

Proceedings of the 1st Workshop on

Models and Paradigms for Planning under Uncertainty: a Broad Perspective

Edited By:

Andrey Kolobov, Ugur Kuter and Florent Teichteil-Königsbuch.

Portsmouth, New Hampshire, USA - June 22, 2014

Organizing Committee

Andrey Kolobov

MSR Redmond, USA

Ugur Kuter

SIFT, USA

Florent Teichteil-Königsbuch

ONERA, France

Program Committee

Alexandre Albore, ONERA, France
Daniel Bryce, SIFT, USA
Juergen Dix, Clausthal University of Technology, UK
Malik Ghallab, LAAS, France
Andrey Kolobov, Microsoft Research, USA
Ugur Kuter, SIFT, USA
Steven Schockaert, Cardiff University, UK
Guy Shani, Ben-Gurion University of the Negev, Israel
Florent Teichteil-Königsbuch, ONERA, France
Paolo Traverso, IRST, Italy

Foreword

Great strides have been made in automated AI planning under uncertainty
in recent years, including symbolic and compact representations of planning
problems and very efficient techniques for solving them. The effectiveness of these
methods has been demonstrated in the past International Planning Competitions,
and to some extent, in real-world applications such as navigation tasks, space
operations, railway control, and rescue/evacuation tasks.

However, there are several remaining challenges for developing uncertainty models
for the planning systems. When immersed in the real world, these systems often
face a constantly changing environment, whose evolution is not deterministic. In
addition to the environmental dynamics, planning systems also must deal with
the partial knowledge about their surroundings, their models of the environment,
and their goals in that environment.

So far, the ICAPS community has mainly focused on probabilities as the means
of characterizing these types of uncertainty. At the same time, there are many
other frameworks for describing uncertainty that have been studied in Artificial
Intelligence in general (e.g., possibilities, fuzzy logics, imprecise probabilities,
Dempster-Shafer’s belief function), and other communities confronted with real-
world problems like risk management use these models in their decision-making
systems. We believe a cross-pollination of research approaches and methodologies
from these relevant, yet mostly distant, paradigms will be very beneficial for the
ICAPS community, leading to new ideas for tackling planning problems.

We are very pleased to welcome Dr. Ronen I. Brafman as our invited speaker.
Dr. Brafman’s talk will focus on Planning under uncertainty: Reductions, Re-
planning, Simplifications. In AI planning, the focus has been on stochastic models
(e.g., MDPs, POMDPs), and non-probabilistic but non-deterministic models, as
in contingent and conformant planning. An important distinction has to do with
the nature of the goals – satisfying some goal conditions in methods derived from
classical planning vs. accumulating reward in POMDPs. Reduction techniques
between different kinds of goals and planning problems have been proposed, and
in his talk, Dr. Brafman will review why these techniques are useful and what
they are good for.

3

Table of Contents

Factored Markov Decision Process with Imprecise Transition Probabilities
Karina V. Delgado, Leliane N. de Barros, Scott Sanner, Fabio Cozman 5

Monte-Carlo Tree Search: To MC or to DP?
Zohar Feldman, Carmel Domshlak 11

To Share or Not to Share? The Single Agent in a Team Decision Problem
Ofra Amir, Barbara J. Grosz, Roni Stern 19

Computing Contingent Plans via Fully Observable Non-Deterministic Planning
Christian Muise, Vaishak Belle, Sheila A. McIlraith 27

Diagnostic Problem Solving via Planning with Ontic and Epistemic Goals
Jorge A. Baier, Brent Mombourquette, Sheila A. McIlraith 35

A Contingent Planning-Based POMDP Replanner
Ronen Brafman, Alexander Gorohovski, Guy Shani 44

A Relevance-Based Compilation Method for Conformant Probabilistic Planning
Ran Taig, Ronen I. Brafman 49

Structured Possibilistic Planning using Decision Diagrams
Nicolas Drougard, Florent Teichteil-Königsbuch, Jean-Loup Farges 56

Compiling Contingent Planning into Classical Planning: New Translations and Results
Héctor Palacios, Alexandre Albore, Hector Geffner 65

4

Factored Markov Decision Process with Imprecise Transition Probabilities

Karina V. Delgado
EACH-University of Sao Paulo

Sao Paulo - Brazil

Leliane N. de Barros
IME-University of Sao Paulo

Sao Paulo - Brazil

Scott Sanner
NICTA-ANU

Camberra - Australia

Fabio Cozman
POLI-University of Sao Paulo

Sao Paulo - Brazil

Abstract

This paper presents a short survey of the research we
have carried out on planning under uncertainty where
we consider different forms of imprecision on the prob-
ability transition functions. Our main results are on ef-
ficient solutions for Markov Decision Process with Im-
precise Transition Probabilities (MDP-IPs), a general-
ization of a Markov Decision Process where the im-
precise probabilities are given in terms of credal sets.
Noting that the key computational bottleneck in the so-
lution of MDP-IPs is the need to repeatedly solve an
optimization problem, our goal is to minimize the num-
ber of calls to the optimizer. Our results show how to
target approximation techniques to drastically reduce
the computational overhead of the optimization solver
while producing bounded, approximately optimal solu-
tions.

Introduction
Markov Decision Processes (MDP) (Puterman 1994) have
become the de facto standard model for decision-theoretic
planning problems and a great deal of research in recent
years has aimed at proposing efficient solutions to tackle
large and more realistic problems. Formally, an MDP is de-
fined by the tuple M = 〈S,A, P,R, T, γ〉, where S is a
finite set of fully observable states; A is a finite set of ac-
tions; P (s′|s, a) is the conditional probability of reaching
state s′ ∈ S when action a ∈ A is taken from state s ∈ S;
R : S×A→ R is a fixed reward function associated with ev-
ery state and action; T is the time horizon (number of stages-
to-go) for decision-making; and γ = [0, 1) is a discount fac-
tor. An important research topic in this area is how to ex-
ploit structure in order to compactly represent and efficiently
solve factored MDPs (Boutilier, Hanks, and Dean 1999;
Hoey et al. 1999; St-Aubin, Hoey, and Boutilier 2000;
Guestrin et al. 2003). In many MDPs, it is often natural to
think of the state as an assignment to multiple state variables
and a transition function that compactly specifies the proba-
bilistic dependence of variables in the next state on a subset
of variables in the current state. Such an approach naturally
leads us to define a Factored MDP (Boutilier, Hanks, and

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Dean 1999), where S = {~x}. Here, ~x = (x1, . . . , xn) where
each state variable xi ∈ {0, 1}.

The reward can simply be specified as R(~x, a). The tran-
sition probabilities in a factored MDP are encoded using
Dynamic Bayesian Networks (DBNs) (Dean and Kanazawa
1990). A DBN is a directed acyclic graph (DAG) with two
layers: one layer represents the variables in the current state
and the other layer represents the next state (Figure 3a).
Nodes xi and x′i refer to the respective current and next
state variables. The connection between these two layers
defines the dependences between state variables w.r.t. the
execution of an action a ∈ A. Directed edges are allowed
from nodes in the first layer into the second layer, and also
between nodes in the second layer (these latter edges are
termed synchronic arcs). We denote by paa(x

′
i) the parents

of x′i in the graph for action a and P (x′i|paa(x′i), a), the con-
ditional probability table (CPT). The graph encodes the stan-
dard Bayes net conditional independence assumption that a
variable x′i is conditionally independent of its nondescen-
dants given its parents, which incidentally for a DBN also
encodes the Markov assumption (the current state is inde-
pendent of the history given the previous state). The use of a
DBN leads to the following factorization of transition prob-
abilities:

P (~x′|~x, a) =
n∏

i=1

P (x′i|paa(x′i), a). (1)

However, in many real-world problems, it is simply im-
possible to obtain a precise representation of the transition
probabilities in an MDP. This may occur for many reasons,
including (a) imprecise or conflicting elicitations from ex-
perts, (b) insufficient data from which to estimate reliable
precise transition models, or (c) non-stationary transition
probabilities due to insufficient state information.

For example, in an automated navigation system, it can be
difficult to estimate the probability of reaching some loca-
tion after a move. The probabilities may change throughout
time due the environment conditions (such weather and road
conditions) and can make the navigation more difficult and
subject to failures. In general, it is hard to accurately model
all these changes since they can have many external depen-
dencies. In this case, it is better to have a policy optimized
over a range of possible probabilities in order to be robust
against transition uncertainty.

5

Figure 1: Examples of MDP, MDP-IP, MDP-ST and BMDP.

To accommodate optimal models of sequential decision-
making in the presence of strict uncertainty over the tran-
sition model, the MDP with imprecise transition probabil-
ities (MDP-IP) was introduced (Satia and Lave Jr. 1970;
White III and El-Deib 1994) where the imprecise probabili-
ties are represented by probabilistic parameters pi and a set
of constraints over them which define a credal set, that is
explained in Definition 1. While the MDP-IP poses a ro-
bust framework for the real-world application of decision-
theoretic planning, its general solution requires the use of
computationally expensive optimization routines that are ex-
tremely time-consuming in practice.

A particular sub-classes of MDP-IP is the Bounded-
parameter Markov Decision Process (BMDP) (Givan,
Leach, and Dean 2000), where the probabilities are speci-
fied by intervals. Givan proposes the Interval Value Itera-
tion algorithm (Givan, Leach, and Dean 2000) that can find
an optimal policy without requiring expensive optimization
techniques. Recent solutions to BMDPs include extensions
of real-time dynamic programming (RTDP) (Buffet and Ab-
erdeen 2005) and LAO* (Cui et al. 2006; Yin, Wang, and Gu
2007) that search for the best policy under the worst model.
However, a problem with general linear constraints over the
probability parameters, for example {0.3 ≤ pj ≤ 0.5, pj ≥
pi} cannot be solved by these solutions. Another sub-class
of MDP-IPs is the Markov Decision Process with Set-valued
Transitions (MDP-ST) (Trevizan, Cozman, and de Barros
2007), where probability distributions are given over finite
sets of states. Examples of MDP-IP, BMDP and MDP-ST
are given in Figure 1.

In Figure 2 we show the relationship among different
types of planning under uncertainty which includes as spe-
cial cases the deterministic and nondeterministic planning
problems. Notice that BMDP and MDP-ST do not have the
same representational power, i.e., some MDP-ST problems
can not be reduced to BMDP, and vice versa. Note also that
since BMDPs and MDP-STs are special cases of MDP-IPs,
we can represent them as MDP-IPs, thus the algorithms for

Figure 2: Relationship among MDP-IP and its sub-classes.

MDP-IPs clearly apply to both BMDPs and MDP-STs.
To address the computational deficiency of solutions for

MDP-IPs, first we extended the factored MDP model by re-
placing the usual Dynamic Bayesian Network (DBN) (Dean
and Kanazawa 1990) used in factored MDPs with Dynamic
Credal Network (DCNs) (Delgado et al. 2009; Delgado,
Sanner, and de Barros 2011) to support compact factored
structure in the imprecise transition model of factored MDP-
IPs. Second, we have proposed efficient, scalable algorithms
for solving these factored MDP-IPs based on two different
approaches: dynamic programming (Delgado, Sanner, and
de Barros 2011) and multilinear programming (Delgado et
al. 2011).

MDPs with Imprecise Transitions
An MDP with imprecise transition probabilities (MDP-IP)
is simply an extension of the MDP where the transition prob-
abilities can be imprecisely specified. That is, instead of
a probability measure P (·|s, a) over the state space S, we
have a set of probability measures. that is referred to as a
credal set (Cozman 2000).

Definition 1. Transition credal set. A credal set contain-
ing conditional distributions over the next state s′, given a
state s and an action a, is referred to as a transition credal
sets (Cozman 2000) and denoted by K(s′|s, a). Thus, we
have P (·|s, a) ∈ K(·|s, a) to define imprecisely specified
transition probabilities.

We assume that all credal sets are closed and convex, an
assumption that is often used in the literature, and that en-
compasses most practical applications (Walley 1991). We
further assume stationarity for the transition credal sets
K(s′|s, a); that is, they do not depend on the stage t. While
K(s′|s, a) is non-stationary, we note that this does not re-
quire P (s′|s, a) to be stationary in an MDP-IP: distributions
P (s′|s, a) may be selected from the corresponding credal
sets in a time-dependent manner (Nilim and El Ghaoui
2005).

Formally, an MDP-IP is defined by MIP =
(S,A,K,R, T, γ). This definition is identical to the
MDP M, except that the transition distribution P is
replaced with a transition credal set K. We will represent
K implicitly as the set of transition probabilities consistent
with a set of side linear inequality constraints C over the
probability parameters.

There are several optimization criteria that can be used
to define the value of a policy in an MDP-IP. In the con-
text of the discounted infinite horizon setting focused on
this work, there is always a deterministic stationary policy

6

that is maximin optimal (Satia and Lave Jr. 1970) (i.e., no
other policy could achieve greater value under the assump-
tion that Nature’s selects P (s′|s, a) adversarially to mini-
mize value); moreover, given the assumption that A is finite
and the credal setK is closed, this policy induces an optimal
value function that is the unique fixed-point solution of

V ∗(s) = max
a∈A

min
P∈K

{
R(s, a) + γ

∑

s′∈S
P (s′|s, a)V ∗(s′)

}
. (2)

There are various algorithms for solving enumerated state
MDP-IPs based on dynamic programming (Satia and Lave
Jr. 1970; White III and El-Deib 1994). In this work, we build
on a value iteration solution to MDP-IPs (Satia and Lave Jr.
1970):

V t(s) = max
a∈A

min
P∈K

{
R(s, a) + γ

∑

s′∈S
P (s′|s, a)V t−1(s′)

}

(3)
Value iteration for MDP-IPs is the same as for MDPs except
that now for every state s, we optimize our action choice
a ∈ A w.r.t. the worst-case distribution P ∈ K that min-
imizes the future expected value. Thus we ensure that the
resulting value function and policy are robust to the worst
outcome that Nature could choose in light of the future value
V t−1(s′) that we expect to achieve.

The Bellman equation can be also solved through a mul-
tilinear program (Shirota et al. 2007):

min
V ∗,P

:
∑

s

V ∗(s) (4)

s.t. : V ∗(s) ≥ R(s, a) + γ
∑

s′∈S
P (s′|s, a)V ∗(s′),

∀s ∈ S, a ∈ A,P (s′|s, a) ∈ K(s′|s, a).

Notice that the constraints force V ∗(s) to be
greater than or equal to maxa∈AminP∈K{R(s, a) +
γ
∑
s′∈S P (s

′|s, a)V ∗(s′)}, considering all a ∈ A, and
then minimizing

∑
s V
∗(s) enforces that the minimal V ∗(s)

is obtained.

Factored MDP-IPs
The definitions of MDP-IP given in the previous section
models an enumerated MDP-IP (also called flat MDP-IP),
where states are seen as black boxes.

We have extended the factored MDP representa-
tion (Boutilier, Hanks, and Dean 1999) to compactly repre-
sent MDP-IPs. This requires modifying the DBN transition
representation to account for uncertainty over the exact tran-
sition probabilities.

Like the previous definition of an enumerated state MDP-
IP, the set of all legal transition distributions for a factored
MDP-IP is defined as a credal set K. The challenge then
was to specify such transition credal sets in a factored man-
ner that is itself compact. For this, we have proposed to use
dynamic credal networks (DCNs), a special case of credal
networks (Cozman 2000; 2005), as an appropriate language
to express factored transition credal sets.

Definition 2. Factored transition credal set. A credal
set containing conditional distributions over the values of a

variable xi, given the values of paa(xi) (the parents of xi in
the graph for action a), is referred to as a factored transition
credal set and denoted by Ka(xi|paa(xi)).

Definition 3. Dynamic credal network. A Dynamic
credal network (DCN) is a generalization of a DBN. Dif-
ferent from the definition of a DBN, in a DCN each vari-
able xi is associated with factored transition credal sets
Ka(xi|paa(xi)) for each value of paa(xi). We assume
that a DCN represents a joint credal set (Cozman 2005;
2000) over all of its variables consisting of all distributions
that satisfy the factorization in Equation (1), where each
CPT distribution P (x′i|paa(x′i), a) is an element of the tran-
sition credal set Ka(x

′
i|paa(x′i)) associated with the DCN,

i.e. P (x′i|paa(x′i), a) ∈Ka(x
′
i|paa(x′i)).

A DCN example is shown in Figure 3a. For each vari-
able x′i in a DCN, we have a conditional probability table
(CPT) with imprecise probabilities. If we examine the CPTs
in Figure 3b, we note that entries are specified by probability
parameters pij (i for variable x′i and j for the jth parameter
in the CPT for x′i). Furthermore, we note that we have a set
of side linear constraints on these pij (shown in the boxes
below the CPT, collectively call this constraint set C). We
use ~p to denote a vector containing all parameter values that
are free to vary within the given credal sets (i.e., that satisfy
the probability constraints C of the DCN).

We note that the joint transition probability may be non-
linear in the probability parameters ~p. However, we explic-
itly introduce the following restriction to prevent exponents
exceeding 1: a parameter pij may only appear in the CPT for
x′i. This restriction prevents the multiplication of pij by itself
when CPTs for each x′i are multiplied together to determine
the joint transition distribution in the DCN. This subset of
nonlinear expressions, where the exponent of each pij is ei-
ther 0 or 1, is referred to as a multilinear expression. To see
the multilinearity of the transition probability in Figure 3, we
observe P (x′1 = 1, x′2 = 1|x1 = 1, x2 = 1, notreboot) =
p11p21.

Exact Solution for Factored MDP-IPs
SPUDD-IP
SPUDD (Hoey et al. 1999) is an efficient factored version of
Value Iteration for MDPs that represents CPTs, rewards and
value functions as algebraic decision diagrams (ADDs) (Ba-
har et al. 1993). Inspired on that we have proposed SPUDD-
IP (Delgado, Sanner, and de Barros 2011) to solve factored
MDP-IPs.

ADDs compactly represent context-specific independence
(CSI) (Boutilier et al. 1996) that are not evident in the DBNs.
In order to compactly represent a CSI and shared function
structure in the CPTs for an MDP-IP, we have proposed
a novel extension of ADDs called parameterized ADDs
(PADDs) (Delgado, Sanner, and de Barros 2011) since the
leaves are parameterized expressions as shown in Figure 3c.
PADDs do not only allow us to compactly represent the
CPTs for factored MDP-IPs, but they also enable efficient
computations for factored MDP-IP value iteration opera-
tions.

We begin by expressing MDP-IP value iteration from (3)

7

Figure 3: a) DCN for action a. b) Conditional probability table for the state variables x′1 = 1 and x′2 = 1 and the constraints
related to the probabilities. c) The Parameterized ADD representation of P (x′1|x1, x2,a). Solid lines indicate the true (1) branch
of a variable test and dashed lines indicate the false (0) branch.

in the following factored form using the transition represen-
tation of (1) and operations on decision diagrams:1

V t
DD(~x) = max

a∈A

{
RDD(~x, a)⊕ γmin

~p
(5)

∑

~x′

n⊗

i=1

PDD(x′i|paa(x′i), a)V t−1
DD (~x′)





Because the transition CPTs in the MDP-IP DCN con-
tain parameters ~p, these CPTs must be represented in de-
cision diagram format as PADDs (PDD(x′i|paa(x′i), a) ∈
Ka(x

′
i|paa(x′i))). The rewardRDD(~x, a) can be represented

as an ADD since it contains only constants (for the purpose
of operations, recall that ADDs are special cases of PADDs).
Although it may appear that the form of V tDD(~x) is a PADD,
we note that the parameters ~p are “minimized”-out w.r.t. the
side constraints on ~p during the min~p� operation in (5)
(min~p� is the MinParameterOut operation on PADDs, that
performs the minimization over the parameters by calling a
nonlinear solver for each leaf and returns an ADD). Thus
the resulting V tDD(~x) computed from the maxa∈A has con-
stant leaves and can be expressed as the ADD special case
of PADDs.

To explain the efficient evaluation of (5) in more detail, we
can exploit the variable elimination algorithm (Zhang and
Poole 1994) in the marginalization over all next states

∑
~x′ .

For example, if x′1 is not dependent on any other x′i for i 6=
1, we can “push” the sum over x′1 inwards to obtain:

V
t
DD(~x) = max

a∈A

{
RDD(~x, a)⊕ γmin

~p
(6)

∑

x′
i
(i6=1)

n⊗

i=1(i6=1)

PDD(x
′
i|paa(x

′
i), a)

∑

x′1

PDD(x
′
1|paa(x

′
1), a)V

t−1
DD (~x

′
)





Then we can continue with x′2, multiplying this result by the
PDD(x

′
2|paa(x′2), a), summing out over x′2, and repeating

for all x′i to compute �. After this � does not contain any-
more the variables x′i, but only the variables xi.

The SPUDD-IP value iteration solution to factored MDP-
IPs returns a robust optimal policy and often yields an im-
provement over flat value iteration. Figure 4 shows that for

1We useDD for the functions represented by ADDs or PADDs.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

factory-22

factory-21

factory-19

traffic-14

traffic-12

traffic-10

indep-ring-8

indep-ring-7

indep-ring-6

bi-ring-8

bi-ring-7

bi-ring-6

uni-ring-8

uni-ring-7

uni-ring-6

T
im

e(
se

co
nd

s)

DNF DNF DNF DNF DNF

Exact SPUDD-IP Exact Flat Value Iteration

Figure 4: Time performance comparison for TRAFFIC,
SYSADMIN and FACTORY problems using SPUDD-IP and
Flat Value Iteration. The name includes the number of vari-
ables in each problem, so the corresponding number of states
is 2#variables.

large state spaces (212 to 222) flat Value Iteration does not
return a solution due to time and space limitations, while
SPUDD-IP can solve the largest problems.

Approximate Solutions for Factored MDP-IPs
As the number of state variables in a problem grows larger
SPUDD-IP also becomes inefficient. Thus, in this sec-
tion we describe three approximate solutions for MDP-IP:
APRICODD-IP (Delgado, Sanner, and de Barros 2011),
Objective-IP (Delgado, Sanner, and de Barros 2011), two
approximate versions of Value Iteration for MDP-IP; and
AMP (Delgado et al. 2011) an approximate Multilinear Pro-
gramming algorithm for MDP-IP.

Approximate Value Iteration
Approximate value iteration (AVI) is one way to trade off
time and space with error by approximating the value func-
tion after each iteration.

APRICODD-IP algorithm is an extension of the APRI-
CODD algorithm (St-Aubin, Hoey, and Boutilier 2000) that

8

provides an efficient way of approximating the ADD value
representation for a factored MDP, reducing its size and thus
reducing computation time per iteration. This is done by a
method that has two inputs: (1) a value function represented
as an ADD and (2) an approximation error to merge the
leaves. The output is a new ADD with the merged leaves.
The algorithm first collects all leaves of the ADD and de-
termines which can be merged to form new values without
approximating more than error. The old values are then re-
placed with these new values creating a new (minimally re-
duced) ADD that represents the approximated value func-
tion. This approach immediately generalizes to MDP-IPs
since the value function V tDD is also an ADD.

However, in solving (factored) MDP-IPs, the time is dic-
tated less by the size of the value function ADD and more
by the number of calls to the multilinear optimizer. Thus we
also proposed a new approximate algorithm, Objective-IP,
that attempts to make less calls to the solver by approximat-
ing the objectives (the min of the optimization call) in an
attempt to avoid calling the solver altogether. Different from
APRICODD-IP, Objective-IP approximates the leaves of the
PADD just prior to carrying out the multilinear optimization.
The approximation method takes as input a PADD and the
maximum error and returns a new PADD with approximated
leaves using the upper and lower bounds of the parameters
pi. Note that each leave is approximated independently, this
can be done since each leaf corresponds to a different state
(or set of states) and the system can only be in one state at a
time. Furthermore, we can guarantee that no objective prun-
ing at the leaves of the PADD incurs more than error after
the multilinear optimization is performed.

In order to evaluate the policy returned by our approxi-
mate solutions, we compute the True Approximation Error
(TAE) given by:

max~x|V ∗(~x)− Vapprox(~x)| (7)

where Vapprox(~x) is the value returned by the approxi-
mate solutions and V ∗(~x) is the optimal value computed by
SPUDD-IP.

In Figure 5 we show a comparison of the True Ap-
proximation Error (TAE) vs. running times for the bi-ring-
6 problem of an imprecise version of the SysAdmin do-
main (Guestrin et al. 2003). The results echo one conclusion:
Objective-IP consistently takes less time than APRICODD-
IP to achieve the same approximation error and up to one
order of magnitude less time than APRICODD-IP (Delgado,
Sanner, and de Barros 2011). This time reduction can be ex-
plained by the decreased number of calls to the multilinear
solver.

Approximate Multilinear Programming
Another approximate solution for Factored MDP-IPs we
have proposed is the Approximate Multilinear Program-
ming (AMP) (Delgado et al. 2011). We extend previous
work (Guestrin et al. 2003) that obtain efficient approximate
linear programming solutions for Factored MDPs. In this ap-
proximate solution we use the approximate value function
denoted by V̂ (~x). Given ~x ∈ S and a set of basis func-

tions H = {h1, ..., hk}, V ∗(~x) is approximated using a lin-
ear combination:

V̂ (~x) =
k∑

j=1

wjhj(~x). (8)

We can use this approximate value function and replace it
in the multilinear formulation (Problem (4)) of an MDP-IP
so as to obtain the factored multilinear programming prob-
lem:

min
w,P

∑

~x

k∑

i=0

wihi(~x) (9)

subject to :

k∑

i=0

wihi(~x) ≥ R(~x, a) +

γ
∑

~x′∈S
P (~x′|~x, a)

k∑

i=0

wihi(~x
′),∀~x ∈ S, a ∈ A

P (x′i|pa(X ′i), a) ∈ Ka(X
′
i|pa(X ′i)),

P (~x′|~x, a) =
∏

i

P (x′i|pa(X ′i), a).

To solve this optimization problem, we exploit the Fac-
tored MDP-IP structure to reduce the number of constraints
generated and to compactly encode the remaining con-
straints that empirically leads to an exponential reduction in
the number of constraints for some problems.

In Figure 5 we compare the three approximate solution
methods, APRICODD-IP and Objective-IP and AMP. For
the AMP solution, we used simple basis functions (one for
each variable in the problem description) and pairwise basis
functions (one for each pair of variables that have a com-
mon child variable in the DCN). When it does finish within
a limit of ten hours, AMP takes only a few seconds to pro-
duce an approximate solution for each problem (except for
the FACTORY domain for which it did not return a solution).
Comparing the algorithms in terms of their true approxima-
tion error, we observe that in the bi-ring-6 problem, AMP
with pair basis functions outperforms APRICODD-IP and
obtains a solution 2-3× larger than the error of Objective-
IP, but in significantly less time. This experiment and the
results obtained in other domains lead us to conclude that
Objective-IP consistently gives an error at least 2-3× lower
than AMP and sometimes runs as fast as the AMP solution,
while in other cases running slower. However, the bottle-
neck of the AMP solution is to define appropriate basis func-
tions (Guestrin et al. 2003).

Concluding Remarks
In this work we made a short survey on our contribution
for Markov Decision Processes with Imprecise Probabilities
(MDP-IPs), a class of models that adds considerable flexibil-
ity and realism to probabilistic planning allowing the repre-
sentation of imprecise transition probabilities. We first pro-
pose a compact Factored MDPIP model, which represents
states throughout state variables and uses Dynamic Credal
Networks to specify the imprecise transition probabilities,
which can reveal the structure of an application domain and

9

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700

T
ru

e
A

pp
ro

xi
m

at
io

n
E

rr
or

Time(seconds)

bi-ring-6

APRICODD-IP Pruning
Objective-IP Pruning

MPA Simple Basis
MPA Pair Basis

Figure 5: True Approximation Error vs. time required for
APRICODD-IP, Objective-IP and AMP with simple basis
and pairwise basis functions for a SYSADMIN problem with
bidirectional-ring topology.

allows for the construction of efficient solutions. The pro-
posed solution, exact or approximate were of two types:
based on dynamic programming and based on multilinear
programming. The first extends the factored approaches for
MDPs, SPUDD and APRICODD, plus a new way of ap-
proximation that avoids calling the optimization solver. The
second extends the approximate linear programming solu-
tion for MDPs, to the Approximate Multilinear Program-
ming for MDP-IPs, that can be very efficient when we have
appropriate basis functions.

Another work we are currently developing is an asyn-
chronous dynamic programming algorithm, named RTDP-
IP for MDP-IPs. The main challenges of this solution are:
(i) how to sample the next state in a trial? (ii) how to ensure
convergence of an asynchronous dynamic programming so-
lution, having a range of possible probabilities in the state
transition matrix? Additionally, we are currently working on
how to extract an MDP-IP transition function from data.

References
Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.;
Macii, E.; Pardo, A.; and Somenzi, F. 1993. Algebraic De-
cision Diagrams and their Applications. In Proceedings of
ICCAD, 188–191. Los Alamitos, CA, USA: IEEE Computer
Society Press.
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller, D.
1996. Context-specific Independence in Bayesian Networks.
In Proc. 12th UAI, 115–123.
Boutilier, C.; Hanks, S.; and Dean, T. 1999. Decision-
theoretic Planning: Structural Assumptions and Computa-
tional Leverage. JAIR 11:1–94.
Buffet, O., and Aberdeen, D. 2005. Robust Planning with
LRTDP. In Proc. of the IJCAI, 1214–1219.
Cozman, F. G. 2000. Credal Networks. Artificial Intelli-
gence 120:199–233.
Cozman, F. G. 2005. Graphical Models for Imprecise Prob-
abilities. International Journal of Approximate Reasoning
39(2-3):167–184.
Cui, S.; Sun, J.; Yin, M.; and Lu, S. 2006. Solving Uncertain

Markov Decision Problems: An Interval-Based Method. In
ICNC (2), 948–957.
Dean, T., and Kanazawa, K. 1990. A Model for Reasoning
about Persistence and Causation. Comput. Intell. 5(3):142–
150.
Delgado, K. V.; de Barros, L. N.; Cozman, F. G.; and Shirota,
R. 2009. Representing and Solving Factored Markov Deci-
sion Processes with Imprecise Probabilities. In 6th ISIPTA.
Delgado, K. V.; de Barros, L. N.; Cozman, F. G.; and San-
ner, S. 2011. Using Mathematical Programming to Solve
Factored Markov Decision Processes with Imprecise Proba-
bilities. Int. J. Approx. Reasoning 52(7):1000–1017.
Delgado, K. V.; Sanner, S.; and de Barros, L. N. 2011. Effi-
cient Solutions to Factored MDPs with Imprecise Transition
Probabilities. Artif. Intell. 175(9-10):1498–1527.
Givan, R.; Leach, S.; and Dean, T. 2000. Bounded-
parameter Markov Decision Processes. Artificial Intelli-
gence 122:71–109(39).
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient Solution Algorithms for Factored MDPs.
JAIR 19:399–468.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic Planning using Decision Diagrams. In
Fifteenth Conference on Uncertainty in Artificial Intelli-
gence, 279–288. Morgan Kaufmann.
Nilim, A., and El Ghaoui, L. 2005. Robust Control of
Markov Decision Processes with Uncertain Transition Ma-
trices. Oper. Res. 53(5):780–798.
Puterman, M. L. 1994. Markov Decision Processes. Wiley
Series in Probability and Mathematical Statistics. New York:
John Wiley and Sons.
Satia, J. K., and Lave Jr., R. E. 1970. Markovian Decision
Processes with Uncertain Transition Probabilities. Opera-
tions Research 21:728–740.
Shirota, R.; Cozman, F. G.; Trevizan, F. W.; de Campos,
C. P.; and de Barros, L. N. 2007. Multilinear and Integer
Programming for Markov Decision Processes with Impre-
cise Probabilities. In 5th ISIPTA, 395–404.
St-Aubin, R.; Hoey, J.; and Boutilier, C. 2000. APRICODD:
Approximate Policy Construction using Decision Diagrams.
In Proceedings NIPS, 1089–1095. MIT Press.
Trevizan, F. W.; Cozman, F. G.; and de Barros, L. N. 2007.
Planning under Risk and Knightian Uncertainty. In IJCAI,
2023–2028.
Walley, P. 1991. Statistical Reasoning with Imprecise Prob-
abilities. London: Chapman and Hall.
White III, C. C., and El-Deib, H. K. 1994. Markov Decision
Processes with Imprecise Transition Probabilities. Opera-
tions Research 42(4):739–749.
Yin, M.; Wang, J.; and Gu, W. 2007. Solving Planning
Under Uncertainty: Quantitative and Qualitative Approach.
In IFSA (2), 612–620.
Zhang, N. L., and Poole, D. 1994. A Simple Approach
to Bayesian Network Computations. In Proc. of the Tenth
Canadian Conference on Artificial Intelligence, 171–178.

10

Monte-Carlo Tree Search: To MC or to DP?

Zohar Feldman and Carmel Domshlak
Technion—Israel Institute of Technology

Haifa, Israel
{zoharf@tx,dcarmel@ie}.technion.ac.il

Abstract

State-of-the-art Monte-Carlo tree search algorithms can be
parametrized with any of the two information updating pro-
cedures: MC-backup and DP-backup. The dynamics of these
two procedures is very different, and so far, their relative pros
and cons have been poorly understood. Formally analyzing
the dependency of MC- and DP-backups on various MDP pa-
rameters, we reveal numerous important issues that get hid-
den by the worst-case bounds on the algorithm performance,
and reconfirm these findings by a systematic experimental
test.

INTRODUCTION
Markov decision processes (MDPs) is a standard model
for planning under uncertainty (Puterman 1994). An MDP
〈S,A,P, R〉 is defined by a set of states S, a set of state
transforming actions A, a stochastic transition function P :
S×A×S → [0, 1], and a reward functionR : S×A×S →
R. The states are fully observable and, in the finite hori-
zon setting considered here, the rewards are accumulated
over some predefined number of steps H . The objective
of planning in MDPs is to sequentially choose actions so
as to maximize the accumulated reward. The representation
of large-scale MDPs can be either declarative or generative,
but anyway concise, and allowing for simulated execution of
all feasible action sequences, from any state of the MDP. In
online MDP planning, the agent focuses on its current state
s0 only, deliberates about the set of possible policies from
that state onwards and, when interrupted, chooses what ac-
tion to perform next. In formal analysis of algorithms for
online MDP planning, the quality of the action a, chosen for
s0 with H steps-to-go, is assessed in terms of the induced
“simple regret”, capturing the performance loss that results
from taking a and then following an optimal policy π∗ for
the remaining H − 1 steps, instead of following π∗ from the
beginning (Bubeck and Munos 2010).

Many popular algorithms for online MDP planning con-
stitute what is called Monte-Carlo tree search (MCTS) (Sut-
ton and Barto 1998; Péret and Garcia 2004; Kocsis and
Szepesvári 2006; Coquelin and Munos 2007; Cazenave
2009; Rosin 2011; Tolpin and Shimony 2012; Keller and

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Helmert 2013; Feldman and Domshlak 2013; 2014b), and
adaptations of some of these algorithms are also popular in
other settings of sequential decision making, including those
with partial state observability and adversarial effects (Gelly
and Silver 2011; Sturtevant 2008; Bjarnason, Fern, and
Tadepalli 2009; Eyerich, Keller, and Helmert 2010; Browne
et al. 2012). At a high level, all MCTS algorithms explore
the state-space region around s0 by iteratively (i) simulating
an action/state trajectory from s0, and (ii) using the outcome
of that trajectory to update various action-value estimates re-
lated to the state-space region of interest, as well as to update
the estimate of what action should be best applied at state s0.
In that respect, specific MCTS algorithms differ both in their
trajectory rollout strategies, as well as in their rollout-based
update strategies.

Recent work substantially advanced our understanding of
how the performance of MCTS depends on the specifics
of the rollout strategy, as well as on the choice of what
pieces of information should be updated based on a given
rollout (Kocsis and Szepesvári 2006; Coquelin and Munos
2007; Feldman and Domshlak 2012). Recently, however,
Keller & Helmert (Keller and Helmert 2013) demonstrated
empirically that the performance of MCTS also depends to
a large extent on how the respective updates are being per-
formed. Prior to the work of Keller & Helmert, updates in
MCTS algorithms were all based on MC-backups, that is,
sample averaging updates of the selected action-value es-
timates. Keller & Helmert showed that modifying a stan-
dard MCTS algorithm (such as UCT (Kocsis and Szepesvári
2006)), by replacing its MC-backups with dynamic pro-
gramming estimates propagation a la Bellman backups in
value iteration (Bellman 1957), can substantially affect the
performance, and, at least in their experiments, typically in
favor of DP-backups. Later on, Feldman & Domshlak (Feld-
man and Domshlak 2014b) showed that switching from
MC-backups to such DP-backups preserves the order-of-
magnitude convergence rates of MCTS instances that guar-
antee exponential rate performance improvement (such as
BRUE (Feldman and Domshlak 2012)), and can even allow
for proving somewhat better convergence bounds. Still, the
relative pros and cons of MC- and DP-backups have not been
systematically studied so far, and thus are still poorly under-
stood.

This is precisely our contribution in this paper: Using

11

BRUE and MaxBRUE, a pair of state-of-the-art MCTS al-
gorithms that, ceteris paribus, use MC-backups and DP-
backups, respectively, we study the dynamics of MC- and
DP-backups both formally and empirically. Starting with
establishing a pair of comparable worst-case bounds on the
convergence rates of these two algorithms, we use the anal-
ysis behind these bounds to examine specific dependencies
of the two algorithms on various MDP parameters, namely
the state and action branching factors, the shape of the re-
ward function, and the entropy of the transition function.
To our knowledge, our analysis is first of its kind, and it
reveals numerous important issues that get hidden by the
worst-case bounds due to certain deficiencies in the formal
worst-case analysis of MC-backups. In particular, it sug-
gests that MC-backups are less sensitive than DP-backups
to the state branching factor, especially when the transition
function concentrates on a small number of outcomes, as it
is typically the case in practical applications. The various
aspects of the analysis are then put on a systematic experi-
mental test, which reconfirms its key findings.

BACKGROUND
In what follows, we adopt the notation and pseudo-code
convention from (Feldman and Domshlak 2014b). In par-
ticular, when considering an MDP 〈S,A,P, R〉, its state
and action branching factors are respectively denoted by
K = maxs |A(s)| and B = maxs,a |{s′ | P(s′|s, a) > 0}|,
s〈h〉 denotes state s ∈ S with h steps-to-go, and A(s) ⊆ A
denotes the actions applicable in state s. Some auxiliary no-
tation: The operation of drawing a sample from a distribu-
tion D over set ℵ is denoted by ∼ D[ℵ], U denotes uniform
distribution, and JnK for n ∈ N denotes the set {1, . . . , n}.
For a sequence of tuples ρ, ρ[i] denotes the i-th tuple along
ρ, and ρ[i].x denotes the value of the field x in that tuple.

MCTS, a canonical scheme underlying various MCTS al-
gorithms for online MDP planning, is depicted in Figure 1.
MCTS explores the state space in the radius ofH steps from
the initial state s0 by iteratively issuing simulated ROLL-
OUTs from s0. Each such rollout ρ comprises a sequence
of simulated steps 〈s, a, r, s′〉, where s is a state, a is an
action applicable in s, r is an immediate reward collected
from issuing the action a, and s′ is the resulting state. Once
generated, the rollout is used to UPDATE some variables of
interest, typically including at least the action value estima-
tors Q̂ (s〈h〉, a) and the counters n(s〈h〉, a) that record the
number of times the corresponding estimators Q̂ (s〈h〉, a)
have been updated. Once interrupted, MCTS uses the infor-
mation collected throughout the exploration to recommend
an action to perform at state s0.

Instances of MCTS vary mostly along their ROLLOUT-
ACTION policies, prescribing the action to apply in the cur-
rent state of the rollout; and their UPDATE strategies, spec-
ifying (i) which of the maintained variables should be up-
dated based on the rollout, as well as (ii) how those vari-
ables should be updated. The “how” aspect of the MCTS
UPDATE procedures is of our focus here. By decoupling be-
tween the decisions of what to update and how to update, the
emphasized text in Figures 1b and 1c shows the respective

subroutines for MC-backup and DP-backup, the two alter-
natives for “how to update” that are in use these days by
various MCTS algorithms.

• MC-backups are based on the principle of averaging ran-
dom variable samples: Given a new value sample r̄ for
an action a at s〈h〉, r̄ updates the running sample average
Q̂(s〈h〉, a), either knowing or just assuming that this way
Q̂(s〈h〉, a) will eventually converge to the true Q-value
of a at s〈h〉.

• DP-backups implement dynamic programming style es-
timates propagation, resembling Bellman backups in
value iteration. With DP-backups, action value esti-
mates Q̂(s〈h〉, a) are updated by the weighted sum of the
value estimates of the empirically best actions at the out-
comes of a (discovered so far), with the weights being in-
duced by the gradually learned parameters of the MDP’s
stochastic transition function.

Earlier MCTS algorithms, such as flat MC, ε-greedy,
UCT, and their numerous variations (Browne et al. 2012),
all reflected rather directly the algorithms for reinforce-
ment learning-while-acting in multi-armed bandit problems
(MAB) (Robbins 1952): Given a rollout ρ, update (the se-
lected) action value estimates “by ρ”, that is, by the actual
rewards obtained along the rollout. Recent works on MCTS
algorithms for online MDP planning examined the impor-
tant differences between the (single state) MABs and (multi-
state) general MDPs, leading to what was baptized as the
principle of separation of concerns (Feldman and Domshlak
2012): Instead of updating “by ρ”, update (the selected) ac-
tion value estimates “along the trajectory of ρ” by some in-
formation that goes beyond, and possibly even has nothing
to do with, the specific rewards achieved by ρ. In particular,
one can use one of the following.

1. MC-updates along additional rollouts, issued from the
states along ρ according to a special, update-oriented, “es-
timation” policy. Such an UPDATE procedure in particular
gives rise to the BRUE algorithm (Feldman and Domsh-
lak 2012), and it is depicted in Figure 1b, together with a
general template for its ESTIMATE policy.

2. DP-updates along the trajectory of ρ, as depicted
in Figure 1c. This procedure in particular gives
rise to the MaxUCT (Keller and Helmert 2013) and
MaxBRUE (Feldman and Domshlak 2014b) algorithms.

