
	
	

Proceedings	 of	 the	 2nd	 Workshop	 on	
Planning	 and	 Robotics	

	
Edited	 By:	

Alberto	 Finzi	 and	 AndreA	 Orlandini.	
	

Portsmouth,	 New	 Hampshire,	 USA	 -‐	 June	 22,	 2014	

	

ICAPS
 2014

Organizing	 Committee	
Alberto	 Finzi	
DIETI-‐UNINA,	 Italy	
AndreA	 Orlandini	
CNR-‐ISTC,	 Italy	
	

Program	 Committee	
Rachid	 Alami,	 LAAS-‐CNRS,	 France	 	
Amedeo	 Cesta,	 CNR-‐ISTC,	 Italy	 	
Alberto	 Finzi,	 Università	 di	 Napoli	 Federico	 II,	 Italy	 	
Robert	 Fitch,	 University	 of	 Sydney,	 Australia	 	
Malik	 Ghallab,	 LAAS-‐CNRS,	 France	 	
Joachim	 Hertzberg,	 University	 of	 Osnabrueck,	 Germany	 	
Andreas	 Hofmann,	 MIT,	 USA	 	
Felix	 Ingrand,	 LAAS-‐CNRS,	 France	 	
Leslie	 Kaebling,	 MIT,	 USA	 	
Sven	 Koenig,	 University	 of	 Southern	 California,	 USA	 	
Jonas	 Kvarnström,	 Linköpings	 University,	 Sweden	 	
Daniele	 Magazzeni,	 King's	 College,	 UK	 	
Dinesh	 Manocha,	 University	 of	 North	 Carolina,	 USA	 	
Maria	 Dolores	 Moreno,	 Universidad	 de	 Alcala,	 Spain	 	
Karen	 Myers,	 SRI,	 USA	 	
Daniele	 Nardi,	 Sapienza	 University,	 Italy	 	
Andrea	 Orlandini,	 CNR-‐ISTC,	 Italy	 	
Frederic	 Py,	 MBARI,	 USA	 	
Alessandro	 Saffiotti,	 Orebro	 University,	 Sweden	 	
Kanna	 Rajan,	 MBARI,	 USA	 	
Reid	 Simmons,	 Carnegie	 Mellon	 University,	 USA	 	
David	 Smith,	 NASA	 Ames,	 USA	 	
Siddharth	 Srivastava,	 UC	 Berkeley,	 USA	 	
Florent	 Teichteil-‐Königsbuch,	 ONERA,	 France	
Felipe	 Trevizan,	 	 Carnegie	 Mellon	 University,	 USA	
Manuela	 Veloso,	 Carnegie	 Mellon	 University,	 USA	
	
Additional	 Reviewers:	 	
Jonathan	 Cacace,	 Liron	 Cohen,	 Gustavo	 Goretkin,	 Andrea	 Micheli,	 Alessandro	 Umbrico,	 Tansel	
Uras.	
	
	
PlanRob	 2014	 is	 partially	 supported	 by	 the	 SHERPA	 project	 (EU	 FP7	 under	 the	 grant	 agreement	
ICT-‐600958).	 More	 information	 at	 http://www.sherpa-‐project.eu/	
	
	

	

Foreword	
	
	
Robotics	 is	 one	 of	 the	 most	 appealing	 and	 natural	 applicative	 area	 for	 the	 Planning	 and	 Scheduling	
(P&S)	 research	 activity,	 however,	 this	 potential	 interest	 seems	 not	 reflected	 in	 an	 equally	
important	 research	 production	 for	 the	 robotics	 community.	 On	 the	 other	 hand,	 the	 fast	
development	 of	 field	 and	 social	 robotics	 applications	 poses	 planning	 as	 a	 central	 issue	 in	 the	
robotic	 research	 with	 several	 real-‐world	 challenges	 for	 the	 planning	 community.	
	
In	 this	 perspective,	 the	 goal	 of	 the	 PlanRob	 workshop	 is	 twofold.	 From	 one	 side,	 it	 aims	 at	
providing	 a	 fresh	 impulse	 for	 the	 ICAPS	 community	 to	 recast	 its	 interests	 towards	 robotics	
problems	 and	 applications.	 On	 the	 other	 side,	 its	 goal	 is	 to	 attract	 representatives	 from	 the	
robotics	 community	 to	 discuss	 their	 challenges	 related	 to	 planning	 for	 autonomous	 robots	 as	 well	
as	 their	 expectations	 from	 the	 P&S	 community.	
	
The	 workshop	 aims	 at	 constituting	 a	 stable,	 long-‐term	 establishment	 of	 a	 forum	 on	 relevant	 topics	
concerned	 with	 the	 interactions	 between	 Robotics	 and	 P&S	 communities	 presenting	 a	 stimulating	
environment	 where	 researchers	 could	 discuss	 about	 the	 opportunities	 and	 challenges	 for	 P&S	
when	 applied	 to	 Robotics.	
	
The	 first	 edition	 of	 the	 PlanRob	 workshop	 has	 gathered	 a	 very	 positive	 feedback	 and	 a	 major	
follow	 up	 was	 the	 organization	 of	 the	 ICAPS	 2014	 Robotics	 Track	 chaired	 by	 Felix	 Ingrand	 (LAAS-‐
CNRS)	 and	 Leslie	 Kaelbling	 (MIT).	 This	 second	 edition	 of	 the	 PlanRob	 workshop	 has	 been	
proposed	 in	 synergy	 with	 this	 track	 to	 further	 enforce	 the	 original	 goal	 and	 to	 maintain	 a	 more	
informal	 forum	 where	 also	 more	 preliminary/visionary	 work	 can	 be	 discussed	 as	 well	 as	 more	
direct	 and	 open	 interactions/discussions	 may	 find	 the	 right	 place.	 	
	
In	 our	 opinion,	 PlanRob’14	 succeeded	 in	 achieving	 these	 objectives.	 Indeed,	 20	 papers	 have	 been	
accepted	 for	 oral	 presentation	 covering	 many	 relevant	 topics	 such	 as	 planning	 and	 execution	 for	
robots,	 high-‐level	 task	 planning,	 task	 and	 motion	 planning,	 multi-‐robot	 systems,	 goal	 reasoning	
and	 knowledge	 representation,	 etc.	 This	 seems	 to	 us	 a	 really	 good	 result	 for	 the	 workshop	 and,	
overall,	 it	 confirms	 a	 good	 feedback	 from	 the	 ICAPS	 community	 (but	 not	 only)	 on	 PlanRob	 topics.	
	
Finally,	 two	 notable	 researchers	 have	 accepted	 our	 invitation	 to	 complete	 an	 already	 rich	 and	
interesting	 program:	 Brian	 Williams	 and	 Leslie	 Kaelbling	 from	 the	 Computer	 Science	 and	 Artificial	
Intelligence	 Laboratory	 at	 the	 Massachusetts	 Institute	 of	 Technology	 (MIT).	
	
