=N=.

(1b:) 3 ≤W < 3.75: If reopening is done, states C and
E will be expanded twice, making AR lose on the nodes
expanded count (see the AR and NR columns in Table 1).
Hence, this subrange is designated by P=N−.

(Range 2:) 3.75 ≤W < 4.25: This case is very interest-
ing as: 22 = fP2

(G) ≤ f(D) < fP1
(G) = 24 . Therefore,

if C is not reopened, f(G) remains 24 and D will reach the
top of OPEN. It will then be expanded and POPT will be
returned. But, if C is reopened, f(G) becomes 22 (via P2).
f(G) is now ≤ f(D) ; D will not be expanded and P2 will
be returned. This range is an example where AR results in a
longer path than NR.

In subrange (2a), where 3.75 ≤W < 4, f(Xi) < 22.
With both policies, statesXi are expanded beforeG, as even
for AR fP2

(G) = 22. However, AR expands more states
since it expands E twice. Here NR is winner in both as-
pects!, i.e., this case is designated by P−N−.

In subrange (2b), where 4 ≤W < 4.25, if C is not re-
opened POPT will be returned via D. However, the states
Xi will be expanded before D. But, if C is reopened, f(G)
will be updated to 22 and G will be expanded before states
Xi and D. Therefore, although NR returns a shorter path,
it expands more states than AR. This case is designated by
P−N+ – the exact opposite of the intuitive case we showed
above.

(Range 3:) 4.25 ≤W < 5: In this range f(D) ≥ 24.
f(D) is now larger than both fP1(G) and fP2(G). Thus,
D will never be chosen for expansion. So, if C is not re-
opened, P1 will be returned. But, if C is reopened, P2 will
be returned. This is the intuitive case reported above where
reopening revealed a better path via C. This range is labeled
as P+. There are again two subranges.

(3a:) 4.25 ≤W < 4.5: Here 22 < f(Xi) < 24. There-
fore, if C is reopened, then f(G) = 22 < f(Xi) and G will
be expanded immediately without expanding Xi. However,
if C is not reopened, states Xi will be expanded before G as
fP1

(G) = 24. This case is designated as P+N+. AR wins
here in both aspects.

(3b:) 4.5 ≤W < 5: In this case f(Xi) ≥ 24. There-
fore, neither AR nor NR expand states Xi (since f(G) ≤ 24
and therefore G is expanded first). This is the intuitive case
shown above where reopening revealed a better path via C
but expanded more states (since AR expands C, E and G
twice), i.e., P+N−.

(Range 4:) W ≥ 5: Here f(D) ≥ 7 + 5 · 4 = 27. Thus,
D will never be chosen for expansion. Furthermore, here,
f(B) ≥ 24. Thus, B will never be chosen for expansion
and C will not even be generated again. In this case, again,
we will never even have the dilemma of whether to reopen
C or not. Hence, both AR and NR will return P1 and expand

94

Path returned Nodes Expansions
Range W AR NR P Subrange Case W Xi AR NR

1 1 ≤ W < 3.75 POPT POPT P= 1a P=N= 1 ≤ W < 3 both 11 11
1b P=N− 3 ≤ W < 3.75 both 13 11

2 3.75 ≤ W < 4.25 P2 POPT P− 2a P−N+ 3.75 ≤ W < 4 NR 8 11
2b P−N− 4 ≤ W < 4.25 both 12 11

3 4.25 ≤ W < 5 P2 P1 P+ 3a P+N+ 4.25 ≤ W < 4.75 NR 8 10
3b P+N− 4.75 ≤ W < 5 None 8 6

4 5 ≤ W P1 P1 P= 4 P=N= 5 ≤ W None 5 5

Table 1: The path and expansions for different values of W in Figure 1

exactly the nodes in P1 (hence P=N=).
Table 1 summarizes the different ranges (left) and sub-

ranges (right). For very large values (range 4), reopening
will never happen, hence both policies tie. For very small
values (range 1), reopening will make no difference as the
optimal path will be returned anyway – again a tie. The in-
teresting cases are in the middle range. For range 3, AR will
result in a better path. This is the intuitive case where AR is
expected to be better, or at least no worse than NR (if ranges
1 and 4 are considered too). The somewhat counter-intuitive
case is range 2, where AR finds a better path (P2) and halts
while the path that NR has (P1) is not strong enough, forcing
NR to continue searching and eventually finding the optimal
path (POPT). As can be seen, in our example graph 7 out of
the 9 possible cases are present.

Experiments
Our example graph demonstrated that different behaviors
can occur on the same graph while only varying the value
of W . Next, we show experimentally that different trends
also occur in two benchmark domains: the sliding tile puz-
zle and grid-world pathfinding.

Tile Puzzle
We experimented with the 3x3 8-puzzle, and the 4x4 15-
puzzle with the Manhattan distance heuristic. For each puz-
zle we generated 1000 random instances and used W values
1.5, 2, 3, 5, 10, 20, 30, 50, 100, 200, 500, and 1,000.

Figure 2 shows the percentage of 15-puzzle instances,
partitioned into five disjoint groups according to the cost of
the found path. The figure highlights the “anomalies”, or the
counter intuitive cases – when NR finds a strictly better path
than AR (P−) and when AR expands strictly fewer nodes
than NR (N+).

The two topmost slices show the case where no anomaly
was seen (includes the range P+=N−=). This zone is split
into the topmost slice (gray), P+ and the second slice (light
blue) where there was a tie in the path returned (P=). It is
interesting to note that around 50% of the instances fall into
the P= slice for all values of W .

The lower three slices correspond to cases with “anoma-
lies”, when we had eitherP− orN+ (or both). TheP+=N+

slice (green) shows the case where AR strictly dominates
NR, expanding fewer nodes and finding solutions that are
at least as good as NR. Similarly, the P−N−= slice (red)
shows the other extreme case where NR strictly dominates

AR, finding better solutions without expanding more nodes.
Our results show that for some values of W these full-
dominance cases occurs in a non-negligible percentage of
the instances. This calls for a method for predicting which
reopening policy to use. Finally, the P−N+ slice (purple)
represents the counter intuitive case where NR returned a
better path at the tradeoff of more nodes expanded.

As can be seen, the “anomalies” are less frequent for very
low or very high W values. However, for mid-range W val-
ues they occur very often. For example, for W = 3, almost
40% of the random instances we generated had either P− or
N+; 10% had both (P−N+). When omitting the light blue
slice (P=), one can see that for many W values, anomalies
occur more often than the case that strictly match the intu-
itive case P+N−=.

We obtained similar results for the 8-puzzle, but the
“anomaly” cases were less frequent. Our conjuncture is
that this is because the 8-puzzle is a smaller domain, hav-
ing shorter solution lengths and as a result less prone to the
generation of these “anomalies”.

Grid-based maps
Our next domain is pathfinding in a 4-connected grid. We
used the Manhattan distance heuristic, and experimented on
three grids from the video game Dragon Age: Origins from
the publicly available repository of (Sturtevant 2012). The
three grids, brc202d, ost003d and den520d differ in
their density and number of obstacles. brc202d has nar-
row corridors and no open spaces. ost003d has more open
spaces bounded by ’rooms’ and finally, den520d has no
corridors or rooms but have many open spaces. For each
map we generated 100 different instances by choosing a ran-

0

10

20

30

40

50

60

70

80

90

100

1.5 2 3 5 10 20 30 50 100 200 500 1000

%
 i

n
s

ta
n

c
e
s

W values

P+N-,=

P=N-,=

P+,=N+

P-N-,=

P-N+

Figure 2: % instances per class, 15-puzzle

95

P N 1.1 1.2 2 3 5 Image
brc202d

P+ N−= 76 81 95 94 90
P= N−= 12 11 4 5 10
P+ = N+ 10 0 0 0 0
P− N−= 2 8 1 1 0
P− N+ 0 0 0 0 0

ost003d
P+ N−= 37 40 80 83 58
P= N−= 30 37 8 12 38
P+ = N+ 26 15 5 3 3
P− N−= 5 5 7 2 1
P− N+ 2 3 0 0 0

den520d
P+ N−= 19 23 46 40 42
P= N−= 57 48 39 50 54
P+ = N+ 14 14 9 7 4
P− N−= 7 15 6 3 0
P− N+ 3 0 0 0 0

Table 2: % of instances per class for grid experiments

dom start and goal locations on the map and assuring the
shortest path between them is at least 2

3 of the grid side size.
We used the same range of W values as in the tile puzzle
and added W = 1.1 and W = 1.2.

Table 2 shows a partition of the map instances based on
the same P ∗N∗ combinations as Figure 2. Results are only
given for W ≤ 5, as beyond that point all instances were
part of the P+=N−= case. We observe two trends that are
similar to the tile puzzle experiments above. First, for these
maps as well, we see that the “anomalies” P− and N+ (bot-
tom three rows) make up to 1

3 of the cases for some values
of W (e.g., for W = 1.1 for ost003d). Second, the per-
centage of both P− and N+ initially grows with W until
reaching some “maximum” point after which the P− and
N+ percentage drops eventually to zero.

We note that the different maps exhibit different behav-
ior. The more maze-like map (brc202d) had only a few
instances from either P− or N+. In the more open-spaced
maps, (ost003d and den520d) more cases with “anoma-
lies” were seen. In some cases, e.g., in den520d for
W = 1.1 and W = 1.2, “anomalies” occur even more
often than the top row which strictly matches the intuitive
case. We conjecture that this is because maze-like maps have
lower frequency of multiple paths to the goal, and therefore
less reopening occurs in general. To support this claim, we
also ran experiments on mazes with varying corridor width
(namely, 1, 2, 4, 8 and 16), also taken from the same bench-
mark repository (Sturtevant 2012). In these mazes, we did
not observe any P− instances, and very few N+ instances.

Better polices
AR and NR are extreme policies – either always or never re-
open nodes. One can implement a hybrid policy that chooses
to reopen some nodes while bypassing reopening in other
nodes. In the future, we intend to develop such policies.
However, to demonstrate the potential of such hybrid poli-
cies we implemented a reopening oracle, as follows. Given
an instance to be solved by WA∗, for every closed state

which is generated again with a smaller g-value, a decision
needs to be made whether to reopen it or not. By marking
positive decision (to reopen) by 1 and negative decision (not
to reopen) by 0, a sequence of reopenings choices can be
described as a binary vector. There are two types of reopen-
ing oracles: min-cost oracle and min-expansions oracle. A
min-cost oracle simulates the decisions imposed by all the
possible binary vectors and then returns the sequence of re-
opening choices that results in finding a solution of lowest
cost. A min-expansions oracle chooses the sequence of re-
opening choices that results in finding a solution while ex-
panding a minimal number of nodes.

If the number of decision points is p an oracle needs to
simulate 2p sequences. For computational complexity rea-
sons, we implemented limited versions of the min-cost and
min-expansions oracles, such that they only consider the first
r reopening choices, where r is a parameter, after which they
degrade back to either AR or to NR (which ever minimizes
the cost/expansions better). We implemented these limited
min-cost and min-expansions oracles with r = 9 and run
them on 100 random instances of the 8-puzzle with weights
1.5, 2, 3, 5, 10, 20 and 30. For each instance and weight
we compared the results of AR, NR to our limited min-cost
oracle and to our limited min-expansions oracle. Our results
showed that the limited min-cost oracle found shorter solu-
tions of length which was up to 17% shorter (i.e., a factor
of 0.83) than the best solution found by best extreme policy.
Similarly, we have found instances where the sequence re-
turned by the limited min-expansions oracle expanded only
0.6 of the nodes expanded by the best extreme policies. This
experiment was performed on a limited series of r = 9 and
on a rather small domain (8-puzzle). Nevertheless, it demon-
strates the potential benefit of further pursuing intelligent,
hybrid reopening policies.

Discussion and future work
The intuitive case is that avoiding reopening nodes in WA∗

will decrease runtime at the expense of finding better solu-
tions. We classified all the other cases and demonstrated
that their occurrence is non negligible. We illustrated a
small graph where, depending on the value of W , NR
may find better solutions than AR, and on the other hand
NR might expand more nodes than AR. In practice, we
demonstrated experimentally on two standard benchmarks
that these anomalies occur for many W values. In addition,
we conjunctured about the relation between certain domain
properties and the frequency of these “anomalies” occurring.

This is a work in progress. Based on our oracle experi-
ments our research now focuses on finding reopening poli-
cies smarter than the extreme AR and NR. Such policies
probably should use the current state of the search (e.g. the g
and h value of the state being reopened, the current number
of expansions etc.) and try to predict at each decision point,
whether reopening should be done.