WORST-CASE GUARANTEES VS.
REALISTIC EXPECTATIONS

Our comparison between MC-backups and DP-backups
in MCTS is carried through two particular MCTS al-
gorithms, BRUE (Feldman and Domshlak 2012) and
MaxBRUE (Feldman and Domshlak 2014b), which guaran-
tee exponential-rate reduction of simple regret. The only
difference between BRUE and MaxBRUE is that the former
employs MC-backups while the latter employs DP-backups.
Hence, for ease of presentation, in what follows we refer to
these two algorithms as MC and DP, respectively. Both MC
and DP use uniform sampling for ROLLOUT-ACTION, and

12

MCTS: [input: 〈S,A, Tr,R〉; s0 ∈ S]

while time permits do
ρ← ROLLOUT

UPDATE(ρ)

return arg maxa Q̂(s0〈H〉, a)

procedure ROLLOUT

ρ← 〈〉 ; s← s0; d← 0

while not STOP-ROLLOUT(ρ) do
a← ROLLOUT-ACTION(s〈H − d〉)
s′ ← ROLLOUT-OUTCOME(s〈H − d〉, a)

r ← R
(
s, a, s′

)

ρ [t]←
〈
s, a, r, s′

〉

s← s′; d← d+ 1

return ρ

procedure UPDATE(ρ)
for d← |ρ|, . . . , 1 do
h← H − d
〈s, a, r, s′〉 ← ρ[d]

n(s〈h〉)← n(s〈h〉) + 1

n(s〈h〉, a)← n(s〈h〉, a) + 1

n(s〈h〉, a, s′)← n(s〈h〉, a, s′) + 1

r̄ ← r + ESTIMATE(s′〈h− 1〉)
MC-BACKUP(s〈h〉, a, r̄)

procedure ESTIMATE(s〈h〉)
r̄ ← 0

for d← 0, . . . , h− 1 do
a← EST-ACTION(s〈h− d〉)
s′ ← EST-OUTCOME(s〈h− d〉, a)

r̃d+1 ← R
(
s, a, s′

)

r̄ ← r̄ + r̃d+1

s← s′

return r̄

procedure MC-BACKUP(s〈h〉, a, r̄)
Q̂(s〈h〉, a)←

n(s〈h〉,a)−1
n(s〈h〉,a) Q̂(s〈h〉, a) + 1

n(s〈h〉,a) r̄

procedure UPDATE(ρ)
for d← |ρ|, . . . , 1 do
h← H − d
a← ρ[d].a

s′ ← ρ[d].s′

n(s〈h〉)← n(s〈h〉) + 1

n(s〈h〉, a)← n(s〈h〉, a) + 1

n(s〈h〉, a, s′)← n(s〈h〉, a, s′) + 1

R̂(s〈h〉, a) = R̂(s〈h〉, a) + ρ[d].r

DP-BACKUP(s〈h〉, a)

procedure DP-BACKUP(s〈h〉, a)

Q̂(s〈h〉, a)← R̂(s〈h〉,a)
n(s〈h〉,a)

υ ← 0

for s′ ∈ {s′ | n(s〈h〉, a, s′) > 0} do
υ ← υ +

n(s〈h〉,a,s′)
n(s〈h〉,a) maxa′ Q̂(s′〈h−1〉, a′)

Q̂(s〈h〉, a)← Q̂(s〈h〉, a) + υ

(a) MCTS (b) MC (c) DP

Figure 1: (a) Monte-Carlo tree search general scheme, with “separation of concerns” versions of (b) MC-backup and (c) DP-
backup updates

both use the same ROLLOUT-OUTCOME that samples the
provided generative model of the action’s transition func-
tion. With UPDATE as in Figure 1c, that basically concludes
the definition of DP. The UPDATE procedure of MC in Fig-
ure 1b, and in particular, its ESTIMATE subroutine, need one
more choice to be made.

In analogy to DP-backup that propagates the value of the
empirically best actions, MC in ESTIMATE makes the esti-
mation rollouts along the empirically best actions (selected
by EST-ACTION). Thus, in particular, no implementation
choices are left open here. In contrast, for outcome selec-
tion along the estimation rollouts, two options are plausi-
ble, and both are viable in terms of consistency and perfor-
mance guarantees. One option is to use the generative model
of the action’s transition function, same as in ROLLOUT-
OUTCOME, while another option is to estimate the transition
probabilities, similarly to DP, and draw samples from that
empirical distribution.

The advantage of the second scheme is that the number
of “oracle calls” to the generative model is similar to that
of DP. In contrast, the first scheme performs a factor of H

2
more calls to the generative model. In applications where
such oracle calls are expensive, due to, e.g., a need to sim-
ulate a complex physical model, this can be an important
argument for using the second scheme. However, the advan-
tage of the first scheme is that it is not affected by the errors
in the estimation of the transition probabilities. In what fol-
lows, whenever we need to distinguish between the two op-
tions, we will use MCM to refer to MC with EST-OUTCOME
using the generative model, and MCP to refer to MC with
EST-OUTCOME using the estimated transition probabilities.

As we already mentioned, both DP and MC have been

recently proven to reduce simple regret at exponential
rate. However, the corresponding statements of the formal
bounds in (Feldman and Domshlak 2012) and (Feldman and
Domshlak 2014b) are somewhat involved, and this compli-
cates the comparative analysis and discussion of DP and
MC that we want to make here. Propositions 1 and 2 below
provide much more accessible formal bounds on the perfor-
mance of DP and MC, simplified by assuming B,K � 0,
which allows keeping track only of the highest order factors
of B and K, and replacing uniform ROLLOUT-ACTION with
round-robin, which is equivalent in expectation but allows
for simplifying the bounds further. We note that, while the
bound for DP in Proposition 1 is qualitatively similar to this
in (Feldman and Domshlak 2014b), the bound for MC in
Proposition 2 actually improves over the result in (Feldman
and Domshlak 2012). The proofs are delegated to a techni-
cal report (Feldman and Domshlak 2014a).

Proposition 1 Let πB(s0〈H〉) be the action recommenda-
tion of DP after applying n iterations. Then,

P
{
Q(s0〈H〉, π∗(s0〈H〉))−Q(s0〈H〉, πB(s0〈H〉)) ≥ δ

}

≤ K(BK)H−1e
− δ2n

2K(BK)H−1H2

Proposition 2 Let πB(s0〈H〉) be the action recommenda-
tion of MC after applying n iterations. Then,

P
{
Q(s0〈H〉, π∗(s0〈H〉))−Q(s0〈H〉, πB(s0〈H〉)) ≥ δ

}

≤
(

8BK

δ2

)H−1

(9BK)
1
2 (H−1)2(H − 1)!2e

− 3δ2n

4K(9BK)H−1H2

13

Roughly speaking, the exponents in the bounds in Propo-
sitions 1 and 2 capture the reduction rate of the simple re-
gret, while the multiplicative factors capture the length of
the “cooling periods” after which the respective bounds be-
come meaningful. In that respect, the convergence rates of
DP and MC appear to be comparable, while the “cooling
period” of MC appears to be much longer than that of DP.
The latter suggests, even if only informally, that the empir-
ical performance of DP should be expected to be more at-
tractive than the empirical performance of MC. However, a
deeper inspection of MC and DP below suggests a different
perspective on the relative attractiveness of these two algo-
rithms, and more generally, on the relative attractiveness of
MC-backups and DP-backups in MCTS.

First, in (Feldman and Domshlak 2012) it was shown that
the formal guarantees of MC can be improved by basing the
action value estimators only on a fraction α of the most re-
cent samples. This enhancement was referred in (Feldman
and Domshlak 2012) as “learning by forgetting”. For some
specific values of α convenient for our discussion here, the
bound for MC from Proposition 1 translates to a bound for
the “learning by forgetting” MC(α) as in Proposition 3 be-
low.

Proposition 3 Let πB(s0〈H〉) be the action recommenda-
tion of MC(α) after applying n iterations with a steps-to-go-
dependent averaging fraction αh = 3

(9BK)h−1(h−1)2
. Then,

P
{
Q(s0〈H〉, π∗(s0〈H〉))−Q(s0〈H〉, πB(s0〈H〉)) ≥ δ

}

≤
(

1 +
4

δ2

)H−1

KBH−1e
− 3δ2n

4K(9BK)H−1H2

Comparing now the bounds for DP and MC(α), it seems
that the deficiency of the latter in terms of the worst-case
cooling period not only vanishes with sufficiently small val-
ues of α, but the dependence of the respective multiplicative
factor on K becomes much better than that of DP. More-
over, this improvement seems to come at no cost in terms of
convergence rate, expressed by the exponent. However, as
we explain below, it appears that this significant improve-
ment of the bound in Proposition 3 should be attributed
mostly to the looseness of the bound for the standard setup of
MC, and much less to the actual improvement of the perfor-
mance measures. Indeed, adopting “learning by forgetting”
leads to only minor empirical improvement, if at all.1

In general, two things should be noted with regards to
the above formal bounds at this point. First, by definition,
formal bounds capture the worst-case settings of the MDP
parameters, that is, uniform transition probability functions,
tree-structured state space, etc. As such, the bounds tend
to blur certain advantages of one algorithm over another in
solving MDPs with some specific (and possibly expected
in practice) characteristics. Second, due to conceptual dif-
ferences between the dynamics of MC- and DP-backups,
derivation of the bounds in Propositions 1 and 2 is based
on two very different types of analysis. Hence, unlike what

1This was observed both in our experiments for this work, as
well as in (Feldman and Domshlak 2012).

often happens for conceptually close techniques (Bubeck,
Munos, and Stoltz 2011; Feldman and Domshlak 2012), the
value of formal bounds as indicators for the relative attrac-
tiveness of MC and DP is questionable. Having these two
reservations in mind, in what follows we provide a more
conceptual (aka less mathematically specific) comparative
analysis of MC and DP by exploring several key features of
MDP models, and reasoning about the (possibly different)
effects of each of these features on the performance of the
two algorithms.

Branching factors B and K (The size of the problem)
In both Proposition 1 and Proposition 2, the basis of the
analysis that gives rise to the formal guarantees is the fact
that identifying the optimal action a∗ at the root node s0〈H〉
requires that

(1) the value of a∗ at s0〈H〉 is not too underestimated, and
that

(2) the values of all the other, sub-optimal actions at s0〈H〉
are not too overestimated.

Both MC and DP ensure that these accuracy requirements
are met, yet they differ in the way that these requirements
recursively translate into requirements from the descendants
of s0〈H〉.

In DP, to ensure that a sub-optimal action a is not too
overestimated, all the applicable actions in all of the out-
come states of a must not be too overestimated. Thus, the
accuracy of estimating a sub-optimal action a in DP trans-
lates to accuracy requirements being posed to all the possi-
ble BK immediate action successors of a. In contrast, in
MC, the likelihood that a sub-optimal action a will be too
overestimated is negligible, and this is because the expected
value of the samples that induce the estimate of a is upper-
bounded by the true value of a, regardless of the estimates
of the action successors of a. Thus, the accuracy of estimat-
ing a sub-optimal action a in MC translates to no accuracy
requirements from the successors of a. In sum, in terms
of “not overestimating sub-optimal actions”, MC-backups
seem to be clearly preferred to DP-backups.

Examining now the requirement of not underestimating
the optimal action a∗ too much, meeting this requirement in
DP requires that the optimal actions at all of the outcome
states of a∗ are not too underestimated. Indeed, if the latter
holds, then the maximal action values propagated to a∗ from
its outcome states are also not too underestimating. Thus,
the requirement of “not too underestimating the optimal ac-
tion” a∗ at s0〈H〉 translates in DP into B similar require-
ments being posed to all of the state successors of s0〈H〉 via
a∗.

When it comes to MC, the picture is somewhat more com-
plicated. Not underestimating the optimal action a∗ too
much requires that, in expectation, each of the samples in-
ducing the estimate Q̂(s0〈H〉, a∗) does not underestimate
too much the true value of a∗. This implies that all of the
outcome states of a∗ should “identify” their optimal actions,
which in turn translates into accuracy requirements posed
to all (both optimal and sub-optimal) actions applicable at

14

these outcome states of a∗. As we just mentioned, the accu-
racy requirements from sub-optimal actions in MC are negli-
gible, and thus the effective burden is only with the accuracy
requirements from the optimal actions at the outcome states.

In sum, the requirement of not underestimating the op-
timal action translates to accuracy requirements from the
optimal actions at the outcome states, at different stages of
planning. In the lack of more effective proof methods, the
accuracy of each estimation sample in the proof of Propo-
sition 2 is considered in isolation, and this is precisely the
point where the difference between the bound and the actual
performance may inflate. Indeed, the accuracy of an action
estimate correlates with the accuracy of the same action esti-
mate at subsequent points in time, yet this correlation is not
factored into the bounds.

Importantly, the analysis of MC(α) in that respect is not
any different: partial averaging does not offer a way to fac-
tor this correlation, but only reduces the bound by impos-
ing accuracy requirements on fewer samples. Clearly, as the
number of iterations increases, the correlation increases as
well. The question, however, is when can we expect to have
higher correlation at earlier stages. For instance, when the
probability mass of the transition function concentrates on
a small number of outcomes, the effective action branching
becomes smaller than the nominal action branching B. In
such cases, one should expect to have more samples based
on overlapping rollouts, and thus to have a higher correla-
tion. In any case, when the correlation is high, MC becomes
equivalent to DP in terms of the accuracy requirement on
the optimal action.

In summary, the dependency of DP on B and K is of
order (BK)H , whereas, depending on the correlation, the
dependency of MC on B and K can be of order as small as
BH . Therefore, MC can be expected to be less sensitive than
DP to K, especially when the effective action branching is
relatively low, and thus the correlation is relatively high.

The shape of the reward function If right from the first
steps, the immediate rewards of the optimal actions appear
more attractive than these of the suboptimal actions, then
identifying the optimal action a∗ at s0〈H〉 is somewhat a
simpler problem. The more challenging cases in that respect
are when the discriminative rewards are pushed down the
search tree, similarly to what happens in goal-driven MDPs.
In such cases, identifying the optimal action a∗ at s0〈H〉
requires properly identifying optimal actions far from the
root, where samples are much sparser. Relating this point
to the previous discussion on the size of the problem, it can
be expected that the advantage of MC in the more challeng-
ing cases becomes more dependent on the effective action
branching being relatively low.

The entropy of the transition function For all the
bounds, the factor 1

B

H in the exponent results from the
worst-case transition probability function, which, for each
action, induces a uniform distribution over its outcomes.
Clearly, as the entropy of the transition functions decreases,
the better the bounds and performance of both DP and MC

would be. However, here as well, some differences are ex-
pected depending on the update scheme. Since DP and MCP

use in their UPDATE the estimated transition function, their
value estimations would be skewed towards the value of the
more probable outcomes. Although this skew decreases with
the number of samples, this decrease is slower at the deeper
nodes since they are sampled less frequently. MCM, on the
other hand, is free from this type of inaccuracy and therefore
has certain advantage in that respect.

EXPERIMENTAL STUDY
In what follows, we put the qualitative comparison above
into an empirical test. In previous work, the empirical ef-
fectiveness of online MDP planning algorithms was typi-
cally examined on a set of specific MDP problems, such as,
e.g., the benchmark suites of planning competitions (IPPC).
These benchmarks, however, are problematic to use if one
wants to examine the marginal impact of various parameters
of the MDPs on the effectiveness of the algorithms, because
these parameters simply cannot be controlled. In fact, al-
most all of these benchmarks are too large to compute the
actual value of different actions at a state, and without that,
assessing simple regret of different algorithms is impossi-
ble. Taking that on board, we devised a parametric MDP
model from which one can select MDP instances with (i)
arbitrary set of action values at the initial state, and (ii) ar-
bitrary setting of the parameters discussed in the previous
section. This allows us to experiment with large MDPs, for
which otherwise it would be impossible (in reasonable time
and computational resources) to compute the value function,
and based on it, assess simple regret of different algorithms.

For ease of presentation, in what follows we refer to nodes
s〈h〉 simply by s; the steps-to-go component of the nodes
remains clear from the text. In our base MDP setup, the
horizon is set to H = 10, there are exactly K = 20 ac-
tions applicable at every node, and each node/action pair
induces exactly B equiprobable outcome nodes, exclusive
to that node/action pair, i.e, the induced state-space is tree-
structured, and the transition probability functions are all
uniform. For a node s, an applicable action a, and a possi-
ble outcome s′, the immediate reward is set to R(s, a, s′) =
Q(s,a)
h , and the value of the outcome node receives the re-

mainder V (s′) = Q(s, a)−R(s, a, s′). At any node s, there
is exactly one optimal action, the value of which equals the
value V (s) of the node, whereas all other actions have iden-
tical values of εV (s), for some ε ∈ (0, 1). The choice of ε
plays an important role here. If, for instance, ε is set equally
for all nodes, then basing the value updates in both MC and
DP on random (and not empirically best) action successors
will surface the optimal action at s0, and this because all
the actions will be underestimated by a similar magnitude.
Therefore, in our setup, for all nodes reachable by the opti-
mal policy from s0, we set ε = 0.6, while for all nodes off
the optimal policy, we set ε = 0.8. The only node that is not
properly covered by this categorization is the actual initial
node s0, and there we also set ε = 0.8. In this setup, the es-
timates induced by random updates would not preserve the
right order of the action values, imposing a harder challenge

15

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iterations

Si
m

pl
e

R
eg

re
t

DP
MCP
MCM

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Si
m

pl
e

R
eg

re
t

DP
MCP

MCM

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Si
m

pl
e

R
eg

re
t

DP
MCP

MCM

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Si
m

pl
e

R
eg

re
t

DP
MCP
MCM

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iterations

Si
m

pl
e

R
eg

re
t

DP
MCP

MCM

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Si
m

pl
e

R
eg

re
t

DP
MCP

MCM

B := 200K := 200

BLGL

Figure 2: Experimental results on the base setup with K = 20, B = 20, and all action outcomes being equiprobable (top-
center), as well as on the variants with (↙) K = 200, (↘) B = 200, (↓) K = 200 and B = 200, (←) “good likely” transition
functions, and (→) “bad likely” transition functions.

on the algorithms.

The emphasized plot in the top-center of Figure 2 de-
picts the simple regret obtained by the three examined al-
gorithms, DP, MCP, and MCM, on the base setup as above,
as a function of the number of iterations. While MC here
appear slightly better at the start, DP quickly catches up and
gradually outperforms MC. However, the picture changes
when the base setup is modified in several different ways.
First, when scaling up the problem by increasing K to 200
(bottom-left), or by increasing B to 200 (bottom-right), or
both (bottom-center), MC performs much better than DP
at all times, with MCM being the clear dominator. Second,
the top-left and top-right plots in Figure 2 depict the results
for two setups that deviate from the base only by altering
the entropy of the transition probability functions. In both
setups, for each node s and each applicable action a, one
outcome s′ is substantially more likely than all other, with
P(s′ | s, a) = 0.9 and, for all outcomes s′′ 6= s, P(s′′ |
s, a) = 0.1

B−1 . The difference between the two setups is the
relative value of the more likely outcome s′: In the “good
likely” setup (GL), the more likely outcome is also more
valuable, i.e., R(s, a, s′) + V (s′) > R(s, a, s′′) + V (s′′)
for all s′′ 6= s′, and in the “bad likely” setup (BL), it is the
other way around. In either case, all action-outcome val-
ues are set such that (1) they reflect the value of the action,
i.e.
∑
s′ P(s′ |s, a) (R(s, a, s′) + V (s′)) = Q(s, a), and (2)

each action-outcome value is neither smaller than half of the
action value, nor higher than the maximal immediate reward
(= 1, in our experiments), times the number of steps-to-go.

In both “good likely” and “bad likely” variants, the re-

duction in the entropy of the transition function basically
reduces the effective state branching of the actions, and thus
the correlation between the successive samples in MC is ex-
pected to grow, getting more in line with the optimistic as-
sumption on MC’s dependence on B and K. The results de-
picted in Figure 2 support this expectation. Moving from the
base setup, the performance of MC improves in both “good
likely” and “bad likely” setups, and in fact, in both setups,
MC outperforms DP. Likewise, importantly, while in “good
likely” there is effectively no difference between MCM and
MCP, in “bad likely”, MCM is performing much better than
MCP, with the latter meeting the very poor performance of
DP. Basically, the “bad likely” setup demonstrates how dra-
matic can be the implications of establishing value estima-
tion on the estimated transition probabilities. Here, the un-
derestimation of the values by DP and MCP results in their
very poor performance. To recap Figure 2, it appears that
MC outperforms DP except for on MDPs of relatively small
size, and MCM being justifiably more robust than MCP.

Another important aspect that we examined in our exper-
iments pertains to the dependence of the algorithm perfor-
mance on the shape of the rewards as a function of the node
depth. In the base setup, at any node, the actions are re-
warded proportionally to their actual value, and thus, in par-
ticular, optimal actions have higher immediate rewards than
the sub-optimal actions.

Figure 3 shows the results for two setups that deviate from
the base setup in that aspect as follows. (Both these se-
tups are more challenging than the base, and thus the x-
axis in Figure 3 goes up to 105 iterations, and not to 104

iterations like in Figure 2.) In “first equal” (top-center),

16

0 1 2 3 4 5 6 7 8 9 10
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iterations

Si
m

pl
e

R
eg

re
t

DP
MCP

MCM

0 1 2 3 4 5 6 7 8 9 10
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Si
m

pl
e

R
eg

re
t

DP
MCP

MCM

0 1 2 3 4 5 6 7 8 9 10
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Si
m

pl
e

R
eg

re
t

DP
MCP

MCM

0 1 2 3 4 5 6 7 8 9 10
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

Si
m

pl
e

R
eg

re
t

DP
MCP

MCM

0 1 2 3 4 5 6 7 8 9 10
x 104

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Si
m

pl
e

R
eg

re
t

DP
MCP

MCM

0 1 2 3 4 5 6 7 8 9 10
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Si
m

pl
e

R
eg

re
t

DP
MCP

MCM

BLGL

BLGL

Figure 3: Experimental results on the “first equal” (top-center) and “first few equal” (bottom-center) modifications of the base
setup, as well as on their variants with “good likely” (←) and “bad likely” (→) transition functions.

the immediate rewards differ from the base setup only at
the root, where, instead of rewarding the optimal action
higher than the sub-optimal actions, all the actions have the
same reward of 0.5, independently of the outcome. The
results for the “good likely” and “bad likely” variants of
“first equal” are depicted in top-left and top-right corners
of Figure 3. In the even more challenging setup “first few
equal” (bottom-center), the immediate rewards are set to the
minimum between 0.5 and the action-outcome value, that
is R(s, a, s′) = min{0.5, Q(s, a)}; in the “good likely”
(bottom-left) and “bad likely” (bottom-right) variants, the
appropriate factor is added to Q(s, a).

Comparing the results for the variants of the base setup
in Figure 2 with the results for “first equal” and “first few
equal” in Figure 3, the qualitative relative performance of
DP, MCP, and MCM remains the same, with the absolute
performance of all algorithm decreasing, as expected, from
the base setup to “first equal”, and from “first equal” to
“first few equal”. It should also be noted that here, in con-
trast to the base setup, the advantage of DP over MC under
equiprobable action outcomes was observed also when K
and B were higher than 20. This goes in line with the de-
pendence of MC’s performance on the correlation between
the successive samples, because pushing the discriminative
rewards down the tree delays the correlation. Finally, we
also experimented with various graph-structured (in contrast
to tree-structured) variants of our MDP model. As expected,
the performance of all three algorithms improved with the
degree of the multi-connectedness of the nodes, but the im-
provements were of the same magnitude for all three algo-
rithms. In sum, based on our experiments and in line with

our previous analysis, DP appear more effective than MC as
long as the size of the problem is sufficiently small, but oth-
erwise, MC outperforms DP even under most challenging
conditions, especially if the probability mass of the transi-
tion functions concentrates on very few outcomes.

References
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.
Bjarnason, R.; Fern, A.; and Tadepalli, P. 2009. Lower
bounding Klondike Solitaire with Monte-Carlo planning. In
ICAPS.
Browne, C.; Powley, E. J.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of Monte-
Carlo tree search methods. IEEE Trans. on Comp. Intell.
and AI in Games 143.
Bubeck, S., and Munos, R. 2010. Open loop optimistic
planning. In COLT, 477–489.
Bubeck, S.; Munos, R.; and Stoltz, G. 2011. Pure ex-
ploration in finitely-armed and continuous-armed bandits.
Theor. Comput. Sci. 412(19):1832–1852.
Cazenave, T. 2009. Nested Monte-Carlo search. In IJCAI,
456–461.
Coquelin, P.-A., and Munos, R. 2007. Bandit algorithms
for tree search. In Proceedings of the 23rd Conference on
Uncertainty in Artificial Intelligence (UAI), 67–74.
Eyerich, P.; Keller, T.; and Helmert, M. 2010. High-quality
policies for the Canadian Traveler’s problem. In AAAI.

17

Feldman, Z., and Domshlak, C. 2012. Simple regret opti-
mization in online planning for Markov decision processes.
CoRR arXiv:1206.3382v2 [cs.AI].
Feldman, Z., and Domshlak, C. 2013. Monte-Carlo plan-
ning: Theoretically fast convergence meets practical effi-
ciency. In UAI.
Feldman, Z., and Domshlak, C. 2014a. Monte-Carlo tree
search: To MC or to DP? Technical Report IE/IS-2014-03,
Technion.
Feldman, Z., and Domshlak, C. 2014b. On MABs and sep-
aration of concerns in Monte-Carlo planning for MDPs. In
ICAPS.
Gelly, S., and Silver, D. 2011. Monte-Carlo tree search
and rapid action value estimation in computer Go. AIJ
175(11):1856–1875.
Keller, T., and Helmert, M. 2013. Trial-based heuristic tree
search for finite horizon MDPs. In ICAPS, 135–143.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In ECML, 282–293.
Péret, L., and Garcia, F. 2004. On-line search for solving
Markov decision processes via heuristic sampling. In ECAI,
530–534.
Puterman, M. 1994. Markov Decision Processes. Wiley.
Robbins, H. 1952. Some aspects of the sequential design of
experiments. Bull. Amer. Math. Soc. 58(5):527535.
Rosin, C. D. 2011. Nested rollout policy adaptation for
Monte Carlo tree search. In IJCAI, 649–654.
Sturtevant, N. 2008. An analysis of UCT in multi-player
games. In CCG, 3749.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.
Tolpin, D., and Shimony, S. E. 2012. MCTS based on simple
regret. In AAAI.

18

To Share or Not to Share? The Single Agent in a Team Decision Problem

Ofra Amir and Barbara J. Grosz
School of Engineering and Applied Sciences

Harvard University
oamir@seas.harvard.edu, grosz@seas.harvard.edu

Roni Stern
Department of Information Systems Engineering

Ben Gurion University of the Negev
roni.stern@gmail.com

Abstract

This paper defines a new decision-making challenge for
multi-agent systems, the “Single Agent in a Team Decision”
(SATD) problem. SATD differs from prior multi-agent com-
munication problems in the assumptions it makes about team-
mates’ knowledge of each other’s plans and their possible ob-
servations. The SATD assumptions are more appropriate for
the decision-making settings of multi-agent groups compris-
ing people and computer agents, for which obtaining people’s
complete plans or anticipating all possible events is infeasi-
ble. The paper proposes a novel integrated logical-decision-
theoretic approach to solving SATD problems, called MDP-
PRT. Evaluation of MDP-PRT shows that it outperforms a
previously proposed communication mechanism that did not
consider the timing of communication and compares favor-
ably with a coordinated Dec-POMDP solution that can ex-
ploit its full knowledge of all possible observations.

Introduction
This paper defines a new decision-making challenge for
multi-agent systems, the “Single Agent in a Team Decision”
(SATD) problem, which may be described informally as fol-
lows: An individual collaborating in a multi-agent team ob-
tains new information, unanticipated at planning time. This
(single) agent has incomplete knowledge of others’ plans.
It must decide whether to communicate this new informa-
tion to its teammates, and if so, to whom, and at what time.
SATD differs from previously studied multi-agent commu-
nications decisions problems (Pynadath and Tambe 2002;
Xuan, Lesser, and Zilberstein 2001; Roth, Simmons, and
Veloso 2005, inter alia) in that it does not assume complete
knowledge of other agents’ plans or policies nor that all ob-
servations are knowable in advance. It assumes instead that
agents have some knowledge of each other’s intentions and
plans which can be used to reason about information sharing
decisions.

SATD arises from the ways in which effective teamwork
decomposes complex activities into constituent tasks and
delegates responsibility for those tasks to team members
with appropriate expertise and capabilities. Human team-
mates typically make only general plans and allocate tasks
at a high level of abstraction. They do not necessarily know

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

each other’s plans nor consider together all contingencies
of all possible plans for doing those tasks. Their cognitive
load is lowered significantly as a result. To make appropri-
ate decisions about sharing information, they must reason
with only uncertain knowledge of their teammates’ plans.
Agents participating in mixed networks comprising people
and computer agents or supporting people in team settings
also must be capable of such reasoning. The SATD prob-
lem can also arise in purely computer-agent teamwork set-
tings. For example, in ad hoc teamwork (Stone et al. 2010),
an agent joining an existing team only after planning time
lacks significant information about other agents’ plans, but
might still need to reason about which observations to share
with teammates.

We are investigating SATD in the context of develop-
ing computer agents to support care teams for children
with complex conditions (Amir et al. 2013). Agents able
to support health-care teams by identifying the information
to share, with whom and when have the potential to sub-
stantially improve health outcomes. Care teams for children
with complex conditions typically involve many caregivers
– a primary care provider, specialists, therapists, and non-
medical care givers. The care team defines a high-level care
plan that describes the main care goals, but there is no cen-
tralized planning mechanism that generates a complete plan
for the team or that can ensure coordination. Caregivers are
unaware of their collaborators’ complete plans, yet their in-
dividual plans often interact. Communicating relevant infor-
mation among team members is crucial for care to be coor-
dinated and effective, but doing so is costly and often insuf-
ficient in practice.

To address SATD, the paper proposes a novel, inte-
grated Belief-Desire-Intention (BDI) and decision-theoretic
(DT) representation that builds on the strengths of each ap-
proach. In particular, our approach integrates the Probabilis-
tic Recipe Trees (PRT) representation of an agent’s beliefs
about another agent’s plans (Kamar, Gal, and Grosz 2009)
with a Markov Decision Process (MDP) to support a col-
laborating group in their execution of a plan. We call this
integrated representation MDP-PRT.

We evaluated an agent using MDP-PRT to solve the
SATD problem in an abstract setting using the ColoredTrails
framework (Gal et al. 2010). Results show that it outper-
forms the inform algorithm proposed by Kamar et al. (2009).

19

In addition, we compared the MDP-PRT agent’s perfor-
mance with that of Dec-POMDP policy that was informed
about all possible observations. The MDP-PRT agent ob-
tains results close to those obtained by this Dec-POMDP
policy despite lacking such complete knowledge and thus
a coordinated policy that was derived using full information
about all possible observations.

The paper makes three contributions. First, it formally
defines the SATD communication problem and contrasts it
with previously studied communication problems in multi-
agent settings. Second, it proposes a new representation
(MDP-PRT) that enables agents to reason about and solve
the SATD communication problem. Third, it demonstrates
the usefulness of this representation and analyzes the effect
of agents’ uncertainties and of communication cost on the
performance of a team.

Problem Definition
In this section, we formally define the SATD problem. SATD
arises in the context of a group activity of a team of agents.
We assume the group’s plan meets the SharedPlans specifi-
cation for collaborative action (Grosz and Kraus 1996). Two
particular properties of SharedPlans are important: plans
– which decompose into constituent tasks – may be only
partially specified and agents may not know the details of
constituent tasks for which they are not responsible. An
instance of the SATD problem is represented by a tuple
〈ai,o∗,A−i,bSP,V, ϕcomm,C〉:
• ai : the agent that observes new information.
• o∗: the new information ai obtained.
• A−i: the other agents that are part of the team.
• bSP: ai’s beliefs about the SharedPlan of the team. ai

knows its own plans but he is uncertain about others’
plans.

• V: the utility function; its value is the utility of completed
constituent tasks.

• ϕcomm: a function that produces a modified b′SP under
the assumption that the agents inA−i (or a subset of them)
are informed about o∗.

• C: the cost of communicating o∗.
SATD is the problem of ai determining whether to com-

municate o∗ to agents in A−i and if so, at what time. It
has two components: determining which agents are candi-
dates for receiving the information and deciding whether,
and when, to send information to (some or all) candidates.
This paper focuses on the constituent problem of deciding
whether and when to send information.

Related Work
In this section we discuss prior work on communication in
multi-agent systems from BDI and decision theory litera-
ture and distinguish SATD problem from previously studied
communication problems. Theories of teamwork and collab-
oration (Grosz and Kraus 1996; Cohen and Levesque 1990;
Sonenberg et al. 1992) emphasize the key role of com-
munication in teamwork. BDI approaches to multi-agent

planning often base their communication mechanisms on
these theories. For example, the joint intentions model (Co-
hen and Levesque 1990) defines conditions for commu-
nications, such as communicating to establish joint inten-
tions, communicating the achievement of a goal, and com-
municating when learning that a goal cannot be achieved.
These ideas were used in the STEAM multi-agent frame-
work (Tambe 1997): In this framework agents use a deci-
sion tree to determine whether to communicate informa-
tion about operation termination by considering their be-
lief about the joint intentions of the team and weighing
(the domain specified) costs and risks of not communi-
cating. Other works have developed teamwork program-
ing languages that include explicit rule-based communica-
tion mechanisms (Weerasooriya, Rao, and Ramamohanarao
1995; Pokahr, Braubach, and Lamersdorf 2005). These ap-
proaches do not reason about probabilities and utilities, and
therefore it is hard to quantify and evaluate their perfor-
mance (Pynadath and Tambe 2002).

Prior work on decision theoretic approaches to multi-
agent communication can generally be classified into two
types: approaches that reason about communication during
planning, and approaches that reason about communication
during execution. The DEC-POMDP-COM model (Gold-
man and Zilberstein 2003) and the COM-MTDP model (Py-
nadath and Tambe 2002) provide a theoretical model for
reasoning about communication during planning and in-
clude communication actions in the agents’ policies. Spaan
et al. (Spaan, Gordon, and Vlassis 2006) developed a model
in which the information to be communicated is included in
the actions vectors of agents, and is then incorporated into
the observation vectors received by agents at the next time
step. Such offline approaches assume that all possible obser-
vations that agents may receive are known during planning
and that there is a centralized planning process that generates
the policies. In contrast, SATD models situations in which
there is no centralized planning and not all observations are
known in advance.

Other approaches reason about communication during ex-
ecution time (Xuan, Lesser, and Zilberstein 2001; Oliehoek,
Spaan, and Vlassis 2007; Emery-Montemerlo et al. 2005).
Such approaches aim to identify situations in which com-
munication would improve the group’s performance, based
on observations obtained by agents. This approach reduces
computational complexity since agents do not need to con-
sider in advance what to communicate for each possible sce-
nario, but rather only reason about communication given
their actual observations. For example, Roth et al. (Roth,
Simmons, and Veloso 2005) reason about communication
by growing a tree of the possible joint beliefs of the team.
This work has been extended to consider not only when
to communicate, but also what subset of observations to
communicate to other team members (Roth, Simmons, and
Veloso 2006). These approaches assume a known joint pol-
icy, such that agents can determine what action each agent
in the team would take following communication. Wu et
al. (Wu, Zilberstein, and Chen 2011) propose an algorithm
for online planning and communication that merges obser-
vation histories based on their similarity in terms of cho-

20

sen actions. They then use these merged histories to reason
about history incompatibility, which determines communi-
cation. This model does not include communication cost,
but instead tries to maximize utility while minimizing the
amount of communication. In SATD, reasoning about com-
munication is also done during execution. However, SATD
differs from the above works in that it does not assume
knowledge about the possible observations that may occur,
nor a coordinated policy generated by a centralized process.
Instead, SATD assumes that agents know the intentions of
other agents and can therefore reason about how their plans
will be affected without having complete knowledge of their
policy.

There are few prior works that have combined BDI
concepts with decision theoretic approaches to reason
about communication. Inspired by BDI teamwork, Kwak et
al. (Kwak et al. 2011) define trigger points in which com-
munication should be considered in the context of a DEC-
POMDP model. These trigger points occur when there is an
ambiguity in the mapping from a joint policy of an agent to
its action. When such ambiguities arise, agents reason about
the possible gains from communication, where an agent can
communicate either by asking for information or by telling
other agents about their observations. This model still re-
quires knowledge of all possible observations that might be
obtained during execution. Kamar et al. (Kamar, Gal, and
Grosz 2009) developed the PRT representation of collabo-
rative activities which we discuss in the approach section.
Interactive POMDPs (Gmytrasiewicz and Doshi 2005) also
integrate beliefs about other agents in an MDP framework.
In I-POMDPs, beliefs are over agent “types”; types are dis-
tinguished by an agent’s optimality criteria and other canon-
ical POMDP components. In contrast, in MDP-PRT the be-
liefs are over collaborating agents’ plans and are compactly
represented in PRTs.

Approach
This section proposes a solution to the 2-agent SATD
problem 〈a1, a2, bSP , V, o

∗, ϕcomm, C〉, in which an agent
a1 learns new information o∗ and needs to reason about
whether and when to communicate o∗ to a2. We discuss ex-
tensions to settings with more agents in the Discussion sec-
tion. To solve the 2-agent SATD communication problem,
we use an MDP in which the states explicitly represent a1’s
beliefs about a2’s plans. The choice of representation for the
agent’s beliefs bSP is key, as it affects the way bSP can be
revised and therefore the computational efficiency of solving
the MDP. Our approach uses a PRT to represent bSP . Hence-
forth we refer to the integrated MDP-PRT representation as
“MDP-PRT”.

The PRT representation extends the SharedPlans (Grosz
and Kraus 1996) formalization by introducing decision-
theoretic notions of uncertainty and utilities to the hierar-
chical plan representation for recipes. Formally, a PRT for
a complex action defines a probability distribution over the
possible recipes (plans) for accomplishing that action. The
recipes are represented in an AND/OR tree. AND nodes rep-
resent complex actions that need to be carried out. Probabil-
ities over OR branches represent the agent’s belief about its

partners’ possible alternatives for carrying out these com-
plex actions. We chose PRTs because they are a compact
representation and their decomposable structure allows rea-
soning about non-dependent activities separately.

The MDP-PRT 〈A,S, s0, R, Tr〉 is defined by the follow-
ing:
• A: the set of actions
• S: the set of states
• s0: the initial state
• R: the reward function
• Tr: the transition function
A includes two actions: inform (communicating o∗) and

¬inform (not communicating o∗). Each state in S encom-
passes a1’s beliefs about a2’s plans (i.e., the PRT corre-
sponding to bSP).1 We denote a state by bSP . The ini-
tial state bSP 0 corresponds to a1’s initial beliefs about the
SharedPlan. The reward function is a function of V and C:
the reward for a state bSP is the value of the constituent
tasks completed in the last time step minus the cost of com-
munication if a1 chose to inform a2. The transition func-
tion, Tr(bSP

′, a, bSP), defines the probability of reaching
state bSP

′, when taking action a in state bSP . a1’s belief
may change for two different reasons. First, if a1 communi-
cates o∗ to a2, then bSP changes to ϕcomm(bSP , o

∗). Sec-
ond, as a2 executes actions in its constituent plans, a1 may
“observe” a2’s actions or results of those actions and learn
more about a2’s plans. To reflect this reasoning, we define
an additional function, ϕobs(bSP). This function takes as in-
put bSP and returns the set of next expected beliefs bnext

SP
and their probabilities Pr(bnext

SP).
To illustrate the MDP-PRT components, we consider the

care coordination problem. The primary care provider (PCP)
has beliefs about the neurologist’s treatment options and the
likelihood each might be chosen. When the PCP considers
whether to share new information about the patient (e.g. that
the child had a seizure), she reasons about the effect of this
information on the neurologist’s plans (ϕcomm). Whether or
not she decides to inform the neurologist, her beliefs also
evolve with time as she learns about actions the neurologist
has executed (ϕobs). For example, if she learns that the neu-
rologist ordered certain lab tests, she might revise her beliefs
if the lab tests are consistent with some plans but not with
others.

Algorithm 1 gives the pseudo-code for Tr(bSP
′, a, bSP).

First, if a1 chooses to inform, bSP is updated using ϕcomm

(lines 2-3). If bSP
′ is one of the possible next states accord-

ing to ϕobs, its probability based on ϕobs is returned (lines
4-6). If it’s not included in the set of next possible beliefs
the transition probability is 0 (line 7). We note that although
each state encompasses a probability distribution over plans,
the state space of the MDP is not continuous because the set
of considered possible beliefs is discrete and finite.

An optimal single agent communication policy can
be computed using any MDP solver, e.g. value itera-
tion (Sondik 1971), which was used in our implementation.

1bSP also includes a1’s own plans but a1 does not need to rea-
son about them in the context of information sharing.

21

Algorithm 1: The transition function.
Input: bSP

′, a, bSP

1 Pr(bSP
′)← 0

2 if a = inform then
3 bSP = ϕcomm(bSP , o

∗)

4 〈bnext
SP ,Pr(bnext

SP)〉 = ϕobs(bSP)

5 if bSP
′ in bnext

SP then
6 return Pr(bSP

′) according to Pr(bnext
SP)

7 return 0

This policy computation is performed when a new observa-
tion o∗ is obtained by an agent ai at time t. During subse-
quent rounds, the agent uses the computed policy to decide
whether to inform a2 of o∗.

The MDP-PRT can be viewed as a decision-theoretic rep-
resentation that supports the monitoring and execution of a
SharedPlan. While we focused on the question of sharing
new information, a similar approach can be taken to reason
about whether to help a teammate or ask teammates for in-
formation (Kamar, Gal, and Grosz 2009). We also note that
while in our empirical domain agents could observe each
other’s actions, the MDP-PRT can also be used if not all
actions are observable, by modifying ϕobs to consider the
possibility of not observing an action. We discuss possible
extensions of the MDP-PRT to larger groups of agents in the
discussion section.

Empirical Methodology
We tested the MDP-PRT agent using a modified version of
the Colored Trails (CT) game used by Kamar et al. (2009).
An example configuration of the game is shown in Figure 1
The game is played by two agents, the Partner (PAR) and
the Observer (OBS), on a 4 × 4 board. Each square in the
board is of one of four colors. At the onset of the game,
PAR is located on a board square ((0, 0) in Figure 1). It pos-
sesses chips of the four colors and uses them to move on
the board: it can move to an adjacent square (vertically or
horizontally) by giving up a chip of the same color as the
destination square. Its task is to reach the goal square.