	
	
Alberto	 Finzi	 and	 AndreA	 Orlandini	
The	 PlanRob’14	 Chairs	

PlanRob 2014 Table of Contents

Table of Contents

Planning and Execution for Robots

Planning Under Temporal Uncertainty Using Hindsight Optimization. 1

Scott Kiesel and Wheeler Ruml

A Flexible ANML Actor and Planner in Robotics . 12

Fiip Dvorak, Arthur Bit-Monnot, Félix Ingrand and Malik Ghallab

HATP: An HTN Planner for Robotics . 20

Raphaël Lallement, Lavindra de Silva and Rachid Alami

A Cooperative Model-based Control Agent for a Recongurable Manufacturing Plant 28

Stefano Borgo, Amedeo Cesta, Andrea Orlandini, Riccardo Rasconi, Marco Suriano
and Alessandro Umbrico

Continual Planning via Reconfiguration and Goal Revision . 38

Enrico Scala

Multi-Robot Planning

Multi-Robot Planning and Execution for an Exploration Mission: a Case Study 49

Guillaume Infantes, Charles Lesire and Cédric Pralet

Planning and Scheduling Single and Multi-Person Activities in Retirement Home
Settings for a Group of Robots . 59

Tiago Stegun Vaquero, Goldie Nejat and Chris Beck

Planning for Decentralized Control of Multiple Robots Under Uncertainty 69

Christopher Amato, George Konidaris, Gabriel Cruz, Christopher Maynor, Jonathan
How and Leslie Kaelbling

Decentralized Adaptive Path Selection for Multi-Agent Conflict Minimization 80

Andrew Kimmel and Kostas Bekris

Efficient and Smooth RRT Motion Planning Using a Novel Extend Function for
Wheeled Mobile Robots . 90

Luigi Palmieri and Kai Oliver Arras

Knowledge Reasoning and Representation in Planning

Performance Level Profiles . 99

Ronen Brafman, Guy Shani and Solomon Shimony

Iterative Goal Refinement for Robotics . 106

Mark Roberts, Swaroop Vattam, Ronald Alford, Bryan Auslander, Justin Karneeb,
Thomas Apker, Matthew Molineaux, Mark Wilson, James McMahon and David Aha

Challenges in Finding Ways to get the Job Done . 117

Iman Awaad, Gerhard Kraetzschmar and Joachim Hertzberg

Integrating Declarative Programming and Probabilistic Graphical Models for
Knowledge Representation and Reasoning in Robotics . 127

Shiqi Zhang, Mohan Sridharan, Michael Gelfond and Jeremy Wyatt

1

PlanRob 2014 Table of Contents

Planning a Robot’s Search for Multiple Residents in a Retirement Home Environment 136

Markus Schwenk, Tiago Stegun Vaquero, Goldie Nejat and Kai Oliver Arras

Task and Motion Planning

Synthesis of Plans for Robots . 145

Srinivas Nedunuri, Sailesh Prabhu, Mark Moll, Swarat Chaudhuri and Lydia Kavraki

Heuristic Search for Task and Motion Planning . 148

Caelan Garrett, Tomas Lozano-Perez and Leslie Kaelbling

Extending Knowledge-Level Contingent Planning for Robot Task Planning 157

Ron Petrick and Andre Gaschler

A Fast and Effective Online Algorithm for the Canadian Traveler Problem 166

Furkan Sahin, Vural Aksakalli and Ali Fuat Alkaya

Collision-free Path Planning for Remote Laser Welding . 172

Andras Kovacs

2

Planning Under Temporal Uncertainty Using Hindsight Optimization

Scott Kiesel1 and Wheeler Ruml1,2

1Department of Computer Science 2LAAS-CNRS
University of New Hampshire 7, avenue du Colonel Roche

Durham, NH 03824 USA 31077 Toulouse FRANCE

Abstract

A robot task planner must be able to tolerate uncertainty
in the durations of commanded actions and uncertainty
in the time of occurrence of exogenous events. Sophis-
ticated temporal reasoning techniques have been pro-
posed to deal with such issues, although few existing
planners support them. In this paper, we demonstrate
the capabilities of a much simpler technique, hindsight
optimization, in which uncertainty is handled by us-
ing sampling to generate deterministic planning prob-
lems that can be solved quickly. We find that sophisti-
cated temporal reasoning is not required to handle many
simple tasks. In comparison with a traditional tempo-
ral planner architecture, hindsight optimization is much
simpler to implement while staying closely integrated
with execution. It serves as a flexible baseline against
which more complex methods can be compared.

Introduction

In many real-world domains, such as robotics, a planning
agent does not have complete knowledge of the world state
or precise control over action outcomes of actors and pro-
cesses. Incomplete world knowledge, stochastic actions and
exogenous events are obstacles a planning agent must tackle
in many useful robotic applications.

Many planners make the assumption that an action, such
as pickup, will have a deterministic outcome and duration.
This is a fine assumption that makes planning much easier to
reason about. However when the resulting plan is executed,
actions can fail or take longer than anticipated.

Consider the domain of a robot office assistant. When
issuing the simple task of picking up a set of keys from
your desk, the planner will quite quickly emit the plan:
pickup(keys). When this plan is executed, the pickup action
might fail. If the action fails, then the execution certainly
will not result in a goal state. The ability to reason about
action outcome uncertainty becomes very important when a
plan will be executed.

Perhaps the goal state is slightly more interesting and the
agent should pickup your keys and give them to you when
you leave to go home. The other half of the assumption
about actions that many planners make is that their duration
is a known constant. However, depending on the starting
pose of the robot office assistant or the position of the keys,

this simple pickup can have a varying range of execution du-
rations. If it could take anywhere between 1 minute and 10
minutes for your keys to be picked up, you might appreciate
a planner that can take this range into consideration, instead
of causing you to be 10 minutes late going home. If a plan-
ner only assumes the best case for action durations, it is easy
to see that the agent could be late to a rendezvous. On the
other hand, if the planner only assumes the worst case for
action durations, the agent may spend time waiting at a ren-
dezvous point unnecessarily. It could instead be performing
more productive tasks with this time. The ability to han-
dle action duration uncertainty becomes very important if a
productive and punctual agent is desired.

An even more realistic situation for a robot office assistant
to face is the task of retrieving your keys from a set of pos-
sible locations. It is not uncommon to forget exactly where
you left your keys. Many planners however, require that the
exact location of the keys be known when planning begins.
If you need to manually search out your keys to simply set
the initial state for your planner, you might as well skip us-
ing your planner because you have already found your keys.
It is important for a planner to be able to handle location
uncertainty if the exact state of the world is not known.

As hinted at in the previous example scenarios, the agent
may not be the only entity in its world. Other agents may ex-
ist, such as yourself, and interaction with these other agents
is only natural. These other agents are not necessarily under
the control of the same planner as your robot office assis-
tant. The world can be affected and changed outside of the
control of the planner. Maybe you found your keys while
trying to fully annotate an initial state for your planner and
finding your keys is no longer a goal for the agent. Let’s con-
sider a new goal, before you leave the office you would like
your robot office assistant to give you a coffee for the trip
home. The coffee is not essential for you to get home, but
it makes the trip significantly more pleasant. As such, you
are willing to wait for 10 minutes before you depart without
your coffee. As a human, your timing is not always exact so
you might leave sometime between 5pm and 5:30pm. If you
would like to get your coffee frequently before you leave
the office it is important for a planner to be able to reason
about the temporal uncertainty associated with interactions
involving other agents and events exogenous to the planner.