In addition, we plan to inspect other scenarios where re-
opening occurs such as enhanced versions of WA∗, more ad-
vanced bounded-suboptimal search algorithms (Thayer and
Ruml 2008; 2009) and A∗ with inconsistent heuristics (Fel-
ner et al. 2011).

96

References
Ebendt, R., and Drechsler, R. 2009. Weighted A* search –
unifying view and application. Artif. Intell. 173(14):1310–
1342.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N. R.; and Zhang, Z. 2011. Inconsistent heuristics in theory
and practice. Artif. Intell. 175(9–10):1570–1603.
Hansen, E. A., and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research (JAIR) 28:267–
297.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100–107.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. In
NIPS. MIT Press.
Malima, A., and Sabanovic, A. 2007. Motion planning and
assembly for microassembly workstation. In Proceedings
of the 10th IASTED International Conference on Intelligent
Systems and Control, 467–474.
Pearl, J., and Kim, J. H. 1982. Studies in semi-
admissible heuristics. IEEE Trans. Pattern Anal. Mach. In-
tell. 4(4):392–399.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1(3-4):193–204.
Pohl, I. 1973. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and com-
putational issues in heuristic problem solving. In Proceed-
ings of the 3rd international joint conference on Artificial
intelligence, 12–17.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games.
Thayer, J. T., and Ruml, W. 2008. Faster than weighted A*:
An optimistic approach to bounded suboptimal search. In
ICAPS.
Thayer, J. T., and Ruml, W. 2009. Using distance estimates
in heuristic search. In ICAPS.
Thayer, J. T., and Ruml, W. 2010. Anytime heuristic search:
Frameworks and algorithms. In SOCS.
Wilt, C. M., and Ruml, W. 2012. When does weighted A*
fail? In SOCS.

97

Delete Relaxation and Traps in General Two-Player Zero-Sum Games

Thorsten Rauber and Denis Müller and Peter Kissmann and Jörg Hoffmann
Saarland University, Saarbrücken, Germany

{s9thraub, s9demue2}@stud.uni-saarland.de, {kissmann, hoffmann}@cs.uni-saarland.de

Abstract

General game playing (GGP) is concerned with constructing
players that can handle any game describable in a pre-defined
language reasonably well. Nowadays, the most common ap-
proach is to make use of simulation based players using UCT.
In this paper we consider the alternative, i.e., an Alpha-Beta
based player. In planning, delete relaxation heuristics have
been very successful for guiding the search toward the goal
state. Here we propose evaluation functions based on delete
relaxation for two-player zero-sum games.
In recent years it has been noted that UCT cannot easily cope
with shallow traps, while an Alpha-Beta search should be
able to detect them. Thus, a question that arises is how com-
mon such traps are in typical GGP benchmarks. An empiri-
cal analysis suggests that both cases, relatively few traps and
a high density of traps, can occur. In a second set of experi-
ments we tackle how well the Alpha-Beta based player using
the proposed evaluation function fares against a UCT based
player in these benchmarks. The results suggest that (a) in
most games with many traps Alpha-Beta outperforms UCT,
(b) in games with few traps both players can be on par, (c)
the evaluation functions provide an advantage over a blind
heuristic in a number of the evaluated games.

Introduction
Game playing has always been an important topic in artifi-
cial intelligence. The most well-known achievements are
likely the successes of specialized game players such as
DeepBlue (Campbell, Hoane, and Hsu 2002) in Chess or
Chinook (Schaeffer et al. 1992) in Checkers, defeating the
human world-champions in the respective games. However,
these specialized players have deviated far from the original
idea of a general problem solver (Newell and Simon 1963).

In 2005 this idea was picked up again, by introducing a
new competition for promoting research in general game
playing (Genesereth, Love, and Pell 2005). Here the players
are not supposed to play only a single game on world-class
level, but rather to be able to handle any game that can be
described in a given language and play it reasonably well.
Most research in this area has been invested in deterministic
games of full information.

After early successes of players based on Alpha-Beta
search with automatically generated evaluation functions
(e.g., (Clune 2007; Schiffel and Thielscher 2007)), a new
trend dominates the field: the use of UCT (Kocsis and

Szepesvári 2006). This is a simulation-based approach, i.e.,
lots of games are simulated and the achieved rewards prop-
agated toward the root of a partial game-tree, in order to de-
cide on the best move to take. Since 2007 all winners of the
international competition have made use of this technique
(e.g., (Björnsson and Finnsson 2009; Méhat and Cazenave
2011)). However, for certain games it has been shown that
UCT is not always the best choice. One property that is dif-
ficult to handle by that approach is the presence of shallow
traps (Ramanujan, Sabharwal, and Selman 2010), i.e., states
from which the opponent has a winning strategy of short
length. While Alpha-Beta can identify such traps, UCT typ-
ically can not, at least if the branching factor is high enough
or the possible playouts within the trap are long enough.

The basic setting of general game playing is comparable
to that of action planning. There the aim also is to implement
solvers that can handle any planning task describable in the
given language. The current trend in planning is in heuris-
tic search, where the heuristics are automatically generated
at run-time. One successful approach is based on delete re-
laxation, e.g., the FF heuristic (Hoffmann and Nebel 2001).
In the delete relaxed setting, anything that once was true re-
mains true. The length of a plan (i.e., a solution) for a delete
relaxed planning task can then be used as an estimate for the
length of a plan in the original setting.

In this paper we propose new evaluation functions for
general game playing based on the length estimates derived
by delete relaxation heuristics and apply these evaluation
functions in an Alpha-Beta implementation. Furthermore,
we empirically evaluate a number of games to get an idea
of their trap density. In the experimental results we will
see that our Alpha-Beta based player indeed outperforms a
UCT based player in most tasks that contain a large amount
of shallow traps and is on-par in several of the games with
fewer traps. Additionally, the use of the evaluation function
brings a real advantage over a blind heuristic in a number of
the evaluated games.

Background
In this section we provide the necessary background on gen-
eral game playing, UCT search, traps in games and delete
relaxation heuristics as they are used in planning. We as-
sume the reader to be familiar with the basics of Alpha-Beta
search, so that we skip an introduction.

98

General Game Playing
The main idea of general game playing (GGP) is to imple-
ment players that play any game that can be described by
the given language reasonably well. The current setting as it
was introduced for the first international competition in 2005
(Genesereth, Love, and Pell 2005) allows for a wide range
of games: single-player puzzles or two- and multi-player
games, which can be, among others, turn-taking or with si-
multaneous moves, zero-sum or more general rewards, co-
operative, etc. In all settings the goal for each player is to
maximize its own reward. Furthermore, all these games are
finite, discrete, deterministic, and all players have full infor-
mation.

In this paper we consider only the case of strictly turn-
taking two-player zero-sum games. The two players are de-
noted Max (the starting player) and Min. As possible out-
comes we allow only win (here denoted 1), loss (denoted
−1), and draw (denoted 0) from the Max player’s point of
view. Basically, our definition of a game is an extension
of the multi-agent STRIPS setting (Brafman and Domshlak
2008) to adversarial agents:
Definition 1. A game is a tuple ΠG =
〈V,AMax , AMin , I, G,R〉, where V is the set of state
variables or facts, AMax and AMin are the actions of the
Max and Min player, respectively, I is the initial state in
form of a complete assignment to V , G is the termination
criterion in form of a partial assignment to V , and R is a
function assigning a reward in {−1, 0, 1} to each terminal
state. Similar to planning, an action a is of the form
〈prea, adda, dela〉, where prea is the precondition, adda
the list of add-effects, and dela the list of delete-effects.

Note that this definition deviates from the commonly used
game description language GDL (Love, Hinrichs, and Gene-
sereth 2008), where the effects of an action specify all facts
that are true in the successor state, which together with the
closed world assumption results in a full state specification.
Definition 2. For a game ΠG = 〈V,AMax , AMin , I, G,R〉,
the semantics are defined by means of a transition system
ΘG = 〈S,L, T, I, S−1g , S0

g , S
1
g〉, where S = SMax ∪ SMin

is the finite set of all states, SMax the set of states where
Max has to move and SMin the set of states where Min has
to move. L = LMax ∪ LMin is a finite set of labels with
LMax = AMax and LMin = AMin . T = TMax ∪ TMin is a
set of transitions consisting of TMax ⊆ SMax×LMax×SMin

and TMin ⊆ SMin × LMin × SMax . Precisely, (s, l, s′) ∈
TMax if l is applicable in s (i.e., if s ∈ SMax , l ∈ LMax ,
prel ⊆ s), and s′ ∈ SMin is the resulting successor state
(i.e., if s′ = (s \dela)∪adda); similar for TMin . I ∈ SMax

is the initial state. S−1g ⊆ S is the set of terminal states
lost for Max, S0

g ⊆ S the set of terminal draw states, and
S1
g ⊆ S the set of terminal states won by Max, i.e., s ∈ Srg if
G ⊆ s and R(s) = r. The Max player tries to maximize the
reward while Min tries to minimize it.

Upper Confidence Bounds Applied to Trees
The upper confidence bounds (UCB1) algorithm (Auer,
Cesa-Bianchi, and Fischer 2002) is used in the area of multi-
armed bandits and aims at maximizing the expected reward.

The upper confidence bounds applied to trees (UCT) algo-
rithm (Kocsis and Szepesvári 2006) is an extension of this to
tree based searches. It treats every internal node as a multi-
armed bandit (where the different arms correspond to the
possible actions to take) and tries to learn which actions are
preferable. UCT consists of four phases: selection, expan-
sion, simulation, and backpropagation.

In the selection phase nodes stored in the UCT tree are
evaluated and a path is followed until a leaf of that tree is
reached. The evaluation works as follows. Let s be the state
represented by a node, a1, . . . , an the actions applicable in
state s, s1, . . . , sn the corresponding successor states, n(s)
the number of times state s was reached, n(s, a) the number
of times that action a was chosen in state s, and δ(s) the
average reward achieved when starting in state s. The UCT
value for the different actions is defined as

UCT (s, ai) = δ(si) + C

√
log n(s)

n(s, ai)
. (1)

In our two-player setting, if s ∈ SMax , we can use this di-
rectly and select the action achieving the highest UCT value;
if s ∈ SMin , we use the negation of δ(si) in equation (1)
and still select the action achieving the highest UCT value.
The constant C is used to set the amount of exploration or
exploitation: With a small value the algorithm will tend to
exploit the knowledge already generated by mainly follow-
ing the most promising actions, while with a high value the
algorithm will tend to explore different areas, often selecting
actions that lead to less promising successors.

If a state contains some unexplored successors, instead of
evaluating the UCT formula one of the unexplored succes-
sors will be selected randomly. This assures that the formula
is evaluated only if initial values for all successors are set.

The expansion phase starts when a leaf node of the UCT
tree has been reached. In that case the leaf node will be
expanded, the successor added to the tree, and the simulation
phase starts.

In the simulation phase a Monte-Carlo run is started,
which chooses among the applicable actions of the current
state at random until a terminal state is reached.

When this happens, the backpropagation starts. This up-
dates the average rewards and counters of all states visited
during the selection phase. As soon as all nodes are updated
the selection phase starts over at the root of the UCT tree.

When an actual action is to be performed and we are the
Max (Min) player, the action leading to the successor with
highest (smallest) average will be selected and the corre-
sponding successor node will become the new root of the
UCT tree. If it is not our turn to move in the current state,
we wait for the action chosen by the opponent and take the
corresponding successor as the new root. Afterwards the
search starts over at the new root node.

Traps in Games
In some games such as Go traditional Alpha-Beta based
players are clearly inferior to UCT based players like MoGo
(Gelly and Silver 2008). In others like Chess, however, the
Alpha-Beta based players are on a level beyond any human

99

world-champion and clearly outperform UCT based players.
One explanation for this behavior was provided by Ramanu-
jan, Sabharwal, and Selman (2010), who noticed that Chess
contains shallow traps while Go does not.

A state s is called at risk if for the current player p there
is a move m so that the corresponding successor s′ is a state
in which the opponent of p has a winning strategy. If the
winning strategy has a maximum of k moves, we call state
s′ a level-k search trap for p.

A trap is considered to be shallow if it can be identified
by Alpha-Beta search. Due to its exhaustive nature, this is
the case if its depth-limit is at least k+ 1. Such a player can
avoid falling into the trap by using a move different from m
in state s. Typically, traps of level 3–7 are considered to be
shallow. UCT often cannot identify such traps as it spends
a lot of time exploring states much deeper than the level of
the trap, in areas it considers promising.

In a subsequent study Ramanujan, Sabharwal, and Sel-
man (2011) created a synthetic game in which they could
manually set the density of traps. With this they found that
without any traps, UCT was much better than Minimax.
With only few traps in the state space UCT was still bet-
ter than Minimax. However, the higher the density of traps
the worse UCT performed in comparison to Minimax.