Each square has some probability that a trap will appear
on it based on its color. Traps are represented by the “bomb”
icon. When an agent moves into a trap square, it cannot
move further and the game ends. PAR has uncertain knowl-
edge about the distribution of traps (i.e. the probability a trap
will appear on each color), but does not know their exact lo-
cations. OBS learns the exact locations of traps at the onset
of the game. It also knows the chips that PAR possesses and
its knowledge regarding trap distributions.

The game is cooperative and the score (utility) is cal-
culated as follows: the agents receive 100 points if PAR
reaches the goal and 5 points for each remaining chip it
holds at the end of the game. If PAR does not reach the goal,
agents are penalized according to its distance from the goal
(10 times Manhattan distance from the goal).

Each turn in the game consists of two phases: In the first
phase, the communication phase, OBS can choose to per-

PAR

Goal

PAR’s chips:

2 3 3 3

0

1

2

3

0 1 2 3

Figure 1: An example CT game configuration.

form an inform action that will reveal trap locations to PAR.
Informing, however, incurs a cost that is deducted from the
agents’ final score. OBS therefore needs to reason about the
utility of an inform action by weighing the benefits and costs
entailed by it. In the second, movement, phase, PAR moves
using its chips. The game ends when one of the following
occurs: PAR reaches the goal or moves to a trap location, or
after a maximal fixed number of turns passes.

This game setting encompasses some of the key char-
acteristics of the healthcare domain and enables studying
them more abstractly: (1) PAR’s alternative plans and the
uncertain knowledge of OBS about these plans correspond
to caregivers’ alternative treatment plans and their incom-
plete knowledge of others’ treatment plans; (2) OBS seeing
PAR’s location corresponds to a caregiver observing other
caregivers’ actions by reading notes in the medical record;
(3) learning about traps corresponds to caregivers detecting
problems with a treatment plan after observing a change in
patient status, and (4) communication is costly due to care-
givers’ limited time and many responsibilities.

MDP-PRT for the CT Domain
We implemented OBS as an MDP-PRT agent that makes the
decision of whether to share trap locations (o∗) with PAR.
PAR’s task of getting as close as possible to the goal repre-
sents its constituent task in the collaborative activity of OBS
and PAR. At the onset of the game, when OBS learns the
true locations of traps, value iteration is run to generate a
communication policy. The initial PRT, representing OBS’s
beliefs about PAR’s possible plans (bSP), is derived from
the board and from OBS’s knowledge of PAR’s knowledge
of trap distributions. For example, if OBS knows PAR has
no knowledge about trap locations, it assigns equal proba-
bilities to all shortest paths that PAR can take.
ϕcomm revises OBS’s beliefs assuming it communicates

the trap locations to PAR. It computes new shortest paths
assuming that PAR will choose one of the shortest paths to-
wards the goal that do not pass through any traps. For exam-
ple, in the configuration shown in Figure 1, and assuming
that PAR has no knowledge of trap locations, OBS’s initial
bSP will assign equal probabilities to all shortest paths from
PAR’s location (0, 0) to its goal (2, 3). When considering the
“inform” action in this state, the modified belief according
to ϕcomm will assign equal probabilities to all shortest paths
that do not pass through (2, 0).

Whether or not OBS chooses to inform PAR, the genera-
tion of the next possible states bSP

′ also takes into account
PAR’s next possible movements (which OBS will observe
during execution). The states correspond to a1’s modified

22

beliefs according to ϕobs. That is, OBS knows it will observe
PAR’s movements at execution time and reasons about the
possible changes in the probabilities of different paths. For
each possible movement, ϕobs generates a new state bSP

′

by eliminating plans that do not include that movement and
re-normalizing the probabilities of the remaining paths.

During the game, OBS revises its belief (bSP) at each turn
by eliminating paths that do not include the observed move-
ments. It decides whether to communicate based on its com-
puted policy.

Results
To evaluate the MDP-PRT agent we ran several types of ex-
periments. The first experiment compared the performance
of the MDP-PRT agent with that of a PRT agent using the
inform algorithm of Kamar et al. (2009). The algorithm de-
cides whether to inform at the onset of the game by com-
paring the expected utility of the PRT representing OBS’s
initial beliefs with the expected utility of a revised PRT de-
scribing the belief about the plans if trap locations are shared
(ϕcomm). If the increase in utility is greater than the com-
munication cost, the agent communicates. This approach is
myopic as it does not consider the possibility of waiting to
learn more about PAR’s plans and possibly communicating
at a later stage.

We used 6 different board configurations varying the trap
distribution in different colors. We generated 6 board in-
stances for each trap distribution and varied the communi-
cation cost between runs. We ran each combination of board
instance and communication cost 10 times. In all games,
PAR knew the trap distribution but not the actual trap lo-
cations; its moves were chosen randomly based on its ex-
pected utility (e.g. it chose between shortest paths weighing
trap probability). OBS knew that PAR knew only the trap
distribution. PAR randomly chose one of its shortest paths
and moved accordingly. Once OBS communicated the trap
locations, PAR randomly chose a shortest path that did not
pass through any traps.

Table 1 shows the average utility achieved by the agents
in experiments with different communication costs. Results
are averaged across all board instances and the 10 runs of
each instance. The maximal utility that could be obtained in
the game ranged between 100 and 125, depending on PAR’s
chips and the goal location. Thus a communication cost of
10 is about 10% of the maximal possible utility. As expected,
the MDP-PRT agent outperforms the PRT agent across all
configurations and communication costs. All reported dif-
ferences are statistically significant (P < 0.01).

Comm. Cost 5 10 20 30
PRT 67.67 65.17 60.17 55.17

MDP-PRT 77 75.57 72.83 70.03

Table 1: The average utility for each agent and communication
cost, averaged over all board instances.

The MDP-PRT agent saves unnecessary communication
and thus outperforms the PRT agent. To illustrate this differ-
ence, we consider the board configuration shown in Figure 1.
In the first round of the game, PAR is 2 squares away from

the trap. When the PRT agent decides whether to commu-
nicate, it considers the distribution over possible paths that
PAR might choose. One of these paths goes through the trap;
so there is some probability that PAR will reach the trap lo-
cation. The OBS (PRT) agent will decide to communicate
if the difference between the expected utility of the updated
PRT after informing and the expected utility of the PRT rep-
resenting PAR’s plans without informing is higher than the
communication cost. In contrast, the MDP-PRT agent would
also take into account the possibility of informing at a later
stage: Since PAR is two squares away from the trap, the
MDP-PRT agent will choose not to inform at this turn, since
if PAR would move right in the next turn, then it is unlikely
it chose a plan that passes through a trap location.

Figure 2(a) shows the average utilities achieved by the
agents in boards with probability of 0.15 for traps to appear
on any board square; Figure 2(b) shows the average utilities
in boards with probability of 0.15 for traps to appear on any
red or green square. (There are more traps on the board con-
figurations in (a) than in (b).) As can be seen in the figure,
the MDP-PRT agent outperformed the baseline PRT agent
in both. The difference in utilities grows with communica-
tion cost. When communication cost increases, the MDP-
PRT agent benefits more from avoiding unnecessary com-
munication. In the configuration shown in Figure 2(a) we
also observe a higher decrease in utilities for the MDP-PRT
agent. This is a result of the combination of boards that have
more traps together with the high communication costs.

25.00

35.00

45.00

55.00

65.00

75.00

85.00

5 10 20 30

U
ti

lit
y

Communication Cost

MDP-PRT

 PRT

(a) All 0.15 configuration

25.00

35.00

45.00

55.00

65.00

75.00

85.00

5 10 20 30

U
ti

lit
y

Communication Cost

MDP-PRT

 PRT

(b) RG 0.15 configuration

Figure 2: Average utilities obtained by the agents: (a) boards with
probability of 0.15 for traps to appear on any color; (b) boards with
probability 0.15 for traps to appear on any red or green squares.

Reasoning about the future, however, has a cost in terms
of computation time. The MDP-PRT agent needs to generate
and solve the MDP for the given game configuration, which
requires more computation than the one-shot decision made
by the PRT agent at the onset of the game. On average, deci-
sion time was about two times slower when using the MDP-
PRT agent (mean = 29.82 msec), as compared to the PRT
agent’s (mean = 13.71 msec).

Comparison with Dec-POMDP
Key aspects of SATD are that agents cannot anticipate a1
observing o∗ nor form a coordinated policy. This limits the
possible utility achievable in SATD, as a coordinated policy
that takes into account knowledge of possible observations
during planning time can lead to better performance. We il-
lustrate this using the board instance shown in Figure 1. As
described above, the MDP-PRT agent can delay its decision

23

about communication to the second round, after it observes
the new location of PAR. If PAR moves to (1,0), the agent
might decide to communicate. A Dec-POMDP with prior
knowledge of the possible observations can do better. Had
the agents known in advance that traps might appear only on
the two red squares and that OBS will learn the true trap lo-
cations, they could have agreed on a communication policy,
allowing PAR to learn something about the trap locations
even when OBS does not communicate. For example, they
could have agreed that OBS will communicate if the trap is
in location (1, 2) but not if it is on (2, 0). Then, if OBS does
not communicate, PAR learns that there is a trap on (2, 0).

To compute a policy for the setting in which agents an-
ticipate that OBS will learn about trap locations, we solve
a Dec-POMDP that has information about the trap distribu-
tions, and knows that OBS will learn the true locations of
traps. A state in the Dec-POMDP for this game includes the
true location of the traps, the location of PAR, its chips and
its knowledge of the trap distribution. For example, if traps
can appear only on red squares, a board configuration with
two red squares such as the board shown in Figure 1 will
induce four possible initial worlds states: no traps on the
board; 2 traps on the board, one on (2,0) and one on (1,2); a
trap on (1,2) but not on (2,0); a trap on (2,0) but not on (1,0)
(as in the world state shown in the figure). These four initial
states also describe the location of PAR ((0, 0) in the exam-
ple), its chips and its knowledge of the trap distribution. At
the onset of the game, OBS observes the true state of the
world (i.e. the true trap locations).

Solving the Dec-POMDP results in an optimal joint pol-
icy that achieves the maximal utility. For PAR, the policy
specifies movement actions. For OBS, the policy specifies
whether or not to inform PAR of the trap locations at each
communication stage. Note that the Dec-POMDP policy can
always perform at least as well as the MDP-PRT agent, as it
has more knowledge about the world. .

As a result of the computational complexity of the Dec-
POMDP, we restricted the experiments to boards that had at
most two possible trap locations. We varied the probability
that a possible trap location actually includes a trap, with
values Pt = 0.2, 0.5, 0.8, and generated 6 board configura-
tions for each of these values. Pt determines the probabil-
ity distribution over world states. For example, in the board
shown in Figure 1, the two red squares are possible trap lo-
cations. If Pt = 0.2, then the probability of the world state
shown in Figure 1 is Pt · (1−Pt) = 0.2 ·0.8 = 0.16 because
(2,0) has a trap while (1,2) does not.

A Dec-POMDP policy maximizes the expected utility
over all possible world states while MDP-PRT is run on a
particular world state (e.g. a particular board with traps al-
ready determined). Thus, for each board configuration and
trap distribution, we ran MDP-PRT on boards representing
all possible world states and compute a weighted average
of their utility based on the distribution over world states.
For example, the board instance in Figure 1 is one of four
instances for a board configuration with possible traps on
squares (2,0) and (1,2). The other three instances include a
board with no traps, a board with a trap in (1,2) but not in
(2,0) and a board with traps on both locations. We ran the

MDP-PRT agent on each of these boards to compare it with
the Dec-POMDP policy.

The first two rows in Table 2 show the utility obtained by
the MDP-PRT agent and the expected utility of a joint pol-
icy generated by a Dec-POMDP. These utilities are averaged
over all 6 board configurations and trap probabilities.

5 10 25 50
Dec-POMDP 101.8 101.46 100.2 98.13

MDP-PRT (accurate) 100.52 99.08 94.38 87.5
MDP-PRT (inaccurate) 99.75 97.46 92.13 83.67

Table 2: The performance of MDP-PRT (with accurate and inac-
curate beliefs) and an optimal Dec-POMDP approach.

As expected, the Dec-POMDP always performs better as
a result of its additional information at planning time. The
difference is statistically significant (P < 0.01). As can be
seen in the table, increasing communication cost leads to
larger differences between the Dec-POMDP and MDP-PRT
utilities, a result of the additional communication required
by the MDP-PRT agent. When communication cost is up to
10% of the utility of reaching the goal (100 points), MDP-
PRT compares well with the Dec-POMDP policy (less than
3% difference). When communication cost rises to 25% or
50% of goal utility, the difference grows, but the average
utility achieved by MDP-PRT is still within 15% of the op-
timal utility. Increasing the trap probability decreases the
utility obtained by both agents; it also increases the gap be-
tween MDP-PRT and the Dec-POMDP because world states
that include more traps and require more communication are
more likely.

Inaccurate Beliefs About Others’ Plans
The MDP-PRT agent requires knowledge of the probabil-
ity distributions over the plans of other agents and a way
to update this distribution given new information. In prac-
tice, it is possible (and likely) that agents will estimate these
probabilities inaccurately. To examine the possible effects of
such inaccuracies on agents’ performance, we ran additional
experiments. In these experiments OBS knew a probability
distribution over PAR’s chips, but did not know the actual
chips PAR had. Specifically, it assumed a uniform distribu-
tion between 1 to 4 chips of each color. Consequently, the
initial PRT and updates to the PRT could be inaccurate in
their assignment of probabilities to possible plans.

The last row of Table 2 shows the performance of the
MDP-PRT agent using this inaccurate PRT estimation. As
expected, inaccurate beliefs lead to a decrease in utility
(P < 0.05). In these settings, however, the average decrease
in utility was small (less than 5%). Figure 3 shows the per-
formance of three different agents on a particular board con-
figuration that included only one possible trap location with
probability 0.5 of a trap on that location. In this configu-
ration, the Dec-POMDP never communicates and thus al-
ways obtains the maximal possible utility. Compared to the
MDP-PRT with an accurate PRT representing PAR’s possi-
ble plans, the inaccurate model communicated more often,
resulting in lower utility. Its inaccurate probability estima-
tion assigned higher probability to paths that pass through
traps than their actual probability. In general, wrong esti-

24

80

90

100

110

120

5 10 25 50

Dec-POMDP

MDP-PRT (acc)

MDP-PRT (inacc)

Communication Cost

U
ti

lit
y

Figure 3: Utility for board configurations with one possible trap.

mation of the PRT can lead to communicating too much or
communicating too little.

Discussion and Future Work
This paper defines the Single Agent in a Team Decision
Problem, SATD, which concerns decisions made by a single
agent that is part of a group during collaborative activities,
decisions that affect the performance of the group. We focus
on the problem of communication where an agent obtains
new, unanticipated, information during a collaborative ac-
tivity and needs to reason about whether and when to share
this information with its teammates. This formulation of the
problem differs from previously addressed multi-agent com-
munication problems in that it does not assume that all ob-
servations are known and considered in advance and does
not assume complete knowledge of other agents’ plans or
policies. Instead, it assumes that agents have some knowl-
edge of other agents’ intentions and plans that enables them
to reason about the effect of sharing information.

Defining and solving the SATD problem is a first step in
our effort to develop computer agents that would support the
care team of children with complex conditions. Our goal is
to develop agents that would remove some of the commu-
nication burden from caregivers by identifying what infor-
mation should be shared and with whom. In mixed network
teams of humans and computational agents and in dynamic
domains with frequent changes, such as this health-care do-
main, it is unlikely that teams can or will produce a com-
plete long-term joint plan or be able to anticipate all possible
events. As a result, agents supporting people in such settings
cannot directly apply existing decision-theoretic approaches
to multi-agent communication. It may, however, be possible
to elicit the goals, intentions and partial plans of team mem-
bers and use those in conjunction with domain knowledge to
reason about the effect of new information on a collaborative
activity. We thus introduce the assumption that agents’ have
a way to update their beliefs about others’ plans based on
new information and the world state. While in this paper we
consider agents reasoning about the utility of plans, it is also
possible to consider weaker notions of the effect of informa-
tion sharing on other agents’ plans. For example, we might
consider the probability that the current plan would fail or
the probability that a collaborating agent would change its
plan given the new information.

To solve the SATD problem, we propose a combined
BDI/Decision-theoretic approach that augments MDPs by
adding an explicit representation of an agent’s belief about
its partners’ plans as part of the state representation and in-

cluding a belief update function that estimates the possible
plans resulting from sharing new information with team-
mates. We chose to use PRTs to model this belief, because
they offer a compact and decomposable representation of
multi-agent activities: in settings in which different parts of
plans are independent of each other, PRTs enable modifying
only that part of the plan that is affected by new informa-
tion. The SATD definition, however, is general, and beliefs
about plans can be represented in different ways, e.g. MDP
policies or BDI plans.

The assumption that agents can reason about the plans of
their teammates raises the question of how to obtain such
knowledge. There are several possibilities we intend to ex-
plore in future work: First, in some settings, the team makes
an initial partial plan together and allocates responsibilities.
From these partial plans, agents can infer an initial belief
about their teammates’ plans. Further, the planning process
may reveal not only agents’ possible plans, but also some of
their intentions and goals. The (possibly partial) knowledge
about its partners’ intentions and goals, together with do-
main knowledge, can enable an agent to reason about the al-
ternative plans that its partners’ may consider based on new
information. For example, in a path-finding domain such as
our evaluation domain, knowing the goal location and that
shortest paths result in higher utilities enables the Observer
to infer the new paths the Partner is likely to choose given
new information about traps. In the medical domain, there
are often guidelines for treating different conditions which
can be used to reason about alternative plans of other care
providers.

In addition, agents may be able to observe some or all
of their teammates’ actions and refine their beliefs about
their plans based on those observations using plan recog-
nition techniques (Amir and Gal 2011; Geib and Goldman
2001). For instance, physician notes in an electronic medi-
cal record provides doctors with information about the plans,
actions and rationales of other members of the care team.
For teams collaborating over a long time horizon, including
health-care teams for chronically ill patients, learning could
be used to better estimate team members’ plans and the ways
they change with new information.

In future work we intend to extend the MDP-PRT ap-
proach to larger teams and investigate efficient ways to rea-
son about determining the agents with which to share infor-
mation. A trivial approach is for an agent to consider each
of the other agents separately. However, this approach is in-
tractable and disregards interactions between other agents’
plans. Therefore, agents will need to utilize the decom-
posability of the team’s plan to focus on relevant agents
and the relevant aspects of their plans. We will also imple-
ment MDP-PRT agents that would support people, where
the agents will focus on reducing the communication burden
of people while people will focus on executing and revis-
ing their plans given the information they receive. We fur-
ther plan to test our agents in more complex domains that
simulate additional aspects of care coordination such as un-
certainty about the utilities of plans and possibly conflicting
goals. Finally, we plan to investigate ways to obtain and up-
date beliefs about other agents’ plans as described above.

25

Acknowledgements
We thank Lee Sanders, Ece Kamar and Kobi Gal for help-
ful discussions. The research reported in this paper was sup-
ported in part by a grant from the Nuance Foundation.

References
Amir, O., and Gal, Y. 2011. Plan recognition in virtual
laboratories. In Proceedings of the 22nd international joint
conference on Artificial Intelligence, 2392–2397.
Amir, O.; Grosz, B. J.; Law, E.; and Stern, R. 2013. Collab-
orative health care plan support. In Proceedings of the 12th
international conference on Autonomous agents and multi-
agent systems, 793–796.
Cohen, P., and Levesque, H. 1990. Intention is choice with
commitment. Artificial intelligence 42(2):213–261.
Emery-Montemerlo, R.; Gordon, G.; Schneider, J.; and
Thrun, S. 2005. Game theoretic control for robot teams.
In IEEE International Conference on Robotics and Automa-
tion, 1163–1169.
Gal, Y.; Grosz, B.; Kraus, S.; Pfeffer, A.; and Shieber, S.
2010. Agent decision-making in open mixed networks. Ar-
tificial Intelligence 174(18):1460–1480.
Geib, C. W., and Goldman, R. P. 2001. Plan recognition in
intrusion detection systems. In DARPA Information Surviv-
ability Conference, volume 1, 46–55.
Gmytrasiewicz, P. J., and Doshi, P. 2005. A framework for
sequential planning in multi-agent settings. J. Artif. Intell.
Res.(JAIR) 24:49–79.
Goldman, C. V., and Zilberstein, S. 2003. Optimizing in-
formation exchange in cooperative multi-agent systems. In
Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, 137–144.
Grosz, B., and Kraus, S. 1996. Collaborative plans for com-
plex group action. Artificial Intelligence 86(2):269–357.
Kamar, E.; Gal, Y.; and Grosz, B. 2009. Incorporating
helpful behavior into collaborative planning. In Proceedings
of The 8th International Conference on Autonomous Agents
and Multiagent Systems, 875–882.
Kwak, J.-y.; Yang, R.; Yin, Z.; Taylor, M. E.; and Tambe, M.
2011. Robust execution-time coordination in dec-pomdps
under model uncertainty. In Sixth Annual Workshop on Mul-
tiagent Sequential Decision Making in Uncertain Domains
(MSDM-2011), 39.
Oliehoek, F. A.; Spaan, M. T.; and Vlassis, N. 2007. Dec-
pomdps with delayed communication. In The 2nd Work-
shop on Multi-agent Sequential Decision-Making in Uncer-
tain Domains.
Pokahr, A.; Braubach, L.; and Lamersdorf, W. 2005. Jadex:
A bdi reasoning engine. In Multi-agent programming.
Springer. 149–174.
Pynadath, D. V., and Tambe, M. 2002. The communicative
multiagent team decision problem: analyzing teamwork the-
ories and models. Journal of Artificial Intelligence Research
16(1):389–423.

Roth, M.; Simmons, R.; and Veloso, M. 2005. Reasoning
about joint beliefs for execution-time communication deci-
sions. In Proceedings of the 4th international joint confer-
ence on Autonomous agents and multiagent systems.
Roth, M.; Simmons, R.; and Veloso, M. 2006. What to com-
municate? execution-time decision in multi-agent POMDPs.
Distributed Autonomous Robotic Systems 7 177–186.
Sondik, E. J. 1971. The optimal control of partially ob-
servable markov decision processes. PhD the sis, Stanford
University.
Sonenberg, E.; Tidhar, G.; Werner, E.; Kinny, D.; Ljungberg,
M.; and Rao, A. 1992. Planned team activity. Artificial
Social Systems 890.
Spaan, M. T.; Gordon, G. J.; and Vlassis, N. 2006. Decen-
tralized planning under uncertainty for teams of communi-
cating agents. In the fifth international joint conference on
Autonomous agents and multiagent systems, 249–256.
Stone, P.; Kaminka, G. A.; Kraus, S.; Rosenschein, J. S.;
et al. 2010. Ad hoc autonomous agent teams: Collaboration
without pre-coordination. In AAAI.
Tambe, M. 1997. Agent architectures for flexible practical
teamwork. AAAI 97(1):997.
Weerasooriya, D.; Rao, A.; and Ramamohanarao, K. 1995.
Design of a concurrent agent-oriented language. In Intelli-
gent Agents. Springer. 386–401.
Wu, F.; Zilberstein, S.; and Chen, X. 2011. Online plan-
ning for multi-agent systems with bounded communication.
Artificial Intelligence 175(2):487–511.
Xuan, P.; Lesser, V.; and Zilberstein, S. 2001. Communica-
tion decisions in multi-agent cooperation: Model and exper-
iments. In Proceedings of the fifth international conference
on Autonomous agents, 616–623.

26

Computing Contingent Plans via Fully Observable Non-Deterministic Planning∗

Christian Muise and Vaishak Belle and Sheila A. McIlraith
Department of Computer Science

University of Toronto, Toronto, Canada.
{cjmuise,vaishak,sheila}@cs.toronto.edu

Abstract

Planning with sensing actions under partial observability is
a computationally challenging problem that is fundamental
to the realization of AI tasks in areas as diverse as robotics,
game playing, and diagnostic problem solving. Recent work
on generating plans for partially observable domains has ad-
vocated for online planning, claiming that offline plans are
often too large to generate. Here we push the envelope on
this challenging problem, proposing a technique for generat-
ing conditional (aka contingent) plans offline. The key to our
planner’s success is the reliance on state-of-the-art techniques
for fully observable non-deterministic (FOND) planning. In
particular, we use an existing compilation for converting a
planning problem under partial observability and sensing to
a FOND planning problem. With a modified FOND planner
in hand, we are able to scale beyond previous techniques for
generating conditional plans with solutions that are orders of
magnitude smaller than previously possible in some domains.

1 Introduction
An agent planning to achieve a goal in a partially observ-
able environment with sensing actions (PPOS) has the op-
tion of choosing how to act online by interleaving planning,
sensing, and acting; or choosing how to act offline by gener-
ating a plan with decision points predicated on sensing out-
comes. In this paper we investigate the latter. In particular,
we examine the problem of generating conditional plans for
planning problems with incomplete information about the
initial state, deterministic actions, and sensing actions. In
this work, we use the terms “offline planning” and “condi-
tional planning” interchangeably to always refer to the of-
fline generation of contingent plans; the online variant will
be referred to as “online contingent planning.” Our focus
here is on a particular class of problems where the initial
state specification includes a set of state constraints called
state invariants. These are commonly used to model the be-
haviour of a device, or physical environments with which
the agent is interacting. We further assume that uncertainty
decreases monotonically, i.e. once a property of the world is
known, it can change but cannot become unknown again.

∗This paper also appears in the Proceedings of the Twenty-
Eighth Conference on Artificial Intelligence (AAAI-14).
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

There are merits and shortcomings to both online and of-
fline planning in this context. Online contingent plans are
generally easier to compute since integrating online sensing
with planning eliminates the need to plan for a potentially
exponential (in the size of relevant unknown facts) number
of contingencies. In the absence of deadends, online contin-
gent planning can be fast and effective. Recent advances in-
clude CLG and CLG+ (Albore, Palacios, and Geffner 2009;
Albore and Geffner 2009), K-Planner (Bonet and Geffner
2011), and SDR (Brafman and Shani 2012).

In contrast, planning offline constructs conditional plans
with decision points for sensing outcomes and guarantees
that the goal will be achieved if it is possible to do so.
The plan is larger than an online plan but has the merit
that it is generalized to deal with alternative sensing out-
comes. Indeed plan existence for conditional planning is
2-EXP-complete (Rintanen 2004; Baral, Kreinovich, and
Trejo 2000). More importantly, because offline planners
are able to search and deliberate, they have the capacity to
avoid deadends, and also to support the generation of op-
timized high quality plans. Some early conditional plan-
ners were based on partial order planning (e.g., CNLP (Peot
and Smith 1992), Cassandra (Pryor and Collins 1996)) and
Graphplan (e.g., SGP (Weld, Anderson, and Smith 1998)).
MBP (Bertoli et al. 2001) and BBSP (Rintanen 2004) are
more recent BDD-based model checking planners. Plan-
ners based on heuristic search include Contingent-FF (Hoff-
mann and Brafman 2005), POND (Bryce, Kambhampati,
and Smith 2006), and most recently CLG which has an of-
fline variant (Albore, Palacios, and Geffner 2009). Finally,
the conditional plan we consider is similar to the “execution
structure” of Kuter et al.’s “conditionalized plan” (2007), but
differs in construction and generality of what the plan repre-
sents. Experimental results reported in the literature appear
to indicate that CLG represents the state of the art in terms
of scalability of offline conditional planning.

In this paper we present PO-PRP, a conditional planner.
PO-PRP plans achieve the goal for all consistent sequences
of observations for which a solution exists. The key to
our planner’s success is its reliance on state-of-the-art tech-
niques for fully observable non-deterministic (FOND) plan-
ning. In particular, we use an existing compilation by Bonet
and Geffner (Bonet and Geffner 2011) (henceforth BG) for
converting a PPOS problem to a FOND planning problem.

27

All actions are treated as deterministic with the exception
of sensing actions, which are encoded as non-deterministic
actions. We then modify a state-of-the-art FOND planner,
PRP (Muise, McIlraith, and Beck 2012), to compute strong
cyclic plans in the form of policies, which we roll-out into
plans represented as DAGs. We address a number of criti-
cal challenges, leading to a conditional planner that is able
to scale beyond previous techniques for offline planning and
that is able to compute solutions that are orders of magnitude
smaller than state-of-the-art CLG in some domains.

2 Contingent Planning via FOND Planning
In this section, we formulate the PPOS problem, and then
review the translation of PPOS problems to FOND ones.

Syntax and Interpretation. Following BG, we specify
the problem in a STRIPS-like language, where actions can
additionally have conditional effects. Formally, a PPOS do-
main is a tuple P = 〈F ,A,O, I,G〉, where F is the set of
fluent atoms, A is the set of actions, O is the set of observa-
tions, I is a set of clauses over F that determines the initial
state, and G is a conjunction of atoms over F determining
the goal condition. The specification is interpreted over a
set of (world) states, which are essentially truth valuations
to the atoms in F . We say a literal l holds in a state s iff
s assigns l to be true. This is extended for connectives in
an obvious way. In particular, since I is a set of clauses, I
would hold in a number of states; the belief state b is the set
of all (world) states where I holds. By extension, we say a
formula α holds in b iff α holds in every state s ∈ b.

For a ∈ A, we let Pre(a) be a conjunction of atoms to
denote its preconditions, and Eff(a) be a set of pairs 〈c, l〉
to capture its conditional effects. Observations o ∈ O are
of the form 〈c, l〉 with the understanding that when c is true,
o informs the agent about the truth of l. In practice, this is
achieved by treating observations o as a separate category of
actions which have c as the precondition, and l as the effect.1
We say an action a is applicable in s iff Pre(a) holds in s.
Analogously, we say a is applicable in b iff a is applicable
in every s ∈ b. On performing a in b, a successor belief
state b′ is defined by performing a in each s ∈ b. On per-
forming an observation o = 〈c, l〉 in b, the successor belief
state b′ is the maximal set of states in b agreeing on l. By
extension, a sequence a0 ·a1 · · · ak, possibly involving obser-
vations, is applicable in b if a0 is applicable in b, resulting in
a successor belief state b1, and inductively, ai is applicable
in bi, ultimately resulting in bk. A belief state b′ is said to be
reachable from b if there is some sequence of actions and
observations that when applied to b results in b′.

Solutions. Generally with PPOS problems, a solution is
rarely a simple sequence of actions, because the agent may
need to perform a number of sensing actions to determine
aspects of the world based on which further actions can be
taken. Therefore, a solution to a PPOS problem is a policy

1Our sensor model differs slightly from BG in that they assume
sensing actions are triggered as soon as the preconditions hold. Our
planner, on the other hand, chooses to apply sensing actions when
needed, just like ordinary physical actions.

Figure 1: Example solution to the CTP. Circles represent the ac-
tion to take or observation to be made while boxes contain edge
labels indicating the sensing outcome that has occurred.

Π that is best viewed as a branching structure, usually called
a conditional plan, induced by the outcomes of sensing ac-
tions (Geffner and Bonet 2013). Equivalently, one may view
Π as a partial function from belief states to actions (Geffner
and Bonet 2013). Such a function would then advise the
subsequent action to be taken based on the actual observa-
tion. Finally, we say that Π solves the PPOS problem P iff
the executions advised by Π are applicable in the belief state
b for P , and they result in belief states b∗ where the goal
condition G holds.

While conditional plans are usually trees, in this work we
reduce the redundancy by representing many belief states as
a single node in a DAG. Crucially, a node may correspond
to a partial belief state, capturing many configurations of the
agent’s belief. As an example PPOS problem, consider the
Canadian Traveller’s Problem (CTP) where an agent must
navigate a city with roads that may or may not be traversable
(due to large amounts of snow fall). Sensing the status of a
road can only be done when the agent is adjacent to it. If we
consider the class of maps that have a pair of roads between
every two adjacent locations in a chain, exactly one of which
is traversable, then an obvious strategy presents itself: sense
one of the two roads that leads to the next location; if it is
traversable then take it; otherwise take the other road. Naive
solutions to the problem are exponential in size (every new
location has a new choice of two roads), but in this work we
strive to generate plans such as in Figure 1.

Compiling Away Uncertainty. Computing successor be-
lief states b′, often called belief tracking, is non-trivial.
Note, for example, that applying actions and observations
over all world states (as needed for obtaining b′) is clearly
exponential in |F|. In recent work, belief tracking is shown
to be tractable against the contingent width of a PPOS prob-
lem, which is claimed to typically be small for most real-
world domains (Albore, Palacios, and Geffner 2009). Thus,
it follows that for many interesting domains, belief track-

28

ing is quadratic in |F|. Nonetheless, even a quadratic fac-
tor is computationally challenging in large domains. A sec-
ond key result is that a PPOS problem can be translated into
a FOND one (Albore, Palacios, and Geffner 2009). This
supports the exploitation of state-of-the-art heuristic search
techniques for classical planning. Of course, the quadratic
belief tracking problem has a natural analogue in the trans-
lation, and so computational issues persists.

Interestingly, BG show that when we further restrict our-
selves to the so-called simple PPOS problems, belief track-
ing is linear in |F| . Informally, simple problems are mo-
tivated by the observation that many domains can be char-
acterized by state invariants, and actions typically do not
depend on fluents whose values are unknown. In precise
terms, invariant clauses are clauses that hold in every world
state (Helmert 2009), and often represent multivalued func-
tional fluents. The second assumption in simple problems is
that the body of conditional effects cannot mention hidden
literals, that is, literals l such that I 6|= l and I 6|= ¬l. Hidden
literals, however, may appear in the preconditions of actions
and may also appear in the effects of actions. Following BG,
Definition 1. (Simple PPOS Problems.) A PPOS problem
P = 〈F ,A,O, I,G〉 is simple if the non-unary clauses in I
are invariant, and no hidden fluent appears in the body of a
conditional effect.
Most significantly, features of simple problems include:

• Effective Characterization: Suppose I∗ are the non-
unary clauses in I and b is the belief state for I in P . If
b∗ is reachable from b and the literals in S are known to
hold in b∗, then b∗ is completely characterized by I∗ ∪ S .

• Monotonicity: Suppose b′ is reachable from b and l is
known in b′. If b′′ is reachable from b′, then l is also
known in b′′.

From PPOS to FOND. Adapting the work of BG, we now
present a translation from simple PPOS problems to FOND
ones, where the non-deterministic actions are from the sen-
sor model. The main idea is to replace every literal l with
fluent atoms Kl and K¬l, which denotes knowing that l is
true vs. false.
Definition 2. Suppose P = 〈F ,A,O, I,G〉 is a simple
PPOS problem. We define K′(P) = 〈F ′,A′, I ′,G′〉 as a
fully-observable non-deterministic planning problem where

1. F ′ =
⋃

l∈F {Kl,K¬l};
2. A′ is the set of actions A′A ∪ A′O ∪ A′V , where,

(a) A′A: for every a ∈ A, there is an action a′ ∈ A′A such
that if l ∈ Pre(a) then Kl ∈ Pre(a′), and if 〈c, l〉 ∈
Eff(a) then {〈Kc,Kl〉, 〈¬K¬c,¬K¬l〉} ⊆ Eff(a′);

(b) A′O: for o = 〈c, l〉 ∈ O, there is an action a′ ∈ A′O
such that Pre(a′) = Kc ∧ ¬Kl ∧ ¬K¬l with two possi-
ble non-deterministic effects, Eff1(a′) = {〈>,Kl〉} and
Eff2(a′) = {〈>,K¬l〉};

(c) A′V : for every (c ⊃ l) ∈ I∗, there is an action a′ ∈ A′V
such that Pre(a′) = Kc and Eff(a′) = {〈>,Kl〉};

3. I ′ = {Kl | l ∈ I}; and
4. G′ = {Kl | l ∈ G};

We use the notation Kc and ¬K¬c when c = l1 ∧ . . . ∧ lk to
mean (Kl1 ∧ . . . ∧ Klk) and (¬K¬l1 ∧ . . . ∧ ¬K¬lk) respec-
tively. The key differences between Definition 2 and BG are
that (1) we use ¬Kl ∧ ¬K¬l as part of the precondition for
a sensing action and (2) we assume that the agent is free
to choose when a sensing action occurs. The former helps
avoid inconsistent beliefs during search, and the latter is a
restriction that can be removed easily if so desired.

The intuition is this: since unary clauses in I are clearly
known, we index K to these literals in I ′; A′V , then, rep-
resents the invariants in I. A′A determines when the agent
would know the effect of an action. Sensing actions are
the only non-deterministic actions in the translated FOND
problem, and these indicate that at execution time, the agent
would either come to know that the literal is true or would
come to know that the literal is false. In practice, on per-
forming such a non-deterministic action, we will be track-
ing two possible successors for a world state corresponding
to each outcome. Finally, the goal state is one where every
literal in the original goal G is known to be true.

Analogous to the notion of a policy Π at the level of be-
lief, the solution to a FOND problem is a policy (i.e. a partial
function) Π′ that maps (world) states to actions. Applicabil-
ity and goal reachability are defined for the FOND problem
also in an analogous manner. Finally, the translation is jus-
tified by means of a soundness and completeness result by
BG: a policy Π′ obtained for K′(P) can be converted to a
policy Π for P , and vice versa.

3 Approach
The modified BG translation described in Section 2 provides
a FOND encoding of our PPOS planning problem, K′(P),
in which sensing actions are encoded as non-deterministic
actions. Our planner, PO-PRP, leverages state-of-the-art
FOND planner PRP (Muise, McIlraith, and Beck 2012), ex-
tended with conditional effects (Muise, McIlraith, and Belle
2014) and is modified to address three critical challenges for
dealing with PPOS problems. FOND planners are gener-
ally predicated on an assumption of fairness – if an action is
executed infinitely many times, every non-deterministic out-
come will occur infinitely often (Cimatti et al. 2003). A key
challenge was addressing the fundamental violation of fair-
ness by sensing actions. A second challenge was to suitably
handle the computation of indirect effects of actions (ram-
ifications) resulting from the state invariants. A third criti-
cal element was leveraging a technique used in PRP, strong
cyclic detection, to produce compact conditional plans.

3.1 From PRP to PO-PRP
We review and elaborate upon key elements of PRP that are
essential to PO-PRP, with particular focus on one aspect of
the planner referred to as strong cyclic detection (SCD). Our
interest in the SCD procedure of PRP stems from the fact
that we can leverage it for computing a compact conditional
plan given the policy PO-PRP generates (cf. Section 3.4).

Problem Specification. PO-PRP takes as input a simple
PPOS problem P and outputs a conditional plan. The first

29

step of PO-PRP is to apply the augmented BG translation de-
scribed in Section 2 to P , generating the associated FOND
problem K′(P). From this point, the problem specification is
identical to that of PRP, which can be found in (Muise, McIl-
raith, and Beck 2012). The details are not necessary to the
results that follow. The translated planning problem K′(P) is
input as a PDDL file to PO-PRP, which uses the SAS+ rep-
resentation (Helmert 2009). A significant property of PRP
(likewise PO-PRP), is that states are represented as partial
states – a subset of literals that is interpreted as a conjunc-
tive formula, compactly representing a family of states. We
exploit this compact representation to generate small-sized
conditional plans (cf. Section 3.4).

General Approach. Cimatti et al. (2003) identify three
types of plans for FOND problems: weak, strong, and strong
cyclic. Intuitively, a weak plan corresponds to an “optimistic
plan” that reaches the goal under at least one possible set of
action outcomes of the actions in the plan. A strong plan cor-
responds to a “safe plan” and is a closed policy that achieves
the goal in a finite number of steps while never visiting the
same state twice. Often, however, weak plans are not accept-
able and strong plans do not exist. As a viable alternative,
a strong cyclic plan is a closed policy with the property that
every reachable state will eventually reach the goal via the
policy under an assumption of fairness.

PRP creates a strong cyclic plan in the form of a policy
that maps states to actions. The representation of this pol-
icy, however, is non-standard. Rather than storing an explicit
mapping of complete states to actions, PRP creates a set of
condition-action pairs P, each of the form 〈p, a〉 ∈ P with p
a partial state. In order to return a unique action for a given
state s, there is a total ordering over the pairs that allows
us to use P and simply return the action in the “most pre-
ferred” pair 〈p, a〉 such that s |= p (ordered, for example wrt
distance from goal). We will use P(s) to designate the pair
that is most preferred, and we say that P handles state s if P
returns some pair. PRP’s core algorithm is as follows:

1. Let Open = {s0} and Cls = ∅;
2. Select and move a state s from Open to Cls such that,

(i) If P(s) = ⊥, compute a classical plan for s and aug-
ment the policy with the result

(ii) If P(s) = 〈p, a〉 and a ∈ AO, add to Open the states
{Prog(s, a,Eff1(a)), Prog(s, a,Eff2(a))} \Cls;2

(iii) If P(s) = 〈p, a〉 and a < AO, add to Open the state
Prog(s, a,Eff(a)) if it is not in Cls;

(iv) If P(s) = ⊥, process s as a deadend;

3. If Open is empty, return P. Else, repeat from step 2;

Note that step 2(i) is essentially computing a weak plan by
way of solving a classical planning problem. In Section
3.3, we describe more precisely how this search procedure
is modified to incorporate indirect effects of actions (ramifi-
cations) found in the translated PPOS problems.

2Prog(s, a, e) is the progression of s wrt a’s effect e and is de-
fined as usual for planning with conditional effects (Reiter 2001).

The PRP planner has a number of components (described
in (Muise et al., 2012)) that are key to the success of PO-
PRP, including (1) deadend detection, generalization, and
avoidance, (2) stopping conditions for weak plans, and (3)
conditions for terminating the simulation of action effects
(replacing steps 2(ii) and 2(iii)). It is this final phase that we
discuss below.

Strong Cyclic Detection. PRP has the facility to “mark”
certain pairs in the policy P to indicate that if 〈p, a〉 is
marked, then P is a strong cyclic plan for every state s where
P(s) = 〈p, a〉. This feature allows PRP to forgo steps 2(ii)
and 2(iii) if the pair is marked – instead of expanding the
state with every possible outcome, the state s is considered
handled completely and the process continues. While re-
producing the full strong cyclic detection (SCD) procedure
is beyond the scope of this paper, later we do rely on one
aspect of SCD for the export of conditional plans.

PRP will only allow 〈p, a〉 to be marked if P is guaranteed
to return a marked pair P(s′) = 〈p′, a′〉 for every state s′ that
could be reached by the pair 〈p, a〉. In other words, we have
the following property (following Definition 7 and Theorem
3 of (Muise, McIlraith, and Beck 2012)):

Proposition 1. The SCD procedure of PRP ensures that a
pair 〈p, a〉 of policy P is marked only if for every state s
such that P(s) = 〈p, a〉 and every non-deterministic effect
Eff of action a, the pair P(Prog(s, a,Eff(a))) = 〈p′, a′〉 is
marked or p′ is a goal.