Adding a single one of these three aspects of uncertainty

PlanRob 2014 Proceedings

1

to a domain renders many planners inapplicable. Adding
all three types of uncertainty further reduces the number of
applicable planners. Those algorithms previously proposed
to handle these uncertainties are complicated and can rely
complex data-structures such as a Simple Temporal Network
With Uncertainty (STNU) (Morris, Muscettola, and Vidal
2001). Many of them also require reasoning about all of the
unknown factors at once requiring complex world represen-
tations.

In this paper we introduce the Temporal-Uncertainty
Hindsight Optimization Planner (TU-HOP), a simple and
straightforward approach that extends previous work on
hindsight optimization. Instead of trying to manage the vari-
ous uncertainties directly, we employ a basic sampling strat-
egy and a deterministic planner. TU-HOP begins with a
set of beliefs about the initial world state. This belief state
manages certain and uncertain information about locations,
arrivals and departures of objects and agents and expected
action outcomes and durations. Given the current belief, a
set of deterministic world samples consistent with the be-
lief state are generated and then solved by the deterministic
planner. Using the resulting solutions, the next action is cho-
sen based on solutions maximizing overall expected reward.
This action is executed, the belief about the world is updated
based on the action’s result and the process starts again.

We show that TU-HOP is simple to understand and im-
plement. We also show that TU-HOP is very capable of
solving problems containing uncertain action outcomes and
durations, uncertain object and agent locations as well as
exogenous events. Its simplicity and capability make it a
flexible baseline against which future temporal uncertainty
planning research can be compared.

Previous Work

There is wealth of literature on deterministic domain de-
pendent and independent planners. We are able to leverage
this previous work, as others have, to incorporate well re-
searched deterministic planning ideas and concepts into a
larger framework (Yoon, Fern, and Givan 2007; Shani and
Brafman 2011).

Yoon, Fern, and Givan (2007) incorporate a classical do-
main independent planner called FF (Hoffmann and Nebel
2001) into their planning framework called FF-Replan to
solve problems with uncertain action effects. FF-Replan
uses FF to find a plan to carefully constructed deterministic
version of the problem. It then executes actions according to
the plan until the executed action has an unexpected effect or
the goal is achieved. If an unexpected effect is observed be-
fore achieving the goal, FF is called once again to construct
a new plan from the current state.

Temporal Planning and Execution

EUROPA (Barreiro et al. 2012) is class library and tool set
for building planners within a temporal planning paradigm.
It is a complicated architecture that handles time and re-
sources and constructs plans offline. It is able to handle
many temporal events using its modeling language NDDL.
It relies on many handcoded internal modules and does not

directly handle the uncertainties of object locations or action
outcomes.

IxTeT (Ghallab and Laruelle 1994; Laborie and Ghallab
1995) is an complex offline planning and scheduling sys-
tem that can handle time and resources by constructing par-
tial order plans and resolving threats to the achievement of
goals during planning. It strives to find a balance between
the planning (what to do) and the scheduling (in what order
to do it) addressing many domains in the intermediate spec-
trum between planning and scheduling. It however does not
take into account the uncertainties that become evident dur-
ing execution of plans.

Procedural Reasoning System (PRS) (Ingrand et al. 1996)
is a system for supervision and control of autonomous mo-
bile robots. This system is explicitly able to monitor plan
execution and provide feedback on action execution to an
underlying planning system. However, PRS still relies on
a high level planner to provide the high level actions for it
to execute. Integration of TU-HOP with PRS is a promising
avenue for future research.

IxTeT-EXEC (Lemai and Ingrand 2003) is complex sys-
tem that allows for execution control, plan repair and replan-
ning. IxTeT-EXEC is an extension of the IxTeT planner in-
tegrated with PRS (and several other layers). IxTeT-EXEC
is able to handle temporal constraints (inherited from IxTeT)
as well as action failures and unpredicted action outcomes as
reported by PRS. However, this is a very complicated sys-
tem that is non-trivial to implement and does not address the
aspects of temporal uncertainty of interest in this paper.

Simple Temporal Network with Uncertainty (STNU)
(Morris, Muscettola, and Vidal 2001) are an extension of
Simple Temporal Networks (STN) (Dechter, Meiri, and
Pearl 1991). In many cases of interest in planning, an STNU
would be used to determine dynamic controllability. If an
STNU is dynamically controllable, then we can be assured
that from the current state, the actions we plan to execute
will not cause us to violate any future temporal constraints
regardless of their outcome durations. Computing dynamic
controllability, is O(n3) in the general case, where n is the
number of edges in the network (Nilsson, Kvarnstrom, and
Doherty 2014).

Dearden et al. (2003) outline an approach for constructing
contingent plans incrementally that handle uncertainty in ac-
tion duration and resources. While this approach is very ca-
pable, it is signficantly more complicated to implement than
TU-HOP.

Prottle (Little, Aberdeen, and Thiébaux 2005) is a prob-
abilistic temporal planner that deals with uncertain action
outcomes, action durations and exogenous events. Prottle
handles action durations that are specified as a finite set of
possible values. The underlying planner framework relies
on the ability to enumerate all possible successors from a
given state. When action durations can take on any value in
a continuous range, it becomes infeasible to enumerate all
of the duration possibilities.

HYBPLAN (Mausam 2007) is a hybrid MDP solver built
from GPT (Bonet and Geffner 2001) and MBP (Bertoli et al.
2001). While HYBPLAN can handle concurrent and dura-
tive actions it does require the implementation of two other

PlanRob 2014 Proceedings

2

planners making it much more difficult to implement than
TU-HOP.

Hindsight Optimization

Hindsight Optimization was originally developed for
scheduling and networking problems (Chong, Givan, and
Chang 2000; Mercier and van Hentenryck 2007; Wu,
Chong, and Givan 2002) and has been used in a probabilis-
tic planning setting (Yoon et al. 2008; 2010). In these previ-
ous applications, sampling was used to resolve uncertainty
in the outcome of actions. Burns et al. (2012) used hindsight
optimization to solve a problem where exogenous goals are
arriving, which requires the agent to plan ahead and antici-
pate these arrival events. Most recently, hindsight optimiza-
tion was applied to open world planning where sampling
was used to resolve uncertainty in object existence and loca-
tion as well as uncertainty in navigation graph connectivity
(Kiesel et al. 2013).

Similar to most sampling techniques, the samples of gen-
erated possible worlds used in this paper are intentionally
not exhaustive. They are intended to provide useful relative
judgments on the expected value of actions. In hindsight
optimization, given a current world state, we are faced with
the choice between all applicable actions. The first step in
hindsight optimization is to generate possible world samples
that could be true according to the current world belief state.
Then in order to estimate the value of an action, we apply
that action in each of the sampled possible worlds, find de-
terministic plans from each of the resulting states, and av-
erage over the resulting reward yielded by each plan. The
action with the highest average plan reward over the sam-
pled worlds is chosen to be executed.