Delete Relaxation Heuristics
The setting in planning is similar to ours, with the exception
that planning allows only for a single agent. Additionally,
the aim of this agent is to reach a terminal state in as few
steps as possible. Other than that, especially the handling of
actions is the same in both formalisms.

The delete relaxation corresponds to the idea of ignoring
the delete effects. That means, everything that once was true
will remain true forever. This allows the calculation of a fix-
point of those facts that can become true at any point in the
future and of those actions that may be applicable at some
point in the future.

One way to do so is by means of the relaxed planning
graph (RPG). The RPG consists of alternating layers of facts
and actions. The first layer contains all those facts currently
true. Then follows a layer with all the actions that are ap-
plicable based on those facts. The next layer contains all
facts true in the previous layers and the ones added by the
actions of the previous layer. This continues until a fixpoint
is reached or all facts of a specified goal state are present in
the last generated layer. Instead of generating the full RPG,
it often suffices to store, for each action and each fact, the
first layer it appeared in.

The optimal relaxation heuristic h+ gives the minimal
number of actions needed to reach a given goal state from
the current state in the relaxed setting, which is an admissi-
ble (i.e., not overestimating) heuristic for the original non-
relaxed search problem. As this is NP-hard to calculate ap-
proximations are used, e.g., the FF heuristic (Hoffmann and
Nebel 2001). After generating the RPG, it marks all facts
of the specified goal. Then it works in a backpropagation
manner through the RPG, starting at the last generated layer.
For each marked fact newly added in this layer it marks an
action that adds it. Given these newly marked actions it

marks all facts in their preconditions. This continues un-
til the first layer of the RPG is reached. At that point, the
marked actions correspond to a solution plan of the relaxed
task, and their number is returned as an approximation of the
h+ heuristic.

Delete Relaxation in GGP
In order to evaluate non-terminal states we propose the fol-
lowing new approach based on delete relaxation heuristics.
Similar to automated planning, we can define the delete re-
laxation of a game:
Definition 3. For a game ΠG = 〈V,AMax , AMin , I, G,R〉,
we denote its delete relaxation as Π+

G =

〈V,A+
Max , A

+
Min , I, G,R〉 where A+

Max =
{〈prea, adda, ∅〉 | 〈prea, adda, dela〉 ∈ AMax} (simi-
lar for A+

Min).
Given a state s, we use the FF heuristic (Hoffmann and

Nebel 2001) operating on the full set of actions A+ =
A+

Max ∪ A+
Min to estimate the number of moves needed to

reach a state with reward 1, denoted as lwin(s), and to esti-
mate the number of moves needed to reach a state with re-
ward −1, denoted as llose(s). Each of these values is set to
∞ if no corresponding terminal state is reachable anymore.
We define the evaluation function h1(s) of state s as

h1(s) =





1 if lwin(s) 6=∞ and llose(s) =∞
−1 if lwin(s) =∞ and llose(s) 6=∞
0 if lwin(s) =∞ and llose(s) =∞

llose(s)−lwin (s)
max(llose(s),lwin (s))

otherwise.

If only one player’s winning goal states cannot be reached
anymore we treat the state as being won by the opponent.
Otherwise the quotient results in a value in [−1, 1]. If it
takes more moves to reach a lost state the Max player seems
to have a higher chance to win, so that the evaluation will
be greater than 0; otherwise the Min player seems to have a
better chance, resulting in a value smaller than 0.

Figure 1: Example state of the game Breakthrough.

Example 1. As an example we take the game Breakthrough.
In this game, white starts with two rows of pawns at the bot-
tom and black with two rows of pawns at the top. The pawns
may only be moved forward, vertically or diagonally, and
can capture the opponent’s pawns diagonally. The goal of
each player is to reach the other side of the board with one
of their pawns. Consider the state given in Figure 1. Assume
that white is the Max player and black the Min player, and
in the current state it is white’s turn to move.

100

In the following we will evaluate the states reached by
applying the two different capturing moves. The first one
captures with the most advanced white pawn, resulting in
state s1, the second one captures with the least advanced
white pawn, resulting in state s2. In s1 white needs at least
one more move, while black needs at least 3 more moves, so
that h1(s1) = (3 − 1)/3 = 0.67, indicating an advantage
for the white player. In s2 the white player will need at least
two moves and the black player at least four moves to win
the game, so that h1(s2) = (4−2)/4 = 0.5, which indicates
a smaller advantage for the white player compared to s1.

An alternative is to take the mobility into account. A pre-
vious approach (Clune 2007) used the mobility directly: The
author compared the number of moves of both players, nor-
malized over the maximum of possible moves of both play-
ers. While this seems to work well in several games, it bears
the danger of sacrificing own pieces in games like Check-
ers where capturing is mandatory: In such games, bringing
the mobility of the opponent to as small a value as possible
typically means restricting the opponent to a capture move.

Thus, we do not inspect the mobility in the current state
but rather try to identify how many moves remain relevant
for achieving a goal. In order to do so we first calculate a
full fixpoint of the RPG, i.e., we generate the RPG until no
new facts or no new actions are added to it. Only the actions
in that graph can become applicable at some time in the fu-
ture. Now, starting at the facts describing a player’s won
states, we perform backward search in the RPG, identifying
all actions of that player that may lie on a path to those facts.
These actions we call relevant.

Let nMax ,rel(s) be the number of relevant actions of the
Max player in state s and nMin,rel(s) the number of relevant
actions of the Min player in state s. Similarly, let nMax be
the total number of actions of the Max player and nMin the
total number of actions of the Min player. Then we define
another evaluation function h2 for state s as follows:

h2(s) =
nMax ,rel(s)

nMax
− nMin,rel(s)

nMin

This assumes that a player has a higher chance of winning if
the fraction of still relevant actions is higher for this player
than for the opponent.

Example 2. Consider again the Breakthrough example from
Figure 1 and the two successor states s1 and s2. In Break-
through, all moves advance a pawn to the opponent’s back
row, so that any move that can still be performed at some
point is relevant. We distinguish between the (left/right)
border cells, where the players have two possible moves,
and the inner cells, where the players have three possi-
ble moves. Initially, both players have 80 relevant actions
(both can reach 10 border cells and 20 inner cells). In s1,
the white player can reach three border cells, and five in-
ner cells, resulting in a total of 21 relevant moves. The
black player can still reach three border cells and three in-
ner cells, resulting in a total of 15 relevant moves. Thus,
h2(s1) = 21/80−15/80 = 6/80, giving a slight advantage
for white. In s2, the white player can reach three border
cells and four inner cells, resulting in a total of 18 relevant

moves. The black player can still reach four border cells
and six inner cells, resulting in a total of 26 relevant moves.
Thus, h2(s2) = 18/80 − 26/80 = −8/80, indicating a
slight advantage for black.

As a third option, we combine these two evaluation func-
tions to a new function h1+2(s) = w1h1(s) + w2h2(s).
Learning weights w1 and w2, especially ones optimized for
the game at hand, remains future work; in this paper we use
a uniform distribution, i.e., w1 = w2 = 0.5.

Implementation Details
We implemented an Alpha-Beta based player and a UCT
based player as well as the new evaluation functions on top
of the FF planning system (Hoffmann and Nebel 2001). In
this section, we provide some details on the extensions over
basic Alpha-Beta and UCT players that we additionally im-
plemented.

Alpha-Beta
In our Alpha-Beta implementation we make use of iterative
deepening (Korf 1985), searching to a fixed depth in each
iteration and evaluating the non-terminal leaf nodes based
on our evaluation function. Between iterations we increase
the depth limit by one.

In addition we implemented several extensions found in
the literature, among them the use of a transposition table
and approaches to order the moves based on results in the
transposition table and from previous iterations, which is
supposed to result in stronger pruning.

As soon as the evaluation time is up and the player must
decide which action to take, the current iteration stops. If it
is not this player’s turn, nothing has to be done. Otherwise,
in case of being the Max (Min) player the action leading to
the successor with highest (smallest) value is chosen. The
successor reached by the chosen action is taken as the new
root of the graph and Alpha-Beta continues.

Quiescence Search On top of this we implemented quies-
cence search, which tries to circumvent the so called hori-
zon effect. The basic idea is to distinguish between noisy
and quiet states, where a state is considered to be noisy in
case of tremendous changes in the game with respect to the
previous state. As soon as our normal Alpha-Beta search
reaches the depth limit we check whether the current state is
noisy, and if so, we will switch into quiescence search and
continue until we reach a terminal state, a quiet state, or the
predefined depth limit of quiescence search.

Our idea for deciding if a state is noisy is to check if the
number of moves has drastically changed. Thus, we defined
and tested the following criteria:

Applicable actions In each state compute, for the current
player, the number of the currently applicable actions and
compare it to the value of the previous state where it was
this player’s turn.

Possible actions In each state compute, for the current
player, the number of actions that might still be possi-
ble to take later in the game (found by building the RPG

101

fixpoint, similar to our evaluation function h2) and com-
pare it to the value of the previous state where it was this
player’s turn.

In preliminary tests we found that the applicable actions
criterion works better than the possible actions criterion. An
explanation for this is the overhead induced by computing
the RPG fixpoint.

For deciding if a state is noisy, apart from the criterion to
check we also need a threshold for deciding if that change
corresponds to a noisy state. If the change in the correspond-
ing criterion is greater than the given threshold we consider
it to be noisy. We tested threshold values between 5% and
50% and came to the conclusion that 30% is the best value
wrt. the applicable actions criterion.

While for some games other values would be better, recall
that we consider domain-independent approaches here, so
that we cannot choose the most appropriate value for each
game in advance. It remains future work to find intelligent
ways for adapting this value at run-time depending on the
properties of the currently played game.

UCT

For UCT, instead of a tree we generate a graph by using a
hash function, similar to the transposition table in Alpha-
Beta. In the expansion phase, if we generate a successor
state that is already stored in the hash table we take the cor-
responding existing search node as the child node. While
some implementations might make use of parent pointers,
thus effectively updating nodes not really visited, we propa-
gate the reached results only along the path of actually vis-
ited nodes.

Another extension concerns the use of a Minimax-like
scheme in the UCT graph. Similar to the approach pro-
posed by Winands and Björnsson (2011), we mark a node
in the UCT graph as solved if it corresponds to a terminal
state. During the backpropagation phase we check for every
encountered node whether all successors have already been
solved. If that is the case, we can mark this node as solved
as well and set its value in the Minimax fashion based on
the values of its successors. Furthermore, if we are in con-
trol in a node and at least one successor is marked as solved
and results in a win for us, we mark this node as solved as
well and set its value to a win for us. In the selection phase
we go through the UCT graph as usual, but stop at solved
states and can start the backpropagation phase immediately.
Overall, this approach is supposed to bring us the advantage
that the values converge much faster and that the runs can
become shorter and only within the UCT graph, which pre-
vents the numerous expansions in the simulation phase.

Experimental Results
In this section we start by describing the games we consid-
ered in our experiments. Next we point out some insights on
traps in those games, along with an empirical evaluation of
the trap densities. Finally, we present results of running our
Alpha-Beta versions against UCT on that set of games.

Benchmark Games
In the following we will outline the games we used in our
experiments.

Breakthrough consists of a Chess-like board, where the
two rows closest to a player are fully filled with pawns of
their color. The moves of the pawns are similar to Chess,
with the exception that they can always move diagonally.
The goal is to bring one pawn to the opponent’s side of the
board or to capture all opponent’s pawns.

Chomp consists of a bar of chocolate with the piece in
the bottom left corner being poisoned. The moves of the
players are to bite at a specified position that still holds a
piece of chocolate. The result is that all pieces to the top-
right of this are eaten. The player eating the poisoned piece
loses the game.

Chinese Checkers is normally played on a star-like grid.
In the two-player version we can omit the home bases of
the other four players, so that the board becomes diamond-
shaped. In each move the players may only move forward
(or do nothing), and perform single or double jumps. Each
player has three pieces and must move them to the other side
of the board, consisting of 5× 5 cells. If no player is able to
do so in 40 moves the game ends in a draw.

Clobber is played on a rectangular board. The pieces are
initially placed alternatingly, filling the entire board. A move
consists of moving a piece of the own color to a (horizontally
or vertically) adjacent cell with a piece of the opponent’s
color on it. That piece is captured and replaced by the moved
piece of the active player. The last player able to perform a
move wins.

Connect Four is a classical child’s game. The play-
ers take turns putting a piece of their color in one of the
columns, where it falls as far to the bottom as possible. The
goal is to achieve a line of four pieces of the own color. If
the board gets fully filled without one player winning, the
game ends in a draw.