3.2 Violating Fairness with Sensing Actions
Following Cimatti et al. (2003), solutions to non-
deterministic planning problems typically rely on an as-
sumption of fairness with respect to non-deterministic ac-
tions: if an agent executes a non-deterministic action in-
finitely many times, every one of its outcomes will occur
infinitely often. Unfortunately, in our current PPOS prob-
lems, the only non-deterministic actions are sensing actions
and they are decidedly unfair. The outcome of a sensing
action will reflect the state of the world, which is unchang-
ing unless changed by an action. Fortunately, since we as-
sume that the state of the world only changes as the result of
the actions of the plan (i.e., there are no exogenous actions)
then once a fluent has been sensed, the planner should not
be compelled to execute the sensing action again because
the value of the fluent is known.

This is realized by our problem encoding, K′(P), together
with the assumption of monotonicity of knowledge. Recall
that a precondition of any sense action is that the outcome is
currently not known and the effect is that one of the literal
or its negation is known, violating the precondition for the
sense action to be executed again. This together with mono-
tonicity ensures that a particular ground sensing action can
only ever be executed at most once during online execution.
As a result, the space of solutions to the FOND planning
problem, and subsequently the space of conditional plans,
will never contain a cycle with a sensing action. This key
property allows us to preserve the properties of our FOND
planner, despite the inherent unfairness of sensing actions.

30

3.3 Computing Ramifications
When state invariants or state constraints are combined with
an action theory, they result in indirect effects of actions –
further consequences of an action that result from enforc-
ing the truth of the state invariants. Understanding what
effects should be generated and how is an instance of the
ramification problem, a well-studied problem in Knowledge
Representation (KR). A variety of solutions have been pro-
posed for dealing with this issue, including compilation of
these indirect effects or ramifications into further direct ef-
fects of actions, representing indirect effects as actions that
are triggered by states, representing indirect effects as fur-
ther axioms or derived predicates, etc. (e.g., (Pinto 1999;
McIlraith and Scherl 2000; Strass and Thielscher 2013)).

Our BG inspired encoding, K′(P), captures these indi-
rect effects as a distinguished set of so-called invariant ac-
tions, A′V . Intuitively, following the execution of a regular
action, these invariant actions should be executed as book-
keeping actions to compute all indirect effects of the action.
Unfortunately, if left unconstrained, this can lead to exten-
sive wasted search effort in parts of the state space that will
never be reached during execution, as well as the discovery
of meaningless deadends that PO-PRP will try to avoid.

We elected to continue to compute the effects of invariants
via the application of actions so that the heuristics PO-PRP
uses to compute a weak plan would inform the computation
of ramifications. Further, PRP’s/PO-PRP’s use of regres-
sion to compute condition-action pairs would become pro-
hibitively complex were we instead to compile the ramifica-
tions into extra effects of actions. Inspired by KR research
on the ramification problem, we modified the search proce-
dure of PO-PRP to compute the indirect effects of actions by
applying invariant actions at every node in the search until
quiescence. That is, until no more invariant actions are ap-
plicable. To avoid state explosion, we enforce an arbitrary
ordering over the application of invariant actions. Given the
existing restrictions for simple domains, enforcing the order
does not alter the state that the planner reaches once there are
no more applicable invariant actions. This is because there is
a unique interpretation in these simple domains, and because
knowledge is assumed to accumulate monotonically.

3.4 Exporting a Conditional Plan
Like PRP, PO-PRP produces a policy in the form of
condition-action pairs, which, in principle, could be used if
the belief of the agent is maintained in its compiled form.
Since this cannot be guaranteed, we convert the policy into
a form more traditionally used for PPOS solutions: a con-
ditional plan. The policy quite often will be far smaller
than the conditional plan it implicitly represents, but there
is merit to producing one: it helps in verifying PO-PRP’s
final solution, and it provides a plan in a form suitable for
execution by an agent that does not maintain its belief in a
compiled form (e.g., a simple controller).

While conditional plans are typically tree structures, PO-
PRP conditional plans are constructed more compactly as
DAGs. Nodes in the DAG correspond to either actions
drawn from A′A, or decision points – sensing actions drawn

from A′O whose outgoing edges denote the possible obser-
vations. There are three additional distinguished node types:
a single source node denoting the first action of the plan,
deadend nodes where no plan exists, and goal nodes.

To convert PO-PRP’s policy P to a conditional plan, we
use an approach that essentially simulates P on every pos-
sible action outcome. Whenever we see a repeated state,
we need not continue expanding the conditional plan. Intu-
itively, the procedure is as follows:

1. Let Open = {s0}, Cls = ∅, and 〈N, E〉 = 〈{s0}, ∅〉;
2. Select and move a state s from Open to Cls such that,

(i) Let P(s) = 〈p, a〉 and if a ∈ A′O let S ucc =
{Prog(s, a,Eff1(a)), Prog(s, a,Eff2(a))} (otherwise
let S ucc = {Prog(s, a,Eff(a))});

(ii) Add S ucc \Cls to N and Open;
(iii) Add (s, s′) to E for every s′ in S ucc;

3. If Open is empty, return 〈N, E〉. Else repeat from 2.
We further modify the DAG 〈N, E〉 so that every state s ∈ N
is labelled with the action a from the pair P(s) = 〈p, a〉, and
every exit edge from a state labelled with an action a ∈ A′O
is labelled with the appropriate observation outcome. Addi-
tionally, we reduce the graph by merging any state labelled
with an invariant action into its successor.

The similarity to PRP’s general approach (described
above) is not coincidental: both approaches operate by enu-
merating the reachable states of P. To avoid a full state ex-
plosion of reachable states we can appeal to PO-PRP’s SCD
procedure and create a more compact conditional plan. The
key is to replace every state Prog(s, a,Effi(a)) in S ucc on
line 2(i) with p whenever P(Prog(s, a,Effi(a))) = 〈p, a〉 is
marked as strong cyclic. This means that the closed list Cls
will contain both complete and partial states of the FOND
encoding, K′(P). The partial states p contain only the rel-
evant information for a strong cyclic solution to exist with
P, and this allows us to reuse parts of the conditional plan
for all states s such that P(s) = 〈p, a〉. As an example, con-
sider the CTP problem from earlier. The states computed on
the modified line 2(i) would be partial states that retain the
belief about future roads, but forgo knowledge about roads
observed in the past. In this way, the agent can use the same
conditional plan regardless of how it has travelled so far.
Theorem 1. Given a simple PPOS problem P , the condi-
tional plan produced by PO-PRP is sound.

This follows from Proposition 1 and the soundness and
completeness of the BG translation from P to K′(P); the
soundness of the partial policy produced by PO-PRP with re-
spect to the class of FOND problems represented by K′(P);
and by the correctness of the transformation of the partial
policy with respect to K′(P) into a compact conditional plan
with respect to the original PPOS problem.
Theorem 2. Given a simple PPOS problem P , PO-PRP will
return a conditional plan if one exists.

This similarly follows from the soundness and complete-
ness of the BG translation of P into a FOND problem, to-
gether with the property, inherited from PRP, that if a strong
cyclic solution exists for K′(P), then PO-PRP will compute
it and export it as a conditional plan with respect to P .

31

Problem
Time (seconds) Size (actions + sensing) PO-PRP Policy Size

CLG PO-PRP− PO-PRP CLG PO-PRP− PO-PRP all strong used

cballs-4-1 0.20 0.03 0.02 343 365 261 150 24 125
cballs-4-2 19.86 0.6 0.67 22354 18643 13887 812 46 507
cballs-4-3 1693.02 87.03 171.28 1247512 899442 671988 3753 81 1689

cballs-10-1 211.66 1.63 1.57 4829 5096 4170 1139 20 815
cballs-10-2 T M M T M M - - -

ctp-ch-1 0.00 0.00 0.00 5 5 4 10 10 9
ctp-ch-5 0.02 0.01 0.00 125 125 16 52 52 37

ctp-ch-10 2.2 0.08 0.02 4093 4093 31 131 127 72
ctp-ch-15 133.24 2.79 0.07 131069 131069 46 233 227 107
ctp-ch-20 T M 0.22 T M 61 361 352 142
doors-5 0.12 0.00 0.01 169 174 82 55 18 55
doors-7 3.50 0.04 0.04 2492 2603 1295 123 16 114
doors-9 187.60 1.07 1.07 50961 53942 28442 194 16 182
doors-11 T M M T M M - - -

wumpus-5 0.44 0.14 0.16 854 441 233 706 160 331
wumpus-7 9.28 1.14 1.54 7423 1428 770 2974 241 992
wumpus-10 1379.62 7.56 11.17 362615 4693 2669 8122 281 2482
wumpus-15 T 51.06 86.16 T 25775 15628 21342 304 8241
wumpus-20 T M M T M M - - -

Table 1: Comparing compilation time and conditional plan size for CLG and PO-PRP. Also listed are statistics on the size of
policy PO-PRP generates. Bold represents the best performance, while T and M represent time limit or memory exceeded.

4 Evaluation
We compared PO-PRP with the state of the art in offline
conditional planning, CLG (Albore, Palacios, and Geffner
2009), to assess both the efficiency of the solving process
and succinctness of the generated plans. We measure the ef-
ficiency in terms of the time it takes to compute a complete
solution, and the succinctness in terms of the generated con-
ditional plan. All experiments were conducted on a Linux
desktop with a 3.4GHz processor, with time / memory lim-
its of 1hr / 2GB respectively. The times listed here do not
include parsing, but this portion of the solving process never
exceeded 3 seconds in the problems tested.3

We consider four domains that fall under the category of
simple domains with partial observability and sensing ac-
tions: Coloured Balls (cballs), Canadian Traveller’s Problem
(ctp-ch), Doors (doors), and Wumpus World (wumpus). The
cballs domain involves navigating a known maze to sense for
coloured balls and placing them in the correct bin (there is
uncertainty in the ball locations and the colour of the balls).
The ctp-ch is the variant of the Canadian Traveller’s Prob-
lem introduced earlier in the paper where the map consists
of a chain of locations connected with a pair of roads (one
of which is safe to travel on). The doors domain requires the
agent to find the unknown position of a door in a long wall
before moving on to another wall. Finally, the classic wum-
pus domain requires the agent to navigate through a maze of

3The conversion to SAS+ rarely created multi-valued variables;
so we restricted the invariant synthesis of the parser to 3 seconds.

wumpus monsters and pits (which can be sensed in a neigh-
bouring location) in order to retrieve a bag of gold. Aside
from ctp-ch, we retrieved all problems from the benchmark
set that is included with the online contingent planner of BG,
K-Planner (Bonet and Geffner 2011).4 All problems, exam-
ple plans, and PO-PRP source is available online at,

http://www.haz.ca/research/poprp/

When measuring the size of the conditional plan, we ad-
ditionally considered the size of the conditional plan that
is produced when we disable the SCD procedure. In such
cases, the conditional plan is almost always a tree, as every
belief state reachable by the policy is distinct. We use PO-
PRP− to designate the use of PO-PRP with SCD disabled
when exporting the conditional plan.

To further assess the succinctness of the partial policy that
PO-PRP generates, we include the size of the policy prior to
computing the conditional plan. Recall that the policy PO-
PRP produces is a mapping of partial belief states to an ac-
tion – it thus has the potential to be far more compact than
a traditional mapping from belief states to actions. Addi-
tionally, we list the number of pairs in the policy that were
marked as strong cyclic as well as the number of pairs that
were used during the construction of the conditional plan.

Table 1 shows the results for a selection of problems from
the four domains considered here. The sizes reported for
CLG differ from the original published results, as we include
the number of branching points (i.e., sensing actions) in our

4https://code.google.com/p/cp2fsc-and-replanner/

32

calculation. Invariant actions are suppressed from the con-
ditional plan for both CLG and PO-PRP, and they do not
appear in the totals. For the ‘Policy Size’ column, all refers
to the full policy size (i.e., the number of condition-action
pairs), strong refers to the number of pairs marked strong
cyclic, and used refers to those pairs that were used in gen-
erating the conditional plan with PO-PRP. The used column
is almost identical for PO-PRP−, and is thus omitted.

We found that PO-PRP consistently outperformed CLG
in both time to compute a solution and in the size of the final
conditional plan. For some domains the size is comparable
(e.g., doors and cballs), but the runtime shows a dramatic im-
provement. This is due in large part to the generalized policy
that PRP produces internally, which is used to enumerate the
reachable belief states. CLG, in contrast, must continually
recompute a weak plan for every new belief state.

The improvement in conditional plan size for PO-PRP
over CLG is promising, and it is even more striking when
we consider the representation size of the policy. The policy
is not smaller than the conditional plan in every case (see
for example ctp-ch and wumpus domains), but the policy
can be smaller than the conditional plan produced by orders
of magnitude. The conditional plan is much more succinct
when many of the pairs in the policy are marked as strong
cyclic because of the approach we use to compile the con-
ditional plan (cf. Section 3.4). This is most evident in the
ctp-ch domain where PO-PRP is able to compute the optimal
conditional plan very quickly.

We conclude by noting the potential for further improve-
ment. The SCD procedure of PRP, and subsequently PO-
PRP, is merely a sufficient condition. With stronger tech-
niques to mark more of the policy as strong cyclic, we expect
the conditional plans produced to be more compact. Addi-
tionally, the difference between the all and used columns
gives an indication of the amount of redundant or unneces-
sary information in the policy. This suggests room for im-
provement in the final policy that PO-PRP produces.

5 Concluding Remarks
Planning under partially observability is a computation-
ally challenging problem applicable to a number of AI en-
deavours. We focused on solving a compelling class of
PPOS problems where the initial state specification includes
a set of state constraints and where uncertainty about the
state monotonically decreases. We demonstrated how PPOS
problems can be solved offline by exploiting and extending
a modern FOND planner. In contrast to the commonly held
belief that offline planning for PPOS is impractical, PO-PRP
can produce conditional plans several orders of magnitude
faster and smaller than the best planners. In our view, offline
planners come with significant advantages, such as deadend
detection, which is critical in certain settings. Our contribu-
tion includes novel techniques for solving PPOS problems
and producing a compact plan; it opens the door to a new
variety of offline planning techniques.

There are many avenues for future work, including gen-
eralizing the framework to effectively handle a larger class
of problems, and characterizing problems that can be given
succinct policy representations (e.g. the ctp-ch domain).

Acknowledgements
We gratefully acknowledge funding from the Ontario Min-
istry of Innovation and the Natural Sciences and Engineering
Research Council of Canada. We also would like to thank
the anonymous reviewers for their insightful feedback, and
Blai Bonet for making the source of K-Planner both publicly
available and straightforward to use / extend.

References
Albore, A., and Geffner, H. 2009. Acting in partially ob-
servable environments when achievement of the goal cannot
be guaranteed. In ICAPS Workshop on Planning and Plan
Execution for Real-World Systems.
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In 21st
International Joint Conference on Artificial Intelligence (IJ-
CAI), 1623–1628.
Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Compu-
tational complexity of planning and approximate planning
in the presence of incompleteness. Artificial Intelligence
122(1-2):241–267.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001.
Planning in nondeterministic domains under partial observ-
ability via symbolic model checking. In 17th International
Joint Conference on Artificial Intelligence (IJCAI), volume
2001, 473–478.
Bonet, B., and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In 22nd International Joint Conference on Artificial Intelli-
gence (IJCAI), 1936–1941.
Brafman, R. I., and Shani, G. 2012. Replanning in domains
with partial information and sensing actions. Journal of Ar-
tificial Intelligence Research 45:565–600.
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Plan-
ning graph heuristics for belief space search. Journal of Ar-
tificial Intelligence Research 26:35–99.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via sym-
bolic model checking. Artificial Intelligence 147(1):35–84.
Geffner, H., and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan and
Claypool Publishers.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5-
6):503–535.
Hoffmann, J., and Brafman, R. I. 2005. Contingent planning
via heuristic forward search witn implicit belief states. In
15th International Conference on Automated Planning and
Scheduling (ICAPS), 71–80.
Kuter, U.; Nau, D.; Reisner, E.; and Goldman, R. 2007.
Conditionalization: Adapting forward-chaining planners
to partially observable environments. In ICAPS 2007—
workshop on planning and execution for real-world systems.
McIlraith, S., and Scherl, R. B. 2000. What sensing tells us:
Towards a formal theory of testing for dynamical systems. In

33

17th National Conference on Artificial Intelligence(AAAI),
483–490.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2012. Improved
Non-Deterministic Planning by Exploiting State Relevance.
In 22nd International Conference on Automated Planning
and Scheduling (ICAPS), The 22nd International Confer-
ence on Automated Planning and Scheduling.
Muise, C.; McIlraith, S.; and Belle, V. 2014. Non-
deterministic planning with conditional effects. In 24th
International Conference on Automated Planning and
Scheduling.
Peot, M., and Smith, D. 1992. Conditional nonlinear
planning. In International Conference on AI Planning and
Scheduling (AIPS), 189–197.
Pinto, J. 1999. Compiling ramification constraints into effect
axioms. Computational Intelligence 15:280–307.
Pryor, L., and Collins, G. 1996. Planning for contingencies:
A decision-based approach. Journal of Artificial Intelligence
Research 4:287–339.
Reiter, R. 2001. Knowledge in action: logical foundations
for specifying and implementing dynamical systems. The
MIT Press.
Rintanen, J. 2004. Complexity of planning with partial ob-
servability. In 14th International Conference on Automated
Planning and Scheduling (ICAPS), 345–354.
Strass, H., and Thielscher, M. 2013. A general first-order
solution to the ramification problem with cycles. Journal of
Applied Logic 11(3):289–308.
Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998.
Extending graphplan to handle uncertainty and sensing ac-
tions. In 15th National Conference on Artificial intelligence
(AAAI), 897–904.

34

Diagnostic Problem Solving via Planning with Ontic and Epistemic Goals
(Abridged Report)∗

Jorge A. Baier
Depto. de Ciencia de la Computación

Pontificia Universidad Católica de Chile
Santiago, Chile

Brent Mombourquette
Department of Computer Science

University of Toronto
Toronto, Canada

Sheila A. McIlraith
Department of Computer Science

University of Toronto
Toronto, Canada

Abstract
Diagnostic problem solving involves a myriad of reasoning
tasks associated with the determination of diagnoses, the
generation and execution of tests to discriminate diagnoses,
and the determination and execution of actions to alleviate
symptoms and/or their root causes. Fundamental to diagnos-
tic problem solving is the need to reason about action and
change. In this work we explore these myriad of reasoning
tasks through the lens of AI automated planning. We charac-
terize a diversity of reasoning tasks associated with diagnostic
problem solving, prove properties of these characterizations,
and define correspondences with established automated plan-
ning tasks and existing state-of-the-art planning systems. In
doing so, we characterize a class of planning tasks with epis-
temic and ontic goals which we show can be compiled into
non-epistemic planning, allowing state-of-the-art planners to
compute plans for such tasks. Furthermore, we explore the
effectiveness of using the conditional planner Contingent-FF
with a number of diagnostic planning tasks.

1 Introduction
Automated diagnosis seeks to determine what is wrong with
a system, prompted by some observations of egregious be-
haviour. As our world becomes increasingly instrumented
with sensors – our street corners, our homes, our cars, and
even our bodies – and as the infrastructure that controls our
power, communication, and transportation systems grows in
complexity, we must rely on computers to monitor the state
of these systems and to oversee their operation. Unfortu-
nately, these systems can and do malfunction, resulting in
diagnostic problems of such enormous complexity that they
confound human reasoning.

Diagnostic Problem Solving (DPS) refers to the myriad of
reasoning tasks associated with the diagnosis, testing, and
repair of a system. In this work we advocate for a pur-
poseful view of diagnostic problem solving. While a naı̈ve
approach to DPS suggests that we generate candidate diag-
noses, identify a unique diagnosis through testing, and then
treat or repair, we instead observe that identifying candidate
diagnoses may be unnecessary or perhaps only necessary to
the extent that it informs an appropriate course of action to
be selected – a course of action that may result in the realiza-
tion of further tests to discriminate diagnoses, or to alleviate
the symptoms or potential root causes, potentially without
actually identifying a unique root cause.

∗Full paper appears in the Proceedings of KR2014.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Example 1 Consider a run-of-the-mill flashlight that is not
emitting light. A common response is to turn the flashlight
on and off a few times. If it’s still malfunctioning, the most
likely hypothesis is that the batteries are dead, but it could
also be the case that the bulb is burned out, or that there is
a loose connection somewhere. That’s three candidate diag-
noses, and there could be more. A typical course of action
would be to open up the flashlight, take out the batteries,
put in new ones, re-assemble the flashlight and turn it on
again. If the flashlight emits light, you’ll likely be happy,
recycle the batteries and consider yourself “done.” Your
purpose was not to diagnose the flashlight, but rather to
get it working again. A more careful examination of what
went on shows that the course of action you took, together
with the happy outcome that the flashlight is now “working,”
served to eliminate the hypothesis that the bulb was burned
out, and it tightened the connection, effectively repairing the
connection regardless of whether it was faulty or not. This
changed the space of hypotheses under consideration. What
is equally interesting is that this sequence of actions neither
confirmed nor refuted the hypothesis that the batteries were
dead. The cause of the faulty behaviour could have been the
result of a loose connection which got fixed in the process of
changing the batteries. Those batteries you recycled could
still be OK! What’s also noteworthy is that if after executing
the procedure the flashlight had not emitted light, you would
still be left with the hypotheses that the original batteries
were dead or that the bulb was broken, but you would also
have the further (granted, unlikely) hypothesis that the new
batteries were also dead.

The above seemingly simple DPS scenario illustrates the
need for reasoning about action and change as well as rea-
soning about knowledge, and in particular what an agent
comes to know about aspects of the world (symptoms and
diagnoses in this case) based upon the execution of both
world-altering and sensing actions. It is also suggestive of
the somewhat subordinate role the actual candidate diag-
noses may play in the resolution of a system failure scenario.

In this paper, we explore this purposeful view of diag-
nostic problem solving through the lens of AI automated
planning. Our motivation for doing so is pragmatic. We
are interested in characterizing the fundamental knowledge
representation and reasoning tasks that underlie DPS in its
many guises, but we wish to do so in a manner that sup-
ports establishing its correspondence with the state of the art
in AI automated planning theory and practice. There have

35

been tremendous advances in AI automated planning sys-
tems over the last decade and a number of highly optimized
planning systems exists. Further there have been significant
recent advances in non-classical planning such as confor-
mant or contingent planning that support planning with in-
complete information and/or with sensing. A major contri-
bution of this paper is to show that many purposeful DPS
tasks that have been heretofore unsolvable can be realized in
varying measure through recent advances in state-of-the-art
AI planning systems. Our characterization not only allows
us to solve certain problems now, but it provides the insight
and understanding that will support the realization of these
and isomorphic tasks as computational machinery in plan-
ning improves in the coming years.

Characterizing diagnostic problem solving tasks in terms
of planning builds upon a large body of research that in-
cludes research on topics as varied as reasoning about
knowledge and action (e.g., Scherl and Levesque 2003; Pet-
rick and Bacchus 2002), planning with epistemic goals (e.g.,
Herzig, Lang, and Marquis 2003), and conformant (e.g.,
Palacios and Geffner 2009), contingent (e.g., To, Pontelli,
and Son 2011), and classical (e.g., Helmert 2006) planning.
We discuss this related research later in the paper.

In Section 2 we introduce the mathematical formalisms
upon which our work rests. In Section 3 we introduce the
notion of a diagnosis that we use here, and contrast it to
other forms of diagnosis discussed in the literature. With a
definition of diagnosis in hand, in Section 4 we present the
notion of a diagnostic plan, establish its correspondence to
known planning paradigms, and establish properties of var-
ious forms of diagnostic plans. In Section 5 we introduce
a notion of epistemic diagnostic planning – planning to de-
termine a particular diagnosis, or to discriminate diagnoses.
We define compelling classes of epistemic goals and then
show that it is possible to use state-of-the-art non-epistemic
planners to plan for such epistemic goals, by providing a
sound and complete translation of such epistemic tasks to
conditional planning. In Section 6 we discuss the realization
of our newly established diagnostic planning tasks via exist-
ing planning systems. We conclude with some reflections on
our work, its relationship to other work and future prospects.

2 Preliminaries
In this section we introduce a planning language that will
allow us to define various kinds of planning tasks which we
then will show can model interesting DPS tasks. In partic-
ular, we define a common language for deterministic (clas-
sical), conformant, and conditional planning.1 The planning
language we present below builds on the ADL planning lan-
guage (Pednault 1989), and considers extensions for uncer-
tainty about the initial state and conditional plans that have
been presented in a similar way by other researchers (e.g.,

1A paradigm related to conditional planning is contingent plan-
ning. Although originally understood to define the same class of
problems as conditional planning, current research in contingent
planning frequently sees it as an incremental process in which plan-
ning is intertwined with execution (see e.g., Brafman and Shani
2012). We thus stick here to conditional planning to emphasize
that we are looking for a conditional plan in an offline manner.

Palacios and Geffner 2009; To, Pontelli, and Son 2011).

2.1 Dynamical Systems
Dynamical systems can be formally described in many
ways. In this paper we model them as transition systems,
which we represent with a standard planning language. As
such, transitions occur as the result of actions described in
terms of preconditions and effects, and the domain is fi-
nite (i.e., there is a finite number of system configurations).
Formally, a dynamical system is a tuple Σ = (F,A,Ω, I),
where F is a finite set of fluent symbols, A is a set of deter-
ministic actions, Ω is a set of sensing actions, and I is a set
of clauses over F that defines a set of possible initial states.
If p ∈ F , then p and ¬p are fluent literals. If ` is a literal, we
denote its complement by `; thus, p = ¬p and ¬p = p. Ev-
ery action a ∈ A is defined by a precondition prec(a), which
is a conjunction of fluent literals, and eff (a), a set of condi-
tional effects of the form C → L, where C is a conjunction
of fluent literals and L is a fluent literal. We sometimes write
the unconditional effect→ L as simply L, and use true to
denote an empty precondition. Each sensing action, on the
other hand, is defined by its precondition prec(a), which is a
conjunction of fluent literals, and obs(a), which is the fluent
literal that is observed by the sensing action.

A system state s is a set of fluent symbols, which intu-
itively defines all that is true in a particular state of the dy-
namical system. For a system state s, we define Ms : F →
{true, false} as the truth assignment that assigns the truth
value true to p if p ∈ s, and assigns false to p other-
wise. We say a state s is consistent with a set of clauses
C, if Ms |= c, for every c ∈ C.

We denote by S0 the set of planning states consistent with
the clauses of the initial state I . We say a dynamical system
has a complete initial state iff |S0| = 1; i.e., I has only
one model. Σ has an incomplete initial state iff |S0| > 1.
We formalize the notion of conditional plans through action
trees as follows.

Definition 1 (Action Tree) Given a system Σ =
(F,A,Ω, I), an action tree T is:

• ε (the empty tree); or
• aT ′, where a ∈ A, and T ′ is an action tree; or
• a(T ′, T ′′), where a ∈ Ω and T ′ and T ′′ are action trees.

We denote by TΣ the set of action trees in Σ. Furthermore,
we say that an action a is executable in a state s if Ms |=
prec(a). If a ∈ A is executable in a state s, we define its
successor state as δ(a, s) = (s \ Del) ∪ Add, where Add
contains a fluent f iff C → f is an effect of a and Ms |= C.
On the other hand Del contains a fluent f iff C → ¬f is an
effect of a, and Ms |= C.

Now we define how to compute the set of states that result
from executing an action tree. To that end, we define the re-
lation `Σ: TΣ × 2F such that (T, S) `Σ (T ′, S′) intuitively
means that if the agent is in any of the states in S, then per-
forming one step of T results in being in some state in S′,
with action tree T ′ remaining. Formally,

• (aT, S) `Σ (T, S′) if a is executable in every state in S,
and S′ = {δ(a, s) | s ∈ S}.

36

• (a(T ′, T), S) `Σ (T, S′) if a is executable in every state
in S and S′ = {s ∈ S | Ms |= obs(a)} or S′ = {s ∈ S |
Ms 6|= obs(a)}.

We use ` instead of `Σ when the transition system is ob-
vious from the context. We denote by `∗ the reflexive and
transitive closure of `. This allows us to define what states
result from executing an action tree in the initial state.

Definition 2 (Resulting State) Given a transition system
Σ, state s is a resulting state from executing action tree T
in Σ iff (T, S0) `∗ (ε, S′) and s ∈ S′.
2.2 Classical, Conformant, and Conditional Planning
Below we define classes of planning tasks that have been
studied extensively by the planning community. Determinis-
tic (classical) planning is the most standard form of planning
in which there is a unique initial state, and hence knowl-
edge about the state of the world is always complete. In
conformant planning, on the other hand, there is uncertainty
but no observability, and actions that change the state of the
world are deterministic; hence solutions to these tasks are se-
quences of actions. Finally, in conditional planning,2 there
is uncertainty about the initial state and the agent may ob-
serve the world through sensing actions. The resulting plan
in this case is typically an action tree.

Definition 3 (Classes of Planning Tasks) Given a set of
literals G, and a system Σ = (F,A,Ω, I) we define the fol-
lowing classes of planning tasks:

• (Σ, G) is a deterministic or classical planning task if I
defines a complete initial state and Ω = ∅.

• (Σ, G) is a conformant planning task if I does not define
a complete initial state and Ω = ∅.

• (Σ, G) is a conditional planning task if I does not define
a complete initial state and Ω 6= ∅.

Definition 4 (Plan) Action tree T is a plan for planning
task (Σ, G) iff for every state sf that may result from the
execution of T in Σ it holds that Msf |= G.

When T is a plan for a deterministic task, then we say T is a
deterministic plan. Analogously, we use the terms classical
plan, conformant plan, and conditional plan.

3 Characterizing Diagnoses
Automated diagnosis has long been a problem of interest to
the AI community. Well-publicized early work focused on
expert systems approaches as exploited in the medical di-
agnosis expert systems MYCIN. In the mid-1980’s AI re-
searchers turned their attention to model-based diagnosis.
Early work in this area included Geneserth’s DART system
(Genesereth 1984), as well as GDE, the General Diagnosis
Engine by de Kleer and Williams (de Kleer and Williams
1987) among others. In 1987 Reiter published his seminal
paper formalizing the notion of consistency-based diagnosis

2Early literature in conditional planning (e.g. Pryor and Collins
1996) assumed complete observability of the world. However, cur-
rent state-of-the-art solvers consider sensing actions as the only
mechanism to observe the world (e.g. To, Pontelli, and Son 2011).

and minimal diagnosis, which were predicated on a so-called
first principles model of the normative behaviour of a system
(Reiter 1987). This characterization defined a diagnosis to
be a minimal set of components that must be designated as
abnormal in order for observations of system behaviour to
be logically consistent with the model (axiomatization) of
the system. The exploitation of fault models and other as-
pects of system behaviour and function necessitated a more
stringent characterization of diagnosis in terms of abduction
(e.g., (Console and Torasso 2006), (Poole 1994)) in which
faults or other explanations were posited in order to entail or
otherwise explain observations. Such abductive diagnoses
were originally conceived to work with fault models, rather
than normative models, in order to entail faulty behaviour.
de Kleer, Mackworth, and Reiter published a follow-on to
Reiter’s 1987 paper in 1992 that combined aspects of ab-
ductive and consistency based diagnosis into kernel diag-
noses (de Kleer, Mackworth, and Reiter 1992). All of these
characterizations of diagnosis related to static systems, de-
scribed using a triple (SD,COMPS,OBS) – the system
description, a finite set of components to be diagnosed, and
an observation. There was no notion of system dynamics –
just a single state.

The systems we are concerned with in this paper include
not only these static descriptions but also a rich theory of
action that supports diagnostic planning in its many guises.
We begin with a definition of such a diagnostic system.

• SD, the system description, a set of propositional sen-
tences;

• COMPS, the components, a finite set of constants;
• OBS, the observation, a conjunction of ground literals:
• Σ = (F,A,Ω, I), a dynamical system that describes ac-

tions relevant to diagnostic problem solving tasks associ-
ated with the system described by SD.

We illustrate these with a simple example.

Example. Consider a flashlight, comprised of a battery and
a switch. If the switch is on and both the battery and switch
are operating normally, then light will be emitted. This fact
can be described by the following logical formula, which is
included in the system’s description SD:

on ∧ ¬AB(battery) ∧ ¬AB(switch) ⊃ light.
The set of system components is simply defined by
COMPS = {battery, switch}.

Now we assume the flashlight can be operated by
a human user. The available actions are: turn on
the switch, change the battery, and fix the switch.
In addition, we have the ability to observe whether
or not there is light in the room. The dynamics
of these actions is described using a transition system
Σ, where F = {on,AB(switch), AB(battery), light},
A = {turn-on, change-battery ,fix -switch}, and Ω =
{sense-light}. The effects of the actions are described using
our planning language as shown by Table 1. §

In general, the action theory described by Σ supports rea-
soning about actions to test, repair, or eradicate egregious

37

a prec(a) Effect/Observation
turn-on ¬on on

change-battery true ¬AB(battery)
fix -switch true ¬AB(switch)
sense-light true light

Table 1: Preconditions and direct effects of the actions in our flash-
light example.

a New Effect
turn-on ¬AB(battery) ∧ ¬AB(switch)→ light

change-battery on ∧ ¬AB(switch)→ light
fix -switch on ∧ ¬AB(battery)→ light

Table 2: Additional effects of actions in our example theory.

behaviour in a system. On the other hand, the system de-
scription describes complex interactions between the com-
ponents of the system.

Our notion of diagnostic system, which we define for-
mally below, intuitively integrates the system description
SD with the dynamics of the world described by Σ. In doing
so, we need to address the so-called ramification problem –
the problem of characterizing the indirect effects of actions.
To see why this is, in our example, observe that perform-
ing the action turn-on may have the indirect effect of light,
under the condition ¬AB(battery) ∧ ¬AB(switch).

The ramification problem is a well-studied problem in the
KR community (e.g., Lin 1995; McCain and Turner 1995;
Thielscher 1995; Sandewall 1996; Pinto 1999; Strass and
Thielscher 2013) and has also been previously studied in the
specific context of DPS (e.g., McIlraith 2000; McIlraith and
Scherl 2000). For the purposes of this paper, we adopt an
existing solution to the ramification problem that compiles
the indirect effects of actions into additional direct effects of
actions proposed both by Pinto (1999) and in variation most
recently by Strass and Thielscher (2013). The solution is
predicated on augmentation of the constraints, SD, that ad-
ditionally captures the causal relationship between fluents.
These causal relationships have historically been captured
via an explicit causal relation in the constraints (e.g., Lin
1995; McCain and Turner 1995) or by the augmentation of
SD with a causal graph structure that ranges over the literals
in SD (e.g., McIlraith 2000).

Example (continued). In our flashlight example, we con-
sider the following ramification constraint, which is ex-
tracted directly from SD.

on ∧ ¬AB(battery) ∧ ¬AB(switch) causes light.

From there, we use Pinto’s algorithm (1999) to compute ad-
ditional effects for the actions in our theory. Some of the
resulting effects are shown in Table 2. §
Now we provide a formal definition for a diagnostic system.

Definition 5 (Diagnostic System) Given SD, COMPS,
OBS, and Σ = (F,A,Ω, I), as defined above, a diagnostic
system ΣSD is a tuple (F ′, A′,Ω, I ′) where:

• F ′ contains the elements in F and in V ars(SD), the
propositional variables in SD, and ground fluents of the
form AB(c) for every c ∈ COMPS;

• A′ contain the same actions in A but augmented, follow-
ing Pinto (1999), with conditional effects to address the
ramification problem that emerges from the integration of
Σ and SD;

• I ′ = I ∪ SD ∪OBS.

Note that the initial state I ′ contains both the system’s de-
scription and the observation. In our example, we could
have that I = {on} and that OBS = {¬light}. By in-
cluding SD in I ′ we enforce that states consistent with I ′
have at least one abnormal component. Note that an alterna-
tive means of characterizing a diagnostic system is to treat
ramifications as further actions that are triggered by direct
effects.

We now formally define the notion of diagnosis, which
we borrow from de Kleer, Mackworth, and Reiter (1992)’s,
in which we posit a minimal subset of components that must
be behaving abnormally in order to account for the observa-
tion in the initial state of our dynamical system. To facilitate
explication, we appeal to a characterization of diagnosis in
terms of abnormal components; however the work in this
paper is applicable to a diversity of definitions of diagnoses
or hypotheses and need not rely on the use of distinguished
components. The generalization is straightforward. Recall
that I ′, of ΣSD, includes our observation, OBS of (poten-
tially egregious) behaviour.

Definition 6 (Diagnosis) Given a diagnostic system ΣSD,
∆ ⊆ COMPS is a diagnosis iff

I ′ ∪
⋃

c∈∆

AB(c) ∪
⋃

c′∈COMPS\∆
¬AB(c′)

is satisfiable.

Definition 7 (Minimal Diagnosis) ∆ is a minimal diagno-
sis of ΣSD if ∆ is a diagnosis and no other proper subset ∆′

of ∆ is a diagnosis.

In previous work, we examined diagnosis of dynami-
cal systems with respect to a narrative of observations that
evolved over a period of time. We characterized the no-
tion of an explanatory diagnosis in the situation calculus
(Sohrabi, Baier, and McIlraith 2010; McIlraith 1998) and
relatedly the notion of an explanation in a planning-inspired
propositional language (Sohrabi, Baier, and McIlraith 2011).
These definitions of diagnosis and explanation conjecture a
set of zero or more assumptions together with a sequence of
actions to account for the observations. These definitions of
diagnosis and explanation are not at odds with what is pro-
posed here. Indeed, a diagnosis, ∆ would hold in the final
state of an explanatory diagnosis, with OBS as the final ob-
servation of the narrative of observations used to construct
the explanatory diagnosis. The generation of explanatory
diagnosis looks back in time to conjecture what happened
based on past observations. Observations going forward are
integrated with the diagnostic plans.

4 Diagnostic Planning
While automated diagnosis remains a well-studied area of
research, we argue for a purposeful view of diagnosis. In

38

particular, rather than generating candidate diagnoses and
performing tests to identify a unique diagnosis, after which a
course of action (amelioration/treatment) is determined, we
argue that the determination of a unique diagnosis is gener-
ally not an end in itself and that a pragmatic view of DPS
should focus on acting.

One argument in support of this viewpoint is that in many
settings there are a limited number of courses of action that
can achieve a particular goal. These actions/plans induce an
equivalence class of diagnoses for which a particular course
of action is relevant. For example, many families of bacte-
rial infection require treatment with the same antibiotic and
we need not completely discriminate the nature and location
of the infection before treating. Similarly, if a photocopier is
malfunctioning, despite the ability to perform an in-depth di-
agnosis, the first course of action is often to turn the machine
off and on, resolving a large family of faults simultaneously
without the need for time-consuming, and time-wasting in
this case, differential diagnosis.

All of the diagnostic planning tasks we examine take the
same general form. The dynamical model of the system,
ΣSD, is augmented with additional information about the
initial state, the goal state and some constraints that need
to be enforced throughout execution of the plan. In this
section, we provide a general formulation of a diagnostic
plan. We discuss the diversity of diagnostic tasks that can be
achieved via the specification of different initial conditions,
goals, and constraints, and the complexity of plan existence
in some of these different settings. While the types of plans
we are interested in here change the state of the world, we
are also interested in plans that are designed to change our
state of knowledge without necessarily changing (much of)
the world. In the section that follows, we look at epistemic
goals – planning to know whether or not a diagnosis is true,
to refute a diagnosis, or to discriminate a collection of can-
didate diagnoses.

Definition 8 (Diagnostic Plan) Given a diagnostic plan-
ning task (ΣSD, Init,Φ, G) where

• ΣSD = (F,A,Ω, I), is the diagnostic system;
• Init, is a set of logical formulae that provide additional

information about the initial state;
• Φ, is a logical formula representing additional state con-

straints that must be enforced throughout the plan; and
• G, is a set of literals that prescribe the diagnostic plan-

ning goal,

and where Init ∪ I ∪ Φ is satisfiable.
Action tree T is a diagnostic plan for the diagnostic plan-

ning task ((F,A,Ω, I ∪ Init), G) under the constraint of Φ
iff T is a plan for the planning task ((F,A,Ω, I ∪ Init), G),
and for every S such that (T, S0) `∗ (T ′, S) it holds that
Ms |= Φ, for every s ∈ S.

4.1 Properties of Diagnostic Plans
As evident from the definition presented, our characteriza-
tion of a diagnostic plan is coupled to our previously defined
classes of planning tasks. These classes differ with respect
to the completeness of their initial states and whether they

exploit sensing of any form. Such characteristics have im-
plications with respect to the complexity of planning.

The following are the complexity classes of the decision
problem for the different planning tasks.

Theorem 1 (Diagnostic Planning w/ Complete Info.)
Given a diagnostic planning problem (ΣSD, Init,Φ, G), if
I ∪ Init ∪ Φ defines a complete initial state and if Ω = ∅
then this is a classical planning task and deciding whether
there exists such a plan is PSPACE-complete.

This result follows from Bylander’s result on the com-
plexity of deterministic planning (Bylander 1994).

Theorem 2 (Diagnostic Planning without Sensing)
Given a diagnostic planning problem (ΣSD, Init,Φ, G), if
Ω = ∅ but I ∪ Init ∪ Φ does not define a complete initial
state then this is a conformant planning problem and decid-
ing whether there exists such a plan is EXPSPACE-complete.

This follows from Haslum’s result on the complexity of
conformant planning (Haslum and Jonsson 1999). Finally,

Theorem 3 (Diagnostic Planning with Sensing)
Given a diagnostic planning problem (ΣSD, Init,Φ, G), if
I∪Init∪Φ does not define a complete initial state and Ω 6=
∅ then this is a conditional planning problem and deciding
whether there exists such a plan is 2-EXPTIME-complete.

This follows from Rintanen’s results on the complexity of
conditional planning (Rintanen 2004).