More formally, we define the value of being in a state s1 as
the maximum expected reward over plans that extend from
s1. That is, the maximum reward over all possible future
action sequences of the total reward over all possible future
states:

V ∗(s1) = max
A=〈a1,...,a|A|〉

E
〈s2,...,s|A|〉

|A|
∑

i=1

R(si, ai)

where R(s, a) represents the reward of performing action
a in state s. Given our expectations about the uncertain-
ties in the world, we would like to find the action sequence
A = 〈a1, ..., a|A|〉 that maximizes the expected sum of ac-
tion rewards. To compute V ∗ exactly, we would need to
compute the expectation for each of infinitely many plans.

In hindsight optimization, we approximate the value func-
tion by exchanging expectation and maximization, so that
we are taking the expected value of maximum-reward plans
instead of the maximum over expected-reward plans:

V̂ (s1) = E
〈s2,s3,...〉

 max
A=〈a1,...,a|A|〉

|A|
∑

i=1

R(si, ai)

The expectation in this approximation of V ∗(s) can be com-
puted using sampling and fixed values for each of the un-
certainties in each maximization. As in other applications

TU-HOP(W,N,H)
1. while true
2. for i from 1 to N do
3. wi ← sample world(W)
4. foreach action a
5. s′ ← a(s) /* sampled outcome of a(s) */
6. r ← (

∑

i=1
solve(s′, wi, H))/N

7. Q(s, a)← R(s, a) + r
8. abest ← argmaxa Q(s, a)
9. res = execute(abest)
10. update(W,abest, res)

Figure 1: The TU-HOP planner.

of hindsight optimization, the stochastic elements have been
reduced to known values by sampling. For each possible
value that an uncertainty could take on in the expectation,
the problem is to maximize reward given a known world,
i.e., standard, deterministic, reward-maximizing planning.
As the underlying deterministic problem becomes more dif-
ficult to solve with a standard deterministic planner, TU-
HOP can employ a limited horizon planner. A limited hori-
zon planner uses a time horizon which is simply a temporal
value by which search depth is bounded. Setting this bound
to infinity results an informed, full solution to the maximiza-
tion problem, decreasing the horizon results in greedier be-
havior, only considering more immediate reward.

We define the Q-value to be the cumulative expected re-
ward of taking an action a1 in state s1:

Q(s1, a1) = R(s1, a1)

+ E
〈s2,s3,...〉

 max
A=〈a2,...,a|A|+1〉

|A|+1
∑

i=2

R(si, ai)

From this, we estimate the best action choice in s as
maxa Q(s, a). Using this technique, we are said to be per-
forming optimization with the benefit of ‘hindsight’ knowl-
edge about how future uncertainty will be resolved. It is
important to point out that this action choice strategy is an
unsound reasoning technique (Yoon et al. 2010).

After the best action is executed, hindsight optimization
updates its current belief state based on the outcome of its
action and how it has affected the world. This newly updated
belief state will be used in the next planning step.

Approach

In this paper, we extend the line of work on hindsight op-
timization to handle the three types of uncertainties previ-
ously discussed; uncertain action outcomes and durations,
uncertain object and agent locations and exogenous events.
TU-HOP is an online planner that interleaves search and ex-
ecution, emitting single actions for the controllable agents to
execute at a time.

The pseudo-code in figure 1 provides a high level sum-
mary of the TU-HOP planner. The planner first receives

PlanRob 2014 Proceedings

3

three parameters, the first is the current belief about the
world state, the second is the number of samples to be used
and the third is the horizon with which to bound the deter-
ministic solver. First, we generate a set of N possible worlds
that are consistent with the planner’s current belief about the
world (lines 2–3). Each of these sampled worlds are deter-
mistic versions of the current belief where all objects have
known locations, actions have known outcomes and events
have known start and end times. Next, for each action a
in the domain, we consider the resulting state s′ = a(s)
(line 5). Then, each possible world wi is initialized with
the state s′, generating a fully-known deterministic planning
problem. Solving this problem provides an estimate of the
reward from s′. The mean reward across the set of sam-
ples (line 6) along with the reward of the action R(s, a) is
used as the Q-value for each action a in the original state
s (line 7). We then select the action with the maximum Q-
value (line 8), this action is then executed (line 9). The result
of this action, success, failure or an inaccurate belief is re-
turned and the current belief of the world state is updated
with this information (line 10). With this new belief about
the state of the world, the planner returns to the beginning of
the loop and executes another iteration.

Robot Office Assistant Domain
In this paper we focus on a specific domain where a set of
controllable and non-controllable agents are able to navigate
around a topological map containing objects. Controllable
agents are able to pickup, putdown, and give objects. The
give action is the exchange of one object in an agent’s pos-
session to another agent. All of the information about the
domain and belief of the world state will now be discussed.

The first major entity in the world belief is a representa-
tion of the topological navigation graph. Each node in the
graph is connected to at least one other node in the graph
via an edge. Each edge has a traversal success rate, a min-
imum and maximum successful traversal time and a mini-
mum and maximum failure time. The success rate repre-
sents the probability that traversing this edge will succeed.
The minimum and maximum successful traversal times pro-
vide an expected interval of how long it will take to traverse
the edge if the traversal is successful. Similarly, the min-
imum and maximum failure interval describes how long it
will take for the attempted traversal to report failure.

The objects present in the world each have two associ-
ated temporal intervals and a set of possible node locations.
The first interval is the minimum and maximum expected
arrival time for the object. This can be used to represent an
object being dropped off by an agent outside the control of
the planner. The second interval is the minimum and maxi-
mum duration the object is expected to remain usable in the
world. This can be used to impose a deadline on when an
object may need to arrive at its goal destination. A single
node location represents complete certainty of the object’s
starting location. A set whose size is greater than one repre-
sents uncertainty of the object’s starting location.

Agents are very similar to objects with two major differ-
ences. The first is that an agent can be marked as outside of
the control of the planner. This is useful if an agent is only

”stopping by” to receive an object from another agent that
is under the planner’s control. The second difference is that
each agent also has a number of grippers that are available
to hold objects.

Goals can be one of three types different types. The first
is a simple goto goal which tells the planner which agent
needs to be moved to which location. The second type of
goal is move, which tells the planner which object needs to
be moved to which location. The last type of goal is give
and tells the planner which object should be given to which
agent. Each specified goal also has an associated reward that
will be received for achieving that goal. This allows for goal
preferences in planning problem instances. It should also be
noted that not all agents and objects need be involved with a
goal.