Gomoku is played on a square board, where the players
take turns placing pieces on empty cells. The first player
to achieve a line of five or more pieces of the own color
wins the game; if the board is fully filled without any player
winning it is a draw.

Knightthrough is very similar to Breakthrough, but here
the pieces are knights instead of pawns. The moves are the
same as in Chess, with the exception that they may only ad-
vance toward the opponent, never move back.

Nim consists of a number of stacks of matches. In each
move, a player may remove any number of matches from
one of the stacks. The player to take the last match wins the
game.

Sheep and Wolf is played on a Chess-like board, where,
similar to Checkers, only half the board is used. The sheep
start on every second cell on one side, the wolf in the mid-
dle on the other side. The wolf moves first. The sheep may
move only forward to a diagonally adjacent cell, while the
wolf may move forward or backward to a diagonally adja-
cent cell. The goal of the sheep is to surround the wolf so
that it cannot move any more; the goal of the wolf is to either
block the sheep or to get behind them.

102

without trap depth
Game traps 0 1 2 3 4 5 6 7

Breakthrough (8x8) 662 (119) 0 83 0 114 0 141 ? ?
Chinese Checkers 904 (101) 3 5 6 7 4 17 7 47

Chomp (10x10) 14 (14) 4 0 687 0 32 0 263 0
Clobber (4x5) 121 (121) 515 0 23 0 64 0 277 0

Connect Four (7x6) 625 (85) 0 263 0 50 0 28 0 34
Nim (11,12,15,25) 469 (32) 0 40 0 102 0 44 0 345
Nim (12,12,20,20) 435 (41) 0 50 0 98 0 32 0 385

Sheep & Wolf (8x8) 882 (193) 0 11 0 11 0 22 0 74

Table 1: Trap search results for 1000 randomly sampled
states, searching for traps of depth up to 7 (exception:
Breakthrough only up to 5). The numbers are the depths
of the deepest traps found in each state. Additionally, we
give the number of states without traps, and for how many of
those we can prove that they already are lost anyway (given
in parantheses).

Traps in the Benchmark Games
We implemented an algorithm that evaluates games for get-
ting an idea of the density of traps in those games. To do so,
we first randomly choose the depth in which to find a state,
and then perform a fully random game until this depth. The
reached state will be the root of a Minimax tree, which we
use to decide whether or not the state is at risk. If we can
prove that the state is already lost anyway, there cannot be
any trap. Otherwise, if we find some successor state that is
provably lost, the root node is at risk, and the lost successor
states correspond to traps. The depth of a trap is then the
depth of the Minimax tree needed for proving it a lost state.

Table 1 displays the results of performing this approach
for 1000 different sampled states and searching for traps of
a depth of at most 7. For some games generating the full
Minimax subtrees is not feasible. This is true for Gomoku
and larger versions of Clobber. For Breakthrough this holds
as well, but the algorithm finished when searching only for
traps of depth 5 or less. In some games a state is at risk
by several traps of different depths; the table gives only the
depth of the deepest trap the algorithm identified.

Even though the algorithm did not work out for Gomoku,
we assume it to contain a large number of shallow traps of
at least depth 3. Whenever a player achieves a situation with
a line of three pieces in the own color and the two cells on
both sides of that line are empty, the opponent is in a state at
risk. If the next move is not next to the line of three, a trap is
reached as the player may then place a fourth piece adjacent
to the existing line so that the adjacent cell on both sides is
empty, which is an obvious win. Due to the large branching
factor (the default board size is 15 × 15) and the possibility
to continue playing for a long time without actually playing
one of the finishing moves these traps are hard to detect by
UCT, even though they are rather shallow.

In Connect Four the number of shallow traps is likely
much smaller than in Gomoku. While it is enough to have
a line of two pieces to create a state at risk it is further re-
quired that the two cells to each side of such a line must be
immediately playable. As such, the surrounding board must
be sufficiently filled with pieces. Additionally, a vertical line

can not be seen to create a serious threat, as only one side
of such a line remains open and due to the small branching
factor UCT should have no trouble identifying it.

Situations of zugzwang, for which Connect Four is
known, might also be considered as traps. However, these
traps are not shallow as they typically result in filling sev-
eral columns until the actual move to end the game can be
played.

From the results in Table 1 we can see that most traps
are of depth 1, which means that there is a line of 3 pieces
of the opponent which it can finish in its next move – this
can hardly be considered a serious trap, as it will be easily
identified by UCT.

In Breakthrough we expected to be confronted with a
large number of shallow traps. In a situation where an op-
ponent’s pawn is three cells from the current player’s side
and it is the last chance to take that pawn clearly is a state
at risk. While Alpha-Beta will have no trouble identifying
this as the game will be lost in five more steps, UCT again
has to cope with a rather large branching factor and the fact
that the game can continue for a long time if the simulations
do not move the pawn that threatens to end the game. How-
ever, from the gathered results it seems that traps of depth
5 or less are not as common as we expected, at least in the
8×8 version of the game; only a third of all evaluated states
contained such a trap.

For Knightthrough we expect that it contains a rather
high density of shallow traps. Here a knight may be six cells
from the opponent’s side in order to need only three more
own moves to reach it, so that states at risk can occur much
earlier in the game.

The branching factor of Knightthrough is a bit higher than
that of Breakthrough, but the length of the game typically is
shorter, as the pieces can move up to two cells closer to the
opponent’s side. As such, the difficulty to identify traps for
UCT might be similar to that in Breakthrough played on a
board of the same size.

The game Nim is easily solved by mathematical methods
(Bouton 1901). A winning strategy consists of reacting di-
rectly to the opponent’s moves. The idea is to encode the
stacks as binary numbers and then calculate the bitwise ex-
clusive or of these numbers. If the result is different from
0. . . 0 in the initial state the game is won for the starting
player. In fact, the winning player can always counter an
opponent’s move in such a way that the result will be 0. . . 0.
This means that each state is at risk for the supposedly win-
ning player, as a wrong move immediately means that the
opponent can follow the same strategy and then ensure a
win. However, this results in arbitrarily long games, so that
we cannot expect to find many shallow traps easily identified
by Alpha-Beta search.

From the results we can see that slightly more than half of
the explored states contain traps of a depth of 7 or less. The
somewhat surprisingly large number of shallow traps may
be explained by the fact that in the tested cases we have only
four stacks with relatively few matches, so that the endgame
can be reached after only few steps in case of random play.

In Chomp every state is at risk: The player to move may
choose to take the poisoned piece and thus immediately lose

103

the game, which corresponds to a trap of depth 0. Alter-
natively a player may decide to take the piece horizontally
or vertically adjacent to the poisoned one. In such a situa-
tion the opponent can then take all remaining non-poisoned
pieces. This corresponds to a trap of depth 2. However, both
situations can hardly be considered as serious threats: In the
second case, the branching factor and the maximal depth are
rather small. From the evaluation results we see that these
are the most common traps and they are the deepest ones for
nearly 70% of the evaluated states.

For Clobber it is hard to find a general criterion for the
presence of traps, so we used only our evaluation of sampled
states. In our implementation of this game, a player can al-
ways give up and thus lose the game. This explains why we
have so many traps of depth 0, which we can disregard as
no player should fall for them. Traps of depth 2 are uncom-
mon, starting with depth 4 they become much more common
again (though in half the cases the states at risk that contain
such a trap also contain one of depth 6). Finally, a quarter of
all evaluated states contains a trap of depth 6. This high den-
sity of shallow traps might be due to the fact that the game
is rather short (it typically ends after slightly more than ten
moves); for larger boards (e.g., 5 × 6) we expect the situa-
tion to change and the number of shallow traps to decrease
significantly in the early game (the first 8–10 moves).

s

s

s

s

w

a b c d e f g h

1

2

3

4

5

Figure 2: Relevant part of a state at risk in Sheep and Wolf.

For Sheep and Wolf consider the situation depicted in
Figure 2. The sheep are to move next and the state is at risk.
If the sheep on b2 is moved to a3 the wolf cannot be stopped
from reaching cell c3. From there only one sheep is left that
might stop it from going to b2 or d2, so that the wolf will
win. If instead the sheep on c1 would have been moved to
d2, the sheep could still win the game. Similar situations
also exist with the wolf being closer to the sheep. However,
our evaluation of sample states shows that such shallow traps
are rather rare throughout the game. In total we found only
118 states at risk, and 74 of those had traps of depth 7.

Chinese Checkers requires to have all own pieces on the
other side of the board in order to win. This means that
for a trap of depth 7 or less all pieces must be placed in
such a way that at most four own moves and/or jumps are
required to reach the goal area. Thus, for most parts we are
not confronted with any shallow traps.

Results for the Alpha-Beta Based Player
Here we provide results for running our Alpha-Beta players
against the UCT player. All experiments were conducted
on machines equipped with two Intel Xeon E5-2660 CPUs
with 2.20 GHz and 64 GB RAM. Both processes were run
on the same machine using one core each. We allowed a

Game α
β
(0

)
vs

.U
C

T

U
C

T
vs

.
α
β
(0

)

α
β
(h

1
)

vs
.U

C
T

U
C

T
vs

.
α
β
(h

1
)

α
β
(h

1
+

2
)

vs
.U

C
T

U
C

T
vs

.
α
β
(h

1
+

2
)

Q
α
β
(h

1
)

vs
.U

C
T

U
C

T
vs

.
Q
α
β
(h

1
)

Breakthrough (6x6) -0.22 -0.10 0.92 -1.00 0.80 -0.80 0.72 -0.90
Breakthrough (8x8) 0.30 -0.24 0.92 -1.00 0.94 -0.96 0.94 -0.94

Chinese Checkers 0.00 0.00 0.08 -0.18 0.03 0.00 0.32 -0.05
Chomp (10x10) -1.00 0.64 -1.00 0.70 -1.00 0.50 -1.00 0.62

Clobber (4x5) 0.64 0.88 0.92 0.88 0.94 0.88 1.00 0.74
Clobber (5x6) -0.92 0.94 -0.88 0.86 -0.88 0.94 -0.86 0.90

Connect Four (7x6) -1.00 1.00 -0.86 0.75 -1.00 0.48 -0.91 0.70
Gomoku (8x8) -0.98 0.98 0.44 0.33 0.69 0.21 0.50 0.49

Gomoku (15x15) 0.46 -0.24 1.00 -1.00 1.00 -0.98 1.00 -1.00
Knightthrough (8x8) 0.82 -0.82 0.72 -0.74 0.76 -0.82 0.70 -0.56

Nim (11,12,15,25) 0.70 -0.68 0.00 0.00 -0.04 0.06 -0.18 -0.12
Nim (12,12,20,20) 0.76 -0.78 0.04 -0.14 0.24 0.00 0.24 -0.34

Sheep & Wolf (8x8) 0.18 -1.00 0.04 -0.98 0.32 -1.00 0.12 -0.98

Table 2: Average rewards for the tested games using Alpha-
Beta (six left columns) and Alpha-Beta with quiescence
search (last two columns).

fixed amount of 10s for each move and performed a total of
200 runs for each game: 100 runs with UCT playing as Min
player, and 100 runs with UCT as Max player.

Table 2 shows the average rewards achieved when run-
ning Alpha-Beta with heuristic h1 (denoted αβ(h1)) and
h1+2 (denoted αβ(h1+2)), as well as quiescence search with
heuristic h1 (denoted Qαβ(h1)). As the results of quies-
cence search with heuristic h1+2 are very similar we omit
those. Additionally, we used a blind heuristic (denoted
αβ(0)), assigning each non-terminal state a value of 0, in
order to show that our heuristics actually provide additional
information over the basic trap detection inherent in Alpha-
Beta search.

From these results we can make some observations. First
of all, for the two evaluation functions and the two Alpha-
Beta versions, the differences are surprisingly small. For the
heuristics this might be explained by the fact that h1 is a part
of h1+2. For quiescence search a possible explanation might
be that the benefit of increased depth in some parts results in
shallower depth in others due to the fixed time-out, so that
overall both searches perform similar.

Second, the additional information of the new evalua-
tion function provides a significant advantage in the games
Breakthrough and Gomoku. While the players using the
evaluation functions consistently win especially on larger
boards, the player with the blind heuristic performs much
worse. Obviously our heuristics are good enough for these
games to prevent creating situations from which the player
cannot recover, i.e., falling into traps deeper than the depth
of the Alpha-Beta search tree. For the smaller version of
Clobber and for Connect Four the advantage of using our
evaluation functions is not as big but still noticeable. How-
ever, in the game of Nim the blind heuristic performs much
better – here the evaluation functions are clearly misleading.