4.2 The Many Guises of Diagnostic Planning
Our characterization of a diagnostic plan encompasses a di-
versity of DPS scenarios. Here we informally explore some
of these varied scenarios in order to illustrate the broad util-
ity of our characterization. Each scenario is realized by vary-
ing the Init and G and can be performed with or without
sensing as the scenario necessitates, and with commensurate
implications regarding the type of planner.
Eradicate egregious behaviour By setting Init = ∅ and
G = ¬OBS we can plan to eradicate behaviour without
first explicitly computing a diagnosis. If sensing is per-
mitted, sufficient information will be garnered to select
an appropriate course of action. Such information may or
may not entail a unique diagnosis as illustrated in some
of the previous examples. Without sensing, a conformant
plan will be generated (where possible) that will work re-
gardless of what is wrong with the system.

Fix the system, given a diagnosis Given a diagnosis ∆,
Init = {AB(c) | c ∈ ∆} ∪ {¬AB(c) | c ∈ COMPS \
∆} and G =

∧
c∈∆ ¬AB(c). When a unique diagno-

sis has been determined, this can be added to the initial
state and a plan generated accordingly. In such a case I
may transform or be transformable into a classical plan-
ning problem, greatly diminishing the computational ef-
fort involved in generating a plan. Init may also be used
to capture the set of candidate diagnoses. (E.g., The car
won’t start because it’s either out of gas or the battery is
dead.) Even in a scenario such as this one, the best plan
may require no sensing since this candidate diagnosis set
may dictate the same “fix” – call for road-side assistance.

39

Assume a diagnosis and fix it or eradicate behaviour
We can also use the planner to do what-if planning.
Whereas the previous scenario used Init to add facts
to the initial state, it is often compelling to assume a
particular likely diagnosis and generate a plan that will
work predicated on the assumption being correct. (E.g.,
Assume the battery is dead and fix it.) A subset of
candidate diagnoses may similarly be assumed.

Discriminate between different diagnoses Given two di-
agnoses ∆1 and ∆2, return a plan to determine which one
of ∆1 or ∆2 may be causing the egregious behaviour. We
require a notion of epistemic goals, which we define be-
low, to formalize this as a planning problem.

Our definition of diagnostic plan also supports the en-
forcement of (safety) constraints. There are a number of
compelling uses for such constraints, particularly in cases
where a diagnosis is being assumed. In such a scenario, the
user may wish to prescribe avoidance of things that would
be fatal should the assumptions be flawed (e.g., giving peni-
cillin to a patient with allergies). Constraints of this form can
often be compiled away so as not to add to the difficulty of
planning. Finally, the user can exercise flexibility in elim-
inating sensing actions to generate conformant rather than
contingent plans, or to enforce Φ by eliminating the actions
that would result in its violation.

5 Epistemic Diagnostic Planning
In the previous section we examined tasks to achieve some
state of the world. Here we wish to generate plans to achieve
epistemic goals. For example, we may wish to generate
a plan to know a particular diagnosis (E.g., I know Ralph
has meningitis.), to discriminate between diagnoses (E.g., I
know Ralph has one and only one of meningitis, strep-A, or
influenza.), or to eliminate a diagnosis (E.g, I’ve eliminated
the possibility that Ralph has strep-A.).

The notion of planning and reasoning to achieve a state
of knowledge dates back to work by Moore. Scherl and
Levesque (2003) later integrated Moore’s approach with Re-
iter’s solution to the frame problem (2001). More recently,
epistemic planning has been discussed in the context of
dynamic epistemic logic (e.g, (Herzig, Lang, and Marquis
2003; Andersen, Bolander, and Jensen 2012).

Currently, there are no competitive planning systems that
implement the possible world semantics. There are a few
systems that however implement the idea of knowledge-level
planning in which the knowledge of the agent is explic-
itly represented as propositions of the language (e.g., using
a fluent KF to represent that the agent knows F). These
planners are capable of carrying out a limited, but still rea-
sonably expressive form of reasoning about knowledge. A
few systems like PKS (Petrick and Bacchus 2002) adopt
the approach of planning at the knowledge level to imple-
ment these ideas. Planning at the knowledge level may
achieve good performance in many planning benchmarks
however, their ability to reason about knowledge is lim-
ited. Along the same lines, Palacios and Geffner (2009) pro-
posed a compilation technique that maps contingent plan-
ning into knowledge-level deterministic tasks. As expected,

their translation is compact, sound, and complete for only a
certain class of problems (Palacios and Geffner 2009).

While many simple epistemic diagnostic planning tasks
can indeed be mapped into knowledge-level planning do-
mains we propose an alternative compilation into condi-
tional planning with sensing actions. Our motivation is prac-
tical since this enables computing diagnoses with a variety
of existing planning systems.

Our translation still takes a somewhat impoverished view
of the world, choosing not to appeal to rich modal theories
of knowledge and belief in favour of adopting the stance of
planning at the so-called belief level. In this view, the state
of the system captures the agent’s beliefs about the world.
Specifically, in the initial state, we assume that the agent
knows any formula φ that is such that for every s consistent
with I it holds that Ms |= φ. Similarly, when the agent
performs actions, the agent knows all formulae that hold in
all states that it could reach. Formally, given a set of states
S, and a formula φ, we say that:

K(φ, S) iff Ms |= φ for each s ∈ S,
where the intuitive meaning of K(φ, S) is that the agent
knows φ when the set of states it is possibly in is S.

With this definition in hand we are ready to define our
notion of planning with epistemic goals.

Definition 9 (Epistemic Plan) Let Σ = (F,A,Ω, I) be a
transition system and S0 be the set of all plan states consis-
tent with I . Then,
• T is a plan for Know(φ) iff for every S such that

(T, S0) `∗ (ε, S) it holds that K(φ, S),
• T is a plan for KnowWhether(φ) iff for every S such that

(T, S0) `∗ (ε, S) it holds either K(φ, S) or K(¬φ, S),
and

• T is a plan for Discriminate(φ, ψ) iff for every S such
that (T, S0) `∗ (ε, S) it holds either K(φ ∧ ¬ψ, S) or
K(¬φ ∧ ψ, S).

Under this definition it is simple to prove that T is a plan
for φ if and only if T it is an epistemic plan for Know(φ).
This is compatible with our notion of planning at the belief
level: the knowledge of the agent is captured by the set of
states the agent is at. This also means that if one wants a plan
for Know(φ), then one can obtain such a plan by querying
a regular conditional planner for the goal φ. However, it is
not immediately straightforward how to obtain plans for the
other types of epistemic goals using a conditional planner.
For example, using the non-epistemic goal φ ∨ ¬φ instead
of KnowWhether(φ) would not work since φ ∨ ¬φ is tauto-
logical and therefore achieved by every action tree.

Interestingly, it is possible to treat all types of epistemic
goals as ontic planning. Below we propose a simple com-
pilation which maps our notion of planning with epistemic
goals to ontic conditional planning.

5.1 From Epistemic Planning to Conditional Planning
Given an epistemic goal of the form KnowWhether(φ), the
main idea underlying this compilation is to add an additional
fluent kw-φ that can be used to replace the epistemic goal
KnowWhether(φ).

40

To simplify the presentation we will assume, for now, that
the goal is KnowWhether(L), where L is a literal, and that
as usual Σ = (F,A,Ω, I) is the transition system. The com-
piled planning problem is Σ′ = (F ′, A′,Ω, I), and F ′ and
A′ are generated by performing the following steps:

1. Let F ′ be F ∪ {kw-L}.
2. Add to A′ all actions in A plus actions kw-act-pos-L and
kw-act-neg-L, whose preconditions are, respectively, L
and L. Both actions have a single effect, kw-L.

3. For each action a in A′ that contains either C → L or
C → L as a conditional effect, for some C different from
{true}, we add the unconditional effect ¬kw-L to a.

Note that Step 2 generates actions that add the fact kw-L.
These actions can only be performed if the set of states
the agent believes it is in, say, S, is such that K(L, S) or
K(¬L, S) (i.e., the agent knows whether L is true). Step 3
handles the case in which there may be “loss of knowledge”
due to a conditional effect of an action. To see this, imagine
a system with a single action A which is always executable
and which has conditional effect p → L. Assume I is such
that the set of states consistent with I is {{p}, {}}. Even
though the agent knows whether L in the states of I , it is
not the case anymore after performing A, since the set of
resulting states is {{p, L}, {}}.

We now prove that our proposed translation is sound and
complete, in the senses defined below.

Theorem 4 (Completeness) Let Σ = (F,A,Ω, I) be a
transition system, and let Σ′ be defined as above. If T is
a plan for (Σ,KnowWhether(L)) then there exists a plan
T ′ for (Σ′, kw-L) which differs from T only in that it con-
tains actions of the form kw-act-pos-L or kw-act-neg-L at
the end of each of T ′’s branches.

Proof. We note that if there exists an action tree T that
is a plan for (Σ,KnowWhether(L)) then we can construct
a plan T ′ for (Σ′, kw-L) by simply adding an additional
kw-act-pos-L or kw-act-neg-L as the final action in each
branch of the tree. Such actions are executable at that point
since it holds that K(L, S) or K(¬L, s), where S is the set
of states reached by that branch. �

Theorem 5 (Soundness) Let Σ = (F,A,Ω, I) be a transi-
tion system, and let Σ′ be defined as above. If T is a plan
for (Σ′, kw-L) then, by removing all actions of the form
kw-act-pos-L or kw-act-neg-L from T we obtain an ac-
tion tree that is a plan for (Σ,KnowWhether(L)).

Proof. Let T be a plan for kw-L. Take any Sf that re-
sults from the execution of a branch of T ; i.e., such that
(T, S0) `∗ (ε, Sf). Observe that kw-L ∈ Sf . Now let
(kT ′, S) be the configuration visited by the execution of the
branch in which kwL is added for the last time (here k is ei-
ther kw-act-pos-L or kw-act-neg-L). In other words, let S
be such that (T, S0) `∗ (kT ′, S) ` (T1, S1) ` (T2, S2) `∗
(Tn, Sn), with Tn = ε, Sn = Sf , and such that for all
i ∈ {1, . . . , n}, kw-L ∈ Si. Because k is executable in
S, either K(L, S) or K(¬L, S) holds. Furthermore, be-
cause S and S1 differ in at most kw-L, it also holds that

either K(L, S1) or K(¬L, S1) holds. Now assume that it
holds that K(L, Si) or K(¬L, Si) for some i ≥ 1. Since
kwL ∈ Si+1 the action that was performed in Si to yield
Si+1 was either an action that does not change the truth
value of L or changes it unconditionally (in other words,
it is not an action modified by Step 3 of the compilation). In
either case it holds either K(L, Si+1) or K(¬L, Si+1). We
conclude that K(L, Sn) or K(¬L, Sn), which means that T
achieves KnowWhether(L). We observe now that if we re-
move all occurrences of kw-act-pos-L or kw-act-neg-Lwe
obtain a plan that also achieves KnowWhether(L). �

Now consider the epistemic goal Discriminate(L1, L2),
where L1 and L2 are literals. The compilation follows the
same intuitions from above. We generate a new transition
system Σ′ = (F ′, A′,Ω, I), where and F ′ and A′ are com-
puted by performing the following steps:

1. Let F ′ be F ∪ {disc-L1-L2}.
2. Add to A′ all actions in A plus actions disc-act-1-L1-L2

and disc-act-2-L1-L2, whose preconditions are {L1, L2}
and {L1, L2}, respectively. Both actions have a single
effect, disc-L1-L2.

3. For each action a in A′ that contains C → L1, C → L1,
C → L2, or C → L2 as a conditional effect, for some C,
we add the unconditional effect ¬disc-L1-L2 to a.
This translation is also sound and complete. The proofs

are similar to the ones presented above.

Theorem 6 (Completeness) Let Σ = (F,A,Ω, I) be a
transition system, and let Σ′ be defined as above. If T
is a plan for (Σ,Discriminate(L1, L2))) then there exists
a plan T ′ for (Σ′, disc-L1-L2) which differs from T only
in that it contains actions of the form disc-act-1-L1-L2 or
disc-act-2-L1-L2 at the end of each of T ′’s branches.

Theorem 7 (Soundness) Let Σ = (F,A,Ω, I) be a tran-
sition system, and let Σ′ be defined as above. If T is a
plan for (Σ′,Discriminate(L1, L2)) then, by removing all
actions of the form disc-act-1-L1-L2 or disc-act-2-L1-L2

from T we obtain an action tree that is a plan for
(Σ,Discriminate(L1, L2)).

Extending the Compilation to Formulae We have dis-
cussed how to compile goals of the form KnowWhether(L)
and Discriminate(L1, L2), for the case of literals. To ex-
tend our compilation to general formulae we can use a pre-
compilation step in which, for each formula φ involved in
the epistemic goal, we generate the ramification constraints
φ causes Lφ and ¬φ causes ¬Lφ. Then we apply the com-
pilation we described above. Soundness and completeness
now follows from the theorems above together with sound-
ness of the compilation of ramifications into effect axioms.

6 Computing Diagnostic Plans
The purpose of this paper was largely to define the theoret-
ical underpinnings that support the exploitation of state-of-
the-art AI planning systems for diagnostic problem solving.
As such, our translation can be exploited by any planning
system capable of handling conditional effects and sensing
actions; in particular it can be used along with conditional

41

planners such as Contingent-FF (Hoffmann and Brafman
2005), POND (Bryce, Kambhampati, and Smith 2006), and
the CNF- and DNF-based conditional planners by To, Pon-
telli, and Son (2011).

Our translation could also be used with the latest contin-
gent online planning systems CLG (Albore, Palacios, and
Geffner 2009), CLG+ (Albore and Geffner 2009), and the
SDR planner by (Brafman and Shani 2012), even though
some of these systems may not return a complete conditional
plan. However, for our experiments we wished to generate
offline conditional plans and we opted to use Contingent-FF.

We developed 8 diagnostic planning problem scenarios
in the following domains: an extension of the light-switch-
battery domain given in the Section 3 example, an agent
moving between rooms fixing light bulbs to complete a cir-
cuit, and embedded computer chips. We varied the complex-
ity of the problems and ran them with Contingent-FF using a
PC with an Intel Xeon 2.66 GHz processor with 4GB RAM
running Linux. The simple problems generated reasonable
plans, requiring from under 0.01 seconds to 0.03 seconds
to complete. The more complex problems resulted in poor
quality plans that favoured conformant rather than contin-
gent solutions. We attribute much of this poor quality to the
general effectiveness of the planner and how it’s underlying
heuristics interact with our modeling of ramifications. We
also experimented with encoding ramifications as additional
actions rather than compiling them into effects. In future
work, we will explore different representations for our ram-
ification constraints across different planners.

An interesting result came from the problems created for
the embedded computer chips domain, which consists of
a collection of computer chips which themselves contain
chips, and so forth, where all chips must be working nor-
mally for the output to be displayed. When allowing the
planner to sense the status of and replace any chip, the re-
sulting plan was always to replace the top level chips. This
supports the notion of taking a purposeful view of diagnosis
– it can be much faster to simply repair the issue than to de-
termine the unique diagnosis. More generally, selecting the
best course of purposeful actions can be informed by many
factor including the cost of actions (sensing and world alter-
ing), time-criticality of a response, and issues of specificity
or generality with respect to how a grouping of related faults
should be addressed (e.g., fix them individually vs. doing a
more general fix).

7 Related Work and Concluding Remarks
In addition to the literature on model-based diagnosis cited
in Section 3, there is a body of previous work that relates
diagnosis to theories of action in some guise. The relation-
ship between actions and diagnoses was observed sometime
ago by (e.g., Cordier and Thiébaux 1994; McIlraith 1994),
while Sampath et al. (1995) were the first to present com-
prehensive results diagnosing discrete event systems via fi-
nite state automata. Thielscher (1997), McIlraith (1998),
and subsequently Iwan (2001) and Baral, McIlraith, and
Son (2000) cast the diagnosis problems in terms of an AI
theory of action and change. More recently Grastien et
al. (2007), Sohrabi, Baier, and McIlraith (2010), Lamperti

and Zanella (2011) and Yu, Wen, and Liu (2013) have all
addressed aspects of dynamical diagnosis.

Specifically in the area of diagnostic and repair planning,
the most notable related work is that of Baral, McIlraith, and
Son (2000) who introduced the notion of diagnostic and re-
pair plans as conditional plans, and who have a treatment of
causality and sensing. That work shares a number of intu-
itions with the work presented here, but without the focus on
planning for epistemic goals, and the correspondence to con-
formant and contingent planning. Also of note is the work
of Kuhn et al. (2008) who introduce the notion of perva-
sive diagnosis which produces diagnostic production plans
that achieve production goals while coincidentally uncover-
ing additional information about system health.

The notion of combining diagnosis with repair has been
addressed in varying fashion. For example, Thiébaux et
al. (1996), in this and later work, discuss the challenges of
diagnosis and repair in the context of a power supply restora-
tion problem, identifying the task as problem of planning
with uncertainty. These works share intuitions with the ap-
proach advocated here, but do not reflect the advances in our
collective understanding of the representational and compu-
tational issues associated with planning and sensing. Fi-
nally, outside the area of diagnostic problem solving there
has been a variety of work looking at planning with some
form of sensing. Of particular note is the work of Bren-
ner and Nebel (2009) on MAPL, a continual planning sys-
tem that interleaves planning with acting and sensing. This
paradigm of planning and sensing is also one that is very
amenable to diagnostic problem solving.

In this paper we have argued for and explored a purpose-
ful view of diagnostic problem solving, examining the prob-
lem through the lens of AI automated planning. We have
characterized diagnostic planning with both ontic and epis-
temic goals, and established properties of these diagnos-
tic planning tasks, including both complexity results and
an understanding of their relationship to classical, confor-
mant, and conditional planning systems. Of particular note
was the characterization of diagnostic epistemic goals such
as Discriminate and KnowWhether and their translation
into planning problems with ontic goals. The correspon-
dence with existing planning paradigms enables diagnostic
planning to leverage ongoing advances in the development
of non-classical planners. We discuss the exploitation of
such planners, outlining our experience addressing diagnos-
tic problem solving with Contingent-FF. Results to date are
guardedly encouraging but expose the need for further inves-
tigation of the nuances of these planners as a complement to
the results of this paper.

Beyond diagnostic problem solving, the work presented
is relevant to a diversity of problems that involve generating
hypotheses to conjecture system state, and sensing and act-
ing in the world to discriminate those hypotheses or to pur-
posefully effect change in response to observed behaviour.
Some such problems include active vision applications, ac-
tivity recognition, and goal recognition.
Acknowledgements: We gratefully acknowledge funding
from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC).

42

References
Albore, A., and Geffner, H. 2009. Acting in partially observable
environments when achievement of the goal cannot be guaranteed.
In Proc. of ICAPS Workshop on Planning and Plan Execution for
Real-World Systems.
Albore, A.; Palacios, H.; and Geffner, H. 2009. A translation-based
approach to contingent planning. In IJCAI, 1623–1628.
Andersen, M. B.; Bolander, T.; and Jensen, M. H. 2012. Con-
ditional epistemic planning. In JELIA, volume 7519 of LNCS.
Springer. 94–106.
Baral, C.; McIlraith, S.; and Son, T. 2000. Formulating diagnos-
tic problem solving using an action language with narratives and
sensing. In KR, 311–322.
Brafman, R. I., and Shani, G. 2012. Replanning in domains with
partial information and sensing actions. JAIR 45:565–600.
Brenner, M., and Nebel, B. 2009. Continual planning and acting in
dynamic multiagent environments. Autonomous Agents and Multi-
Agent Systems 19(3):297–331.
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Planning
graph heuristics for belief space search. J. Artif. Intell. Res. (JAIR)
26:35–99.
Bylander, T. 1994. The computational complexity of propositional
STRIPS planning. AIJ 69(1-2):165–204.
Console, L., and Torasso, P. 2006. Automated diagnosis. Intelli-
genza Artificiale 3(1-2):42–48.
Cordier, M.-O., and Thiébaux, S. 1994. Event-based diagnosis of
evolutive systems. In DX, 64–69.
de Kleer, J., and Williams, B. 1987. Diagnosing multiple faults.
AIJ 32:97–130.
de Kleer, J.; Mackworth, A.; and Reiter, R. 1992. Characterizing
diagnoses and systems. AIJ 56(2–3):197–222.
Genesereth, M. 1984. The use of design descriptions in automated
diagnosis. AIJ 24:411–436.
Grastien, A.; Anbulagan; Rintanen, J.; and Kelareva, E. 2007.
Diagnosis of discrete-event systems using satisfiability algorithms.
In AAAI, 305–310.
Haslum, P., and Jonsson, P. 1999. Some results on the complexity
of planning with incomplete information. In ECP, 308–318.
Helmert, M. 2006. The Fast Downward planning system. JAIR
26:191–246.
Herzig, A.; Lang, J.; and Marquis, P. 2003. Action representation
and partially observable planning using epistemic logic. In IJCAI,
1067–1072.
Hoffmann, J., and Brafman, R. I. 2005. Contingent planning via
heuristic forward search witn implicit belief states. In ICAPS, 71–
80.
Iwan, G. 2001. History-based diagnosis templates in the frame-
work of the situation calculus. In KR/ÖGAI, 244–259.
Kuhn, L. D.; Price, B.; de Kleer, J.; Do, M. B.; and Zhou, R. 2008.
Pervasive diagnosis: The integration of diagnostic goals into pro-
duction plans. In AAAI, 1306–1312.
Lamperti, G., and Zanella, M. 2011. Context-sensitive diagnosis
of discrete-event systems. In IJCAI, 969–975.
Lin, F. 1995. Embracing causality in specifying the indirect effects
of actions. In IJCAI, 1985–1991.
McCain, N., and Turner, H. 1995. A causal theory of ramifications
and qualifications. In IJCAI, 1978–1984.

McIlraith, S. A., and Scherl, R. B. 2000. What sensing tells us:
Towards a formal theory of testing for dynamical systems. In AAAI,
483–490.
McIlraith, S. 1994. Towards a theory of diagnosis, testing and
repair. In DX, 185–192.
McIlraith, S. 1998. Explanatory diagnosis: Conjecturing actions
to explain observations. In KR, 167–179.
McIlraith, S. 2000. Integrating actions and state constraints: A
closed-form solution to the ramification problem (sometimes). AIJ
116(1-2):87–121.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty away in
conformant planning problems with bounded width. JAIR 35:623–
675.
Pednault, E. P. D. 1989. ADL: Exploring the middle ground be-
tween STRIPS and the situation calculus. In KR, 324–332.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-based ap-
proach to planning with incomplete information and sensing. In
AIPS, 212–222.
Pinto, J. 1999. Compiling ramification constraints into effect ax-
ioms. Computational Intelligence 15:280–307.
Poole, D. 1994. Representing diagnosis knowledge. Ann. Math.
Artif. Intell. 11(1-4):33–50.
Pryor, L., and Collins, G. 1996. Planning for contingencies: A
decision-based approach. JAIR 4:287–339.
Reiter, R. 1987. A theory of diagnosis from first principles. AIJ
32(1):57–95.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. Cambridge,
MA: MIT Press.
Rintanen, J. 2004. Complexity of planning with partial observabil-
ity. In ICAPS, 345–354.
Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; and
Teneketzis, D. 1995. Diagnosability of discrete-event systems.
IEEE Transactions on Automatic Control 40(9):1555–1575.
Sandewall, E. 1996. Assessments of ramification methods that use
static domain constraints. In KR, 99–110.
Scherl, R., and Levesque, H. 2003. Knowledge, action, and the
frame problem. AIJ 144(1–2):1–39.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. 2010. Diagnosis as
planning revisited. In KR, 26–36.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. 2011. Preferred expla-
nations: Theory and generation via planning. In AAAI.
Strass, H., and Thielscher, M. 2013. A general first-order solution
to the ramification problem with cycles. Journal of Applied Logic
11(3):289–308.
Thiébaux, S.; Cordier, M.-O.; Jehl, O.; and Krivine, J.-P. 1996.
Supply restoration in power distribution systems: A case study in
integrating model-based diagnosis and repair planning. In UAI,
525–532.
Thielscher, M. 1995. Computing ramifications by postprocessing.
In IJCAI, 1994–2000.
Thielscher, M. 1997. A theory of dynamic diagnosis. Electronic
Transactions on Artificial Intelligence 1:73–104.
To, S. T.; Pontelli, E.; and Son, T. C. 2011. On the effectiveness
of CNF and DNF representations in contingent planning. In IJCAI,
2033–2038.
Yu, Q.; Wen, X.; and Liu, Y. 2013. Multi-agent epistemic explana-
tory diagnosis via reasoning about actions. In IJCAI.

43

A Contingent Planning-Based POMDP Replanner

Ronen Brafman and Alexander Gorohovski and Guy Shani
Ben-Gurion University of the Negev

Be’er Sheva, Israel

Abstract
POMDPs offer one of the richer models for sequential de-
cision making. But this expressiveness comes with a price,
both theoretical and practical. In this paper we seek to ad-
dress the practical difficulty of solving POMDPs by focusing
on symbolic, goal-oriented POMDP models, exploiting these
features within a simple, generic, and novel online replanning
architecture. This architecture leverages recent improvements
in contingent planning, addressing the problem of selecting
the next action at each decision epoch by solving a contingent
planning problem derived from the original POMDP and the
current belief state. While this is work in progress, we provide
some initial empirical results.

Introduction
Partially observable Markov Decision Processes (POMDP)
are a popular model for sequential decision making under
uncertainty with partial observability. This rich model is also
quite difficult to solve, and some version of this problem are
undecidable (Madani, Hanks, and Condon 2003). This has
not deterred researchers in the area, and a number of ap-
proaches exist for solving POMDPs offline and online. Nev-
ertheless, this is a very challenging problem on which scal-
ing up is difficult, although some methods that exploit do-
main structure have been able to scale up nicely (Hoey and
Poupart 2005).

In this paper we are concerned with solving goal-oriented
symbolic POMDPs, online. In principle, any POMDP can be
transformed into a goal oriented domain (Bonet and Geffner
2009), although it is not completely clear how effective this
transformation is in practice. Nevertheless, domains that are
naturally goal-oriented are common and important. These
are domains that represent decision problems in which we
seek to achieve some property of the world, and where our
actions are stochastic, our information is partial, and we can
perform observations to obtain useful information.

Symbolic POMDPs represent the transition and reward
functions implicitly by describing the impact of actions
over state variables, using an appropriate language, such
as PPDDL (Younes and Littman 2004) or RDDL (Sanner
2010). This compact representation makes practical and nat-
ural the description of models with hundreds of thousands of

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

states – models that would be impractical to describe using
an explicit transition matrix. Methods that operate on these
models typically scale up better than methods that operate
on explicit state models, but the problem remains challeng-
ing. Finally, online planning allows the solver to focus on the
true current state, rather than arbitrary states, and does not
require the generation of a complete policy, which requires
considerable time and space to generate. Consequently, on-
line solvers are likely to scale up better than offline solvers.

Contingent planning is a model that is very similar to
symbolic, goal oriented POMDPs. In a sense, contingent
planning models are the non-deterministic (as opposed to
stochastic) analogue of goal-oriented POMDPs. Developed
as an extension of classical planning, they are naturally
symbolic, extending planning description languages such as
PDDL (Fox and Long 2003). Thus, they are goal oriented,
allow for an uncertain belief state, non-deterministic actions,
and observations. Thus, they only differ from our target class
of POMDPs by the use of non-deterministic actions and ob-
servations, as opposed to stochastic observations.

In recent years, the area of contingent planning has seen
a host of new planners that considerably improve the state
of the art. These planners directly manipulate the symbolic
representation of the problem in manners more sophisticated
than symbolic POMDPs, using powerful heuristic functions,
and can handle symbolic models that are much larger than
those of current symbolic POMDP solvers. Of course, the
comparison between the two models is unfair – the contin-
gent model is qualitative and most state of the art techniques
handle deterministic actions only. Nevertheless, we propose
to exploit this success with the following simple replaninng
approach, reminiscent of FF-Replan (Yoon, Fern, and Givan
2007), where instead of MDPs we address POMDPs, and
instead of determinization into classical planning, we trans-
form the problem into contingent planning.

Thus, the architecture we propose is very simple: Given
a POMDP and an initial belief state, generate a correspond-
ing contingent planning problem and solve it. Execute the
policy generate by the contingent planner until some con-
dition is met. Intuitively, this condition should capture the
fact that the real belief state is substantially different from
the belief state the contingent executor would be in. At that
point, replan. The main benefit of this architecture is that it
is simple and modular, yet uses a sophisticated simplifica-

44

tion of the POMDP model to inform local decisions. More-
over, any progress made in contingent planning, such as the
ability to handle non-deterministic actions well, will imme-
diately translate into more informed choices by the POMDP
replanner.

The rest of this paper describes this architecture briefly,
and provides some initial experimental results.

Background
Contingent Planning
A contingent planning model is a tuple of the form
〈S, S0, SG, A, T r,Ω, O〉, where S is a set of states, S0 ⊆ S
is the set of possible initial states, also called the initial be-
lief state and is often denoted bI , SG ⊆ S is the set of goal
states, A is a set of action symbols, and Tr is the transition
function, such that Tr(s, a) ⊆ S is the set of states that can
be reached by applying a in state s, Ω is a set of observation
symbols, and O(a, s′) ∈ Ω is the observation obtained when
s′ is reached following the application of a.

At each point in execution, there is a set of states consid-
ered possible, called the current belief state. bI is the initial
belief state, and if b is the current belief state, a is executed,
and o is the observed then the resulting belief state τ(b, a, o)
is defined as:

τ(b, a, o) = {s′|s ∈ b and , s′ ∈ Tr(s, a), o ∈ O(a, s′)}
(1)

That is, states s′ that can result from the execution of a in a
state in b, such that o can be observed. We extend this no-
tation to a sequence ā, ō of actions and observations recur-
sively as follows:

τ(b, ā · a, ō · o) = τ(τ(b, ā, ō), a, o) (2)

A contingent planning problem is specified as a tuple
〈P,A, ϕI ,G〉. P is a set of propositions, A is the set of ac-
tions, ϕI is a propositional formula over P in prime impli-
cate form describing the possible initial states, and G ⊂ P
is the set of goal propositions.

A state of the world s assigns a truth value to all elements
of P . A belief-state is a set of possible states, and the initial
belief state, bI , consists of the set of states initially possible,
i.e. S0 = bI = {s : s |= ϕI}. The goal is to arrive at a belief
state in which all propositions in G hold, i.e., SG = {s ∈
S such that s |= gi for every gi ∈ G}.

For the sake of this paper, we focus on contingent plan-
ning problems with deterministic actions, as this is what
current state-of-the-art planners support. A deterministic ac-
tion, a ∈ A, is a triple: {pre(a), effects(a), obs(a)}. We shall
use the more common a(s) to denote Tr(s, a). The action
precondition, pre(a), is a set of literals. The action effects,
effects(a), is a set of pairs, (ca,l, l), denoting conditional ef-
fects, where ca,l is a propositional formula and l is a literal.
For notational convenience, we’ll assume one condition ca,l
exists for every action a and literal l. In practice, ca,l = false
for most literals, l, i.e., l is typically not a possible condi-
tional effect of a, and this pair can be omitted. obs(a) is also
a set of pairs, {(ωa,o, o)|o ∈ Ω}, where ωa,o is a proposi-

tional formula over P and o ∈ Ω.1 Thus, o = O(a, s′) iff
s′ |= ωa,o.

Since one observation must occur following the execution
of an action,

∨
o∈Ω ωa,o = true for every a ∈ A. As sensing

is deterministic, the ωa,o for different o’s are mutually exclu-
sive. Our implementation uses special no-obs observations
denoting nothing-observed, but as no-obs can be treated like
any other observation, we make no special distinction be-
tween it and “real” observations.

We restrict our attention to deterministic observations: ev-
ery non-deterministic observation can be compiled away by
adding an observable state variable, whose value changes
non-deterministically following the action, representing the
observation result.

Related Work
We are aware of two planners that use the replan-
ning approach to solve variants of POMDPs: POND-
Hindsight (Olsen 2011) and the planner by Wang and Dear-
den (Wang and Dearden 2011). POND-Hindsight operates
by attempting to solve the goal-based belief-space MDP that
corresponds to the original POMDP. The belief-state MDP
is solved by using replanning techniques formulated for reg-
ular MDPs, following FF-hindsight (Yoon et al. 2008). The
belief-state is tracked online using a Rao-Blackwellized par-
ticle filter.

The Wand and Dearden planner attempt to solve a ”quasi-
deterministic” POMDP problem. These are POMDPs in
which non-observation actions are deterministic. This plan-
ner translates the quasi-deterministic problem into a series
of classical planning problems. This is done by using single
outcome determinization, so the non-determinism of each
observation action is replaced by its most probable outcome.
For every step in the generated classical plan in which an ob-
servation action is performed, the planner is called to gener-
ate another classical plan, which is combined into the global
contingent plan as a branch. The above process continues
until the contingent plan is completed. Unfortunately, this
contingent plan cannot be executed directly because the con-
ditions leading to each branch may not be known. In order to
overcome this problem, while executing the plan, the plan-
ner uses execution monitoring to choose which branch to
take next. The execution monitoring system keeps up a dis-
tribution on the belief state. Whenever the execution reaches,
at the global contingent plan, some branch point that is de-
pendent on the value of some variable x, the execution mon-
itoring system uses a value of information calculation in or-
der to greedily choose some observation action to discover
the value of x. When there is no available observation action
whose value of information (w.r.t. x) is greater than zero,
the execution chooses the branch with the highest expected
value.

The Architecture and Its Components
The architecture relies on the following components:

1Formally, Ω is specified implicitly as the set of observation
symbols appearing in actions in A.

45

1. Belief state maintenance module;
2. POMDP-to-contingent translator;
3. Contingent planner;
4. Replanning criterion.

The planner then operates using a simple loop:

Algorithm 1 POMDP Replanner
Input: π – POMDP model, θ – goal probability
1: b← b0 the initial belief state
2: while Pr(G|b) < θ do
3: πC = Generate Contingent Problem(b, π).
4: ρ = Solve(πC)
5: repeat
6: Apply ρ for one step
7: Update b based on current action and observation
8: until Replanning Criterion is true or b |= G

The architecture is simple and modular and leverages the
improved state of modern contingent planners to solve a
nontrivial simplification of the POMDP model that takes
into account uncertainty about the initial state, as well as
the need to make observations. It can benefit from any im-
provement to belief maintenance methods and to contingent
planning. We now explain each of the components.

Belief State Maintenance with a Particle Filter
For the purpose of replanning, the agent must maintain some
model of the current belief state. While a precise represen-
tation would be ideal, it is usually impossible to maintain
because even if the initial belief state can be represented
compactly, this is not longer true after a number of up-
dates. Particle filters (Arulampalam et al. 2002) are proba-
bly the most widely used belief state tracking method for
POMDPs, thanks to their simplicity and their good empir-
ical performance. A particle filter approximates the belief
state by maintaining a set of particles – essentially states.
Sometimes, weights are also assigned to each particle. For
every state s, b(s) is approximated by the frequency of s-
states in the set of particles, or if weights are assigned, by
the relative weight of the set of s particles. Initially, the set of
particles is obtained by sampling from the true initial belief
state. Following each action, the set of particles is updated to
reflect the effect of the action. There are different techniques
for doing this, but essentially, the action is applied to each
particle, and a possible effect is sampled. Following an ob-
servation, the set of particles is updated as well. One popular
technique is to assign a weight to each particle that is pro-
portional to the probability of the observation given the state
and the action. When an unweighted particle filter is used,
one then samples a new set of (unweighted) particles from
the distribution that corresponds to the weighted set of parti-
cles. Our implementation is based on the SIS (sequential im-
portance sampling) with resampling method (Arulampalam
et al. 2002).

Generating a Contingent Planning Problem
The input to our problem is a description of a POMDP in
PPDDL. Thus, it is not difficult to generate a contingent

problem from this input in a PDDL-like format. In prin-
ciple, the initial state is obtained from the initial state of
the POMDP by simply ignoring probabilities – i.e., states
with positive support are considered possible, or it is pos-
sible to consider only states with probability greater than
some c > 0. Currently, we focus on initial states where the
distribution over possible states is uniform. Thus, they can
be described using a suitable propositional formula, which
simply describes the set of possible states. Thus, the transla-
tion is immediate. The goal of the contingent planning prob-
lem is identical to that of the POMDP. As for actions and
observations, our current contingent planner (MPSP (Braf-
man and Shani 2012)) supports deterministic actions and
observations only. For actions, we use the all-outcome de-
terminization. For observations, we use the single-outcome
(most likely) determinization.

Contingent Planner
Our contingent planner is MPSP (Brafman and Shani 2012),
which is itself a translation-based planner that reduces con-
tingent planning into classical planning. Nevertheless – this
reduction is very different from a direct reduction to clas-
sical planning via determinization because MPSP is, theo-
retically, a sound and complete contingent planner that can
generate an entire contingent plan tree. In practice, MPSP
cannot generate solutions for problems with more than a few
initial possible states. Thus, we must sample a small subset
of states (typically, two) from the initial belief state, and use
them as the initial belief state of the contingent planner. Nev-
ertheless, the sophisticated nature of the translation used is
such that important information about uncertainty and the
agent’s belief state is maintained and updated, unlike a shal-
low projection to classical planning. MPSP uses a variant of
PDDL that is suitable for contingent planning because it al-
lows for a description of observations. Actions, however, are
deterministic.

Replanning Condition
An important question is when should the contingent plan-
ner be called again for replanning. In MDP replanners, this
happens when the state is different from the expected state.
In the case of POMDPs, one could apply a similar criteria
to the belief state – i.e., replan when your belief state is dif-
ferent from what the contingent planner expected. However,
since the contingent planner uses a crude approximation of
the initial belief state, this would trigger replanning after al-
most every step. An alternative is to mimic the replanning
criterion for contingent planners. In most replanners, plan-
ning is triggered following an observation. This is due to the
separation between sensing and actuating actions in current
contingent planning benchmarks. However, most POMDP
benchmarks lead to more frequent observations. Moreover,
ideally, the contingent planner takes into account, at least to
some extent, the effect of different observations, and a call to
a contingent planner is more costly than a call to a classical
planner. Thus, one needs to be more conservative.

Intuitively, one would like to perform replanning follow-
ing an informative observation, or one that is highly unex-
pected. Our planner takes the second approach. It keeps Ip

46

– the set of particles that were sampled for use as the initial
state for the contingent planning problem. Once, it receives
a new observation o it checks all current successor particles
of Ip. In case none of them is consistent with o, the planner
performs replan, otherwise, it continues the classical plan
execution.

The approach of applying replanning following a very
informative observation may be implemented by using the
weights on the particles. One can compare the weight of the
particles before the observation and after the observation us-
ing some similarity score, such as Pearson correlation coeffi-
cient, or KL-divergence. If this score passes some threshold,
replanning should be performed.

Empirical Evaluation
We implemented an initial version of the planner described
above and tested its performance on a number of goal-
oriented benchmarks. Some are known from the POMDP
literature, and some are probabilistic version of contingent
benchmarks. Current running times of our planners appear in
Table 1. We show the average (over 30 experiments) number
of actions and running time until success. The planner was
implemented in C#. Experiments were run on a PC with an
Intel i3 processor with 2.53 Ghz, and 4.00 GB RAM running
Windows 7.

We compared our planner to the winner of the 2011 plan-
ning competition: POMDPX NUS by Wu, Lee, and Hsu,
which uses Monte Carlo sampling techniques. As expected,
in goal-oriented domains and without a suitable heuristic
function, it does not perform well, as rollouts that do not
reach the goal provide no useful information. In many prob-
lems it simply run out of memory (OOM) and in the doors
example we had problem generating an appropriate RDDL
encoding of the problem (ENC). We are now working on
a comparison with POND-Hindsight, which is the planner
closest in spirit to outs, and is also the only planner we are
aware of that accepts PPDDL domains.

Summary and Future Work
We described a simple architecture for a POMDP replan-
ning algorithm based on a reduction to contingent planning.
While the effectiveness of our approach is yet unclear, the
method’s advantages are its simple, modular design, and
its simplicity. For instance, we are now working on a ver-
sion that will use a more powerful contingent planner –
HCP (Maliah et al. 2014), as well as a symbolic particle fil-
ter. Similarly, should contingent planner be able to handle
non-deterministic domains well, we could take advantage of
this and replace the all-outcome determinization with a more
sophisticated projection to contingent domains. Moreover,
in the future, we hope to integrate more complex reward
structures, e.g., by reduction to goal-based POMDPs (Bonet
and Geffner 2009).
Acknowledgements: We would like to thank the anony-
mous reviewers for their helpful suggestions. The authors
are supported in part by ISF grant 933/13. Brafman and
Gorohovski are supported in part by the the Paul Ivanier
Center for Robotics Research and Production Management,

Table 1: Initial Empirical Results
POMDP-Replan POMDP-NUS

Problem |V ars| # actions Time # actions Time
Localize 13 174 63.33 3.11 774 15.39

Sliding-doors 70 405 114.27 13.76 ENC ENC
EBTCS70 72 2.77 0.39 OOM OOM

RckSmpl 6-6 135 353.63 21.64 373 47.5
RckSmpl 6-8 456 466.53 32.43 527 65.24
RckSmpl 8-4 582 639.03 53.77 746 147.68
RckSmpl 8-6 682 789.17 88.85 871 183.27
RckSmpl 8-8 812 1053.77 107.72 1006 245.02

Doors5 135 101.41 8.68 ENC ENC
Doors7 271 179.03 45.39 ENC ENC
Doors9 455 473.59 126.47 ENC ENC
Doors11 687 700.2 281.09 ENC ENC
Doors13 967 950.25 404.14 ENC ENC
Unix1 22 30.46 0.67 64 2.17
Unix2 46 164.53 4.1 OOM OOM
Unix3 94 409.57 14.59 OOM OOM
Unix4 190 1497.97 112.69 OOM OOM

and the Lynn and William Frankel Center for Computer Sci-
ence.

References
Arulampalam, M. S.; Maskell, S.; Gordon, N. J.; and
Clapp, T. 2002. A tutorial on particle filters for online
nonlinear/non-gaussian bayesian tracking. IEEE Transac-
tions on Signal Processing 50(2):174–188.
Bonet, B., and Geffner, H. 2009. Solving pomdps: Rtdp-
bel vs. point-based algorithms. In IJCAI, 1641–1646.
Brafman, R. I., and Shani, G. 2012. A multi-path compila-
tion approach to contingent planning. In AAAI’12.
Fox, M., and Long, D. 2003. Pddl2.1: An extension to pddl
for expressing temporal planning domains. Journal of AI
Research 20:61–124.
Hoey, J., and Poupart, P. 2005. Assisting persons with
dementia during handwashing using a partially observable
markov decision process. In International Joint Confer-
ence on Artificial Intelligence (IJCAI), 1332–1338.
Madani, O.; Hanks, S.; and Condon, A. 2003. On the un-
decidability of probabilistic planning and related stochastic
optimization problems. Artif. Intell. 147(1-2):5–34.
Maliah, S.; Brafman, R. I.; Karpas, E.; and Shani, G. 2014.
Partially observable online contingent planning using land-
mark heuristics. In ICAPS’14.
Olsen, A. 2011. Pond-hindsight: Applying hindsight
optimization to partially-observable markov decision pro-
cesses. Master’s thesis, Utah State University.
Sanner, S. 2010. Relational dynamic influence diagram
language (rddl): Language description.
Wang, M., and Dearden, R. 2011. Planning with state
uncertainty via contingency planning and execution moni-
toring. In SARA.