Lastly, there are four actions in the domain; pickup, put-
down, give and no-op. Please keep in mind that the implicit
move action is defined on an edge by edge basis in the graph.
The motivation behind this is that some edges may be more
difficult or simply take more time to traverse. Each action
has a success rate, a minimum and maximum successful ex-
ecution duration and a minimum and maximum failure du-
ration with the exception of the no-op action. The success
rate represents the probability that executing an action will
succeed. The minimum and maximum successful execution
times provide an expected interval of how long it will take
to complete the action if the execution is successful. Simi-
larly, the minimum and maximum failure interval describes
how long it will take for the attempted execution to report
failure. The no-op action is always successful and has a de-
terministic execution duration equal to the planned duration.
The duration for each no-op is determined during planning.
It is set to be the time from the current state, until the next
occurring event. An event is simply the arrival or departure
of an agent or object, or another agent completing its current
action. Setting the duration in such a manner can render a
deterministic planner incomplete in certain domains, but in
this simple Robot Office Assistant Domain completeness is
maintained when planning in the deterministic world sam-
ples.

A Closer Look & Implementation Details
All of the domain instance information is managed and up-
dated in the belief state of the TU-HOP planner throughout
its execution. The planner is only able to observe and update
facts in its belief state if an agent under its control is able to
observe information about that fact. Agents are only able
to observe facts about events, objects and other agents colo-
cated with their current location. The planner observes the
world through its controlled agents’ actions. For example, if
there is uncertainty about an object’s location and an agent
tries to pick up an object in an incorrect location, the agent
is able to observe that the action failed because the object is
not present in this location.

Before emitting any action to be executed, TU-HOP en-
ters its first planning iteration. It begins by generating a set
of possible deterministic world samples consistent with the
current belief state. This means that in each sampled world
any and all uncertainty is removed. This is achieved for the

PlanRob 2014 Proceedings

4

a b

c d

a

s1 s3

1 1

1

2

s2 s4

move(b) move(c)

su
cc
e
ss

fa
ilu
re

s
u
c
c
e
s
s fa

ilu
re

a ab c

Figure 2: A simple example of the first step of hindsight
optimization.

location uncertainty by picking, at random, one of the lo-
cations in each possible location list for the agents and ob-
jects. The action outcome uncertainty is resolved by using
the success rate, success interval and failure interval for each
action and constructing a deterministic mapping of times
to outcomes and durations. This is accomplished by lazily
querying the action in the deterministic world sample when
needed for its outcome and duration given the current time.
If the time has no mapping, the outcome is randomly com-
puted given the success and failure values, then stored in a
lookup table. If the time has a mapping already, that map-
ping is returned. In our implementation these time values are
rounded to a hundredth of a second before doing the lookup.
The arrival and departure times of any object or agent are
also resolved by taking a random sample from the arrival in-
terval and the duration interval to construct an exact arrival
and departure time.

Following the hindsight optimization framework, in each
world sample, TU-HOP examines each available action from
the current state. In the most simple goto (navigation) case
with no objects, TU-HOP will evaluate what will result after
moving to each node adjacent to its current node. In fig-
ure 2 the agent is currently in location (a) and is consider-
ing moving to location (b) or (c). Each move action can
either succeed or fail as depicted. Each of these outcomes,
{s1, s2, s3, s4}, is generated and then reward is maximized
individually in each outcome. In our implementation we use
a very simple temporal horizon bounded breadth first search
to evaluate reward in each outcome. The reward for execu-
tion of the action in a single deterministic sample is then a
weighted mean of the reward achieved in the success and
failure case weighted by the likelihood of the action suc-
ceeding and the likelihood of the action failing. For exam-
ple, if the achievable reward under s1 is 1, the achievable
reward under s2 is 0.5, and the success rate for that action is
0.9 (0.1 failure rate), then the reward achievable for execut-
ing move(b) is 0.95 by TU-HOP’s reckoning.

This procedure is executed for each generated determinis-
tic sample. Then the reward is averaged over all the samples
yielding an estimate of achievable reward. The action with

the highest expected reward across all samples is then se-
lected for execution.

The action selected is then executed and the result of the
action is used to update the belief state of the planner. This
would include increasing the current time, removing a loca-
tion from an object’s possible location list, decreasing the
size of an agent’s arrival interval, and so on.

Experimental Results

We now evaluate TU-HOP by stressing each of the three
types of uncertainties (location, action outcome and tempo-
ral uncertainty). All experiments were planned and executed
in simulation on a Lenovo W520 with an Intel Core i7 and
8GB of RAM. For each instance problem considered, a set
of 25 seeds were used when generating a grounded simu-
lation world as well during planning in each world sample
constructed from the current belief. All plots presented show
a line representing the mean y-value across the instances
and vertical lines representing the 95% confidence interval
at that point on the line.

Location Uncertainty

The first set of experiments begin by issuing the goal of mov-
ing an object from its start location to a goal location. The
easiest instance starts with the object’s location known ex-
actly. We increase the difficulty of the instances by adding
uncertainty about the objects location to possibly two loca-
tions, then possibly three locations and so on. As the uncer-
tainty about the object’s start location increases, the agent
should be forced to search out the true location. The results
from this experiment using planner configurations of a hori-
zon of 90 seconds and 1, 5 and 10 samples are shown in
figure 3.

In all instances, from where the object is in a known lo-
cation and up to 5 possible locations, the planner is able to
find the object and deliver it to its destination. In figure 3
(b) and (c) the lines representing 5 and 10 samples show
that these configurations required fewer actions to achieve
the goal than the single sample configuration and also have
an overall shorter goal achievement time. Since the plan-
ner was able to achieve the goal in all instances, we can see
that by increasing the number of samples taken, the agent
will visit the possible locations in a more reasonable order.
First visiting the closest possible location, then moving to
the next closest, and the next, until the object’s true location
is found. Figure 3 (a) shows the time required by the planner
at each iteration. Even on the hardest instance with 10 sam-
ples the planner takes much less than a second on average
before emitting an action for execution.

We also ran a small experiment to show the underlying
planner’s ability to scale with the number of object reloca-
tion goals. We start with a single goal of moving one object
to a location and slowly increase the number of goals and
objects in the world. The results from this experiment using
planner configurations of a horizon of 90 seconds and 1, 5
and 10 samples are shown in figure 4.

In all instances the planner was able to move all the ob-
jects to their goal locations. We can see that as expected

PlanRob 2014 Proceedings

5

Instance Difficulty
1 2 3 4 5 6

T
im

e
(s

ec
on

ds
)

0

0.0008

0.0016

0.0024
TU-HOP h=90 s=1
TU-HOP h=90 s=5
TU-HOP h=90 s=10

Instance Difficulty
1 2 3 4 5 6

N
um

be
r

O
f

E
xe

cu
te

d
A

ct
io

ns
0

30

60

90

TU-HOP h=90 s=1
TU-HOP h=90 s=5
TU-HOP h=90 s=10

Instance Difficulty
1 2 3 4 5 6

G
oa

l A
ch

ie
ve

m
en

t T
im

e

0

600

1200

1800

TU-HOP h=90 s=1
TU-HOP h=90 s=5
TU-HOP h=90 s=10

(a) (b) (c)

Figure 3: Increasing the amount of uncertainty in an object’s location in the world between 1 and 5 locations using a horizon
of 90 seconds and 1, 5 and 10 deterministic samples.