For Gomoku we note that while Alpha-Beta using the
evaluation functions and UCT achieve similar results on the
small 8×8 sized board, on the traditional 15×15 board UCT
fails completely. Here we see that a likely higher number of

104

shallow traps together with a large branching factor and the
possibility of long playouts results in an immense decrease
in performance of UCT. An inverse observation can be made
for Clobber: while Alpha-Beta fares reasonably well on a
board of size 4 × 5, the density of shallow traps is likely
smaller on the larger board of size 5 × 6, resulting in an
advantage for UCT.

Considering Connect Four, we note that even though the
game is closely related to Gomoku, Alpha-Beta fares much
worse. As pointed out before, in Connect Four the num-
ber of shallow traps is rather small, so that the chances of
UCT falling for one are decreased. Concerning Chomp,
even though every state is a state at risk, we can ignore traps
of depth 0 and 2. Other than these, the trap density is rather
small. In the end, this results in bad performance of the
Alpha-Beta players compared to the UCT player.

Not all games with few shallow traps are bad for our
Alpha-Beta players with the evaluation function: In Chinese
Checkers and Nim they are still on-par with UCT. Finally,
Sheep and Wolf gives a rather surprising result. The num-
ber of shallow traps is not overly high, the branching factor
is comparatively small and the length of the game is clearly
limited by the size of the board (at worst, all sheep must
be moved to the other side). It is quite easy to come up
with a strategy where the Min player (the sheep) wins the
game. Obviously, our UCT player cannot identify such a
strategy while the Alpha-Beta player can, so that the UCT
player wins less than half the games when playing as Min,
while Alpha-Beta consistently wins.

Related Work on Evaluation Functions for
GGP

While most state-of-the art players nowadays make use of
UCT, there has been some research in the use of evaluation
functions for GGP.

When the current form of GGP was introduced in 2005,
the first successful players made use of Alpha-Beta with au-
tomatically generated evaluation functions. The basic idea
was to identify features of the game at hand (e.g., game
boards, cells, movable pieces). By taking order relations
into account, it is possible to evaluate distances of pieces to
their goal locations (where the order relations describe the
connection of the cells of a game board) or the difference in
number of pieces of the players (where the order relations
describe the increase/decrease of pieces, e.g., when one is
captured) (see, e.g., (Kuhlmann, Dresner, and Stone 2006;
Clune 2007)).

Another way to evaluate states was used by Fluxplayer
(Schiffel and Thielscher 2007): This uses fuzzy logic to
evaluate how well the goal conditions are already satisfied.
In a setting with a simple conjunction of facts, as we as-
sume in this paper, this pretty much corresponds to a goal-
counting heuristic. Additionally they also took identified
features and order relations into account to improve this
evaluation function. They do so by using different weights,
e.g., taking a fact’s distance to its goal value into account
instead of only a satisfied/unsatisfied status.

A more recent approach (Michulke and Schiffel 2012)

considers a so-called fluent graph, which captures some con-
ditions for a fact to become true, but for each action consid-
ers only one of the preconditions as necessary for achiev-
ing one of its effects. Based on this graph an estimate on
the number of moves needed for achieving a fact is cal-
culated, which is again used for weighing the fuzzy logic
formulas, similar to the previous approach in Fluxplayer.
A similar graph, the so called justification graph, has been
used in planning for calculating the efficient LM-Cut heuris-
tic (Helmert and Domshlak 2009), though there the graph is
used to calculate disjunctive action landmarks.

While in principle it should be possible to use our pro-
posed heuristics (or other planning based distance estimates)
in a similar way, it is not clear how useful this might be. The
fuzzy logic based approach of Fluxplayer makes sense when
applied in the original GDL setting, which allows for arbi-
trary Boolean formulas with conjunctions and disjunctions,
at least when rolling out axioms. In our setting, however, we
allow only conjunctions of variables in the goal descriptions.
One way to emulate the Fluxplayer approach in our setting
would be to calculate the required distance for each of the
goal variables, and then combine those results to calculate
an actual value of the evaluation function. If this improves
the results is not immediately clear and remains as future
work.

Conclusion
In this paper we have proposed new evaluation functions for
general two-player zero-sum games inspired by successful
heuristics used in automated planning, which are based on
ignoring delete lists. By taking the difference in plan lengths
for reaching won/lost states and the factor of still relevant ac-
tions into account, we ended up with a heuristic with which
an Alpha-Beta based player is able to consistently defeat a
basic UCT player on games with a large amount of traps.
It also copes rather well in some of the games having only
few shallow traps, where UCT typically is expected to work
well.

In addition to these new evaluation functions we also pro-
vided some insight into the presence of traps in a set of GGP
benchmarks. The observation here is that basically all those
games contain some shallow traps, though for several games
the density is rather small, which is a factor explaining the
success of UCT players in the GGP setting.

In the future we will adapt further heuristics to two-player
games. One approach that comes to mind is the use of
abstractions. For some extensive games such an approach
has yielded pathological behavior (Waugh et al. 2009), i.e.,
worse play when refining an abstraction, and it will be inter-
esting to see if such behavior can also occur in our setting.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2–3):235–256.
Björnsson, Y., and Finnsson, H. 2009. Cadiaplayer: A
simulation-based general game player. IEEE Transactions
on Computational Intelligence and AI in Games 1(1):4–15.

105

Bouton, C. L. 1901. Nim, a game with a complete mathe-
matical theory. Annals of Mathematics 3(2):35–39.
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Rin-
tanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E., eds., Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS’08), 28–35. AAAI Press.
Campbell, M.; Hoane, Jr., A. J.; and Hsu, F.-H. 2002. Deep
Blue. Artificial Intelligence 134(1–2):57–83.
Clune, J. 2007. Heuristic evaluation functions for general
game playing. In Howe, A., and Holte, R. C., eds., Proceed-
ings of the 22nd National Conference of the American As-
sociation for Artificial Intelligence (AAAI-07), 1134–1139.
Vancouver, BC, Canada: AAAI Press.
Gelly, S., and Silver, D. 2008. Achieving master level play
in 9 x 9 computer go. In Fox, D., and Gomes, C., eds.,
Proceedings of the 23rd National Conference of the Ameri-
can Association for Artificial Intelligence (AAAI-08), 1537–
1540. Chicago, Illinois, USA: AAAI Press.
Genesereth, M. R.; Love, N.; and Pell, B. 2005. General
game playing: Overview of the AAAI competition. AI Mag-
azine 26(2):62–72.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
Monte-Carlo planning. In Fürnkranz, J.; Scheffer, T.;
and Spiliopoulou, M., eds., Proceedings of the 17th Euro-
pean Conference on Machine Learning (ECML 2006), vol-
ume 4212 of Lecture Notes in Computer Science, 282–293.
Springer-Verlag.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Kuhlmann, G.; Dresner, K.; and Stone, P. 2006. Automatic
heuristic construction in a complete general game player. In
Gil, Y., and Mooney, R. J., eds., Proceedings of the 21st Na-
tional Conference of the American Association for Artificial
Intelligence (AAAI-06), 1457–1462. Boston, Massachusetts,
USA: AAAI Press.
Love, N. C.; Hinrichs, T. L.; and Genesereth, M. R. 2008.
General game playing: Game description language spec-
ification. Technical Report LG-2006-01, Stanford Logic
Group.
Méhat, J., and Cazenave, T. 2011. A parallel general game
player. KI 25(1):43–47.
Michulke, D., and Schiffel, S. 2012. Distance features
for general game playing agents. In Filipe, J., and Fred,
A. L. N., eds., Proceedings of the 4th International Con-

ference on Agents and Artificial Intelligence (ICAART’12),
127–136. Vilamoura, Algarve, Portugal: SciTePress.
Newell, A., and Simon, H. 1963. GPS, a program that sim-
ulates human thought. In Feigenbaum, E., and Feldman, J.,
eds., Computers and Thought. McGraw-Hill. 279–293.
Ramanujan, R.; Sabharwal, A.; and Selman, B. 2010. On
adversarial search spaces and sampling-based planning. In
Brafman, R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A.,
eds., Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS’10), 242–245.
AAAI Press.
Ramanujan, R.; Sabharwal, A.; and Selman, B. 2011. On
the behavior of UCT in synthetic search spaces. In Proceed-
ings of the ICAPS Workshop on Monte-Carlo Tree Search:
Theory and Applications (MCTS’11).
Schaeffer, J.; Culberson, J.; Treloar, N.; Knight, B.; Lu, P.;
and Szafron, D. 1992. A world championship caliber check-
ers program. Artificial Intelligence 53(2–3):273–289.
Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. In Howe, A., and Holte, R. C.,
eds., Proceedings of the 22nd National Conference of the
American Association for Artificial Intelligence (AAAI-07),
1191–1196. Vancouver, BC, Canada: AAAI Press.
Waugh, K.; Schnizlein, D.; Bowling, M. H.; and Szafron,
D. 2009. Abstraction pathologies in extensive games. In
Sierra, C.; Castelfranchi, C.; Decker, K. S.; and Sichman,
J. S., eds., Proceedings of the 8th International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS’09), 781–788. Budapest, Hungary: IFAAMAS.
Winands, M. H. M., and Björnsson, Y. 2011. αβ-based
play-outs in monte-carlo tree search. In Cho, S.-B.; Lucas,
S. M.; and Hingston, P., eds., Proceedings of the 2011 IEEE
Conference on Computational Intelligence and Games (CIG
2011), 110–117. Seoul, South Korea: IEEE.

106

Generalized Label Reduction for Merge-and-Shrink Heuristics

Silvan Sievers and Martin Wehrle and Malte Helmert
Universität Basel

Basel, Switzerland
{silvan.sievers,martin.wehrle,malte.helmert}@unibas.ch

Abstract

Label reduction is a technique for simplifying families of
labeled transition systems by dropping distinctions between
certain transition labels. While label reduction is critical to
the efficient computation of merge-and-shrink heuristics, cur-
rent theory only permits reducing labels in a limited num-
ber of cases. We generalize this theory so that labels can
be reduced in every intermediate abstraction of a merge-and-
shrink tree. This is particularly important for efficiently com-
puting merge-and-shrink abstractions based on non-linear
merge strategies. As a case study, we implement a non-
linear merge strategy based on the original work on merge-
and-shrink heuristics in model checking by Dräger et al.

Introduction
State-space search is a fundamental problem in artificial in-
telligence. Many state spaces of interest, including those
that arise in classical planning and in the verification of
safety properties in model checking, can be compactly
specified as a family of labeled transition systems (e. g.,
Helmert, Haslum, and Hoffmann 2008; Dräger, Finkbeiner,
and Podelski 2009).

Label reduction identifies and eliminates semantically
equivalent labels in such transition systems. It was originally
introduced as an efficiency improvement for merge-and-
shrink abstractions (Helmert, Haslum, and Hoffmann 2007).
Later, Nissim, Hoffmann, and Helmert (2011a) showed that
label reduction can (in some cases) exponentially reduce the
representation size of abstractions based on bisimulation.

All implementations of merge-and-shrink abstractions de-
scribed in the planning literature apply label reduction
whenever possible: it has no negative impact on abstrac-
tion quality, is very fast to compute, and significantly re-
duces time and memory required to compute an abstraction.
However, the current theory of merge-and-shrink abstrac-
tions only allows reducing labels in limited cases.

Broadly speaking, the merge-and-shrink approach con-
sists in constructing a set of atomic transition systems, each
corresponding to a single state variable of the problem, and
then iteratively merging two transition systems into a larger

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
This work has been published at AAAI 2014.

L

L

L

L

L

L

L

v8

v7

v6

v5

v4

v3

v2v1

L

L

L

v1 v2 v3 v4 v5 v6 v7 v8

Figure 1: Two merge trees for a problem with 8 state vari-
ables. Previous theory allows reducing labels in the interme-
diate abstractions marked with an “L” when v1 is the pivot.

one until only one transition system remains, which then in-
duces a heuristic for an overall state-space search algorithm.
Intermediate results can be shrunk to trade off computation
effort against heuristic accuracy. A so-called merge strategy
decides which transition systems to merge in each step of
the algorithm. The merge strategy defines a binary tree over
the atomic transition systems, the so-called merge tree.

Figure 1 shows two possible merge trees for a state space
with 8 atomic transition systems, defined by state variables
v1, . . . , v8. The left part of the figure shows a merge tree
which degenerates to a list; such merge trees correspond
to so-called linear merge strategies (Helmert, Haslum, and
Hoffmann 2007). The right part shows a complete merge
tree, corresponding to a non-linear merge strategy. Ac-
cording to current theory (Nissim, Hoffmann, and Helmert
2011a), when defining a merge strategy, one must select a
single leaf of the merge tree, called a pivot, and may only
reduce labels after merge operations which correspond to
ancestors of the pivot in the merge tree. In general, this
means that with a complete tree over n atomic transition
systems, onlyO(log n) of the merged transition systems can
have their labels reduced.