47

Yoon, S. W.; Fern, A.; Givan, R.; and Kambhampati, S.
2008. Probabilistic planning via determinization in hind-
sight. In AAAI, 1010–1016.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. Ff-replan: A
baseline for probabilistic planning. In ICAPS.
Younes, H., and Littman, M. 2004. PPDDL1.0: An ex-
tension to PDDL for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-167,
Carnegie Mellon University.

48

A Relevance-Based Compilation Method for Conformant Probabilistic Planning

Ran Taig and Ronen I. Brafman
Computer Science Department

Ben Gurion University of The Negev
Beer-Sheva, Israel 84105
taig,brafman@cs.bgu.ac.il

Abstract

Conformant probabilistic planning (CPP) differs from con-
formant planning (CP) by two key elements: the initial belief
state is probabilistic, and the conformant plan must achieve
the goal with probability ≥ θ, for some 0 < θ ≤ 1. Taig and
Brafman observed that one can reduce CPP to CP by find-
ing a set of initial states whose probability ≥ θ, for which a
conformant plan exists. Previous solvers based on this idea
used the underlying planner to select this set of states and
to plan for them simultaneously. We suggest an alternative
approach: Our planner starts with a preprocessing relevance
analysis phase that determines a promising set of initial states
on which to focus. It then calls an off-the-shelf conformant
planner to solve the resulting problem. This approach has a
number of advantages. First, we can introduce specific, ef-
ficient relevance reasoning techniques for selecting the set
of initial states, rather than depend on the heuristic function
used by the planner. Second, we can benefit from various
optimizations used by conformant planners that are unsound
when applied to the original CPP. Finally, we have the free-
dom to select among different existing CP solvers. Conse-
quently, the new planner dominates previous solvers on al-
most all domains and scales to instances that were not solved
before.

Introduction
In conformant probabilistic planning (CPP) we are given a
set of actions – which like most past work, are assumed to
be deterministic, a distribution over initial states, a goal con-
dition, and a real value 0 < θ ≤ 1. We seek a plan π such
that following its execution, the goal is achieved with proba-
bility ≥ θ. Not many natural problems fit the frameworks of
conformant planning (CP) and CPP, yet both serve as basic
frameworks on which ideas for planning under uncertainty
can be developed and tested. Indeed, important ideas devel-
oped in CP were later extended to the richer framework of
contingent planning, including techniques for representing
and reasoning about belief states (Hoffmann and Brafman
2005) and various translation schemes (Albore, Palacios,
and Geffner 2009). The latter represent an important trend in
research on planning under uncertainty, where simple plan-
ners are used to solve more complex problems (Yoon, Fern,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Givan 2007; Palacios and Geffner 2009; Albore, Pala-
cios, and Geffner 2009).

This paper utilizes this reduction idea to develop an ef-
fective reduction scheme for solving CPP problems with de-
terministic actions, motivated by an observation by Taig and
Brafman 2013 (TB): One can solve CPP by finding a set of
initial states with joint probability ≥ θ for which a confor-
mant plan exists. TB used this idea to build a translation-
based CPP solver that has special actions that let the planner
ignore a certain state in the solution. Each such action car-
ries a cost equal to the probability of the ignored state. A
plan with cost ≤ 1 − θ is a solution to the original CPP
problem. TB’s technique has several weaknesses. First, the
choice of which states to ignore is carried out by the under-
lying planner’s heuristic function. It is not clear that this
function is well suited for this task. Second, the planner
need not minimize cost, but rather, ensure that a certain cost
bound is met. Few current planners or search techniques
support this optimization criterion. Finally, various opti-
mization schemes used by CP solvers are unsound under this
scheme.

We suggest an alternative, simpler approach where, first,
dedicated relevance-based preprocessing analysis is con-
ducted, determining a promising set of states with probabil-
ity ≥ θ to plan on. Then, this state set is given to an off-the-
shelf conformant planner as its initial state. Besides address-
ing the above shortcomings of TB’s method, this method
provides the flexibility of selecting the underlying confor-
mant planner to suit the current planning domain. Our em-
pirical evaluation shows that this approach dominates exist-
ing state-of-the-art planners on almost all problem instances.

In the next section, we provide some required background
on CPP. Then, we discuss related work, followed by a formal
description of our planner and its properties. We conclude
with an empirical evaluation and a discussion of our results
and potential future work.

Conformant Probabilistic Planning
We assume familiarity with the basic notation of classi-
cal planning domains via STRIPS with conditional effects:
(V,A, I,G), corresponding to a set of propositions, actions,
initial world state, and goal. A CP problem, (V,A, bI , G),
generalizes this framework, replacing the single initial state
with a set of initially possible states, called the initial belief

49

state bI . This initial state is often described by means of a
formula ϕI , such that bI = {w|w |= ϕI}. A plan is an
action sequence a such that a(wI) ⊇ G for every wI ∈ bI .

CPP extend CP by quantifying the uncertainty regarding
bI using a probability distribution bπI

. In its most general
form, CPP allows for stochastic actions, but we leave this to
future work, and assume all actions are deterministic. CPP
tasks are 5-tuples (V,A, bπI

, G, θ), corresponding to the set
of propositions, set of actions, initial belief state, goals, and
acceptable goal satisfaction probability. As before, G is a
conjunction of propositions. bπI

denotes a probability distri-
bution over the world states, where bπI

(w) is the probability
that w is the true initial world state.

In many settings, achieving G with certainty is impossi-
ble. CPP introduces the parameter θ, which specifies the
required lower bound on the probability of achieving G. A
sequence of actions a is called a plan if the weight of the
initial states from which a reaches the goal is at least θ.

Some approaches to CPP require that the plan be exe-
cutable in all initial states, even those from which it does
not reach the goal. That is, each plan prefix must be confor-
mant (with probability 1) with respect to the preconditions
of the next action. This extra requirement may make sense
in domains where executing an action without satisfying its
preconditions may have catastrophic consequences. How-
ever, it seems to conflict with the very explicit success crite-
rion of CPPs specified by the parameter θ, and we adapt this
requirement as the only requirement from a plan for a CPP
problem in our work.

A CPP specification language must provide a way to
specify the initial distribution bπI

. Following previous
work (Domshlak and Hoffmann 2007) we assume that bπI

is specified using a Bayes net (BN) NbI . (We assume the
reader is familiar with the notion of BN’s.) BNs are typi-
cally defined over a set of multi-valued variables, and there
are numerous formats used in the literature for their speci-
fication, all having the same semantics. Here, we adopt the
notation used by the PFF planner (Domshlak and Hoffmann
2007) which contains two parts. First, a definition of an in-
duced set of multi-valued variables, corresponding to a set of
literals, only one of which can be true at a time (e.g., literals
denoting possible locations of an object). And second, NbI ,
which is a BN defined over this set of multi-valued variables.

Related Work
The best current CPP solvers are Probabilistic FF
(PFF) (Domshlak and Hoffmann 2007) and PCBP (Taig and
Brafman 2013). Each works well on a subset of benchmark
domains. Probabilistic-FF uses a time-stamped Bayesian
Networks (BN) to describe probabilistic belief states, ex-
tending Conformant-FF’s (Hoffmann and Brafman 2006)
belief state encoding to model these BN. It uses SAT rea-
soning (following Conformant-FF) and weighted model-
counting to determine whether goal probability is at least θ.
In addition, it introduces approximate probabilistic reason-
ing into Conformant-FF’s heuristic function. PFF performs
well on many domains, but it is sensitive to the syntax of
conditional effects (the order of literals in effect conditions),
and requires complex probabilistic reasoning. To model the

belief state during planning, it extends the original BN into a
time stamped dynamic (and thus continually growing) BN,
on which it performs probabilistic inference by compiling
probabilistic queries into WMC queries. The algorithm we
introduce reasons with a single, static BN that represents the
initial state probability. Reasoning is performed at the pre-
processing time only, in order to assess initial state restric-
tions. No probabilistic queries or data structures need be
maintained at planning time. This leads to significant saving
of time and memory, as reflected in our results.

Closely related to our work are the CLG+ planner (Al-
bore and Geffner 2009) and the assumption-based planning
approach introduced recently (Davis-Mendelow, Baier, and
McIlraith 2013). Both attempt to solve planning problems
with incomplete information in which goal achievement
cannot be guaranteed from all states, by making assumptions
that reduce the uncertainty, and planning under these as-
sumptions. However, neither planner uses an explicit prob-
abilistic semantics – a core part of CPP. In CLG+, assump-
tions are made online w.r.t. information gathered during
planning and sensing, while our assumptions are made by an
efficient analysis preprocessing phase. (Davis-Mendelow,
Baier, and McIlraith 2013) consider the idea of planning un-
der assumptions in general, but do not describe a particular
strategy for selecting them, possibly allowing a domain ex-
pert to specify them.

Another line of related work by Tran et al. (Tran et al.
2009) and Nguyen et al. (Nguyen et al. 2011) considers
methods for reducing the initial belief state by a preprocess-
ing analysis phase while ensuring that the resulting plan ap-
plies to all original states. Thus, this is a completeness pre-
serving, sound optimization method that can be used by our
underlying conformant planner.

Relevance-Based Reduction
The planner most relevant to our current work is PCBP. It is
a relevance-based translation-based planner that exploits the
following Lemma:

Lemma 1 (Taig & Brafman, 2013) A CPP CP =
(V,A, bπI

, G, θ) is solvable iff there exists a solvable CP
problem C = (V,A, bI , G) such that bπI

({w ∈ bI}) ≥ θ.
Moreover, a is a solution to CP iff it is a solution to P .

PCBP augments the regular set of actions with special
actions — one per possible initial state. Each such action
allows the planner to ignore a possible state by essentially
making the goal easy to achieve from that state. The cost of
each such action equals the initial probability of the corre-
sponding state, while all other actions have zero cost. A plan
for the new problem with cost ≤ 1− θ represents a solution
to the original CPP because the set of states from which it
fails to reach the goal has probability ≤ 1− θ.

PCBP performs well on a number of domains, but almost
completely fails on others (such as logistics, grid, rovers).
It suffers from a number of weaknesses — some inherent,
and some tied to the limitation of existing translation meth-
ods and search methods. First, the choice of which states
to ignore is essentially carried out by the planner’s heuristic
function, because it is implemented by the action selection

50

mechanism. It is not clear that this function is well suited for
this task. Second, the planner needs to solve a cost-bounded
planning problem which few current planners or search tech-
niques support. Third, there are various optimization that
existing CP solvers carry out which are unsound in this
scheme. For example, the completeness preserving pruning
methods mentioned above, or T0’s relevance-analysis (Pala-
cios and Geffner 2009) which attempts to identify clauses
and propositions that can be safely ignored during planning.
These techniques are unsound for CPPs. Finally, PCBP’s
reduction does not work if actions have cost and we seek a
(truly) cost-optimal, or cost-efficient plan.

The RBPP Planner
To overcome these problems, we suggest a simpler, prepro-
cessing approach. First, relevance-based analysis is carried
out to identify those states which would be most profitable
to ignore. Then, a CP problem is defined in which the ini-
tial state consists of all states that are not ignored. This is
given to an off-the-shelf CP solver. This method addresses
the above shortcomings of PCBP, and in addition gives us
the flexibility to choose which conformant planner to use.
While in this paper we do not attempt to provide an auto-
mated portfolio-based method, our empirical analysis indi-
cates that different solvers have advantages in different do-
mains, showing the potential for farther improvement by
automatically selecting the underlying conformant planner
which best suits the characteristics of the problem in hand.
Algorithm 1 RBPP (P, conf-planner)
ψI ⇐ RESTRICT(P);
return conf-planner(P̃ = (V,A, ψI , G));

Algorithm 2 RESTRICT (P)
Q⇐ SORT-CLAUSES(P);
ψI ⇐ ϕI ;
while (bπI (ψI) ≥ θ) do
C ⇐ Extract-First(Q);
ψI ⇐ RESTRICT-CLAUSE(C,ψI , P);

end while
return ψI ;

Algorithm 3 SORT-CLAUSES (P)
return A sorted list of all non-unit clauses in ϕI according to
the following parameters order:
1. RL(C) (high to low).
2. Rad(C) (high to low).
3. PI(C) (High to low).
4. RP(C). (low to high).
5. prefer, if exist, Clauses C where: C ∩G 6= ∅.
6. If all previous parameters equal – choose arbitrarily.

The first step in our algorithm is to generate an initial
belief-state formula ϕI from the BN describing the initial
belief state NbI . ϕI is constructed as follows: for every
multi-value variable X whose initial value is uncertain, ϕI
contains a One-Of clauseCX with one literal for every value
of X possible (i.e., which has probability > 0). In addition,
if Pr(X = x|Parents(X) = y) = 0 (i.e., X = x is not
possible when Pa(X) have value y, an additional Or clause

expressing Pa(X) = y → ¬(X = x) is added. Note that
this formula can be generated by a single top down traversal
of the BN, requiring linear time. The following is immedi-
ate:

Lemma 2 ϕI |= w iff bπI
(w) > 0.

Next, we seek to simplify ϕI by ignoring a set of states
with probability at most 1 − θ. Thus, at this stage we oper-
ate on the structure: P = (V,A, ϕI ,NbI , G, θ) which de-
notes the original CPP together with the generated initial
state formula. Algorithm 1 describes the high-level struc-
ture of RBPP – our relevance-based probabilistic planner.
We denote the formula expressing the set of states valid af-
ter the simplification of ϕI as ψI . We also use: bπI

(ϕ) to
denote Σϕ|=wbπI

(w).
The main element – relevance-based analysis – is carried

out by the Restrict procedure (Algorithm 2) which deter-
mines which initial states to ignore. This analysis is heuris-
tic, and it is strongly motivated by the notions of conformant
width and relevance developed by (Palacios and Geffner
2009) in the context of conformant planning.

First, Restrict sorts the clauses. Then, at each iteration
it selects the first non-unit clause (i.e., a clause expressing
uncertainty) in the list and restricts it by dropping some lit-
eral(s) using Algorithm 4. This results in a smaller clause
satisfied by fewer states, hence ignoring those states satis-
fied by the dropped literal. The procedure is repeated un-
til no further restrictions are possible given the probability
bound. We note that each restriction is made only after we

Algorithm 4 RESTRICT-CLAUSE (C,ψI , P)

while (|C| > 1 ∧ bπI
(ψI) ≥ θ) do

C ′ ← C;
choose next proposition p ∈ C ′ by the following order:

1. p /∈ g.
2. bπI

(ψI ∧ ¬p) ≥ θ.
3. Prefer not removing p ∈ DRC(C) before other

propositions.
4. bπI

(p) - The initial probability of p. (low to high).
5. If all previous parameters equal - choose arbitrarily.
C ′ ← C \ p;
ψI ← ψI \ C ∪ C ′;1

end while
return ψI ;

check (using a standard BN software package) that the prob-
ability of the removed initial states does not exceed 1− θ.

Restrict maximally restricts a clause before moving on to
the next clause. We have found this priority to be most use-
ful, as there appears to be greater advantage to making a
single clause much smaller than to making multiple clauses
smaller. Clauses are sorted based on a prioritized list of pa-
rameters, as shown in Algorithm 3. These parameters at-
tempt to assess the impact of a clause on the difficulty of

1For clarity, we use set notation, treating ψ as a set of clauses
and treating clauses as a set of literals. Here, p is removed from C
to obtain C′, and C is replaced by C′ to obtain the updated ψI .

51

solving a problem. Future work could improve this by adapt-
ing the parameters and their priority to take into account
their effect on the underlying conformant planner.

Choice of Clauses Our analysis is strongly motivated by
the notion of conformant relevance (Palacios and Geffner
2009) (PG), and many of our definitions are adaptation of
their concepts to the probabilistic case. Relevance is a tran-
sitive relation between facts expressing whether uncertainty
about the value of one fact affects our knowledge about the
value of the other. The relation propagates only through con-
ditional effects of actions. Our relevance analysis focuses on
facts relevant to subgoals, and while it is possible to consider
also facts relevant to preconditions, we found the overhead
of these computations costly.
Definition 1 (Conformant Relevance (PG 2009))
1. p is relevant to p.
2. p is relevant to q if there exist an action a ∈ A with
conditional effect C → q and p ∈ C .
3. If p is relevant to r and r is relevant to q then p is relevant
to q.
4. p is relevant to q if p is relevant to ¬r and r is relevant to
¬q.

We extend this relation to relevance between an initial
non-unit clause and a (goal) fact as follows:
Definition 2 (probabilistic clause relevance) A non unit
clause ϕ ∈ ϕI is considered relevant to a proposition p if
∃q ∈ ϕ s.t q ∈ rel(p).
PG consider ϕ relevant to p only if all propositions of ϕ
are in rel(p). The latter yields fewer relevant propositions
but cannot be extended to the probabilistic case. Suppose,
for example, that we have One-Of(p,q) in ϕI . Assume p is
relevant to some goal fact g but q is not. Assume also that
bπI

(p) = 0.5 and Θ = 0.4. In the conformant case, this
clause may be ignored, but in CPP, because we do not need
to succeed with certainty, we must be take into account the
possibility to plan from all p states, even though planning
from all q is infeasible.
Definition 3 (relevant clauses set) ∀g ∈ G : rel(g) con-
tains all the clauses from ϕI relevant to g;
rel(g) expresses the maximal amount of initial uncer-

tainty relevant to a specific goal fact. Maxg∈G{|rel(g)|} is
closely related to the notion of conformant width introduced
by PB. They show that the complexity of their reduction-
based planning algorithm grows exponentially with this pa-
rameter. This effect on the problem’s complexity stems from
the fact that the solver must potentially consider initial states
(or more accurately, initial state-sets) that correspond to all
possible assignments to rel(g) variables to compute the cur-
rent probability of g, in the probabilistic case, and to deter-
mine whether g is valid, in the standard conformant case.
And while this value was suggested by PG in the context of
their analysis of the T-0 planner, it appears relevant to the
performance of other conformant planners, such as CFF, as
our empirical analysis shows.

There are two technical differences between our notion of
rel(g) and PG’s conformant width: First, we use probabilis-
tic clause relevance, explained earlier. Second, PG compute

the closure of rel(g), called CI(L)∗. We omit the costly
computation of CI(L)∗, using rel(g) instead. For the pur-
pose of our heuristic, this provides us with a better tradeoff,
and in fact, rel(g) = CI(L)∗ in almost all experimented
benchmarks.

Given the above theoretical and empirical justifications
for relation between rel(g) and problem hardness, our most
important parameter for assessing clauses is RL(C):

Definition 4 (clause relevance level) RL(C) =
MAX{|rel(g)|}g∈G∧C∈rel(g).

Relevance sets can also be used to understand how many
goal facts are influenced by the uncertainty expressed by
a clause. Restricting clauses that affect many goal facts is
likely to be better, motivating the following definition:

Definition 5 (clause radius) Rad(C) = #g ∈ G s.t C ∈
rel(g).

Example: Consider the logistics domain with 10 cities,10
trucks, 10 packages, and one plane. Initially, there is one
package and truck per city. There are 10 sub-goals speci-
fying the final location of each package. Actions have no
pre-conditions, but only conditional effects. The initial lo-
cation of trucks and the plane are unknown. Each truck can
be in one of three possible locations in a city. Each truck’s
location uncertainty is relevant only to one sub-goal (corre-
sponding to the package in this city). Uncertainty regarding
the plane is relevant to all goals. RL(C) = 2 for all clauses,
while the radius of the clause expressing the plane’s uncer-
tainty is 10, and that of other clauses is 1. Restricting this
clause will prevent the conformant planner from repeatedly
reasoning about the plane’s location. It is likely to yield a
simpler plan, too, as there is no need for extra flights that
will ensure a known location to the plane.

Relevance analysis ignores the initial probabilistic distri-
bution. PI(CX) takes this information into account. It is
a rough and tractable estimate of the effect evidences on X
(e.g restrictions on CX ’s literals) might have on our knowl-
edge regarding CY ’s literals.

Definition 6 (Probabilistic Influence) Let X ∈ NbI be
the corresponding node of a clause CX . We define:
RelChildren(X) = {Y |X ∈ Parents(Y) ∧ ∃g ∈
G s.t CY ∈ rel(g)}
PI(CX) = |RelChildren(X)|.
Potentially, restricting CX might induce immediate restric-
tions on CY which, in turn, reduces the relevant uncertainty
in the resulting conformant problem. Ideally, our definition
should have been transitive, but again, to limit the cost of the
restriction heuristic, we consider immediate parents only. In
order to exploit this information and monitor such effects,
after each restriction of a clause CX s.t PI(CX) > 0, we
query NbI to check whether any of the literals in CY for
each Y ∈ Rel − Children(X) has probability 0. In that
case we restrict CY accordingly.
Example (continued): Suppose that the plane’s initial lo-
cation distribution is dependent on the initial distribution on
the weather in some city city. Other than that, the weather
does not influence other problem variables and does not ap-
pear in action descriptions. The relevance analysis will not

52

θ = 0.25 θ = 0.5 θ = 0.75
t/l t/l t/l

Task PFF PCBP RBPP[T-0] RBPP[CFF] PFF PCBP RBPP[T-0] RBPP[CFF] PFF PCBP RBPP[T-0] RBPP[CFF]

Safe-uni-70 2.3/18 0.02/18 0.07/18 0.1/18 5.5/35 0.05/35 0.1/35 1.13/35 9.6/53 6.4/70 0.07/53 1.44/53
Safe-cub-70 0.07/5 0.03/5 0.09/5 0.06/5 1.62/12 0.04/21 0.07/12 0.07/12 2.92/21 0.04/21 0.08/12 0.08/12
NC-Safe-uni-70 1.15/5 1.41/12 1.39/5 1.13/5 2.28/12 1.47/12 1.39/12 2.31/12 4.92/21 1.56/20 1.39/20 1.3/20
Cube-uni-corner-15 3.44/26 OOT 0.11/36 2.37/36 4.7/33 OOT 0.07/42 4.34/44 6.9/38 OOT 0.07/42 4.29/42
Cube-cub-corner-15 1.86/20 OOT 0.06/37 2.93/37 4.2/28 OOT 0.09/37 3.01/37 5.03/33 OOT 0.1/40 3.32/40

Cube-uni-center-15 OOT OOT 6.15/70 OOT OOT OOT 5.27/68 OOT OOT OOT 6.94/56 OOT
Cube-cub-center-15 OOT OOT 6.02/64 OOT OOT OOT 5.72/61 OOT OOT OOT 3.87/61 OOT

NC-cube-cub-15 5.22/20 OOT 2.93/37 10.42/37 2.94/27 OOT 0.86/37 2.63/37 5.74/33 OOT 1.29/37 2.37/37
NC-cube-uni-15 2.28/26 OOT 0.08/34 0.08/34 13.98/47 OOT 3.06/34 4.00/34 NP NP NP NP

Push-Cube-uni-15 7.39/50 2.08/42 1.21/66 0.06/57 27.28/66 2.33/45 1.79/72 0.09/63 55.21/74 2.28/46 1.81/74 0.11/63
Push-Cube-cub-15 0.08/15 1.48/28 0.07/42 0.05/33 0.09/17 3.88/37 1.26/58 0.05/48 0.09/18 2.09/37 1.34/59 0.09/48

Bomb-50-50 0.01/0 0.01/0 0.01/0 0.01/0 0.1/16 9.02/50 0.09/50 6.13/50 0.2/36 8.4/90 0.07/50 6.22/50
Bomb-50-10 0.01/0 0.01/0 0.01/0 0.01/0 2.89/22 8.4/90 0.04/90 1.43/22 5.74/63 8.4/90 0.04/90 5.59/63
Bomb-50-5 0.01/0 0.01/0 0.01/0 0.01/0 1.94/27 8.6/95 0.04/95 1.83/27 8.02/63 9.14/95 0.04/95 7.07/67
Bomb-50-1 0.01/0 0.01/0 0.01/0 0.01/0 2.21/31 5.02/49 0.03/100 1.88/31 10.12/71 4.8/74 0.05/100 7.9/71
10-Log-2 3.73/72 OOT 4.51/85 2.79/77 3.17/79 OOT 4.97/84 2.56/77 2.46/80 OOT 3.13/80 5.3/87
10-Log-3 7.47/64 OOT 5.16/57 2.83/58 35.4/98 OOT 8.98/77 3.23/77 8.91/99 OOT 24.28/123 4.12/91
10-Log-4 8.35/75 OOT 8.41/47 4.59/47 34.2/81 OOT 13.29/78 5.38/70 12.09/95 OOT 36.53/111 7.43/95
15-Log-4 OOT OOT OOT 15.02/98 OOT OOT OOT 28.31/138 OOT OOT OOT 32.5/154

2-planes-log-3 19.81/84 OOT 14.09/64 7.62/69 57.98/97 OOT 31.24/104 18.72/89 10.12/112 OOT 229/134 13.7/109
2-planes-log-4 OOT OOT 23.19/62 12.64/57 OOT OOT 74.03/101 17.91/87 OOT OOT 522/145 47.52/107
2-planes-C OOT OOT OOT 3.65/83 OOT OOT OOT 4.92/83 OOT OOT OOT 14.06/108
grid-uni-2 0.07/21 OOT 4.33/75 3.15/47 1.35/48 OOT OOT 3.18/53 6.11/69 OOT OOT 5.41/66
grid-uni-3 16.01/76 OOT 6.22/86 41.14/86 15.8/89 OOT 5.93/96 127/103 82.24/123 OOT 7.26/102 132/105
grid-uni-4 28.15/96 OOT 6.78/111 134.21/115 51.58/111 OOT OOT 247.58/117 50.80/115 OOT OOT 721/146
grid-cub-3 OOT OOT 18.14/40 9.47/30 OOT OOT 31.14/43 16.11/35 OOT OOT 27.71/64 39.42/76
grid-cub-4 OOT OOT 10.8/77 83.84/92 OOT OOT 9.37/78 114/92 OOT OOT 14.95/85 200/106

Rovers-3 0.04/14 0.06/19 0.02/12 0.02/12 0.05/17 0.06/19 0.02/12 0.02/12 0.06/18 0.06/25 0.02/20 0.03/24
Rovers-7 5.72/65 4.12/54 0.04/47 0.04/41 5.48/75 4.14/54 OOT 0.07/56 6.55/83 10.74/88 OOT 2.09/72
C-Rovers-PP-7 10.54/65 OOT OOT 1.1/41 15.4/75 OOT OOT 1.12/56 39.1/77 OOT OOT 2.23/72
C-Rovers-PPP-7-3-ID 3060/68 OOT OOT 3.31/47 OOT OOT OOT 11.34/71 OOT OOT OOT 127.53/96
C-Rovers-PPP-NC-7 30.11/67 OOT OOT 3.12/41 46.3/79 OOT OOT 4.14/57 NP NP NP NP

Table 1: Empirical results. t: time in seconds. l: plan length. Entries marked OOT means the search did not return after 30
minutes. ’NP’-no plan for this goal probability exists.

identify the ”weather” clause Cw as having any importance.
However. since PI(Cw) = 1, while for all other clauses
PI(C) = 0, the algorithm might choose to restrict Cw, set-
ting the weather in city to extreme. Given this value there
is 0 probability for the plane to be in city with the effect of
restricting the clause expressing the plane’s location uncer-
tainty – Cp. This can help us in cases where θ and the initial
distribution limits our ability to directly restrict Cp but allow
the restriction of Cw.

Restrictions come with a cost: the probability mass we
lose. We wish to restrict as many propositions as possible,
so we prefer restrictions that carry lower probability ”cost”.

Definition 7 (clause restriction potential) RP(C) =
Min{bπI

(p) | p ∈ C}. (By bπI
(p) we mean The initial

probability of p).

RP (C) improves our ability to identify, in advance, clauses
that are potentially more attractive for restriction. As such,
it serves as a good tie-breaker. Note that if the node corre-
sponding toC inNbI is not barren, this parameter is ignored.

Clause Restriction First, we make sure no facts which can
negatively affect the completeness or the quality of solution
are removed. Thus, goal facts which must be achieved are
not removed. In addition, sometimes, only a subset of the
facts are responsible for making the clause relevant to a goal
and removing them can make the goal unreachable. We de-
fine the following set:

Definition 8 (Direct Relevance causes) DRC(C) = {p ∈
C | ∃g ∈ G : p is relevant to g}.

If, for a clause C: DRC(C) (C a plan might not exist
from all assignments to C. Thus, we don’t remove facts
from DRC(C) unless no other option exists.

Finally, we prefer to remove facts whose initial probabil-
ity is smaller, to leave more probabilistic mass for farther
restrictions but once again, if the node corresponding to C ′s
in NbI is not barren, the latter parameter is ignored.

Properties
Soundness: Our algorithm is sound if the underlying CP
solver is sound. This follows from Lemma 1, provided we
ensure that the probability of our new initial state ≥ θ. Each
clause restriction is equivalent to ignoring a possible value
of a variable. To accept such a restriction, we compute the
probability of the set of ignored states, ensuring it does not
exceed 1− θ. When multiple values are ignored, we use the
standard probabilistic semantics to compute their aggregated
weight. (E.g., if we ignore ¬p and then ¬q, we compute the
weight of ¬p, and add the weight of ¬q ∧ p).
Completeness: Our algorithm is incomplete because we do
not attempt to systematically examine all possible restric-
tions with weight≤ 1−θ. Conceptually, it is a simple matter
to add an outer loop that will make the algorithm complete,
(e.g., as used by some greedy algorithms to provide theo-
retical completeness). Practically (and theoretically) this is
a potentially super-exponential algorithm and we see little
value in it (unlike soundness), as it will not help us scale
up any better. As our experiments demonstrate, our algo-
rithm does scale up better than earlier method. Moreover,

53

as the problem is at least as hard as CP, which is PSPACE-
COMPLETE (Haslum and Jonsson 1999) even with deter-
ministic actions, ensuring completeness seems ill advised.
Complexity: There are three elements contributing to the
complexity to our algorithm: the algorithm for selecting pos-
sible initial-state restrictions, the BN queries, and the CP
solver. In theory, there are super-exponentially many pos-
sible restrictions to the initial state and the computation of
each one’s probability can be NP-hard. In practice, we use
a heuristic low-order polynomial time algorithms to iden-
tify promising restrictions. For this we pay by sacrificing
completeness. To check the validity of restrictions, we com-
pute marginal distribution of variables in a BN, which is NP-
hard (Cooper 1990). In practice, the queries we seek to com-
pute are very simple, and are not likely to be the bottle-neck
even when we go beyond current CPP benchmarks which
feature very simple initial state BNs. Solving CP is a diffi-
cult problem (Haslum and Jonsson 1999), and this appears
to be the more significant bottleneck in practice. This, of
course, is to be expected, as we are solving a problem that is
at least as difficult as CP. Thus, we have focused on making
the reduction process simple and fast.

Empirical Evaluation
We implemented the algorithms and experimented with
them on a variety of domains taken from PFF repository
and the 2006 IPPC, as well as new, modified versions of
these domains. Beyond our tools, we used a modification
of PG’s cf2cs code for the relevance analysis and NORSYS
NETICA java api program for the Bayesian net creation and
reasoning. As the underlying conformant planner for RBPP
we used both T-0 and CFF. GC[LAMA] (Nguyen et al.
2012) is unable to handle most of the domains we tested
on. The two RBPP variants were compared with state-of-
the-art CPP planners: PFF and PCBP, the results are pre-
sented in Table 1. Each task was tested with three different
θ value and two different initial state distributions: uniform
(uni) and cubic (cub). Results show dominance of RBPP[T-
0] on almost all benchmarks, in many cases by an order of
magnitude. An interesting observation is that in most cases
RBPP[CFF] performs better than PFF which is a specially
designed extension of Conformant-FF’s. This demonstrates
the effectiveness of the compilation approach over direct
probabilistic reasoning, as used by PFF. On some of the
simplest tasks such as safe-70 PCBP has a small advantage
due to the overhead of relevance analysis relative to solu-
tion time in this problem. In more complex problems, such
as cube-15-corner (an agent can initially be in any of the
cube’s 153 locations and needs to navigate to a corner) our
planners run-time dominance is clear, although PFF’s plans
are shorter. When, in the same setting, the agent needs to
plan to the center of the cube, RBPP[T-0] produces good
plans in a matter of seconds, while all other planners fail.
Similar performance is seen in the push-cube domain (Taig
and Brafman 2013). Here, a player must push a ball with un-
known initial position to some location on a grid. It can se-
lect (position, direction) pairs, and if the ball is in position, it
moves in direction. Solving this problem requires many ac-
tions, and RBPP is the clear winner. The m-logistics-n prob-

lem refers to logistics with m packages and m cities of size
n. Here, too, the various RBPP versions are faster and gen-
erate shorter plans, when we set m = 15 only RBPP[CFF]
scales up. The 2-planes variation of logistics has 2 planes,
instead of 10, as well as uncertainty on their initial location.
Both rovers and grid have large probabilistic width, and our
relevance analysis is crucial. Results here are mixed. As the
uncertainty grows (grid-4,rovers-7) both PFF and RBPP[T-
0] fail to scale up. RBPP[CFF] is the only planner that man-
ages to solve all tasks, typically dominating other planners.

We also experimented on domains with no conformant
plan (marked NC). For example, we modified cube such that
some transitions between adjacent locations are blocked so
the agent cannot reach the goal location if initially located
beyond the blocked path. These experiments demonstrate
the ability of RBPP’s preprocessing phase to select initial
states from which the goal is reachable.

Another important line of experiments is on the problems
marked with C. In these problems the initial state distribu-
tion is more complex and involves dependencies. 2-planes-
C reflects the example given in this paper. In rovers-pp,
the visibility of an objective from a waypoint depends on
whether or not a rock sample is located at the waypoint. The
probability of visibility is much higher if the latter is not
the case. Rovers-PPP extends RoversPP by introducing the
need to collect data about water existence. Each soil sam-
ple has a certain probability to be wet. For communicated
sample data, an additional operator tests whether the sample
was wet. The probability of being wet depends on sample
location. In the instance marked ”ID,” one of the 3 samples
must be wet, increasing dependencies to a level that only
RBPP[CFF] can handle. In the instance marked NC, there
is no guarantee that one of the 2 samples is wet, and thus,
there is no conformant plan. Here, RBPP[CFF] scales bet-
ter than PFF by an order of magnitude.

Conclusion and Future work
We presented a new approach to CPP based on pre-planning
analysis of the initial belief state. We use relevance analy-
sis and heuristics that attempt to identify states that would
be most beneficial to ignore in planning, while making sure
that the remaining states are sufficiently likely, and a confor-
mant plan exists for them. The empirical evaluation shows
this method to be currently the strongest CPP algorithm with
better coverage and scaling than previous approaches. While
theoretically incomplete, in practice, this method handles
more problems, and its performance clearly motivates the
potential of this reduction approach.

Presently, we make no attempt to automatically select
the underlying conformant solver. In future work, we
intend to attempt to identify problem features that can
help predict which planner will perform better, and to
use these within a portfolio-based solver. In addition, we
intend to extend the approach presented here to handle CPP
domain with stochastic actions. A first step is to simply
consider deterministic version of these actions, and to be
able to verify that the solution addresses a sufficiently large
probability mass.

54

Acknowledgments The authors were supported in part by
ISF grant 933/13 and the Lynn and William Frankel Center
for Computer Science.

References
Albore, A., and Geffner, H. 2009. Acting in partially ob-
servable environments when achievement of the goal cannot
be guaranteed. In ICAPS’09 Planning and Plan Execution
for Real-World Systems Workshop.
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In IJ-
CAI, 1623–1628.
Cooper, G. F. 1990. The computational complexity of prob-
abilistic inference using bayesian belief networks. Artif. In-
tell. 42(2-3):393–405.
Davis-Mendelow, S.; Baier, J. A.; and McIlraith, S. A. 2013.
Assumption-based planning: Generating plans and explana-
tions under incomplete knowledge. In AAAI.
Domshlak, C., and Hoffmann, J. 2007. Probabilistic plan-
ning via heuristic forward search and weighted model count-
ing. J. Artif. Intell. Res. (JAIR) 30:565–620.
Haslum, P., and Jonsson, P. 1999. Some results on the com-
plexity of planning with incomplete information. In ECP,
308–318.
Hoffmann, J., and Brafman, R. I. 2005. Contingent planning
via heuristic forward search witn implicit belief states. In
ICAPS, 71–80.
Hoffmann, J., and Brafman, R. I. 2006. Conformant plan-
ning via heuristic forward search: A new approach. Artif.
Intell. 170(6-7):507–541.
Nguyen, H.-K.; Tran, D.-V.; Son, T. C.; and Pontelli, E.
2011. On improving conformant planners by analyzing
domain-structures. In AAAI.
Nguyen, H.-K.; Tran, D.-V.; Son, T. C.; and Pontelli, E.
2012. On computing conformant plans using classical plan-
ners: A generate-and-complete approach. In ICAPS.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
JAIR 35:623–675.
Taig, R., and Brafman, R. I. 2013. Compiling conformant
probabilistic planning problems into classical planning. In
ICAPS.
Tran, D.-V.; Nguyen, H.-K.; Pontelli, E.; and Son, T. C.
2009. Improving performance of conformant planners:
Static analysis of declarative planning domain specifica-
tions. In PADL, 239–253.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. Ff-replan: A
baseline for probabilistic planning. In ICAPS, 352–.

55

Structured Possibilistic Planning using Decision Diagrams

Nicolas Drougard and Florent Teichteil-Königsbuch and Jean-Loup Farges
{Nicolas.Drougard,Florent.Teichteil,Jean-Loup.Farges}@onera.fr

Onera – The French Aerospace Lab
2 avenue Edouard Belin

31055 Toulouse Cedex 4, France

Abstract

Possibilistic POMDPs (π-POMDPs) are well-suited to
planning under uncertainty with partial observability
when transition, observation and reward functions are
not precisely known. In this qualitative framework,
functions defining the model as well as intermediate
calculations are valued in a fixed and finite possibilis-
tic scale L. Contrary to their probabilistic counterparts,
π-POMDPs reduce to belief MDPs with finite states,
thus π-MDP algorithms as is handle partially observ-
able problems too. In this paper, we propose the first
study of factored representations of π-(PO)MDPs in or-
der to solve large planning problems under imprecise
uncertainty. Building upon the SPUDD algorithm for
solving factored MDPs, we conceived a symbolic al-
gorithm named PPUDD for solving large factored π-
(PO)MDPs. Whereas the size of SPUDD’s ADD leaves
may grow exponentially large since their values are real
numbers aggregated through additions and multiplica-
tions, PPUDD’s ones always remain in the finite scale
L via min and max operations only. Finally, we present
a sound transformation from factored mixed-observable
possibilistic problems with both hidden and visible state
variables to fully observable ones, on which PPUDD
is run. Experiments with possibilistic and probabilis-
tic versions of the same benchmarks show that PPUDD
runs significantly faster than its probabilistic counter-
part while providing high-quality policies.

Introduction
Most sequential decision making under uncertainty prob-
lems can be easily expressed in terms of Markov Decision
Processes (MDPs) (Bellman 1957; Puterman 1994). Par-
tially Observable MDPs (POMDPs) (Smallwood and Sondik
1973) have been developed to take into account situations
where the system’s state is not totally visible to the agent.
Yet, this framework often encounters difficulties in comput-
ing optimal policies: dynamic programming algorithms like
incremental pruning (Cassandra, Littman, and Zhang 1997)
can only solve small POMDPs. Many approximation algo-
rithms have been proposed to speed up computations while
controlling the quality of resulting policies (Pineau, Gordon,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Thrun 2003; Smith and Simmons 2004; Hanna Kurni-
awati 2008). In this paper, we proceed quite differently start-
ing with an approximated model and exactly solving it.

The π-POMDP (Possibilistic Partially Observable
Markov Decision Process) framework was first introduced
in (Sabbadin 1999): this possibilistic counterpart of classical
(probabilistic) POMDPs is based on Possibility Theory
(Dubois and Prade 1988) and more specifically on Qualita-
tive Decision Theory (Dubois, Prade, and Sabbadin 1998;
Dubois and Prade 1995). A possibility distribution, as all
plausibility distributions, classically models imprecision
or lack of knowledge about the uncertainty model. Us-
ing Possibility Theory instead of Probability Theory in
POMDPs necessarily leads to an approximation of the initial
probabilistic model. But this approach benefits from com-
putations on finite belief state spaces, whereas probabilistic
POMDPs tackle infinite ones. What is lost in precision of the
uncertainty model is gained in computational complexity.

However, the belief space of a π-POMDP still expo-
nentially grows with the number of states and only small
problems can be solved in practice. Possibilistic Mixed-
Observable MDPs (π-MOMDPs) proposed by (Drougard et
al. 2013) take advantage of the specific structure of problems
where parts of the system state are fully observable. This ex-
tension of π-MDPs and π-POMDPs is essentially the coun-
terpart of probabilistic MOMDPs introduced by (Ong et al.
2010; Araya-Lòpez et al. 2010).

Nevertheless, existing works on π-(MO)MDPs do not to-
tally profit from the problem’s structure, i.e. visible and hid-
den parts of the state can be themselves factored into many
state variables, which are yet flattened by current possibilis-
tic approaches. In probabilistic settings, factored MDPs and
Symbolic Dynamic Programming (SDP) (Boutilier, Dear-
den, and Goldszmidt 2000; Hoey et al. 1999) have been ex-
tensively studied in order to reason directly at the level of
state variables rather than flattened states. The famous al-
gorithm SPUDD (Hoey et al. 1999) solves factored proba-
bilistic MDPs by using symbolic functional representations
of value functions and policies in the form of Algebraic De-
cision Diagrams (ADDs) (Bahar et al. 1997), which com-
pactly encode real-valued functions of boolean variables.
ADDs are directed acyclic graphs whose nodes are instan-
tiated state variables and leaves are the function’s values.
Instead of updating states individually at each iteration of

56

the algorithm, states are aggregated within ADDs and oper-
ations are symbolically and directly performed on ADDs.