Instance Difficulty
1 2 3 4 5

T
im

e
(s

ec
on

ds
)

0

0.1

0.2

0.3

0.4

0.5

TU-HOP h=90 s=1
TU-HOP h=90 s=5
TU-HOP h=90 s=10

Instance Difficulty
1 2 3 4 5

N
um

be
r

O
f

E
xe

cu
te

d
A

ct
io

ns

0

10

20

30

40 TU-HOP h=90 s=1
TU-HOP h=90 s=5
TU-HOP h=90 s=10

Instance Difficulty
1 2 3 4 5

G
oa

l A
ch

ie
ve

m
en

t T
im

e

0

300

600

900 TU-HOP h=90 s=1
TU-HOP h=90 s=5
TU-HOP h=90 s=10

(a) (b) (c)

Figure 4: Scaling the number of objects in the world between 1 and 5 using a horizon of 90 seconds and 1, 5 and 10 deterministic
samples.

PlanRob 2014 Proceedings

6

in figure 4 (a), using more samples does increase the over-
all planning time at each planning step. However, even in
the hardest considered instance with 5 objects using 10 sam-
ples the planner only took on average 0.6 seconds before
returning the next action. The scaling could be significantly
improved by using a heuristic or a more informed search
technique than breadth first search. In figure 4 (b) and (c)
a positive trend is shown where using more samples results
in fewer actions in the final execution and also earlier goal
achievement times.

Action Outcome Uncertainty

In the second set of experiments we issue a similar goal of
moving an object from its start location to a goal location.
However in these instances the object’s location is known
exactly and the topological edge traversals required com-
plete achieve the goal will have increasing traversal failure
rates. We start with a failure rate of 0% and increase it all
the way to 50%. By increasing the edge traversal failure
rates the agent will be forced to re-plan and accommodate
for the failure. The results from this experiment using plan-
ner configurations of a horizon of 90 seconds and 1, 5 and
10 samples are shown in figure 5.

The planner was able to achieve all goals in all instances
during this experiment. The x-axis in figure 5 is numbered
by instance difficulty where a difficulty of 1 represents fully
reliable edges. This means the outcome of traversing them
has 100% probability of success. As the number increases,
the success probability decreases to {90%, 80%, 70%, 60%,
50%}. In figure 5 (a) we can see that the planning times
for the 1, 5 and 10 sample cases are all quite similar un-
til the edges become unreliable (50% success rate). As the
failure rate increases, the plan lengths will increase and plan-
ning with more samples magnifies this in its overall planning
time. In figure 5 (b) and (c) we see a trend similar to the last
experiment. This is most likely caused by the same issue.
The noise between sampled worlds is minimized by gener-
ating more samples.

A simple third set of experiments extending the second
set were also performed. The instance is created with a
set of inexpensive topological edge traversals between the
agent and the object’s start locations with high action fail-
ure rates. A secondary set of expensive edge traversals with
very low failure rates are also created. As the inexpensive
route becomes more unreliable throughout the experiments,
the agent should choose to take the more reliable expensive
route. The results from this experiment are shown in fig-
ure 6.

Again, in this experiment the planner was able to achieve
all goals in all instances during his experiment. Figure 6 (a)
shows a predictable trend where increasing the number of
samples causes the planning step between action executions
to increase. However, planning times with 10 samples on
the most difficult instance are still well below 0.1 seconds
on average. Figure 6 (b) and (c) show the realization of our
prediction. When using only a single sample the number
of actions in the final execution is lower for the first three
instances, but the overall goal achievement time for those
instances is higher than when using 5 and 10 samples. Once

the reliability of the cheap edges decreases significantly in
the last three instances, the single sample case starts to have
longer execution lengths and continues to have later goal
achievement times than the 5 and 10 sample cases.

Temporal Uncertainty

In this fourth set of experiments we involve a second agent
outside of the control of the planner. The goal issued in this
set of experiments is to give an object to this second agent
and also relocate a second object. Adding a second object
goal forces the planner to choose an ordering for the two
goals which becomes very important in this experiment. The
second agent does not begin at any location but is scheduled
to arrive at one during a predefined interval and will only re-
main for a duration between some minimum and maximum
value. We begin by starting with a small arrival interval and
a long duration for the second agent. This makes it very easy
for the planner to achieve both goals. We increase the diffi-
cultly of these instances by making the arrival interval larger
(more uncertain) and decreasing the duration the agent re-
mains before departing. By increasing the uncertainty, it
becomes much more important for the planner to consider
the possible arrival and departure times of the second agent
if it is to catch it before it departs. The results from this
experiment using planner configurations of a horizon of 90
seconds and 1, 5 and 10 samples are shown in figure 7.

In this set of experiments using TU-HOP with 1 and 5
samples was not able to achieve all goals in all instances.
When the planner failed to achieve all goals, no point is
included for the configuration in Figure 7 (a), (b) or (c).
Panel (a) shows that planning times between action execu-
tions are still less than 1 second for almost all instance dif-
ficulties which is certainly acceptable when the action exe-
cutions times for a robot can be in the range of full seconds
to a minute for some actions. In figure 7 (d) the decreas-
ing reliability of both goals being achieved is illustrated as
the instance becomes more difficult. At first with the larger
delivery window, the 1, 5 and 10 sample cases are able to
achieve both goals reliably. However when the window is re-
duced the planner clearly benefits from more samples as the
10 sample case is the only configuraiton able to achieve all
goals in all instances. Figure 7 (b) shows that as the delivery
window constraints become tighter the agent will use more
actions to attempt to give the object to the second agent. In
panel (a) and (c) we can see the impact of the hardest in-
stance on the overall planning time, and therefore the goal
achievement time.

Discussion

The main two attractive features of hindsight optimization
are its simplicity and generality. There are no obvious im-
pediments to combining the current work with previous ef-
forts that use hindsight optimization to address other forms
of uncertainty such as stochastic action effects, arrival of ad-
ditional goals, partial observability, or open worlds (Yoon et
al. 2008; 2010; Burns et al. 2012; Kiesel et al. 2013).

Compared to a planner using an STNU, TU-HOP’s han-
dling of intervals is imprecise, thus the combinations of cir-

PlanRob 2014 Proceedings

7

Instance Difficulty
1 2 3 4 5 6

T
im

e
(s

ec
on

ds
)

0

0.1

0.2

0.3

TU-HOP h=90 s=1
TU-HOP h=90 s=5
TU-HOP h=90 s=10

Instance Difficulty
1 2 3 4 5 6

N
um

be
r

O
f

E
xe

cu
te

d
A

ct
io

ns
0

8

16

24
TU-HOP h=90 s=1
TU-HOP h=90 s=5
TU-HOP h=90 s=10

Instance Difficulty
1 2 3 4 5 6

G
oa

l A
ch

ie
ve

m
en

t T
im

e

0

8

16

24

TU-HOP h=90 s=1
TU-HOP h=90 s=5
TU-HOP h=90 s=10

(a) (b) (c)

Figure 5: Decreasing the reliability of the only edges available to achieve an issued goal using a horizon of 90 seconds and 1, 5
and 10 deterministic samples.