We introduce a generalized concept of label reduction to
overcome this limitation. The generalization is introduced
in a declarative way, independently of the merge-and-shrink
framework. It is conceptually much easier to understand
than the previous theory, yet more powerful in the sense that
it allows reducing to a smaller set of labels than previous

107

techniques and in the sense that it can be applied safely to
every intermediate abstraction of a merge tree.

Generalized label reduction is particularly beneficial for
the efficient computation of merge-and-shrink abstractions
with non-linear merge strategies. As a case study, we have
implemented such a merge strategy, based on the origi-
nal work on merge-and-shrink heuristics in model checking
by Dräger, Finkbeiner, and Podelski (2006), which did not
make use of label reduction. We show experimental results
that highlight the usefulness of generalized label reduction
in general and non-linear merge strategies in particular.

Planning Tasks
We present our techniques with the terminology of auto-
mated planning, but note that they are applicable to fac-
tored transition systems in general. We consider planning
tasks in the SAS+ formalism (Bäckström and Nebel 1995)
augmented with action costs. A planning task is a 4-tuple
Π = 〈V,O, s0, s?〉, where V is a finite set of state variables,
O is a finite set of operators, s0 is the initial state and s? is
the goal.

Each variable v ∈ V has a finite domain D(v). A partial
state s is a variable assignment on a subset of V , denoted by
vars(s). We write s[v] for the value assigned to v ∈ vars(s),
which must satisfy s[v] ∈ D(v). We say that s complies with
partial state s′ if s[v] = s′[v] for all v ∈ vars(s) ∩ vars(s′).
A partial state s is a state if vars(s) = V .

Each operator o ∈ O has a precondition pre(o) and effect
eff (o), which are partial states, and a cost c(o) ∈ R+

0 . An
operator o is applicable in a state s if s complies with pre(o),
in which case o can be applied, resulting in the successor
state s′ that complies with eff (o) and satisfies s′[v] = s[v]
for all v /∈ vars(eff (o)).

The initial state s0 is a state; the goal s? is a partial state.
A plan is a sequence o1, . . . , on ∈ O of operators which

are applicable, in order, to the initial state, resulting in a
state that complies with the goal. Such a plan is optimal
if
∑n
i=1 c(oi) is minimal among all plans. The objective of

optimal planning is to find an optimal plan for a planning
task or to prove that no plan exists.

Transition Systems and Merge-and-Shrink
We briefly recap the key ideas behind merge-and-shrink ab-
stractions (e. g., Helmert, Haslum, and Hoffmann 2007).
The central notion in this context is the explicit manipula-
tion of transition systems. We define a transition system as a
4-tuple Θ = 〈S,L, T, S?〉 where S is a finite set of states, L
is a finite set of labels, T ⊆ S × L × S is a set of (labeled)
transitions, and S? ⊆ S is the set of goal states. Each label
l ∈ L has a cost c(l) ∈ R+

0 . Where it simplifies notation, we
write s l−→ s′ to denote a transition 〈s, l, s′〉 from s to s′ with
label l, and we may write s l−→ s′ ∈ Θ for s l−→ s′ ∈ T .

A planning task naturally induces a transition system,
which is usually too large to be represented explicitly. In-
stead, the merge-and-shrink approach works with a set X
of smaller transition systems, which it iteratively transforms
until only one transition system remains. This final transi-
tion system is then used to define a heuristic for solving the

planning task.
The process starts by setting X to the set of atomic tran-

sition systems, which capture the behaviour of a single state
variable. Then X is transformed by repeatedly applying one
of the following two operations:

• Merge: Remove two transition systems Θ = 〈S,L, T, S?〉
and Θ′ = 〈S′, L, T ′, S′?〉 from X and replace them with
their synchronized product Θ⊗Θ′ = 〈S×S′, L, T⊗, S?×
S′?〉, where a synchronized transition 〈s, s′〉 l−→ 〈t, t′〉 ∈
T⊗ exists iff s l−→ t ∈ T and s′ l−→ t′ ∈ T ′.

• Shrink: Remove a transition system Θ = 〈S,L, T, S?〉
from X and replace it with the abstract transition sys-
tem α(Θ) := 〈α(S), L, {〈α(s), l, α(t)〉 | 〈s, l, t〉 ∈
T}, α(S?)〉, where α is an arbitrary function on S.

We remark that it is critical for merge operations (and
hence for the correctness of the overall approach) that all
transition systems work on a common set of labels. In the
“basic” merge-and-shrink approach described in the paper
by Helmert et al. (2007), this is always the set of operators of
the underlying planning task. This changes when we make
use of label reduction, described in the following section.

Before we move to label reduction, it is useful to intro-
duce one more concept: the global transition system rep-
resented by X is the synchronized product (merge) of all
elements in X , which we denote by

⊗
X . (The product

operator is associative and commutative modulo names of
states, which we do not care about, so this is well-defined
without having to specify an order on the individual merges.)
At every stage of the merge-and-shrink algorithm, the cur-
rent set X can be seen as a compact representation of

⊗
X .

In planning, initially
⊗
X equals the global transition sys-

tem of the planning task (shown by Helmert et al., 2007).
Merge steps do not change the represented global system,
and shrink steps apply an abstraction to it.

Label Reduction: State of the Art
Label reduction adds a third class of transformations to
the merge-and-shrink approach. It was first implemented,
but not described, in the original application of merge-and-
shrink abstractions to planning (Helmert, Haslum, and Hoff-
mann 2007). Nissim et al. (2011a) gave the first description;
Helmert et al. (2014) discuss it more thoroughly. The key
idea is to identify transition labels that can be combined into
a single label without losing relevant information. Among
other benefits, this can significantly reduce the representa-
tion size of the transition system because parallel transitions
with different labels can collapse into a single transition.

The existing theory of label reduction is very complicated.
We do not describe it in detail here: this would require much
space, and a full description is not necessary for this paper.
Details can be found in Section 5 of Nissim et al. (2011a)
and Section 5 of Helmert et al. (2014). Here, it suffices to
discuss three weaknesses of the current theory.

Firstly, the current theory largely attempts to define label
reduction as a local concept considering individual transi-
tion systems: the central notion is that of a label-reduced
transition system. This is fundamentally at odds with the

108

purpose of labels in the merge-and-shrink framework to co-
ordinate the joint behaviour of all transition systems in the
set X . If we change the labels in some, but not all transition
systems in X , synchronization cannot work correctly.

The earlier papers address this difficulty by performing
a kind of “just-in-time label reduction” that makes the la-
bels of two transition systems correspond just before they
are merged (which is the only point at which labels mat-
ter). This works, but the resulting theory is complex to un-
derstand and reason about, as different parts of the merge
tree work with different labels. Consequently, current the-
ory only permits reducing labels in certain cases, with other
cases deemed to be unsafe and hence forbidden. Complica-
tions mainly arise in the case of non-linear merge strategies,
and consequently, these were never correctly implemented.

Secondly, the current theory of label reduction is in a
certain sense syntax-based while the rest of the merge-and-
shrink framework is semantic. Merge operations and shrink
operations are purely semantic: once a planning task (or
other problem) is translated into atomic transition systems,
the task description is not needed any more. Labels are
opaque tokens that do not need to “stand for” anything. This
greatly simplifies the theory of merge-and-shrink abstrac-
tions and makes them very flexible: they work for everything
representable as transition systems.

Unfortunately, the current theory of label reduction needs
to “look inside” the labels in order to decide which labels
can be combined into one. For planning tasks, label reduc-
tion must treat labels as structured pairs of preconditions and
effects, reintroducing and critically depending on the syntac-
tic descriptions we would prefer not to have to reason about.

Thirdly, current theory cannot exploit label reductions
that are enabled by shrinking. The decision how to reduce
labels is completely independent of the shrink steps of the al-
gorithm and hence needs to be correct for all possible shrink
strategies. This severely limits simplification possibilities.

All these issues are addressed in the new theory of label
reduction developed in the following section.

Label Reduction: New Theory
In this section, we introduce the new theory of label reduc-
tion and discuss its properties. Like the merge and shrink
operations described earlier, we define label reduction as a
transformation of the set X of transition systems:

• Reduce labels: Let τ be a label mapping, i. e., a function
defined on the labels L of X , which satisfies c(τ(l)) ≤
c(l) for all l ∈ L. Replace each transition system
Θ = 〈S,L, T, S?〉 ∈ X with the label-reduced system
τ(Θ) := 〈S, τ(L), {〈s, τ(l), t〉 | 〈s, l, t〉 ∈ T}, S?〉.
In words, label reduction means replacing all occurrences

of each label l in all transition systems by the new label τ(l).
(Of course, τ(l) = l is permitted.) When we choose to in-
troduce a new label (i. e., τ(l) /∈ L), its cost can be set ar-
bitrarily as long as it does not exceed c(l). The operation is
called label reduction because it is generally used to reduce
the number of labels by choosing a non-injective function τ .
(Using an injective function τ is possible, but pointless.)

It is worth emphasizing that, unlike previous definitions,
label reduction always affects all transition systems simul-
taneously. As we will see in the following, this is sufficient
to guarantee that label reduction is always “safe” to be ap-
plied. Unlike the previous theory, there is no need for pivot
variables or to restrict label reduction to certain stages of
the merge-and-shrink computation. Also, labels in the new
theory always remain completely opaque objects (without
associated “preconditions” and “effects”).

However, there is a complication: the previous theory of
label reduction reasoned about preconditions and effects to
decide which labels can be combined to obtain exact label
reductions, i. e., ones that do not introduce spurious transi-
tions in

⊗
X . With opaque labels, the question of exact la-

bel reduction must be addressed on the semantic level. For-
tunately, we will see later that this is quite easy to do and
more powerful than the previous syntax-based methods.

Properties of Label Reduction
To be able to use merge-and-shrink abstractions for admissi-
ble heuristics, we must guarantee that whenever a path from
a given state s to some goal state exists in the actual prob-
lem, a corresponding path of at most the same cost exists in
the final transition system computed.

Consider a transformation of a set of transition systemsX
with labels L into a new set X ′ with labels L′ (e. g., merg-
ing, shrinking or reducing labels). We call such a trans-
formation transition-safe if all transitions in

⊗
X have a

corresponding transition in
⊗
X ′ (possibly with a different

label) and goal states are preserved. Formally, the trans-
formation is transition-safe if there exist functions α and τ
mapping the states and labels of

⊗
X to the states and la-

bels of
⊗
X ′ such that τ(L) = L′, s l−→ t ∈ ⊗

X implies
α(s) τ(l)−−→ α(t) ∈ ⊗

X ′ for all s, l, t, and α(s?) is a goal
state of

⊗
X ′ for all goal states s? of

⊗
X .

We call a transformation transition-exact if addition-
ally it does not give rise to any “new” transitions or goal
states. Formally, the transformation is transition-exact if it
is transition-safe, s′ l′−→ t′ ∈ ⊗

X ′ implies s l−→ t ∈ ⊗
X

for all s ∈ α−1(s′) and t ∈ α−1(t′) and some l ∈ τ−1(l′),
and for all goal states s′? of

⊗
X ′ all states in the preimage

α−1(s′?) are goal states of
⊗
X .

We call a transformation cost-safe if it cannot increase
label costs and cost-exact if additionally it cannot decrease
label costs. Formally, a transition-safe transformation must
satisfy c(τ(l)) ≤ c(l) for all l ∈ L, and a cost-exact one
must satisfy c(τ(l)) = c(l) for all l ∈ L.

Finally, a transformation is safe if it is transition-safe and
cost-safe and exact if it is transition-exact and cost-exact.

It is easy to verify that if each step in a sequence of trans-
formations has one of these properties (e. g., is transition-
safe), then the overall transformation also has it. (To
prove this, compose the α and τ functions of each step.)
Safe transformations give rise to admissible and consistent
heuristics, and exact transformations give rise to perfect
heuristics. Hence, it is important to verify that all transfor-
mations used in a merge-and-shrink heuristic computation
are safe, and exact transformations are especially desirable.

109

Previous work on merge-and-shrink (e. g., Helmert et al.
2014) established that merging is always exact, shrinking is
always safe, and shrinking based on perfect bisimulation is
exact. We now establish that in the new theory, label reduc-
tion is always safe.