However, SPUDD and all its variants suffer from an expo-
nential growth of ADDs in the worst case as computations
go on: expectation, amongst other operations, involves ad-
ditions and multiplications of real values (probabilities and
rewards), creating other values in-between, in such a way
that the number of ADD leaves may eventually equal the
size of the state space, which is exponential in the number
of state variables. On the contrary, the qualitative possibilis-
tic formalism operates only over a finite possibilistic scaleL,
but not over a dense space like in Probability Theory. More-
over, only max and min operations are involved, which im-
plies that all manipulated values remain in L from the be-
ginning to the end. Therefore, our work is motivated by the
simple observation that symbolic operations with possibilis-
tic MDPs would necessarily limit the size of ADDs, since
the number of their leaves would be at most equal to the
cardinal of the possibilistic finite scale L, which is gener-
ally far smaller than the number of states. As a result, op-
erating ADDs in the possibilistic framework would behave
much like manipulating Binary Decision Diagrams (BDDs)
(Bryant 1992), which are more compact than ADDs.

This paper begins with an overview of possibilistic mod-
els for sequential decision-making: π-MDPs, π-POMDPs,
and π-MOMDPs. As possibility distributions are in a fi-
nite scale L, we will show that all these models reduce
to π-MDPs with finite states, so that an algorithm for π-
MDPs can solve all of them as is. This is a major differ-
ence with probabilistic sequential decision-making, where
partial observable problems give rise to continuous belief
MDPs, which belong to a higher complexity class. Thus,
we will present our first contribution: a Symbolic Dynamic
Programming algorithm for solving factored π-MDPs and
manipulating symbolic possibilistic functions, named Pos-
sibilistic Programming Using Decision Diagram (PPUDD).
Our second contribution is a principled reduction of any fac-
tored π-POMDP or π-MOMDP to factored (finite-state) π-
MDPs, assuming a structural assumption on the structured
problem. In brief, this assumption means that all post-action
variables are independent given the past. Finally, we assess
our algorithms with two experimental comparisons: PPUDD
against SPUDD (Hoey et al. 1999) for solving possibilis-
tic and probabilistic versions of the same benchmarks under
total observability; PPUDD against SARSOP-based proba-
bilistic solver (Hanna Kurniawati 2008; Ong et al. 2010) for
solving mixed-observable problems, and a POMDP solver
using ADDs, symbolic-HSVI (Sim et al. 2008).

Background
Markov Decision Processes (MDPs) are commonly used to
model problems where an agent and its environment (called
the system) are changing over time (represented by N). As
suggested by its name, a MDP is adapted to systems whose
successive states (s ∈ S) have a Markovian evolution which
depends on decisions (a ∈ A) chosen at each time step
(t ∈ N). Classically, this model is better known and used
within the Probability Theory framework. However, possi-
blistic counterparts of MDPs have been studied in the liter-

ature, and are well-suited to problems whose uncertainties
or rewards are imprecisely known to the decision maker, or
which are too complex to be solved by probabilistic solvers.
Indeed, possibilistic MDPs can be viewed as an approxi-
mated model of (probabilistic) MDPs, where probabilities
and rewards are replaced by qualitative statements that lie in
a finite numeric scale (as opposed to continuous ranges in
the probabilistic framework), resulting in simpler computa-
tions.

Possibilistic Markov Decision Processes
The possibilistic MDP (π-MDP) model has been first formu-
lated in (Sabbadin, Fargier, and Lang 1998) and (Sabbadin
2001). Let us define L = {0, 1

k , . . . ,
k−1
k , 1}, the fixed pos-

sibilistic scale (k ∈ N∗). A possibility distribution over S
is a function π : S → L which verifies the possibilistic
normalization: maxs∈S π(s) = 1. This distribution ranks
plausibilities of events: π(s) < π(s′) means that s is less
plausible than s′. A π-MDP process starts in an initial state
s0 ∈ S. If the system is in state st ∈ S at time step t ∈ N and
if the agent chooses action at ∈ A, then next state st+1 ∈ S
is reached with possibility degree π (st+1 | st, at) ∈ L.
This defines the transition function Tπ as the possibility of
reaching s′ ∈ S conditioned on current state and action
(s, a) ∈ S×A: T (s, a, s′) = π (s′ | s, a). Contrary to prob-
abilistic MDPs, transitions in the possibilistic framework are
labeled by qualitative measures of their occurrences. Fi-
nally, a preference distribution µ : S 7→ L models the qual-
itative goals of the agent: µ(s) < µ(s′) means that s is less
preferable than s′. The tuple 〈S,A,L, Tπ, µ〉 defines a π-
MDP.

A decision rule is a function δ : S → A. A policy is
a sequence of decision rules: (δ) = (δ0, δ1, . . .). Given a
policy (δ) for a π-MDP process, a = δt(s) is the action
selected by the agent in state s at time t. A trajectory is a
sequence of states: τ = (s1, s2, . . .). As the process (st)t>0

is a Markov chain, the possibility degree of the finite (n-size)
trajectory τ = (s1, s2, . . . , sn) starting in s0 and under the
n-size policy (δ) = (δ0, . . . , δn−1) is:

Π (τ | s0, (δ)) =
n−1
min
i=0

π (si+1 | si, δi(si)) .

The preference of a trajectory is defined as the preference
of the last state: if τ = (s1, . . . , sn), M(τ) = µ(sn). The
set of all n-size trajectories is denoted by Tn. Besides, the set
of all n-size policies is denoted by ∆n and ∆ = ∪n>0∆n

is the set of all policies. Finally, #δ is the size of policy
(δ) ∈ ∆. These notations are useful to define the infinite-
horizon value of a policy (δ) starting in s0:

u(s0, (δ)) = max
τ∈T#δ

min {Π (τ | s0, (δ)) ,M(τ)} .

The π-MDP infinite-horizon problem consists in find-
ing a policy in ∆ which maximizes this criterion, named
value function: u∗(s) = max(δ)∈∆ u(s, (δ)). As proved in
(Drougard et al. 2013), there exist an optimal policy (which
is stationary) that can be found by possibilistic dynamic pro-
gramming (see Algorithm 1), if there exists an action a such
that π (s′ | s, a) = 1s,s′ = 1 if s = s′, and 0 otherwise. Ac-
tion a is similar to the discount factor in probabilistic MDPs,

57

which allows dynamic programming to converge under infi-
nite horizon to a unique fixed point corresponding to station-
ary history-dependent policies. This hypothesis is yet not a
constraint in practice: in the returned optimal policy (δ∗),
action a is only used for goals whose preference degree is
greater than possibility degree of transition to better goals.
Finally, Algorithm 1 is guaranteed to converge in at most
#S iterations.

Algorithm 1: π-MDP Value Iteration Algorithm
for s ∈ S do1

u∗(s)← 0L ; uc(s)← µ(s) ; δ∗(s)← a ;2

while u∗ 6= uc do3
u∗ ← uc ;4
for s ∈ S do5

uc(s)←max
a∈A

max
s′∈S

min {π (s′ | s, a) , u∗(s′)} ;
6

if uc(s) > u∗(s) then7
δ(s)←argmax

a∈A
max
s′∈S

min{π(s′ | s, a),u∗(s′)};
8

return (u∗, δ∗) ;9

Possibilistic Mixed-Observable MDPs
The possibilistic MOMDP model (Drougard et al. 2013) fur-
ther complicates the previous one, by considering problems
where part of the state variables are partially observable, the
other ones being totally observable as in factored π-MDPs.
The agent should estimate the system’s state using observa-
tions o ∈ O, which it receives from the environment at each
time step. These observations allow him to maintain a belief
state in the form of a possibilistic distribution over hidden
states, which is updated at each time step using possibilistic
Bayes’ rule. In fact, π-MOMDPs include π-MDPs as special
cases when all state variables are totally observable. On the
opposite side, when all state variables are partially observ-
able, π-MOMDPs reduce to possibilistic Partially Observ-
able MDPs (π-POMDPs), first studied by (Sabbadin 1999).
Whereas we presented π-MDPs for pedagogical reasons, we
will not explicitly define π-POMDPs, since they are special
cases of π-MOMDPs.

In the probabilistic framework, Mixed-Observability has
been set up and studied in (Ong et al. 2010) and (Araya-
Lòpez et al. 2010). These works consist in formalizing situ-
ations where the set of states can be expressed as a Cartesian
product of a set of visible states and a set of partially observ-
able (hidden) ones: S = Sv × Sh. In the mixed-observable
probabilistic setting, a belief state b is a probability distribu-
tion over Sh, which is updated using Bayes’ rule after each
observation o ∈ O is received. The set of all probability
distributions over Sh is denoted by B ([0, 1]Sh . Since the
sequence of beliefs is a Markov process, it is well-known
that partially observable problems can be transformed into
fully observable ones, yielding a belief MDP over a con-
tinuous infinite state space B. Indeed, the value function
V : Sv × B → R is piecewise linear and convex for
each fixed visible state in Sv and each finite horizon (Small-
wood and Sondik 1973), which requires MOMDP solvers to

st st+1

π (st+1 | st, at)

π (ot | st , at−1)

π (ot+1 | st+1 , at)

sv,t sv,t+1

sh,t sh,t+1

atat−1

ot ot+1

Figure 1: Dynamic influence diagram of a (π-)MOMDP

deal with successive sets of α-vectors α ∈ Γn(sv) (RSh
such that V (sv, b) = maxα∈Γn(sv) α · b (Ong et al. 2010;
Araya-Lòpez et al. 2010). MOMDPs are actually a recent
extension of POMDPs, which consider the entire state space
as partially observable even if some parts are directly vis-
ible to the agent (Cassandra, Littman, and Zhang 1997;
Pineau, Gordon, and Thrun 2003; Smith and Simmons
2004). Thus, MOMDP planners are proven to run signifi-
cantly faster than POMDP ones, since they reason about a
reduced continuous belief space.

Mixed-Observable MDPs have been also studied in
(Drougard et al. 2013) for the possibilistic framework. Fig-
ure 1 depicts the influence diagram of a π-MOMDP: as in
the probabilistic model, the state space of a π-MOMDP is
a Cartesian product of a totally visible set of states and a
partially observable one. Uncertainty over transitions be-
tween states is modeled by Tπ(s, a, s′) = π (s′ | s, a) =
π ((s′v, s

′
h) | (sv, sh), a) ∈ L =

{
0, 1

k , . . . , 1
}

. We intro-
duce now the new possibility distribution used to model un-
certainty over observations o ∈ O which serve to estimate
the current hidden state: ∀o′ ∈ O, ∀s′ = (s′v, s

′
h) ∈ S and

∀a ∈ A, Ωπ(s′, a, o′) = π (o′ | s′, a) is the possibility of
the current observation o′ conditioned on the current state
s′ and the previous action a. A π-MOMDP is then entirely
defined by the tuple 〈S = Sv × Sh,A,L, Tπ,O,Ωπ, µ〉.

Like probabilistic MOMDPs, π-MOMDPs can be re-
duced to belief π-MDPs. However, contrary to the proba-
bilistic case and thanks to the finite uncertainty measure used
in Possibility Theory, state space of belief π-MDPs remains
finite as explained in the next subsection. This fundamental
property means that any algorithm for π-MDPs can solve as
is any π-MOMDPs (and π-POMDPs as a special case) after
reduction to a finite-state belief π-MDP.

Possibilistic belief and reduction to π-MDPs
The hidden part of the system state may initially not be en-
tirely known: an estimation can be however available. This
estimation is expressed in terms of a possibility distribu-
tion β0 : S → L called initial possibilistic belief and is
generally between the two following extrema: if ∀sh ∈ Sh
β0(sh) = 1, the initial hidden state is completely unknown
; and if ∃sh ∈ Sh such that β0(sh) = 1sh,sh , the initial
hidden state is known to be sh. Let us define recursively
the history (ht)t>0 of a π-MOMDP: h0 = {β0, sv,0 } and
for each time step t > 1, ht = {ot, sv,t, at−1, ht−1 }. The
possibilistic belief at time step t > 0 is defined as the pos-
sibility distribution over variable sh,t conditioned on history
ht: ∀sh ∈ Sh, βt(sh) = π (sh | ht).

58

Let βt+1 be the belief distribution at time t + 1: if o′ is the
current observation, s′v the current visible state and a the
previous action, it comes from definitions that ∀s′h ∈ Sh,
βt+1(s′h) = π (s′h | s′v, o′, a, ht). This can be computed us-
ing possibilistic Bayes’ rules (Dubois and Prade 1990) from
the joint possibility distribution π (s′h, o

′, s′v | a, ht). Com-
putation of this joint distribution depends on data of the π-
MOMDP problem: writing arbitrarily (s′v, s

′
h) or s′ the sys-

tem state,

π (s′h, o
′, s′v | a, ht) = min {π (o′ | s′, a) , π (s′ | a, ht)}

= min {Ωπ(s′, a, o′), π (s′ | a, ht)} .
Finally: π (s′ | a, ht) = maxs∈S π (s′, s | a, ht)

= max
s∈S

min {π (s′ | s, a) , π (s | ht)}

= max
sh∈Sh

min {π (s′v, s
′
h | sv, sh, a) , π (sh | ht)}

= max
sh∈Sh

min {Tπ(sv, sh, a, s
′
v, s
′
h), βt(sh)}

where sv is the previous visible state.
The joint possibility distribution can be expressed in terms
of only the previous belief state βt and visible state sv (not
all history), Tπ and Ωπ: it will be from now on denoted
by π (s′h, o

′, s′v | sv, βt, a). The possibilistic Bayes’ rule fi-
nally yields:

βt+1(s′h)=

{
1 if s′h∈ argmax

sh∈Sh
π (s′h, o

′, s′v | sv, βt, a)> 0

π (s′h, o
′, s′v | sv, βt, a) otherwise.

(1)
The set of all possibility distributions over Sh is denoted by
Bπ . Note that Bπ is finite of size #L#Sh − (#L− 1)#Sh ,
which is certainly exponential in the size of the hidden state
space but finite. The belief update Equation 1 can be formu-
lated as a belief update functionU : Bπ×A×S2

v×O → Bπ

such that βt+1 = U(βt, a, sv, s
′
v, o
′).

We see that the agent can reason on a belief π-MDP
with finite state space Sv × Bπ , by updating its belief
over Sh on the basis of previous action a and state sv ,
current state s′v and observation o′. This belief update de-
fines the transitions and preferences of the belief π-MDP,
which requires to firstly introduce K(β, a, sv, s

′
v, β
′) =

{o′ ∈ O such that U(β, a, sv, s
′
v, o
′) = β′ } the set of obser-

vations which lead to β′ given previous belief β, action a,
state sv and current state s′v . Secondly, we construct the pos-
sibility distribution over observations and visible states as:

π (o′, s′v | sv, β, a) = max
s′h∈Sh

π (s′h, o
′, s′v | sv, β, a) .

The new transition possibility is then

π (s′v, β
′ | sv, β, a) = max

o′∈K(β,a,sv,s′v,β
′)
π (o′, s′v | sv, β, a)

with the convention max∅ = 0.
Finally, we define the preference over (sv, β) such that

this paired state is considered as good if it is necessary (ac-
cording to β) that the system is in a good state:

µ(sv, β) = min
sh∈Sh

max {µ(sv, sh), 1− β(sh)} .

This reduction of any π-MOMDP to a finite-state belief π-
MDP with structured states s = (sv, β) has been exploited
in (Drougard et al. 2013). However, this previous work did
not consider sv nor β to be themselves factored into vari-
ables, meaning that it did not tackle factored π-MOMDPs.
In the next section, we present our first contribution: the first
symbolic algorithm to solve factored π-MDPs, which also
handles factored π-MOMDPs by reduction to π-MDPs, and
factored π-POMDPs by inclusion in π-MOMDPs.

Solving factored π-MDPs using symbolic
dynamic programming

Factored MDPs (Hoey et al. 1999) have been used to ef-
ficiently solve structured sequential decision problems un-
der probabilistic uncertainty, by symbolically reasoning on
functions of states via decision diagrams rather than on in-
dividual states. In this framework, the state space S con-
sists of a set of binary variables1 X = (X1, . . . , Xn):
#S = 2n. The current state is denoted by X and the next
one by X ′ = (X ′1, . . . , X

′
n). Dynamic Bayesian Networks

(DBNs) (Dean and Kanazawa 1989) offer a useful graphi-
cal representation of π-MDP transitions, as depicted in Fig-
ure 2. In DBN semantics, parents(X ′i) is the set of state
variables on which X ′i depend. From now on, we assume
that the next state’s variables depend for each action only
on a subset of X , i.e. X ′1, . . . , X

′
n are independent given X .

Using DBN semantics, it means that parents(X ′i) ⊂ X ,
which is often denoted as uncorrelated action effects: meth-
ods are discussed in the literature to circumvent this re-
strictive assumption (Boutilier 1997). In the possibilistic
settings, this assumption allows us to compute the joint
possibility transition as π (s′ | s, a) = π (X ′ | X, a) =
minni=1 π (X ′i | parents(X ′i), a).

Thus, a factored π-MDP can be defined with transition
functions T a,i for each a ∈ A and each 1 6 i 6 n such that
T a,i(parents(X ′i), a,X

′
i) = π (X ′i | parents(X ′i), a).

Each transition function can be compactly encoded in an
Algebraic Decision Diagram (ADD) (Bahar et al. 1997).
An ADD, as illustrated in Figure 3a, is a directed acyclic
graph which represents a real-valued function of binary
state variables, whose identical sub-graphs are merged and
zero-valued leaves are not memorized. Thus, ADDs are
compact symbolic representations of real-valued functions
of boolean variables. The possibilistic dynamic program-
ming’s update equation of Line 6 of Algorithm 1 can be
rewritten in a symbolic form, so that states are now glob-
ally updated at once instead of individually ; if u∗(s) =
max

(δ)∈∆t

u(s, (δ)) is the current optimal value function (step

t > 0), the Q-value of an action a ∈ A, defined by
qa(s) = max

s′∈S
min {π (s′ | s, a) , u∗(s′)}, is:

Proposition 1. Consider the current value function u∗ :
{0, 1}n → L. For a given action a ∈ A, let us define:

• qa0 = u∗(X ′1, · · · , X ′n)

• qai = maxX′
i∈{0,1}min

{
(X ′i | parents(X ′i), a) , qai−1

}

1Non-binary state variables withm discrete values can be trans-
formed into dlog2me binary variables.

59

t t + 1

X1

X2

...

X ′1

X ′2
...

atat−1

Figure 2: Dynamic Bayesian Network of a factored π-MDP

Then, the possibilistic Q-value of action a is: qa = qan .

Proof.

qa = max
s′∈S

min{π(s′|s, a), u∗(s′)}

= max
s′∈S

min
{ n

min
i=1

π (X ′i | parents(X ′i), a) , u∗(s′)
}

= max
(X′

1,··· ,X′
n)∈{0,1}n

min
{ n

min
i=1

π (X ′i | parents(X ′i), a) ,

u∗(X ′1, · · · , X ′n)
}

= max
X′
n∈{0,1}

min
{
π (X ′n | parents(X ′n), a) , · · ·

max
X′

2∈{0,1}
min

{
π (X ′2 | parents(X ′2), a) ,

max
X′

1∈{0,1}
min{π (X ′1 | parents(X ′1), a) ,

u∗(X ′1, · · · , X ′n)}
}
· · ·
}

where the last equation is due to the fact that, for any boolean
variables A and B and any function ϕ : {0, 1} → L and
ψ : {0, 1} → L, we have:

max
B∈{0,1}

min{ϕ(A), ψ(B)} = min{ϕ(A), max
B∈{0,1}

ψ(B)}

This proposition means that we can iteratively regress the
Q-value of action a, represented as an ADD, over succes-
sive post-action state variables X ′i, 1 6 i 6 n. In order to
make explicit that we are working with symbolic functions
encoded as ADDs, we will use the following notations:

•
�� ��min {f, g } where f and g are 2 ADDs;

• �� ��max
Xi
f =

�� ��max
{
fXi=0, fXi=1

}
, which can be eas-

ily computed because ADDs are constructed on the basis
of the Shannon expansion: f = Xi · fXi=0 +Xi · fXi=1

where fXi=1 and fXi=0 are sub-ADDs representing the
positive and negative Shannon cofactors (see Fig. 3a).
Figure 3b illustrates the possibilistic regression of the Q-

value of an action for the first state variable X1. Contrary to
factored probabilistic MDPs, for which additions and mul-
tiplications involved in the computation of Q-values create
new values (i.e. ADD leaves) most of the time, factored π-
MDPs’ min and max operations do not create new values
from the input ADDs. More concretely, ADDs with prob-
abilistic operations can have up to 2n leaves (i.e. as many
values as the number of states), whereas ADDs with possi-
bilistic operations can have up to #L � 2n leaves. It means

KEY

true false

X ′1

1 X1

X2

2
3

1
3

(a) ADD en-
coding T a,1

of Fig. 2

�� ��min
{

X ′1

X ′2
1
3

2
3 0

,

X ′1

1 X1

X2

2
3

1
3

}

=

X ′1

X ′2

X1

X2

2
3

1
3

0

1
3

−−−−−−→�� ��max
X′

1

X ′2

X1

X2

2
3

1
3

1
3

(b) Symbolic regression of the current Q-value
ADD with T a,1 of Figure 3a

Figure 3: π-MDPs with Algebraic Decision Diagrams

that ADDs should be far smaller in practice under possibilis-
tic settings, which was a motivation for this paper and is ex-
perimentally checked in a forthcoming section.

Algorithm 2 is a symbolic version of Algorithm 1, which
relies on the regression scheme defined in Proposition 1. In-
spired by SPUDD (Hoey et al. 1999), PPUDD means Possi-
bilistic Planning Using Decision Diagrams. As for SPUDD,
PPUDD needs to swap state variables to primed ones in the
ADD encoding the current value function before computing
the Q-value of an action a (see Line 5 of Algorithm 2). This
operation is required to differentiate the next state, which is
represented by primed variables, from the current one when
operating ADDs. Lines 4-9 apply Proposition 1 and corre-
spond to Line 6 of Algorithm 1.

Algorithm 2: Possibilistic Planning Using Decision Di-
agrams (PPUDD)
u∗ ← 0L ; uc ← µ ; δ ← a ;1
while u∗ 6= uc do2

u∗ ← uc ;3
for a ∈ A do4

qa ← swap each Xi variable in u∗ with X ′i ;5
for 1 6 i 6 n do6

qa ←
�� ��min {qa,π(X ′i | parents(X ′i),a)} ;7

qa ← �� ��max
X′
i
qa ;8

uc ← �� ��max {qa, uc } ;9

update δ to a where qa = uc and uc > u∗10

return (u∗, δ) ;11

Factored π-MOMDPs
As explained in the background section, any π-MOMDP de-
fined over the state space Sv ×Sh can be transformed into a
finite-state belief π-MDP whose states are in Sv × Bπ with

60

Bπ (LSh . In order to symbolically solve π-MOMDPs with
PPUDD, we need: (1) to factorize Bπ as a product of dis-
crete state variables; (2) to reason about independent post-
action state variables (so-called uncorrelated action effects).
We will prove in the following that this requires to assume
the following structural assumption: post-action state vari-
ables are independent, hidden state variables does not de-
pend on other previous hidden state variables and each ob-
servation can only depend on action, previous visible state
variables and current corresponding hidden state variable.
This assumption is depicted in Figure 4, which rep-
resents the DBN of a factored π-MOMDP 〈Sv ×
Sh,A,L, Tπ,O,Ωπ, µ〉, where: Sv = Sv,1 × . . . × Sv,m,
Sh = Sh,1 × . . . × Sh,l and O = O1 × . . . × Ol with
∀1 6 j 6 l, Oj the set of observations corresponding to
Sh,j . We note that factored probabilistic MOMDP have not
yet been studied to the best of our knowledge. We would not
be surprised if factored probabilistic MOMDPs would re-
quire the same structural assumption as the one presented
here, which could interestingly inspire future work under
probabilistic settings.
Factorizing Bπ as a product of discrete state variables.
Our structural assumption allows us to first prove in Theo-
rem 1 that the current belief state is actually the minimum
of all marginal beliefs, defined as the possibility distribution
over a hidden state variable.
Theorem 1. If sh,1, . . . , sh,l are initially independent, then
at each time step t > 0 the belief over hidden states can

be written βt =
l

min
j=1

βt,j with ∀sj ∈ Sh,j , βt,j(sj) =

π (sj | ht) the belief over Sj .
Proof. First sh,1, . . . , sh,l are initially independent, then

∃ (β0,j)
l
j=1 such that β0(sh) =

l
min
j=1

β0,j(sh,j). Now re-

call that ht+1 = {ot+1, sv,t+1, at, ht }. The independence
between hidden variables conditioned on the history can be
shown using the d-separation relationship (Pearl 1988) used
for example in (Stefan J. Witwicki and Spaan 2013). In fact,
as shown figure 4 given 1 6 i < j 6 l, s′h,i and s′h,j are
d-separated by the evidence ht+1. Thus π (s′h | ht+1) =
l

min
j=1

π
(
s′h,j

∣∣ ht+1

)
i.e. βt(s′h) =

l
min
j=1

βt,i(s
′
h,j). Note

however that it would not be true if the same observation
variable o would have concerned two different hidden state
variables sh,p and sh,q: as o is part of the history, there would
be a convergent (towards o) relationship between sh,p and
sh,q and the hidden state variable would have been depen-
dent (because d-connected) conditioned on history. More-
over if hidden state variable s′h,p could depend on previous
hidden state variable sh,q , s′h,p and s′h,q would have been de-
pendent conditioned on history because d-connected trough
sh,q .

Theorem 1 allows us to rewrite the state space in the form
of Sv,1 × . . . × Sv,m × Bh,1 × · · · × Bh,l with Bh,i (
LSh,i , 0 6 i 6 l. Each Bh,i state variable has a finite do-
main with #L#Sh,i − (#L − 1)#Sh,i values. If all state

variables are binary, #Bh,i = 2#L− 1 for all 1 6 i 6 l, so
that the total number of flattened states of the belief π-MDP
would be 2m(2#L − 1)l: contrary to probabilistic settings,
hidden state variables and visible ones have a similar im-
pact on the solving complexity, i.e. both singly-exponential
in the number of state variables. In the general case, by not-
ing κ = max{max16i6m #Sv,i,max16j6l #Sh,j}, there
are O(κm(#L)(κ−1)l) flattened states, which is indeed ex-
ponential in the arity of state variables too.
Uncorrelated action effects of the belief π-MDP.
PPUDD requires that post-action state variables are all in-
dependent given the past. In order to prove this property for
belief π-MDP, we first need to demonstrate Lemma 1, which
shows how marginal beliefs are actually updated. For this
purpose, we recursively define the history concerning hid-
den variable sh,j : h0,j = {β0,j } and ∀t > 0 ht+1,j =
{ot+1,j , sv,t, at, ht,j }. Similarly to the belief update pre-
sented in the background section concerning the transfor-
mation of π-MOMDPs to π-MDPs, we note:

π
`
s′h,j

˛̨
sv,βj ,a

´
=max

sh,j
min

˘
π

`
s′h,j

˛̨
sv,sh,j ,a

´
,βj(sh,j)

¯
π

`
o′j ,s

′
h,j

˛̨
sv,βj ,a

´
=min

˘
π

`
o′j

˛̨
s′h,j ,sv,a

´
,π

`
s′h,j

˛̨
sv,βj ,a

´ ¯
.

Lemma 1. If the agent was at time t in visible state sv , had
the belief βj,t over hidden states sh,j , executed action a and
then get observation o′j , update of the belief state over Sh,j
is: βt+1,j(s

′
h,j)

=





1 if s′h,j ∈ argmax
s′h,j∈Sh,j

π
(
s′h,j , o

′
j

∣∣ sv, βt,j , a
)
> 0

π
(
s′h,j , o

′
j

∣∣∣ sv, βt,j , a
)

otherwise.
(2)

Proof. First note that sh,j and {om,s }s6t,m6=j ∪ {sv,t}
are d-separated by the evidence ht,j then sh,j is in-
dependant of {om,s }s6t,m6=j ∪ {sv,t} conditionned on
ht,j : π (sh,j | ht) = π (sh,j | ht,j). Finally the update
can be computed in the same way that update 1 using
functions of the problem: βt,j , π

(
s′h,j

∣∣∣ sv, sh,j , a
)

and

π
(
o′j
∣∣ s′h,j , sv, a

)
.

t t + 1

sv,1

sv,2
...

s′v,1

s′v,2
...

sh,1

sh,2
...

s′h,1

s′h,2
...

atat−1

o1

o2. . .

o′1

o′2. . .

Figure 4: DBN of a factored π-MOMDP

61

Finally, Theorem 2 relies on Lemma 1 to exploit the in-
dependence of all post-action state variables of the belief π-
MDPs given the past, which allows us to run PPUDD on it,
and provide the possibilistic transition of this belief π-MDP.
Theorem 2. ∀β, β′ ∈ B, ∀sv, s′v ∈ Sv , ∀a ∈ A,
π (s′v, β

′ | sv, β, a)

= min

{
k

min
i=1

π
(
s′v,i

∣∣ sv, β, a
)
,

l
min
j=1

π
(
β′j
∣∣ sv, βj , a

)}

Proof. Let sh,1 and sh,2 two hidden states: using that
π (s′h | sv, sh, a)

= min
{
π
(
s′h,1

∣∣ sv, sh,1, a
)
, π
(
s′h,2

∣∣ sv, sh,2, a
)}

and β(sh) = min {β1(sh,1), β2(sh,2)}, we get easily

π (s′h | sv, β, a)

= min
{
π
(
s′h,1

∣∣ sv, β1, a
)
, π
(
s′h,2

∣∣ sv, β2, a
)}

.

This result and the fact that π (o′ | sv, s′h, a)

= min
{
π
(
o′1 | sv, s′h,1, a

)
, π
(
o′2 | sv, s′h,2, a

)}

leads to the equality π (o′ | β, a)

= min {π (o′1 | sv, β1, a) , π (o′2 | sv, β2, a)} . (3)

The previous equation shows that observations are inde-
pendent given the past. Moreover, we proved in Lemma
1 that updates of each marginal belief can be performed
independently on other marginal beliefs, but depends on
the corresponding observation only. Thus, we conclude that
marginal belief state variables are independent given the
past. Finally as s′v and o′ are independant given the past,
π (s′v, β

′ | sv, β, a) = max
o′∈K(β,a,sv,β′)

π (s′v, o
′ | sv, β, a)

= max
o′∈K(β,a,sv,β′)

min {π (s′v | sv, β, a) , π (o′ | sv, β, a)}

= min

{
π (s′v | sv, β, a) , max

o′∈K(β,a,sv,β′)
π (o′ | sv, β, a)

}

= min {π (s′v | sv, β, a) , π (β′ | sv, β, a)}
which conclude the proof.

Experimental results
We should now summarize the main benefits of using fac-
tored π-MDPs over probabilistic models:
• values of ADDs are in the finite scale L rather than R,

so that the number of their leaves is at most #L � 2n

(probabilistic models’ ADDs can have up to 2n leaves);
• partially observable models (factored π-POMDPs and π-

MOMDPs) boil down to factored finite-state belief π-
MDPs that can be solved by PPUDD as is assuming some
structural assumption of the underlying actions’ DBNs;

• partially-observable features of the state do not impact
much PPUDD’s performances than totally-observable
ones if all hidden state variables are binary, since π-
MOMDPs are then in the same complexity class as π-
MDPs (in probabilistic models, partially-observable prob-
lems are always in a higher complexity class).

Of course, we have to pay a price: namely, possibilistic
models are approximations of probabilistic ones (except if
probabilities in the model are anyway imprecisely known).
Yet, many state-of-the-art probabilistic algorithms are ap-
proximate while our PPUDD algorithm is exact. In this sec-
tion, we compare our approach against probabilistic solvers
in order to answer the following question: what is the ef-
ficacy/quality tradeoff achieved by reasoning about an ap-
proximate model but with an exact efficient algorithm?

The navigation domain. We first compared PPUDD
against SPUDD on the nagivation domain used in planning
competitions (Sanner 2011). In this domain, a robot navi-
gates in a grid where it must reach some goal location most
reliably. It can apply 5 actions which cost 1 except if we
reach the goal: going north, east, south or west, and staying
at the current location. When moving, it can suddenly disap-
pear with some probability defined as a Bernoulli distribu-
tion, so that a good policy tries to reach the goal by avoid-
ing situations where it may disappear. We approximated this
probabilistic model by two possibilistic ones, M1 based on
preference preservation (Dubois, Prade, and Sandri 1993),
and M2 more pessimistic: the preference of reaching the
goal is 1; for M1 the highest probability of each Bernoulli
distribution is replaced by 1 (for possibility normalization
reasons), for M2 the probability to disappear is replaced
by 1, and we keep the same value for the lowest probabil-
ity. Figure 5a shows SPUDD runs out of memory from the
5th problem, and PPUDD computation’s time outperforms
SPUDD’s one by many orders of magnitude. Intuitively, this
result comes from the fact that PPUDD’s ADDs should be
smaller because their leaves’ values are in the finite scale L
rather than R, which is indeed demonstrated in Figure 5b.
Figures 5c and 5d shows performances of the three mod-
els: unlike M1 whose performances are reduced due to pos-
sibilistic approximation, M2’s performances are similar to
probabilistic model’s ones, as danger is modeled as neces-
sary. We note that goal reached frequency decreases with

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8

c
o

m
p

u
ta

ti
o

n
 t

im
e

size of the navigation problem

SPUDD
PPUDD M1
PPUDD M2

(a) Computation time

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8

m
a

x
 s

iz
e

 o
f

v
a

lu
e

 f
u

n
c
ti
o

n
 A

D
D

size of the navigation problem

SPUDD
PPUDD M1

PUDD M2

(b) Value function’s ADD’s size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

g
o

a
l
re

a
c
h

e
d

 f
re

q
u

e
n

c
y

size of the navigation problem

SPUDD
PPUDD M1

PUDD M2

(c) Goal reached frequency

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1 2 3 4 5 6 7 8

ti
m

e
 t

o
 r

e
a

c
h

 t
h

e
 g

o
a

l

size of the navigation problem

SPUDD
PPUDD M1
PPUDD M2

(d) Time to reach the goal

Figure 5: PPUDD vs. SPUDD on the navigation domain

62

instance’s size as risk of disappearance increases.

The RockSample domain. This problem is detailed in
(Smith and Simmons 2004): a rover navigates in an environ-
ment modeled as a N ×N grid and has to collect scientific
samples of some interesting rocks. It knows the locations of
the R rocks (xi, yi)

R
i=1 but not which ones are actually of

interest (called “good” rocks). However, sampling a rock is
expensive: the rover is fitted with a noisy long-range sen-
sor that can be used to determine if a rock is “good” or not
(“bad”). When a rock is sampled, it becomes (or stays) “bad”
(no more interesting). At the end of the mission, the rover
has to reach the exit location at the right side of the grid.
This problem is modeled as follows:
• Sv consists of all the possible locations of the rover

(xr, yr) in addition to the exit (#Sv = N2 + 1),
• Sh consists of all the possible natures of the rocks (Sh =
Sh,1×. . .×Sh,R with ∀1 6 i 6 R, Sh,i = {good, bad}),

• A contains the (deterministic) moves in the 4 directions
(anorth, aeast, asouth, awest), checking rock i (achecki)
∀1 6 i 6 R and sampling the current rock (asample),

• O = O1 × . . . × OR where ∀1 6 i 6 R, Oi =
{ogoodi , obadi } are observations concerning the ith rock.

Without going into details of the model, the factorization of
the observation set naturally yields to the structural assump-
tion required for factored π-MOMDPs, since each observa-
tion variable is mapped to a hidden state variable. Note that
the observation set of this domain is best known in the liter-
ature in the simpler form O = {ogood, obad}, where the ob-
servation concerns the current rock, which is strictly equiv-
alent to the previous factorization but does not highlight the
structural assumption. The rationale behind observations is
the following: the more the rover is close to the checked
rock, the better it observes its nature. In the original proba-
bilistic model, the probability of a correct observation equals
1
2

(
1 + e−c

√
(xr−xi)2+(yr−yi)2

)
with c > 0 a constant (the

smaller is c, the more effective is the sensor). The rover gets
a reward +10 for each good rock sampled,−10 for each bad
rock sampled, and +10 when it reaches the exit.

In the possibilistic model, we approximate the observa-
tion function by using a critical distance d > 0 beyond
which checking a rock is uninformative: π (o′i | s′i, a, sv) =
1 ∀o′i ∈ Oi. If the rover is distant from the rock less than
d, the possibility degree of erroneous observation becomes

1
#L−1 , or zero if it stands at the checked rock. Finally,
as possibilistic semantics does not allow sum of rewards,
we have to introduce an additional visible state variable
sv,2 ∈ {1, . . . , R} which counts the number of checked
rocks. The qualitative dislike of sampling is modeled with
µ(s) =

R+2−sv,2
R+2 if sv is terminal and zero otherwise.

We compared PPUDD on the transformed factored be-
lief π-MDP against a recent probabilistic MOMDP plan-
ner APPL (Ong et al. 2010), and a POMDP solver using
ADDs symbolic HSVI (Sim et al. 2008). The two probabilis-
tic planners need a precision of computation, which impacts
performances: we set it to 1, and Figure 6a compares com-
putation times of these three algorithms. We note that APPL

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 4 6 8 10 12 14

c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

size of the RockSample Problem

APPL
symb HSVI

PPUDD

(a) Computation time

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14

E
x
p

e
c
te

d
 T

o
ta

l
R

e
w

a
rd

size of the RockSample problem

APPL
PPUDD

(b) Expected total reward

Figure 6: PPUDD vs. APPL on the RockSample domain

runs out of memory with 8 rocks, symbolic HSVI with 7
rocks, and PPUDD outperforms it by many orders of mag-
nitude. In order to assess the loss in quality of PPUDD due
to possibilistic settings, we also compared the expected total
rewards of both approaches. As APPL is an anytime solver
we can fix a stopping computation time: we stopped APPL
at the time equal to PPUDD’s computation time to com-
pare performances. For PPUDD, we simply evaluated with
the probabilistic model the policy that was computed under
possibilistic settings. Surprisingly, Figure 6b shows that re-
wards gathered are higher with PPUDD than with APPL.
The reason is that APPL is in fact an approximate proba-
bilistic planner, which shows that our approach consisting in
exactly solving an approximate model can outperform algo-
rithms that approximately solve an exact model. Moreover,
exact POMDP planners are unable to scale to problems of
the size of the RockSample ones. Finally, it is worth noting
that probabilities of the observation model, which represent
uncertainties of sensor outputs, may be difficult to precisely
know in practice, in which case possibilistic models may be
more physically accurate.

Conclusion

We presented PPUDD, the first algorithm to the best of
our knowledge that symbolically solves factored possibilis-
tic (MO)MDPs. In our opinion, possibilistic models are a
good tradeoff between non-deterministic ones, whose uncer-
tainties are not at all quantified yielding a very approximate
models, and probabilistic ones, where uncertainties are fully
specified. Moreover, π-MDPs reason about finite values in
a qualitative scale L whereas probabilistic MDPs deal with
real values, which implies larger ADDs for symbolic algo-
rithms. Also, partially-observable problems reduce to finite-
state belief π-MDPs, which allow PPUDD to solve them too,
contrary to their probabilistic counterparts that yield con-
tinuous-state belief MDPs. Our experimental results show
that using an exact algorithm (PPUDD) for an approximate
model (π-MDPs) can run significantly faster than reason-
ing about exact models, while providing better policies than
approximate algorithms (APPL) for exact models. In the fu-
ture, we would like to investigate automatic translations of
probabilistic models to possibilistic ones, and thoroughly
study the class of problems that can be efficiently solved by
our approach.

63

References
Araya-Lòpez, M.; Thomas, V.; Buffet, O.; and Charpillet,
F. 2010. A closer look at MOMDPs. In Proceedings of
the Twenty-Second IEEE International Conference on Tools
with Artificial Intelligence (ICTAI-10).
Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.;
Macii, E.; Pardo, A.; and Somenzi, F. 1997. Algebric de-
cision diagrams and their applications. Form. Methods Syst.
Des. 10(2-3):171–206.
Bellman, R. 1957. A Markovian Decision Process. Indiana
Univ. Math. J. 6:679–684.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored representa-
tions. Artif. Intell. 121(1-2):49–107.
Boutilier, C. 1997. Correlated action effects in decision
theoretic regression. In UAI, 30–37.
Bryant, R. E. 1992. Symbolic boolean manipulation with
ordered binary-decision diagrams. ACM Computing Surveys
24:293–318.
Cassandra, A.; Littman, M. L.; and Zhang, N. L. 1997. In-
cremental pruning: A simple, fast, exact method for partially
observable markov decision processes. In In Proceedings of
the Thirteenth Conference on Uncertainty in Artificial Intel-
ligence, 54–61. Morgan Kaufmann Publishers.
Dean, T., and Kanazawa, K. 1989. A model for reasoning
about persistence and causation. Comput. Intell. 5(3):142–
150.
Drougard, N.; Teichteil-Konigsbuch, F.; Farges, J.-L.; and
Dubois, D. 2013. Qualitative Possibilistic Mixed-
Observable MDPs. In Proceedings of the Twenty-Ninth
Conference Annual Conference on Uncertainty in Artificial
Intelligence (UAI-13), 192–201. Corvallis, Oregon: AUAI
Press.
Dubois, D., and Prade, H. 1988. Possibility Theory: An
Approach to Computerized Processing of Uncertainty (tra-
duction revue et augmentée de ”Théorie des Possibilités”).
New York: Plenum Press.
Dubois, D., and Prade, H. 1990. The logical view of
conditioning and its application to possibility and evidence
theories. International Journal of Approximate Reasoning
4(1):23 – 46.
Dubois, D., and Prade, H. 1995. Possibility theory as a
basis for qualitative decision theory. In IJCAI, 1924–1930.
Morgan Kaufmann.
Dubois, D.; Prade, H.; and Sabbadin, R. 1998. Qualitative
decision theory with sugeno integrals. In Proceedings of
the Fourteenth conference on Uncertainty in artificial intel-
ligence, UAI’98, 121–128. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc.
Dubois, D.; Prade, H.; and Sandri, S. 1993. On possibil-
ity/probability transformations. In Proceedings of Fourth
IFSA Conference, 103–112. Kluwer Academic Publ.
Hanna Kurniawati, David Hsu, W. S. L. 2008. SARSOP: Ef-
ficient point-based POMDP planning by approximating op-
timally reachable belief spaces. In Proceedings of Robotics:
Science and Systems IV.