Instance Difficulty
1 2 3 4 5 6

T
im

e
(s

ec
on

ds
)

0

0.004

0.008

0.012

TU-HOP h=90 s=1
TU-HOP h=90 s=5
TU-HOP h=90 s=10

Instance Difficulty
1 2 3 4 5 6

N
um

be
r

O
f

E
xe

cu
te

d
A

ct
io

ns

0

3

6

9

TU-HOP h=90 s=1
TU-HOP h=90 s=5

TU-HOP h=90 s=10

Instance Difficulty
1 2 3 4 5 6

G
oa

l A
ch

ie
ve

m
en

t T
im

e

0

3

6

9

TU-HOP h=90 s=1
TU-HOP h=90 s=5

TU-HOP h=90 s=10

(a) (b) (c)

Figure 6: Decreasing the reliability of low cost edges forcing more reliable expensive edges to be utilized using a horizon of 90
seconds and 1, 5 and 10 deterministic samples.

PlanRob 2014 Proceedings

8

Instance Difficulty
1 2 3 4 5

T
im

e
(s

ec
on

ds
)

0

1

2

3

4

5

TU-HOP h=90 s=1
TU-HOP h=90 s=5
TU-HOP h=90 s=10

Instance Difficulty
1 2 3 4 5

N
um

be
r

O
f

E
xe

cu
te

d
A

ct
io

ns

0

6

12

18

TU-HOP h=90 s=1
TU-HOP h=90 s=5
TU-HOP h=90 s=10

Instance Difficulty
1 2 3 4 5

G
oa

l A
ch

ie
ve

m
en

t T
im

e

0

60

120

180

TU-HOP h=90 s=1
TU-HOP h=90 s=5
TU-HOP h=90 s=10

(a) (b) (c)

Instance Difficulty
1 2 3 4 5

M
ea

n
Pe

rc
en

ta
ge

 o
f

U
na

ch
ie

ve
d

G
oa

ls

0

0.3

0.6

0.9
TU-HOP h=90 s=1
TU-HOP h=90 s=5
TU-HOP h=90 s=10

(d)

Figure 7: Increasing the uncertainty about when an agent will arrive while also decreasing the duration the agent will wait after
arriving using a horizon of 90 seconds and 1, 5 and 10 deterministic samples.

PlanRob 2014 Proceedings

9

cumstances that are anticipated is incomplete. This limi-
tation gets more serious as the number of combinations of
stochastic events that need to be considered increases. How-
ever, in many applications, it is not necessary to reason about
such long chains of events in order to act successfully.

TU-HOP demonstrates one way of very tightly coupling
planning and acting, namely to ensure reactivity by planning
after every state transition and never explicitly committing to
actions beyond the one that is currently executing.

Unlike many other task planners, TU-HOP does explicitly
consider action failure when selecting actions. In this ex-
amination, a simple action model is used where actions only
have two outcomes, success or failure, with varying execu-
tion durations. If actions were to have a more complicated,
larger set of possible outcomes, more samples might be re-
quired to get a better approximation of how the actions will
behave.

Action durations in this work were outside of the con-
trol of the TU-HOP planner, with the exception of the noop
action. In its current state, the planner lacks the ability to
decide on an exact duration for other actions.

TU-HOP does not output a complete plan that can be
shared with other collaborating agents. However, it should
be possible to merge together the actions selected in each
rollout to form a branching contingent plan that could be
shared. Such sharing could then be represented in the plan-
ner by increasing the cost of actions that do not correspond
to those in the shared plan. This directly models the coordi-
nation costs that the group would sustain if the plan were to
be changed.

Hindsight optimization is often used with a limited hori-
zon planner. When this is done, it places some responsibility
on the heuristic evaluation function used at the leaf nodes of
the search to correctly identify promising states. An alterna-
tive is to use hierarchical planning, in which a complete plan
exists at some level of abstraction, and detailed planning is
then done on those parts that are ready for execution. Such
an approach has been proposed by Kaelbling and Lozano-
Pérez (2011).

Hindsight optimization is an unsound reasoning tech-
nique. UCT is a popular sampling-based technique that is
sound, in the sense that it is guaranteed to select the opti-
mal action given an infinite number of samples. Eyerich,
Keller, and Helmert (2010) compare hindsight optimization
with UCT on the Canadian Traveler’s Problem. While they
find that UCT does indeed converge better in the limit of
many samples, hindsight optimization performed well when
the methods were given only a moderate number of samples.

Conclusion
Uncertainty is an unavoidable piece of real-world robotic
applications. We have shown how hindsight optimization
yields a simple and general approach to planning with lo-
cation, action outcome and temporal uncertainty. While the
technique is approximate, it is easy to implement and our re-
sults suggest that it can be successful in practice. Its simplic-
ity and capability make it a flexible baseline against which
future temporal uncertainty planning research can be com-
pared.

Acknowledgments

This work was supported in part by NSF (grant 0812141)
and the DARPA CSSG program (grant D11AP00242).

References

Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; Smith, T.;
et al. 2012. Europa: A platform for ai planning, scheduling,
constraint programming, and optimization. Proceedings of
the 4th International Competition on Knowledge Engineer-
ing for Planning and Scheduling ICKEPS.

Bertoli, P.; Cimatti, A.; Pistore, M.; Roveri, M.; and
Traverso, P. 2001. Mbp: a model based planner. In Proc. of
the IJCAI01 Workshop on Planning under Uncertainty and
Incomplete Information.

Bonet, B., and Geffner, H. 2001. Gpt: a tool for planning
with uncertainty and partial information. In Proc. IJCAI-01
Workshop on Planning with Uncertainty and Partial Infor-
mation.

Burns, E.; Benton, J.; Ruml, W.; Yoon, S.; and Do, M.
2012. Anticipatory on-line planning. In Proceedings of
the Twenty-second International Conference on Automated
Planning and Scheduling (ICAPS-12).

Chong, E.; Givan, R.; and Chang, H. 2000. A frame-
work for simulation-based network control via hindsight op-
timization. In IEEE Conference on Decision and Control.

Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.; and
Washington, R. 2003. Incremental contingency planning. In
Proceedings of the ICAPS-03 Planning under Uncertainty
and Incomplete Information.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial intelligence 49(1):61–95.

Eyerich, P.; Keller, T.; and Helmert, M. 2010. High-quality
policies for the canadian travelers problem. In Third Annual
Symposium on Combinatorial Search SoCS-10.

Ghallab, M., and Laruelle, H. 1994. Representation and
control in ixtet, a temporal planner. In Proceedings of the
Second International Conference on Artificial Intelligence
Planning Systems AIPS, 61–67.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.

Ingrand, F.; Chatila, R.; Alami, R.; and Robert, F. 1996.
Prs: A high level supervision and control language for au-
tonomous mobile robots. In IEEE Conference on Robotics
and Automation ICRA.

Kaelbling, L. P., and Lozano-Pérez, T. 2011. Hierarchical
planning in the now. In IEEE Conference on Robotics and
Automation ICRA.