Consider a label reduction with mapping τ that transforms
X = {Θ1, . . . ,Θn} into X ′ = {τ(Θ1), . . . , τ(Θn)}. We
first show that this label reduction is transition-safe. Here
and in the following, we write states of

⊗
X and

⊗
X ′ as

tuples 〈s1, . . . , sn〉 where each si is a state of Θi. Consider
some transition 〈s1, . . . , sn〉 l−→ 〈t1, . . . , tn〉 ∈

⊗
X . By

the definition of products, we have si l−→ ti ∈ Θi for all
1 ≤ i ≤ n; by the definition of label reduction, we have
si

τ(l)−−→ ti ∈ τ(Θi) for all 1 ≤ i ≤ n; finally, again by defi-
nition of products we have 〈s1, . . . , sn〉 τ(l)−−→ 〈t1, . . . , tn〉 ∈⊗
X ′. With α set to the identity function, this proves that

label reduction is transition-safe. (Label reduction does not
change the set of goal states.) Due to the condition on τ in
the definition of label reduction, the transformation is also
cost-safe. In summary, label reduction is safe.

Exact Label Reduction
Previous papers that study label reduction in the merge-and-
shrink framework (Nissim, Hoffmann, and Helmert 2011a;
Helmert et al. 2014) focus on the question which conditions
are required to make label reduction exact. In particular, ex-
act label reduction is a critical ingredient in the polynomial-
time perfect heuristics obtained in some planning domains
(Nissim, Hoffmann, and Helmert 2011a).

Helmert et al. (2014) discuss conditions for exactness of
label reduction that are sufficient and in a certain sense nec-
essary, thus seemingly closing the topic of exact label re-
duction. However, these results do not directly apply to our
theory, as they rely on the limitations of the previous theory.
We revisit the topic here, proving a sufficient and necessary
condition for exact label reduction that generalizes the pre-
vious result.

It is obvious that a label reduction is cost-exact iff it
only combines labels of the same cost (i. e., τ(l) = τ(l′)
implies c(l) = c(l′)), and of course we must always set
c(τ(l)) := c(l) to be cost-exact. It remains to discuss un-
der which conditions label reduction is transition-exact. We
start by introducing some additional terminology.

Definition 1. LetX be a set of transition systems with labels
L. Let l, l′ ∈ L be labels, and let Θ ∈ X .

Label l is alive inX if all transition systems Θ′ ∈ X have
some transition s l−→ t ∈ Θ′. Otherwise, l is dead.

Label l locally subsumes label l′ in Θ if for all s l′−→ t ∈ Θ
we also have s l−→ t. Label l globally subsumes label l′ in X
if l locally subsumes l′ in all Θ′ ∈ X .

Labels l and l′ are locally equivalent in Θ if they label the
same transitions in Θ, i. e., if l and l′ locally subsume each
other in Θ.

Labels l and l′ are Θ-combinable in X if they are locally
equivalent in all transition systems Θ′ ∈ X \ {Θ}. (It does
not matter whether or not they are locally equivalent in Θ.)

It is easy to see that dead labels induce no transitions in⊗
X . Consequently, it is an exact transformation to remove

all dead labels (and their transitions) from X . Hence, it suf-
fices to consider the case where X has no dead labels.

Moreover, we can restrict attention to label reductions τ
that combine two labels l1 and l2 into some new label l12
(τ(l1) = τ(l2) = l12) while leaving all other labels un-
changed (τ(l′) = l′ for all l′ /∈ {l1, l2}). Other label reduc-
tions can be represented as chains of such “minimal” label
reductions. We are now ready to state our major result.
Theorem 1. Let X be a set of transition systems without
dead labels. Consider a label reduction on X which com-
bines labels l1 and l2 and leaves other labels unchanged.

This label reduction is exact iff c(l1) = c(l2) and

1. l1 globally subsumes l2, or
2. l2 globally subsumes l1, or
3. l1 and l2 are Θ-combinable for some Θ ∈ X .

Proof. Let τ be the described label mapping, let X =
{Θ1, . . . ,Θn} and let X ′ = {τ(Θ1), . . . , τ(Θn)} be the re-
sult of label reduction. Let l12 := τ(l1) = τ(l2).

Clearly, the label reduction is cost-exact iff c(l1) = c(l2).
We need to show that it is transition-exact iff 1., 2., or 3.
holds. We prove this in three parts:

(A) If neither 1. nor 2. nor 3. holds, then the label reduction
is not exact.

(B) If 1. or 2. holds, then the label reduction is exact.
(C) If 3. holds, then the label reduction is exact.

Label reduction is always transition-safe and leaves the set
of goal states unchanged, so we only need to consider the
second condition in the definition of transition-exactness.

On (A): We must show that no function α satisfies the cri-
terion of transition-exactness. It is sufficient to consider the
case where α is a bijection because

⊗
X and

⊗
X ′ have

the same number of states, so non-bijective α cannot pos-
sibly work. Renaming states does not affect the notion of
exactness, so we can further limit attention to α being the
identity function without loss of generality.

We say that a transition system Θ ∈ X has an l1-only
transition if there exists a transition s l1−→ t ∈ Θ with s l2−→
t /∈ Θ. Symmetrically, it has an l2-only transition if there
exists a transition s l2−→ t ∈ Θ with s l1−→ t /∈ Θ.

We try to find two transition systems Θi,Θj ∈ X with
i 6= j such that there is an l1-only transition si l1−→ ti ∈ Θi

and an l2-only transition sj l2−→ tj ∈ Θj . Then Θi⊗Θj does
not contain a transition 〈si, sj〉 l−→ 〈ti, tj〉 for either l = l1
or l = l2, but τ(Θi) ⊗ τ(Θj) does contain the transition
〈si, sj〉 l12−−→ 〈ti, tj〉. By induction over the remaining tran-
sition systems, it is then easy to show that

⊗
X ′ contains a

transition that does not correspond to a transition in
⊗
X ,

proving inexactness. (Here, we use that there are no dead
labels: the argument fails if l1 and l2 are dead.) It remains
to show that l1-only and l2-only transitions in different tran-
sition systems of X exist.

Because 1. does not hold, there exists an l2-only transition
in some transition system Θ ∈ X . Because 2. does not hold,
there exists an l1-only transition in some transition system
Θ′ ∈ X . If Θ and Θ′ are different transition systems, we
have found the required transitions and are done.

110

So let us assume that Θ = Θ′. Because 3. does not hold,
there exist at least two transition systems where l1 and l2
are not locally equivalent, so there is at least one transition
system Θ′′ 6= Θ where they are not locally equivalent. This
means that Θ′′ must have an l1-only transition or an l2-only
transition. In the former case, we select the l1-only transition
in Θ′′ and the l2-only transition in Θ. Otherwise, we select
the l2-only transition in Θ′′ and the l1-only transition in Θ′

(= Θ).
On (B): Consider Case 1., where l1 globally subsumes l2.

Case 2. is identical with l1 and l2 swapped. As the func-
tion α in the definition of transition-exactness, we choose
the identity mapping. Then the condition for transition-
exactness we need to verify simplifies to: for all s l′−→ t ∈⊗
X ′, there exists a label l ∈ τ−1(l′) with s l−→ t ∈⊗

X .
For l′ 6= l12, this is trivial because

⊗
X and

⊗
X ′ are ex-

actly identical regarding labels other than l1, l2 and l12. So
consider the case l′ = l12. Let s = 〈s1, . . . , sn〉 and let
t = 〈t1, . . . , tn〉. From s l12−−→ t ∈ ⊗

X ′ we get si l12−−→
ti ∈ τ(Θi) for all 1 ≤ i ≤ n, and hence si l1−→ ti ∈ Θi

or si l2−→ ti ∈ Θi for all 1 ≤ i ≤ n. Because l1 globally
subsumes l2, this implies si l1−→ ti ∈ Θi for all 1 ≤ i ≤ n,
and hence s l1−→ t ∈⊗

X , concluding this part of the proof.
On (C): As in (B), we set α to the identity function and

only need to consider transitions s l12−−→ t ∈⊗
X ′. Let s =

〈s1, . . . , sn〉 and let t = 〈t1, . . . , tn〉. Again, we obtain that
for all 1 ≤ i ≤ n, si l12−−→ ti and hence si l1−→ ti or si l2−→ ti.
Choose l ∈ {l1, l2} such that sj l−→ tj , where j ∈ {1, . . . , n}
is chosen in such a way that l1 and l2 are Θj-combinable in
X . (Such a transition system Θj exists because we are in
Case 3.) By the definition of Θ-combinable, l1 and l2 are
locally equivalent for all transition systems in X other than
Θj , and hence (si l1−→ ti or si l2−→ ti) implies (si l1−→ ti and
si

l2−→ ti) for all i 6= j. This shows that si l−→ ti ∈ Θi for all
1 ≤ i ≤ n, and hence s l−→ t ∈ ⊗

X , concluding the final
part of the proof.

We conclude the section with a brief discussion of the
conditions in Theorem 1. Although all conditions can be
checked in low-order polynomial time, there is a practical
difference in complexity. Finding Θ-combinable labels es-
sentially consists in computing the local equivalence rela-
tions of all Θ ∈ X , which is possible in linear time in the
representation size of X . In contrast, finding globally sub-
sumed labels involves finding subset relationships in a set
family, for which to the best of our knowledge no linear-
time algorithms are known.

A comparison to the results of Helmert et al. (2014) shows
that the Θ-combinability condition strictly generalizes the
previous conditions on exactness. Hence, the new theory
permits a larger number of exact label reductions even if
we only use Θ-combinability and do not consider global
subsumption of labels. For this reason, coupled with ef-
ficiency concerns, we only perform exact label reductions
based on Θ-combinability in our experiments, which we de-
scribe next.

Experiments
As discussed in the preceding sections, the new theory of la-
bel reduction is significantly more general and at the same
time much less complicated than previous work. However,
we have yet to establish that it is useful for practical imple-
mentations of merge-and-shrink heuristics.

Firstly, we need to show that label reduction is actually a
practically useful element of the merge-and-shrink toolbox.
Although previous papers on merge-and-shrink heuristics al-
ready mentioned significant performance improvements due
to label reduction, these are not a central focus of any pre-
vious experiment, and we think it is important to give solid
quantitative evidence in favour of label reduction.

Secondly, while the semantic (rather than syntax-based,
as in previous work) basis for exact label reduction has the
advantage of being much more flexible and easier to im-
plement than previous label reduction theory, it does carry
a nontrivial computational overhead. If this overhead were
so large that implementations based on the new theory per-
formed significantly worse than ones based on the older the-
ory, the usefulness of the new theory would be diminished.

Thirdly, a major drawback of previous label-reduction ap-
proaches are the limitations and difficulties in using them for
non-linear merge strategies. Consequently, we are not aware
of any implementations of non-linear merge strategies in the
planning literature. The new theory removes these weak-
nesses, so it is appropriate to test it with non-linear merging.

In this section, we report on experiments that address
these three aspects.

Experiment Description
Our experiments were conducted with the Fast Downward
planning system (Helmert 2006), which already features the
merge-and-shrink framework including the previous label
reduction approach. We evaluate on all benchmarks from
the International Planning Competitions for optimal plan-
ning (up to 2011) that only use language features supported
by the merge-and-shrink framework (44 domains and 1396
instances in total). The experiments were performed on In-
tel Xeon E5-2660 CPUs running at 2.2 GHz, using a time
bound of 30 minutes and a memory bound of 2 GB per run.

All planning algorithms we evaluate employ an A∗ search
with a merge-and-shrink heuristic, which we varied along
three dimensions: label reduction method, merge strategy
and shrink strategy.

Label Reduction Methods We consider the case without
label reduction (none), the old label reduction method based
on the syntactic descriptions of operators (Nissim, Hoff-
mann, and Helmert 2011a; Helmert et al. 2014) and the new
concept of label reduction described in this paper.

Our implementation of the new method only performs
exact label reduction, combining labels whenever the Θ-
combinability condition in Theorem 1 applies. Specifically,
the computation proceeds as follows: whenever label reduc-
tion makes sense (after each merge or shrink step), we com-
pute the local equivalence relations for labels in each transi-
tion system, then use these to test for Θ-combinable labels
in each transition system Θ. If such labels exist, they are

111

combined in all transition systems, and the local equivalence
relations are recomputed. The process repeats until no fur-
ther Θ-combinable labels exist for any transition system Θ.
Local equivalence relations are cached so that they are only
recomputed from scratch if the given transition system has
changed since the last computation.

Merge Strategies We consider two merge strategies.
Firstly, in order to represent the state of the art, we re-
port results for the (linear) reverse-level (RL) strategy used
in previous work (Nissim, Hoffmann, and Helmert 2011a;
2011b).