Hoey, J.; St-aubin, R.; Hu, A.; and Boutilier, C. 1999.
Spudd: Stochastic planning using decision diagrams. In In
Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, 279–288. Morgan Kaufmann.
Ong, S. C. W.; Png, S. W.; Hsu, D.; and Lee, W. S. 2010.
Planning under uncertainty for robotic tasks with mixed ob-
servability. Int. J. Rob. Res. 29(8):1053–1068.
Pearl, J. 1988. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for pomdps. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
1025 – 1032.
Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York, NY,
USA: John Wiley & Sons, Inc., 1st edition.
Sabbadin, R.; Fargier, H.; and Lang, J. 1998. Towards qual-
itative approaches to multi-stage decision making. Int. J.
Approx. Reasoning 19(3-4):441–471.
Sabbadin, R. 1999. A possibilistic model for qualitative
sequential decision problems under uncertainty in partially
observable environments. In Proceedings of the Fifteenth
conference on Uncertainty in artificial intelligence, UAI’99,
567–574. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc.
Sabbadin, R. 2001. Possibilistic markov decision processes.
Engineering Applications of Artificial Intelligence 14(3):287
– 300. Soft Computing for Planning and Scheduling.
Sanner, S. 2011. Probabilistic track of
the 2011 international planning competition.
http://users.cecs.anu.edu.au/∼ssanner/IPPC 2011.
Sim, H. S.; Kim, K.-E.; Kim, J. H.; Chang, D.-S.; and Koo,
M.-W. 2008. Symbolic heuristic search value iteration
for factored pomdps. In Proceedings of the 23rd National
Conference on Artificial Intelligence - Volume 2, AAAI’08,
1088–1093. AAAI Press.
Smallwood, R. D., and Sondik, E. J. 1973. The Optimal
Control of Partially Observable Markov Processes Over a
Finite Horizon, volume 21. INFORMS.
Smith, T., and Simmons, R. 2004. Heuristic search value
iteration for pomdps. In Proceedings of the 20th conference
on Uncertainty in artificial intelligence, UAI ’04, 520–527.
Arlington, Virginia, United States: AUAI Press.
Stefan J. Witwicki, Francisco S. Melo, J. C. F., and Spaan,
M. T. 2013. A flexible approach to modeling unpre-
dictable events in MDPs. In Proceedings of the 23rd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS-2013). To appear.

64

Compiling Contingent Planning into Classical Planning:
New Translations and Results

Héctor Palacios
Universitat Pompeu Fabra

Barcelona, Spain
hector.palacios@upf.edu

Alexandre Albore
ONERA and INRA
Toulouse, France

alexandre.albore@onera.fr

Hector Geffner
ICREA and Universitat Pompeu Fabra

Barcelona, Spain
hector.geffner@upf.edu

Abstract

Recently, Brafman and Shani have introduced a mapping for
transforming deterministic contingent planning problems into
classical ones. Their translation is interesting and elegant, but
exponential in the number of possible initial states. They use
it for action selection in an on-line contingent planner by call-
ing a classical planner on an approximate translation, where
the set of possible initial states is replaced by a sample of few
states.
In this work, we introduce two alternative translations of con-
tingent into classical problems, that are both polynomial, and
we test them by solving contingent problems off-line using
classical planners. While the results are not at the level of
the last generation of off-line contingent planners like CNF,
DNF, or CLG, they are meaningful enough and are on par
with other recent contingent planners such as Contingent-FF,
POND, and MBP. Moreover, the limitations in performance
are not always a result of the size of the translations, but more
a consequence of the limitations of current classical planning
algorithms. These new translations thus enlarge the scope of
problems that can be effectively solved by classical planners,
while at the same time they present classical planners with
new challenges.

Introduction
In the last few years, it has been shown that translations
that map planning problems with incomplete information
into planning problems with complete information can be
computational effective and useful. This approach includes
the translation of conformant problems into classical prob-
lems that underlies the conformant planner T0 (Palacios and
Geffner 2009), the translation of contingent problems into
fully observable non-deterministic problems used in the off-
line and on-line contingent planner CLG (Albore, Palacios,
and Geffner 2009), and the translation of contingent prob-
lems into classical problems used by the on-line contingent
planner MSPR (Brafman and Shani 2012b). The first two
translations are based on considerations of width, and are
polynomial in the problem size. The translations used by
these planners are a special case of more general complete
translations that in the worst case are exponential in the num-
ber of problem variables. The translation underlying MSPR,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on the other hand, is in the worst case doubly exponential in
the problem size, as is exponential in the number of possible
initial states. Brafman and Shani use their translation heuris-
tically, for selecting actions in an on-line contingent planner
by calling a classical planner on the approximate translation
that results when the set of possible initial states is replaced
by a smaller set of 4–8 samples.

In this work, we build on Brafman’s and Shani’s ideas
to introduce two alternative translations for mapping contin-
gent planning problems to classical problems. Unlike Braf-
man’s and Shani’s translations, however, our translations are
polynomial in the number of possible initial states. Further-
more, we do not test these translations heuristically for se-
lecting actions but for computing full solutions to contin-
gent problems using classical planners. We show that, while
the results from our translations are not at the level of the
last generation off-line contingent planners like CNF, DNF
(To, Pontelli, and Son 2011) or CLG, they are meaningful
enough and are on par with other recent contingent plan-
ners such as Contingent-FF (Hoffmann and Brafman 2005),
POND (Bryce, Kambhampati, and Smith 2006), and MBP
(Bertoli et al. 2006). Moreover, the limitations in perfor-
mance are not always a result of the size of the translations,
but of limitations of current classical planning algorithms.
The new translations thus enlarge the scope of problems that
can be effectively solved by classical planners while at the
same they present classical planners with new challenges.
Furthermore, we expect these ideas to be relevant to other
types of planning problems as well. For example, Brafman
and Shani, along with Zilberstein, have used the ideas under-
lying their contingent translation to provide an approach for
solving Q-Dec-POMDPs using classical planners (Brafman,
Shani, and Zilberstein 2013). Q-Dec-POMDPs are collabo-
rative multiagent planning models that are similar to Dec-
POMDPs (Bernstein, Zilberstein, and Immerman 2000), ex-
cept that uncertainty is represented by sets of states rather
than probability distributions. In principle, our translations
could be used for the same purpose but with potentially bet-
ter results.

The rest of the paper is organized as follows. We consider
the model and representation of (deterministic) contingent
planning problems, then present each of two new transla-
tions along with their formal properties, and finally, the ex-
perimental results.

65

Contingent Planning
We review the model and representation of contingent plan-
ning problems.

Model
The model underlying deterministic contingent planning can
be characterized as a tuple S = 〈S, S0, SG, A,O, f, o〉
where S is a finite set of states, S0 ⊆ S is the set of possible
initial states, SG is the set of goal states, A is a set of actions
with A(s) denoting the actions in A that are applicable in
the state s, and O is a set of observation tokens. An action a
applicable in a state s changes the state to s′ = f(a, s) and
results in the observation token o(s′, a) ∈ O. Executions are
sequences of action-observation pairs a0, o0, a1, o1, . . . and
beliefs represent the sets of states that are possible. The ini-
tial belief state is b0 = S0, and if b is the belief before the
action a is applied, the belief right after a is ba = {s′ | s′ =
f(a, s) and s ∈ b}, while boa = {s | s ∈ ba and o = o(s, a)}
is the belief after getting then the observation token o.

An execution a0, o0, a1, o1, . . . is possible in the model S
if, starting from the initial belief b0, each action ai is appli-
cable in the belief bi resulting from the execution up to ai,
i.e. ai ∈ A(s) for all s ∈ bi, and bi+1 is non-empty, where
bi+1 = boa for b = bi, a = ai, and o = oi. A belief pol-
icy π is a function mapping belief states into actions, while
a tree policy π is a function mapping executions into ac-
tions. The executions a0, o0, a1, o1, . . . induced by a belief
or tree policy π are the possible executions in which ai is
the action dictated by the policy given the belief bi and the
execution up to ai respectively. A policy solves the model
if all such executions reach a goal belief state, i.e., a belief
state b ⊆ SG. Off-line methods focus on the computation of
such policies; on-line methods focus on the computation of
the action for the current belief or execution. The difference
between belief and tree policies is that the former treat exe-
cutions leading to the same belief state as equivalent. Thus,
while belief policies are represented by graphs, tree policies
are represented by trees (Geffner and Bonet 2013).

Representation
We assume that contingent models are represented in com-
pact form through tuples P = 〈F, I,AF , AN , G〉 where F
stands for a set of atoms, I is a set of clauses over F repre-
senting the initial situation, and G is a set (conjunction) of
literals over F representing the goals. We assume that AF

represents a set of physical actions, and AN a set of sens-
ing actions. Both physical and sensing actions a have a pre-
condition Pre(a) that is a conjunction of literals. Physical
actions a are characterized by a set of conditional effects
a : C → E on the world, where C and E are sets (conjunc-
tion) of literals, while sensing actions a(q) reveal the truth
value of the atom q in F .

The planning problem P = 〈F, I,AF , AN , G〉 defines
the state model S(P) = 〈S, S0, SG, A,O, f, o〉, where S is
the set of valuations over the atoms in F , S0 and SG are
the sets of valuations that satisfy I and G respectively, A(s)
is the set of actions in AF ∪ AN whose preconditions are
true in s, f(a, s) is the state-transition function determined

by the conditional effects associated with physical actions
a ∈ AF , and f(a, s) = s for sensing actions in a ∈ AN .
The set O contains the tokens > and ⊥ such that o(s, a) is
> for actions a inAF , and o(s, a) is> or⊥ according to the
truth value of atom q in s when a is the sensing action a(q)
in AN .

The distinction between purely physical actions and
purely sensing actions is a convenient simplification; the
generalization to actions that involve both physical and sens-
ing effects requires extra notation, but is not a computational
challenge.

First Translation
The first translation of contingent problems P into classical
problems Ci(P) that we consider here, follows Brafman’s
and Shani’s closely, but while they map each action a in P
to 2|S0| actions a(S′), where S′ is a subset of S0, our trans-
lation is polynomial in |S0| and introduces a linear number
of actions.1

For convenience, we will assume that the language of the
classical translations Ci(P) supports axioms. Axioms al-
low the definition of new, derived atoms in terms of prim-
itive ones, called then the primitive fluents. The derived flu-
ents can be used in action preconditions, goals, and in the
body of conditional effects. Axioms are part of the classi-
cal PDDL standard and many classical planners support ax-
ioms. While it is possible to compile axioms away, there are
also benefits for dealing with them directly in the compu-
tation of the heuristics and in the progression of the state
(Thiébaux, Hoffmann, and Nebel 2005). In our implemen-
tation, we compile axioms away so that the translations can
be fed into almost any existing classical planner supporting
STRIPS, negation, and conditional effects.

The first translation C1(P) comprises fluents L/s for the
literals L in P and the possible initial states s ∈ bI where
bI = S0. The literals in P are those of the form p and ¬p
for p ∈ F . The literals L/s represent that L is true under
the assumption that s is the true hidden initial state. The
other primitive fluents in the translation D(s, s′) represent
that the execution so far contains enough information to dis-
tinguish one hidden initial state s from another s′ (Brafman
and Shani 2012a). The expression C/s, when C is a con-
junction of literals L, stands for the conjunction of the liter-
als L/s.

Definition 1. Let P = 〈F, I,AF , AN , G〉 be a deter-
ministic contingent problem. The translation C1(P) of P
is the classical planning problem with axioms such that
C1(P) = 〈F ′, I ′, A′, G′, X ′〉, where

1There is actually a paragraph in (Brafman and Shani 2012b)
that suggests that while translations involving a number of actions
linear in |S0| appears to be feasible, the authors didn’t consider
them because such actions would have “many conditional effects”
and hence would be “challenging for current classical planners”.
This is a puzzling comment though, as an exponential number of
actions is certainly much worse than a quadratic number of effects.
For example, for a single action and |S0| = 30, the contrast is
between 1 billion actions with 20 conditional effects each vs. 30
actions with 900 effects.

66

• F ′ = {L/s : L ∈ P, s ∈ bI} ∪ {D(s, s′) : s, s′ ∈ bI},
• I ′ = {L/s : L ∈ P, s ∈ bI , s |= L},
• G′ = G,
• A′ = {a(s) : a ∈ AF ∪ AN , s ∈ bI} such that precon-

ditions L in Pre(a) are replaced by preconditions XL/s
in Pre(a(s)), and effects

C/s′,¬D(s, s′)→ E/s′

for each s′ ∈ bI in place of the effect C → E for a ∈ AF ,

¬D(s, s′),¬D(s, s′′), p/s′,¬p/s′′ → D(s′, s′′), D(s′′, s′)

for each pair of states s′, s′′ in bI for a = a(p) ∈ AN ,
• X ′ is a set of axioms:

– one for each derived fluent XL/s such that L is a
literal precondition in P and s ∈ bI , with definition
∧s′∈bI [L/s′ ∨D(s, s′)],

– one for each literal L in G, with definition ∧s∈bIL/s.
In words, the primitive fluents in C1(P) represent the

truth of the literals L in P conditioned on each possible hid-
den initial state s, and the (in)accessibility relation D(s, s′)
among the “worlds” s and s′. Initially, these worlds are all
accessible from each other and D(s, s′) is false for all such
pairs. On the other hand, L/s is true initially if L is true in s.
The goal G′ of C1(P) is the same as the (conjunctive) goal
G of P , and the truth of each goal literal L follows from
the truth of the primitive fluent literals L/s in the transla-
tion via an axiom. For each action a in P , there is an action
a(s) in C1(P) for s ∈ bI , with preconditions XL/s replac-
ing the preconditions L of a in P . The intuitive meaning
of the derived literal XL/s is that L is known to be true
in the execution that is associated with the hidden state s.
We don’t use the notationKL/s from (Palacios and Geffner
2009), which means something different; namely, that L is
true given s. Using the notation from modal logics, XL/s
stands for s ⊃ KL, while KL/s stands for K(s ⊃ L).
Last, we write L/t rather than KL/t as in (Palacios and
Geffner 2009), because when “tags” t represent the com-
plete initial states s, it is not possible for KL/t and K¬L/t
to be both false. Since if one is false, the other must be true,
there is also no need for “cancellation axioms” (Palacios and
Geffner 2009). The translation appears closest to the one in
(Brafman and Shani 2012a), except for the use of action pre-
conditions XL/s rather than L, which otherwise would not
preserve completeness. Indeed, for an action a(s) to be ap-
plicable in the classical problem C1(P), it is not sufficient
for the literal L/s to be true for a precondition L of a in P ;
that is too weak. But it is not necessary for the derived literal
L inC1(P) to be true either; that is too strong. RatherXL/s
must be true, which according to its axiom will be true when
L/s′ is true for all the states s′ that cannot be distinguished
from s.

The number of actions in the translation isO(A · |bI |), the
number of fluents is O(|bI |2), and the maximum number of
conditional effects per (sensing) action is O(|bI |2). In Braf-
man’s and Shani’s translation the numbers are O(A · 2|bI |),
O(|bI |2), andO(|bI |) respectively. Thus, the number of con-
ditional effects is reduced from quadratic to linear, but the
number of actions explodes from linear to exponential.

The soundness and completeness of the translationC1(P)
can be expressed in terms of the tree policies that solve P .

Theorem 1 (Completeness C1(P)). Let n0, . . . , nk be a
topological enumeration of the internal nodes in a policy
tree that solves P where no node precedes its parent, and
let π(ni) represent the action performed by the policy in
the node ni and D(ni) represent the hidden states in bI
that are compatible with the execution up to ni. Then, any
action sequence π′(n0), . . . , π′(nk) where π′(ni) = a(s),
π(ni) = a, and s ∈ D(ni), is a classical plan for C1(P).

Theorem 2 (Soundness C1(P)). Let b0, . . . , bk be a clas-
sical plan for C1(P) such that Di(s, s

′) represents the sta-
tus of the D(s, s′) fluents when the action bi is applied. Let
n0, . . . , nk be a set of nodes such that node ni is the parent
of node nj if A) i < j, bi = a(s), bj = a′(s′), Di(s, s

′) is
true, and B) condition A is not true for any k, i < k < j. In
such a case, the edge from ni to nj is labeled> either if a is
a physical action, or if a is a sensing action and Dj(s, s

′) is
true. Else the edge is labeled ⊥. Then the policy π(ni) = a
over the resulting labeled tree is a tree policy that solves P .

There are a number of optimizations that can be accom-
modated in the translation. In particular, all the actions a(s)
for the same action a from P are equivalent in states s′
where D(s, s′) holds, making the branching factor of the
classical problem C1(P) unnecessarily large. A simple op-
timization in this case is to make just one of those actions
applicable. This can be achieved by introducing a static or-
dering “<” among states, and by adding a derived fluent
first(s) as precondition of a(s), such that first(s) is de-
fined by means of the axiom ∧s′<sD(s′, s). This means that
s represents the first state in the group of all states that are
indistinguishable from s. Notice that the predicateD is sym-
metric, and hence D(s′, s) is true iff D(s, s′) is true. This
property can also be used to reduce the quadratic number of
fluents and conditional effects by half.

Second Translation
The translation above converts the sequence of actions in
any topological traversal of the policy tree into a classical
plan. This however is not needed for the translation to be
complete. For this, it is enough to account for the actions
in one specific traversal of the policy tree; for example the
unique depth-first search traversal where the child following
a sensing actions a(p) where p is true is considered first. In
order to achieve this, we accommodate a stack in the transla-
tion where the states that predict p to be false are pushed, in
order to be dealt with later. A parameter of this translation is
the stack size. A stack size of k will suffice to obtain contin-
gent plans with branches that accommodate up to k observa-
tions. The translation will be polynomial in this stack param-
eter, yet the resulting classical plans may be exponential in
it. This however is not a characteristic of the translation but
of the nature of full contingent plans represented by trees:
their size is exponential in the maximum number of obser-
vations gathered along a branch of the tree. For this reason,
the stack parameter is small in the benchmarks, as otherwise
off-line contingent plans would not be able to solve them.

67

Of course, on-line contingent planners do not compute full
solutions and do not have this limitation.

The second translation C2(P) preserves the fluents L/s
from the first translation but removes the D(s, s′) fluents,
that are quadratic in number and require a quadratic num-
ber of conditional effects. Instead, the new translation uses
fluents m(s) for keeping track of the set of possible initial
states s that are possible given the execution so far. In addi-
tion, preconditionsXL/s in the first translation are replaced
by preconditions XL where the context given by the hidden
state s is implicit. The stack is represented by fluents lev(l)
to indicate the top of the stack, stack(s, l) to indicate that
the hidden state s has been pushed onto the stack at level l,
and static fluents next(l, l + 1) that represent that one level
follows the other. For simplicity, we omit these static fluents
which are true for each l ∈ [0,M] where M + 1 is the max
stack level. For convenience, we also assume that the goalG
is a single atom; if it is not the case, problems can be brought
into this form in the standard way by adding a dummy goal
and a final action.

Definition 2. Let P = 〈F, I,AF , AN , G〉 be a deterministic
contingent problem. Then the translation C2(P) of P for
a given stack parameter M > 0 is the classical planning
problem with axioms C2(P) = 〈F ′, I ′, A′, G′, X ′〉 where

• F ′ = {L/s,m(s), lev(l), stack(s, l) : L ∈ P, s ∈bI ,
l ∈ [0,M]}

• I ′ = {L/s,m(s), lev(0) : L ∈ P, s ∈ bI , s |= L},
• G′ = G,
• A′ = AF ∪ {a(q, l), pop(l+1) : a(q)∈AN , l ∈ [0,M]}

such that
– Physical actions: preconditions L of a ∈ AF replaced

by XL and ¬XG; effects a : C → E replaced by
a : C/s,m(s)→ E/s for each s ∈ bI ,

– Sensing actions: preconditions L of a(q) in AN

become preconditions XL for a(q, l) in addition
to lev(l), ¬XG, ¬Xq, ¬X¬q; effects of a(q, l)
are ¬lev(l), lev(l + 1), and conditional effect
m(s),¬q/s→ stack(s, l + 1),¬m(s),

– Pop actions: preconditions of pop(l) are lev(l)
and XG; effects are ¬lev(l), lev(l − 1)
and conditional effects m(s) → ¬m(s) and
stack(s, l)→ m(s),¬stack(s, l) for each s ∈ bI .

• X ′ is a set of axioms:
– one for each derived fluent XL such that L is

literal precondition or goal in P with definition
∧s∈bI [L/s ∨ ¬m(s)],

– one for each literal L in G with definition ∧s∈bIL/s.
The number of actions in the translation is

O(|AF |+M · |AN |) where M + 1 is the stack size,
the number of fluents is O((|F | + M) · |bI |), while the
maximum number of conditional effects per action is
O(|S| · |F |). None of these numbers grows with the square
number of states in bI as in the translation C1(P), or expo-
nentially in |bI | as in the translation of Brafman and Shani.
The emulation of a stack in the translation is reminiscent
of Domshlak’s compilation scheme for mapping a class of

fault tolerant planning problems into classical problems
(Domshlak 2013).

In relation to C1(P), the new translation replaces the
D(s, s′) literals encoding the accessibility relations among
worlds by the m(s) literals that represent the set of hidden
initial states that are possible given the current execution.
The new translation uses also a stack where the hidden states
s that predict ¬q after the execution of the sensing action
a(q, l) are stored. The translation makes also sure that q is
not known either true or false by adding the literals ¬Xq
and ¬X¬q in the action precondition. Finally, the transla-
tion adds the pop(l+1) actions: they are triggered when an
execution reaches the goal in the form of the XG literal, so
that the executions associated with hidden states that have
been pushed onto the stack become current and can be ex-
tended to reach the goal as well.

The soundness and the completeness of the translation
C2(P) can be expressed as follows. In a policy tree for P ,
we refer by the level lev(ni) of a node ni to the number of
“right turns” in the path from the root of the tree to the node
ni, where a right turn corresponds to the observation that an
atom q is false following a sensing action a(q).

Theorem 3 (Completeness C2(P)). Let n0, . . . , nk be a
DFS enumeration of all the nodes in a policy tree that solves
P where no node precedes its parent and where children
associated with positive observations come first. Let π(ni)
represent the action performed by the policy in node ni, let
D(ni) represent the set of hidden states in bI which are com-
patible with the execution up to ni, and let lev(ni) be the
level of the node ni in the tree. If these levels are not greater
than M +1, then the action sequence π′(n0), . . . , π′(nk−1)
is a classical plan forC2(P), where π′(ni) = π(ni) if π(ni)
is a physical action, π′(ni) = a(q, l) if π(ni) is the sensing
action a(q) and l = lev(ni), and π′(ni) = pop(l) if ni is
leaf node of the tree and l = lev(ni).

Theorem 4 (Soundness C2(P)). Let b0, . . . , bk be a clas-
sical plan for C2(P) such that mi(s) represents the sta-
tus of the m(s) fluents when the action bi is applied. Let
n0, . . . , nk be a set of nodes such that node ni is the parent
of node nj if i < j and there is a state s such that bothmi(s)
and mj(s) are true and there is no k, i < k < j, such that
mk(s) is true as well. In such a case, the edge from ni to nj
is labeled > either if a is a physical action, or if a is a sens-
ing action and j = i+1. Else the edge is labeled⊥. Then the
policy π(ni) over the internal nodes ni of the tree such that
π(ni) = bi if bi is a physical action, and π(ni) = a(q) if bi
is a sensing action a(q, l), represents a policy that solves P .

Empirical evaluation
We will turn now to evaluate the translations empiri-
cally over benchmarks collected from the distributions of
contingent-FF, Pond, and CLG, and DNFct. The experi-
ments were run on a cluster of Linux boxes AMD Opteron
Abu Dhabi 6378 processors at 2.4 GHz. Each experiment
had a cutoff of 2h or 4GB of memory. For the translation C2

we used an stack size M = 6.
Table 1 compares existing contingent planners with the

classical planner Fast Downward LAMA 2011, that we will

68

C1(P) C2(P) Pond MBP CFF CLG DNFct
Problem time size time size time size time size time size time size time size
blocks 3 0.0 7 0.2 6 0.01 5 0.33 7 0.02 6 0.08 6 0.58 5
blocks 7 45.8 63 116.9 63 OM TO 0.46 49 4.58 55 11.6 69
blocks 11 490 115 TO OM TO TO 35.68 115/18 OM
blocks 15 463.9 119 TO OM TO TO 144.2 157/22 OM
ebtcs 50 1805 100 388.7 100 6.0 99 TO 11.96 99 0.02 21 0.13 101
ebtcs 70 MT 2216 140 29.8 139 TO 69.66 139 24.79 209 1.49 276
ebtcs 90 MT TO TO TO 255 179 69.99 269 3.19 356
ebtcs 150 MT TO TO TO MC 603.3 449 6.25 596

grid 3 92.7 26 153.7 119 105 148 TO 943 58 1180 111 1.97 313
grid 4 1809 45 TO OM TO TO 1558 884 2.9 982
grid 5 1260 70 134.5 97 OM TO TO 657 208 12.59 133

medpks 50 2495 101 6084 101 192.5 100 TO 164.9 100 2.32 101 1.45 201
medpks 70 MT OM TO TO 968.6 140 7.51 141 1.49 141
medpks 90 MT OM TO TO TO 24.35 199 2.69 199

unix 1 0.1 19 0.2 17 5.1 26 11.58 21 0 7 0.01 21 0.01 17
unix 2 12.4 72 14.3 48 1.71 48 TO 0.13 48 0.35 50 0.78 48
unix 3 1521 197 TO OM TO 3.84 111 4.93 113 2.02 111
unix 4 MT OM OM TO 143 238 78.9 240 16.26 238
doors 3 0.0 13 0.0 13 - - - - E 0 13 0.01 17
doors 5 429.7 164 TO - - - - E 0.4 144 0.04 146
doors 7 MT TO - - - - E 13.4 2153 4.28 2193

localize 3 5.7 31 0.7 24 - - - - 42 53 0.02 33 0.01 19
localize 5 301 81 8.0 76 - - - - MC 1.86 112 0.57 49
localize 7 5551 171 161.2 177 - - - - MC 6.89 231 0.72 80
localize 11 TO TO - - - - MC 63.72 577 1.2 144

Table 1: Comparison of Contingent planners. Translations solved by classical planner LAMA. TO stands for time out, OM for out of memory,
MC and E that the problem is too big or a faulty execution respectively for CFF, MT that translator went memory out, ’-’ means no information
on performance of planner over instance.

refer simply as LAMA (Richter and Westphal 2010; Helmert
2006), ran over the two translations. As it can be seen from
the table, CLG and DNFct do best, but LAMA over C1(P)
and C2(P) does not trail behind POND, Contingent-FF, and
MBP in terms of coverage and quality.

Table 2 shows performance of three classical planners
over the translations C1 and C2. The planners LAMA, FF
(Hoffmann and Nebel 2001), and a version of the SIW plan-
ner that uses the hadd heuristic (Lipovetzky and Geffner
2012).

In almost all the instances, SIW is slower in generating the
nodes than the other planners, but this is compensated by a
better ratio between the number of expanded nodes and the
length of plans, meaning that the search is informed enough
to go to the goal while expanding few nodes. LAMA has
the opposite behavior, generating nodes fast but expanding
many more nodes per step in the plan. The relaxed heuristic
of FF is not very informed except for the Medpks domain.
LAMA uses a heuristic derived from landmarks in combina-
tion with the well-known FF heuristic; the initial values of
these two heuristics are reported in ’heur’ column.

There is a correlation between the size of the PDDL file
and the overhead that affects the scalability of the classical
planners. The size of the PDDLs is directly proportional to
the number of fluents, actions and conditional effects in the
translation. For creating the actual PDDLs, axioms are com-
piled away in ramifications and actions interleaved during
the execution. These dummy actions represent many of the

actions appearing in the resulting classical plans. Due to the
treatment of axioms, the PDDLs are actually larger than the
sizes that follow from the analysis in Sections 3 and 4. As
a reference, the translation Ks0 that maps conformant into
classical planning problems (Palacios and Geffner 2009) and
is linear in the number of initial states, dealing with a con-
formant problem equivalent to Blocks7, produces a clas-
sical problem with 445/1k/13k actions/atoms/conditional-
effects. In contrast C1 produces 3k/1k/177k and C2 pro-
duces 777/1k/184k. Ks0 and C2 have a similar number of
actions and atomos, whileC1 has more actions, as they grow
linear with the number of initial states. In contrast, both C1

and C2 have many more conditional effects. Table 3 shows
figures concerning the translation of selected instances, in
comparison with the figures that correspond to the transla-
tion used by the CLG planner.

We have also tested our translations with many other clas-
sical planners and configurations that we are not reporting in
the tables. We tried for example a version of the Fast Down-
ward planner with the causal graph and the landmark heuris-
tics. These are heuristics that are not as sensible to the ap-
proximations made by the delete-relaxation. We also tried
other variants of the width-based algorithms in the SIW and
BFS(f) family reported in (Lipovetzky and Geffner 2012).
And finally, we tried the SAT-based planner Mp. In all cases,
we didn’t obtain better results, and for Mp the results were
definitely inferior, reporting solutions to 8 of the 60 in-
stances we tried. The coverage of the FD planner with the

69

C1 Translation SIW LAMA FF
problem pddl size #exp/#act node/sec size #exp/#act heur node/sec size heur node/sec

dispose 3 1 103 213 11.77 839 174 24.32 13/6 21018 OM 6
dispose 4 1 522 576 33.35 40 375 1310 20/6 7688 OM 6

doors 3 11.1 39 1.18 N/A 39 141.5 10/6 58417 39 6 N/A
doors 5 2115 930 22.74 16 492 67.63 35/8 1031 OM 8
ebtcs 30 913.4 180 4.67 6 180 32.37 35/4 24459 OM 4
ebtcs 50 4043 300 4.56 1 300 169.5 55/4 2338 OM 4
elog 5 1081 450 25.97 3 330 2085 27/18 15812 OM 18
elog 7 3621 TO TO 39/23 OM 23
grid 2 891 111 2.22 39 27 24081 40/9 1603 27 9 N/A
grid 4 7367 TO 135 212.01 106/18 24 111 20 49

localize 3 235 90 3.66 195 93 3383 11/7 8763 72 17 2597
localize 5 3431 558 35.68 2 243 90.17 22/6 948 OM 24

medpks 30 1184 180 2.81 2 180 2.09 92/62 27755 180 63 342
medpks 50 5542 TO 303 307 152/102 17574 303 103 16
push 3 1 562.4 177 8.19 65 165 13.87 12/7 4926 OM 8
unix 2 3169 453 35.62 4 216 1.45 15/6 1116 OM 6
unix 3 81058 OM 591 3.26 31/6 35 OM

C2 Translation SIW LAMA FF
problem pddl size #exp/#act node/sec size #exp/#act heur node/sec size heur node/sec

dispose 4 1 450 395 4.38 89 259 16 17/7 122 OM 6
dispose 5 1 1303 667 9.11 25 411 4.72 26/7 18 OM 6

doors 3 34.1 29 1.69 29 28.07 3/5 11450 29 5 8600
doors 5 850 355 3.24 43 TO 25/9 335 9 683
ebtcs 30 1317 243 2.61 28 177 4.2 31/5 83 4
ebtcs 50 5405 363 6.42 5 297 4.4 51/5 27 OM 4
elog 5 362 301 5.99 52 287 148.4 24/21 1758 19
elog 7 553 481 7.23 42 401 554.5 36/21 778 OM 17
grid 3 535 407 6.72 44 257 62.77 36/12 187 89 12 732
grid 5 1367 IW> 2 97 163.15 136/16 39 OM 16

localize 3 82.4 75 4.05 527 59 16469 8/5 2472 65 10 6564
localize 7 778 791 7.35 13 417 20.16 34/5 146 OM 22

medpks 50 10609 299 5.87 1 299 1.49 101/53 21 299 53 108
medpks 99 86763 OM TO 593 102 9
push 3 1 208 147 2.23 163 121 6.96 9/7 994 7
push 3 2 4342 OM 1467 10.51 162/10 7 OM 9
unix 2 718 137 8.39 36 117 4.21 12/9 147 OM 5
unix 3 5918 OM TO 28/9 OM 5

Table 2: Performance of classical planners over the translations. ’N/A’ indicates that the resolution time is too small to be reported. ’pddl’
is the size in KB of the input files, ’#exp/#act’ the ratio between expanded nodes and actions in the plan, ’heur’ the initial heuristic value,
’node/sec’ generated nodes per second. TO stands for time out, OM for out of memory. IW> 2 means SIW failed.

indicated heuristics was 26/30 for C1/C2, and for FD using
the landmark heuristic was 15/25. FF coverage was 11/14.
SIW, as presented by the authors, coverage was 16/25.

It is interesting to note that none of the reported classical
planner dominated the others, and moreover, the planners
exhibit very different behaviors over the translations, with
some planners solving some of the instances rather easily
while others produce memory or time outs in the same in-
stances. Also, some encoding details are important. For ex-
ample, we found that copying the preconditions into condi-
tions2 before the translation made a big difference in the per-
formance of the FF planner that jumped from solving only
14 instances of C2, to solving 27.

The size of the translations does not coincide with the
2Such operation is sound and helps the delete-relaxation heuris-

tics.

sizes predicted by the analysis in Sections 3 and 4. The
reason is the compilation of the axioms. We compiled the
axioms away because many of the planners do not handle
axioms properly. This, however, doesn’t seem to be a good
idea, because the elimination of the axioms produces many
additional fluents and actions, that may be affecting perfor-
mance drastically. One of the few modern planners that pro-
vides native support for axioms is FF-X (Thiébaux, Hoff-
mann, and Nebel 2005), but the overhead is then consider-
able as the class of axioms handled by FF-X is much more
expressive than what is needed by our translations. FF-X
supports indeed recursive, stratified definitions, while our
definitions are simple and acyclic.

One open question is related with the low performance
of the SAT-based planner Mp, which solves seven instances
over the two translations C1 and C2. A translation to be ef-

70

Problem P C1(P) C2(P) CLG CLG-S0

Act / Atom / CE Time Act / Atom / CE Time Act / Atom / CE Act / Atom / CE Act / Atom / CE
blocks7 455 / 72 / 1k 1.9 3k / 1k / 177k 5.4 777 / 1k / 184k 6k / 4k / 263k 1k / 2k / 56k
blocks11 1k / 152 / 5k 6.4 12k / 2k / 570k 31.4 2k / 2k / 488k 15k / 10k / 736k 4k / 4k / 176k

dispose-2 2 62 / 54 / 96 1.4 322 / 1k / 19k 1.1 73 / 1k / 15k 171 / 596 / 2k 716 / 1k / 24k
dispose-2 3 71 / 60 / 110 125.7 1k / 8k / 1m 7.3 102 / 7k / 108k 239 / 716 / 3k 6k / 8k / 818k

doors 3 48 / 50 / 72 0 71 / 125 / 385 0.1 91 / 155 / 1k 139 / 497 / 1k 149 / 354 / 1k
doors 5 160 / 138 / 240 15.2 1k / 3k / 188k 5.7 303 / 2k / 73k 867 / 2k / 16k 2k / 3k / 115k
ebtcs-30 61 / 40 / 91 9.2 962 / 3k / 54k 3.4 218 / 3k / 189k 2k / 3k / 108k 2k / 4k / 197k
ebtcs-50 101 / 60 / 151 70.9 2k / 8k / 251k 16.4 358 / 8k / 823k 5k / 8k / 450k 7k / 11k / 845k

elog5 93 / 56 / 159 0.6 746 / 712 / 31k 0.5 235 / 865 / 27k 246 / 602 / 2k 672 / 1k / 12k
elog7 93 / 56 / 159 1.7 1k / 1k / 100k 0.8 235 / 1k / 44k 266 / 628 / 2k 992 / 1k / 23k
grid-4 232 / 134 / 436 26.7 6k / 6k / 649k 8.3 359 / 6k / 101k 2k / 3k / 49k 6k / 8k / 308k
grid-5 196 / 122 / 364 23.2 5k / 5k / 581k 7.2 311 / 5k / 90k 2k / 2k / 41k 5k / 7k / 278k

localize 11 9 / 90 / 633 229.7 686 / 15k / 7m 8.5 36 / 25k / 200k 12k / 13k / 1m 18k / 19k / 2m
localize 13 9 / 117 / 853 672.7 929 / 28k / 18m 19.5 36 / 45k / 350k 22k / 23k / 3m 32k / 35k / 7m

medpks-050 102 / 112 / 151 89.7 2k / 14k / 259k 46.5 358 / 21k / 1m 7k / 8k / 573k 13k / 16k / 1m
medpks-150 300 / 310 / 448 - MT 2862 1k / 181k / 41m 67k / 70k / 13m 112k / 138k / 27m

push 3 1 59 / 52 / 109 0.4 533 / 472 / 20k 0.2 111 / 616 / 17k 266 / 683 / 5k 349 / 644 / 8k
push 3 2 94 / 62 / 170 - MT 5.4 191 / 8k / 446k 502 / 1k / 9k 9k / 12k / 1m
unix 2 253 / 38 / 491 1.7 3k / 946 / 134k 0.7 335 / 1k / 62k 649 / 951 / 21k 795 / 1k / 30k
unix 3 1k / 70 / 2k 49 28k / 4k / 3m 9.4 1k / 5k / 608k 2k / 3k / 184k 3k / 4k / 280k

Table 3: Translation data for selected instances: Act, Atom, and CE stand for the number of actions, fluents, and conditional effects. Time is
the translation time in seconds. P stands for the original problem, MT means that the translator went memory out.

fective should usually take into account the kind of problems
where state-of-the-art planners perform the best. Which
translation should work better for Mp? The translation C2

is indeed smaller than C1, but imposes an ordering on the
traversals of the policy trees.

The implementations of the translations could be im-
proved in a number of ways. One of the first to be explored
is the value of compiling the axioms vs. dealing with them
directly in the state progression and in the computation of
the heuristics. Other details in the implementation could nar-
row the gap in performance with the best off-line contin-
gent planners further. More powerful classical planning al-
gorithms would help as well, indicating that those translated
problems are a challenging test bench for classical planners.
The huge differences in performance that results from the
use of the different planners over the translations, suggest
that there is also a lot of room for improvement, and for ad-
justing the details of the translations, to make the most of the
techniques captured by these planners.

Summary
We have introduced two translations for mapping determin-
istic contingent problems into classical problems that, unlike
Brafman’s and Shani’s translation, are polynomial and can
be used for solving contingent problems off-line. From the
empirical results obtained so far, the approach is not yet at
the level of the last generation of off-line contingent plan-
ners, but it is certainly on par with other recent contingent
planners such as Contingent-FF, POND, and MBP. More-
over, the limitations in performance are not always a result
of the size of the translations, so further advances in clas-
sical planning algorithms will have an impact on the class
of contingent problems that can be solved in this manner. A

limitation of off-line contingent planners regardless of the
approach is that the size of plans is often exponential in the
number of observations, a limitation that is not shared by on-
line planners. We expect these ideas to be relevant to other
types of planning problems as well, like Q-Dec-POMDPs
(Brafman, Shani, and Zilberstein 2013), and other types of
partially observable multiagent planning problems.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In Proc.
Int. Joint Conf. of Artificial Intelligence (IJCAI-09), 1623–
1628.
Bernstein, D.; Zilberstein, S.; and Immerman, N. 2000. The
complexity of decentralized control of Markov decision pro-
cesses. In Proc. of the 16th Conf. on Uncertainty in Artificial
Intelligence, 32–37.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2006.
Strong planning under partial observability. Artificial Intel-
ligence 170(4-5):337–384.
Brafman, R., and Shani, G. 2012a. Replanning in domains
with partial information and sensing actions. Journal of Ar-
tificial Intelligence Research 45(1):565–600.
Brafman, R. I., and Shani, G. 2012b. A multi-path compila-
tion approach to contingent planning. In Proc. of AAAI.
Brafman, R. I.; Shani, G.; and Zilberstein, S. 2013. Qualita-
tive planning under partial observability in multi-agent do-
mains. In Proc. of AAAI.
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Plan-
ning graph heuristics for belief space search. Journal of Ar-
tificial Intelligence Research 26:35–99.

71

Domshlak, C. 2013. Fault tolerant planning: Complexity
and compilation. In Proc. Int. Conf. on Automated Planning
and Scheduling (ICAPS 13).
Geffner, H., and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan &
Claypool Publishers.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Brafman, R. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
Proc. 15th Int. Conf. on Automated Planning and Scheduling
(ICAPS 2005), 71–80.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Lipovetzky, N., and Geffner, H. 2012. Width and serializa-
tion of classical planning problems. In Proc. of European
Conf. of Artificial Intelligence (ECAI 12), 540–545.
Palacios, H., and Geffner, H. 2009. Compiling Uncertainty
Away in Conformant Planning Problems with Bounded
Width. Journal of Artificial Intelligence Research 35:623–
675.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39(1):127–177.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. Artificial Intelligence 168(1–2):38–69.
To, S. T.; Pontelli, E.; and Son, T. C. 2011. On the ef-
fectiveness of CNF and DNF representations in contingent
planning. In Proc. Int. Joint Conf. on Artificial Intelligence
(IJCAI-11), 2033–2038.

72

	Factored Markov Decision Process with Imprecise Transition Probabilities Karina V. Delgado, Leliane N. de Barros, Scott Sanner, Fabio Cozman
	Monte-Carlo Tree Search: To MC or to DP? Zohar Feldman, Carmel Domshlak
	To Share or Not to Share? The Single Agent in a Team Decision Problem Ofra Amir, Barbara J. Grosz, Roni Stern
	Computing Contingent Plans via Fully Observable Non-Deterministic Planning Christian Muise, Vaishak Belle, Sheila A. McIlraith
	Diagnostic Problem Solving via Planning with Ontic and Epistemic Goals Jorge A. Baier, Brent Mombourquette, Sheila A. McIlraith
	A Contingent Planning-Based POMDP Replanner Ronen Brafman, Alexander Gorohovski, Guy Shani
	A Relevance-Based Compilation Method for Conformant Probabilistic Planning Ran Taig, Ronen I. Brafman
	Structured Possibilistic Planning using Decision Diagrams Nicolas Drougard, Florent Teichteil-Königsbuch, Jean-Loup Farges
	Compiling Contingent Planning into Classical Planning: New Translations and Results Héctor Palacios, Alexandre Albore, Hector Geffner