However, to more fully utilize the potential of the new la-
bel reduction approach, we also evaluate it on a non-linear
merge strategy, for which the previous label reduction ap-
proach is comparatively ill-suited and no implementations
were previously available. Therefore, as a case study, we
implemented the originally proposed non-linear strategy by
Dräger, Finkbeiner, and Podelski (2006) from model check-
ing, which we call the DFP merge strategy in the following.

Roughly speaking, the DFP merge strategy is based on the
idea of preferably merging transition systems which must
synchronize on labels that occur close to a goal state. We
refer to the original paper by Dräger et al. (2006) for details.
We remind the reader that the work of Dräger et al. preceded
the concept of label reduction, so the combination of non-
linear merge strategies with label reduction is novel.

Shrink Strategies We report results on shrink strategies
based on bisimulation (Nissim, Hoffmann, and Helmert
2011a; Helmert et al. 2014), which set the current state of
the art. Specifically, we consider a shrink strategy based
on greedy bisimulation with no limit on transition system
size (G-N∞) as well as shrink strategies based on (exact)
bisimulation with different size limits N for the interme-
diate transition system size (B-N10k, B-N50k, B-N100k, B-
N200k, B-N∞). For example, with N = 10000 (strategy B-
N10k), shrinking is performed to guarantee that no interme-
diate transition system has more than 10,000 abstract states,
while with N =∞ (strategy B-N∞) there is no size bound,
so that a perfect heuristic is constructed.

The threshold parameter (Helmert et al. 2014) was set to
N for the strategies with bounded transition system size and
to 1 for the unbounded ones (G-N∞ and B-N∞), following
Nissim, Hoffmann, and Helmert (2011a). This configura-
tion space includes the shrink strategies used in the merge-
and-shrink planner that participated in IPC 2011 (Nissim,
Hoffmann, and Helmert 2011b).

Experimental Results
Table 1 provides a result overview for coverage, i. e., the
number of instances solved by each planner configuration
within our resource bounds. The top half of the table
presents results for the linear merge strategy (RL), the bot-
tom half presents results for the non-linear DFP strategy.

Usefulness of Label Reduction Table 1 shows that plan-
ner configurations with label reduction dramatically outper-
form the corresponding ones without. (For readers less fa-
miliar with optimal planning, we point out that these tasks

merge/shrink strategy none old new
RL-G-N∞ 417 485 465
RL-B-N10k 590 624 617
RL-B-N50k 577 618 634
RL-B-N100k 560 599 639
RL-B-N200k 544 590 630
RL-B-N∞ 257 302 302
DFP-G-N∞ 415 — 465
DFP-B-N10k 597 — 622
DFP-B-N50k 565 — 644
DFP-B-N100k 551 — 632
DFP-B-N200k 522 — 625
DFP-B-N∞ 253 — 302

Table 1: Total coverage for several merge-and-shrink config-
urations, using no label reduction (none), the previous (old)
or the new label reduction. See the text for descriptions of
the merge and shrink strategies. Best results for each merge
strategy in bold.

RL-B-100K DFP-B-50K
none old new none new

mprime (35) 8 +6 +15 6 +17

miconic (150) 60 +13 +13 58 +14

gripper (20) 7 +13 +13 7 +11

freecell (80) 6 −2 +13 9 +11

mystery (30) 8 +1 +8 8 +8

zenotravel (20) 9 +3 +3 10 +2

pipesworld-tankage (50) 8 +2 +3 12 +2

nomystery-opt11-strips (20) 17 +1 +1 16 +2

woodworking-opt08-strips (30) 11 −1 +1 11 +2

blocks (35) 25 −3 −3 25 +2

grid (5) 1 +2 +2 1 +1

floortile-opt11-strips (20) 5 +1 +1 4 +1

rovers (40) 7 +1 +1 7 +1

satellite (36) 5 +1 +1 5 +1

scanalyzer-08-strips (30) 12 +1 +1 12 +1

scanalyzer-opt11-strips (20) 9 +1 +1 9 +1

woodworking-opt11-strips (20) 6 −1 +1 6 +1

pipesworld-notankage (50) 14 ±0 ±0 14 +1

sokoban-opt08-strips (30) 24 ±0 +2 25 ±0
trucks-strips (30) 6 ±0 +2 6 ±0
transport-opt11-strips (20) 6 +1 +1 6 ±0
driverlog (20) 13 −1 −1 12 ±0
Sum (791) 267 +39 +79 269 +79

Remaining domains (605) 293 ±0 ±0 296 ±0
Sum (1396) 560 599 639 565 644

Table 2: Per-domain coverage. Columns 2–4 compare no
(none), old and new label reduction for the linear merge
strategy reverse level (RL) in its best configuration (RL-
B-100K). Columns 5–6 compare no (none) and new label
reduction for the non-linear DFP merge strategy in its best
configuration (DFP-B-50K). For old and new, the columns
show increase/decrease in coverage compared to none. Do-
mains where label reduction showed no increase/decrease in
coverage are omitted. The best results for the given merge
strategy are highlighted in bold.

112

100 102 104 106
100

102

104

106

unsolved

uns.

DFP-B-N50k, no label reduction

D
FP

-B
-N

50
k,

ne
w

la
be

lr
ed

uc
tio

n

Figure 2: Number of expanded states for DFP-B-N50k: no
label reduction vs. new label reduction.

tend to scale exponentially in difficulty, so that even small
improvements in coverage tend to be very hard to obtain.)

Table 2 shows detailed coverage results for the individ-
ual planning domains in the benchmark set for the best-
performing shrink strategies for each merge strategy. The
table shows that label reduction is very useful across the
board, over a wide range of domains.

For the linear RL merge strategy, the new label reduction
approach increases coverage in 19 domains compared to the
baseline where no labels are reduced, while decreasing cov-
erage in 2 domains. For the non-linear DFP merge strategy,
label reduction increases coverage in 18 domains and de-
creases it in none.

To provide another detailed view, Figure 2 shows the
number of expanded states with the strongest configuration,
DFP-B-N50k, with and without label reduction. The figure
plots the results without label reduction against the results
with our new label reduction approach, over all instances
in the benchmark suite. The figure clearly shows the signifi-
cant impact that label reduction has on performance in many
cases.

Old vs. New Label Reduction Method Focusing on the
comparison between the old and new label reduction method
with a linear merge strategy (top half of Table 1), we see that
despite the larger effort involved in determining reducible la-
bels, the results are in fact quite a bit better with new label
reduction compared to the old technique. In particular, the
best overall result of 639 solved tasks (RL-B-100k) is con-
siderably higher than the best result with the previous state
of the art (624 solved tasks with RL-B-10K and the old label
reduction method).

There are two shrink strategies that show the opposite
trend, namely the ones that tend to compute the simplest
abstractions among the six strategies we consider: greedy
bisimulation (RL-G-N∞) and exact bisimulation with the

100 101 102 103
100

101

102

103

fail

fail

RL-B-N100k, original label reduction

R
L

-B
-N

10
0k

,n
ew

la
be

lr
ed

uc
tio

n

Figure 3: Construction time (in seconds) for RL-B-N100k:
old label reduction vs. new label reduction. Almost all fail-
ures are due to running out of memory.

smallest size bound (RL-B-N10k). One possible explana-
tion for this behaviour is that for the shrink strategies that
compute more complex abstractions, the additional label re-
ductions afforded by the new method are critical for comput-
ing the merge-and-shrink abstraction within the given limits
for time and especially memory. With the shrink strategies
that compute simpler abstractions, on the other hand, mem-
ory for computing the abstraction is less of a concern, and
the new label reduction method suffers from the higher com-
putational cost for determining combinable labels.

This interpretation is supported by Figure 3, which com-
pares the time to construct the abstraction heuristic for the
old and new label reduction method for the strategy RL-B-
N100k. The new strategy tends to construct abstractions
faster and runs out of memory far less frequently. Fig-
ure 4 compares state expansions for the same configurations,
showing that the heuristics are similarly informative in both
cases, and it is mainly the ability to complete the computa-
tion of the abstraction (see Figure 3) that makes the differ-
ence between the old and new label reduction here.

In the case of perfect bisimulations (RL-B-N∞), there
is no difference in coverage between the two label reduc-
tion methods for a different reason: unless the given plan-
ning task exhibits significant amounts of symmetry, unre-
stricted bisimulation tends to exhaust the available memory
very quickly, and hence the perfect abstraction heuristic is
either computed quickly or not at all. In all cases not solved
by the perfect bisimulation approaches, this is due to run-
ning out of memory while computing the abstraction.

Non-Linear Merge Strategy Shifting attention to the re-
sults for the non-linear DFP merge strategy (bottom half of
Table 1), we see that the results with the new label reduction
method are excellent. In particular, the best configuration
(DFP-B-N50k) solves 644 tasks, again setting a new best re-

113

100 102 104 106
100

102

104

106

unsolved

uns.

RL-B-N100k, original label reduction

R
L

-B
-N

10
0k

,n
ew

la
be

lr
ed

uc
tio

n

Figure 4: Number of expanded states for RL-B-N100k: old
label reduction vs. new label reduction.

sult (compared to 639 solved by RL-B-N100k, also with our
new label reduction method).

Generally speaking, the non-linear merge strategy appears
to benefit even more from label reduction than the linear one
on average. One possible explanation for this observation is
that non-linear merge strategies involve more complex prod-
ucts (merges) than linear ones, and hence benefit more from
label reduction collapsing multiple parallel transitions into
one. In linear merge strategies, at least one of the merged
transition systems is always atomic, and atomic transition
systems tend to have a comparatively low density of transi-
tions. An alternative possibility is that label reduction inter-
acts favourably with the DFP merge strategy, which – unlike
merge strategies previously considered in planning – takes
the labels into account directly in order to decide which tran-
sition systems to merge next.

Figure 5 compares the number of state expansions for the
linear and non-linear merge strategy on an otherwise identi-
cal configuration (shrink strategy B-N50k, new label reduc-
tion). The comparison shows that the two merge strategies
are quite complementary, with both strategies greatly out-
performing each other on a significant number of instances.

Conclusions
We have introduced a general theory of label reduction that
addresses several drawbacks in the previous development of
this topic. Compared to the previous theory, the new theory
of label reduction is easier to understand, easier to reason
about, and more general.

Under the new theory, label reduction can always be
safely applied. Moreover, we have provided efficiently
checkable necessary and sufficient criteria for label reduc-
tion to be exact, i. e., preserve all relevant information. The
new theory allows identifying more cases where exact label
reduction is possible, leading to improved performance of

100 102 104 106
100

102

104

106

unsolved

uns.

RL-B-N50k, new label reduction

D
FP

-B
-N

50
k,

ne
w

la
be

lr
ed

uc
tio

n

Figure 5: Number of expanded states for RL-B-N50k vs.
DFP-B-N50k, both using new label reduction.

merge-and-shrink heuristics based on label reduction.
Unlike the previous theory of label reduction, the new the-

ory allows for a straight-forward application of non-linear
merge strategies. We conducted the first experiments of this
kind by adapting the originally proposed non-linear merge
strategy from model checking to planning. In the future, we
hope that the development of strong non-linear merge strate-
gies can further increase the scalability of merge-and-shrink
heuristics.

Another possible direction for future work is the explo-
ration of inexact label reduction. Inexact label reduction is
a general abstraction method just like shrinking, and similar
intuitions to those that have guided the development of state-
of-the-art shrink strategies could be used to develop useful
inexact label reduction methods. For example, one might try
to abstract a factored transition system by combining labels
that only occur far away from goal states, similarly to the
way that current shrink strategies prefer to combine abstract
states that are far away from the goal.

Acknowledgments
We thank the anonymous reviewers for their comments,
which helped improve the paper. This work was supported
by the Swiss National Science Foundation (SNSF) as part of
the project “Abstraction Heuristics for Planning and Combi-
natorial Search” (AHPACS).

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. In
Valmari, A., ed., Proceedings of the 13th International SPIN

114

Workshop (SPIN 2006), volume 3925 of Lecture Notes in
Computer Science, 19–34. Springer-Verlag.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2009. Directed
model checking with distance-preserving abstractions. In-
ternational Journal on Software Tools for Technology Trans-
fer 11(1):27–37.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM. In press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Boddy, M.; Fox, M.; and Thiébaux, S., eds., Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007), 176–183. AAAI
Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2008. Explicit-
state abstraction: A new method for generating heuristic
functions. In Proceedings of the Twenty-Third AAAI Con-
ference on Artificial Intelligence (AAAI 2008), 1547–1550.
AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011a. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
Walsh, T., ed., Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI 2011), 1983–
1990.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011b. The
Merge-and-Shrink planner: Bisimulation-based abstraction
for optimal planning. In IPC 2011 planner abstracts, 106–
107.

115