Kiesel, S.; Burns, E.; Ruml, W.; Benton, J.; and Kreimen-
dahl, F. 2013. Open world planning for robots via hindsight
optimization. In Proceedings of the ICAPS-13 Workshop on
Planning for Robotics (PlanRob-13).

Laborie, P., and Ghallab, M. 1995. Ixtet: an integrated ap-
proach for plan generation and scheduling. In INRIA/IEEE

PlanRob 2014 Proceedings

10

Symposium on Emerging Technologies and Factory Automa-
tion ETFA, volume 1, 485–495 vol.1.

Lemai, S., and Ingrand, F. 2003. Interleaving temporal plan-
ning and execution: Ixtet-exec. In Proceedings of the ICAPS
Workshop on Plan Execution.

Little, I.; Aberdeen, D.; and Thiébaux, S. 2005. Prottle:
A probabilistic temporal planner. In Proceedings of Confer-
ence on Artificial Intelligence (AAAI.

Mausam. 2007. Stochastic Planning with Concurrent, Dura-
tive Actions. Ph.D. Dissertation, University of Washington.

Mercier, L., and van Hentenryck, P. 2007. Performance
analysis of online anticipatory algorithms for large multi-
stage stochastic programs. In Proceedings of IJCAI.

Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In Proceedings
of the 17th International Joint Conference on Artificial In-
telligence - Volume 1, IJCAI’01, 494–499.

Nilsson, M.; Kvarnstrom, J.; and Doherty, P. 2014. Efficien-
tidc: A faster incremental dynamic controllability algorithm.
In Proceedings of the Twenty-Fourth International Confer-
ence on Automated Planning and Scheduling (ICAPS-14).

Shani, G., and Brafman, R. 2011. Replanning in domains
with partial information and sensing actions. In Proceed-
ings of the Twenty-Second international joint conference on
Artificial Intelligence-Volume Volume Three, 2021–2026.

Wu, G.; Chong, E.; and Givan, R. 2002. Burst-level con-
gestion control using hindsight optimization. IEEE Trans-
actions on Automatic Control.

Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight. In
Proceedings of Conference on Artificial Intelligence (AAAI).

Yoon, S.; Ruml, W.; Benton, J.; and Do, M. B. 2010. Im-
proving determinization in hindsight for on-line probabilis-
tic planning. In Proceedings of the Tenth International Con-
ference on Automated Planning and Scheduling (ICAPS-10).

Yoon, S. W.; Fern, A.; and Givan, R. 2007. Ff-replan: A
baseline for probabilistic planning. In Proceedings of the
Seventeenth International Conference on Automated Plan-
ning and Scheduling (ICAPS-07).

PlanRob 2014 Proceedings

11

A Flexible ANML Actor and Planner in Robotics

Filip Dvor̆ák†, Arthur Bit-Monnot∗, Félix Ingrand∗, Malik Ghallab∗
†Charles University, Prague

∗LAAS/CNRS, University of Toulouse

Abstract

Planning in robotics must be considered jointly with Act-
ing. Planning is an open loop activity which produces a plan,
based on action models, the current state of the world and the
desired goal state. Acting, on the other hand, is a closed loop
on the environment activity (to execute command and per-
ceive the state of the world). These two deliberative activities
must be integrated and need to handle time, concurrency, syn-
chronization, deadlines and resources. The timeline represen-
tation for temporal plan space planning and acting is very ex-
pressive; it is also quite flexible for integrating planning and
acting. The ANML language is a recent proposal motivated
by combining the expressiveness of the timeline representa-
tion with the decomposition of HTN methods. This paper re-
ports on FAPE (Flexible Acting and Planning Environment),
to our knowledge the first system integrating an ANML plan-
ner and actor. Our current focus is not efficient temporal plan-
ning per se, but the tight integration of acting and planning,
which is addressed by: (i) extending HTN methods with re-
finements, given by PRS procedures, of planned action prim-
itives into low-level commands, (ii) interleaving the planning
process with acting, the former implements plan repair, ex-
tension and replanning, while the latter follows PRS skills re-
finements, and (iii) executing commands with a dispatching
mechanism that synchronizes observed time points of action
effects and events with planned time.
FAPE has been integrated to a PR2 robot and experimented in
a home-like environment. The paper presents how planning
is performed and integrated with acting, and describes briefly
the robotics experiments and reports on initial performances.

Introduction
Planning is a form of reasoning, through prediction and
search, about future changes that can be produced in a sys-
tem. These changes occur naturally over time. Most contri-
butions to planning abstract away time as state transitions.1
At an abstract level, this is a legitimate approximation as it
simplifies the reasoning. Explicit time is however required

This work has been conducted within the EU SAPHARI
project (http://www.saphari.eu/) funded by the E.C. Division FP7-
IST under Contract ICT-287513.

1This is also the case for many AI approaches about reasoning
on change, e.g., in the LTL, CTL and similar logics, T stands for
time, but time is abstracted out.

in many applications, e.g., for dealing with synchronization
with events and others actors, for managing deadlines and
time-bounded resources, and for handling concurrency.

Temporal planning comes in two main flavors: extended
state space representations and timeline representations. The
former is based on states (i.e., snapshots of the entire system)
and temporally qualified durations between states. The lat-
ter relies on possible evolutions of individual state variables
over time (i.e., partial local views of state trajectories), to-
gether with temporal constraints between elements of time-
lines.

Most recent works on temporal planning favor the
extended state space representation on the basis of
PDDL2.1 (Fox and Long, 2002) with the so-called durative
actions. This drive is explained by the wealth of search tech-
niques and domain independent heuristics that have been
developed for state space planning, resulting in significant
performance improvements. But of a few exceptions, these
planners have however a limited handling of concurrency.
The timeline alternative representation permits naturally to
refer to instants beyond starting and ending points of actions
and to handle various kind of concurrency requirements. It is
also more flexible in the integration of planning and acting.
Timeline planners implement plan-space search algorithms
more often than state-space techniques. These algorithms
have not scaled up as well as state space planners or HTN
planners.

Hierarchical task networks is indeed a planning represen-
tation that accounts for numerous deployed applications of
significant size. HTN planners benefit from domain spe-
cific knowledge expressed as task decomposition methods.
In many domains, methods are very naturally formulated.
Temporal planning with HTN has not developed as well as
with timelines or state space representations.

The Action Notation Modeling Language
(ANML) (Smith et al., 2008) is motivated mainly by
blending the expressive timeline representation with the
decomposition of HTN methods. This paper reports on
FAPE, and its planner implementing the ANML language.
Our motivation is not efficient planning per se, but the
tight integration of acting and temporal planning with task
decomposition embedded on a robotic platform. This is
addressed by:

• extending planning decomposition methods (Planning)

PlanRob 2014 Proceedings

12

with refinements of planned action primitives into low-
level commands (Acting), these refinements are currently
brought by PRS decomposition procedures,

• interleaving the planning process with acting, the former
implements plan repair, extension and replanning, while
the latter follows PRS refinements,

• executing commands with a dispatching mechanism that
synchronizes observed time points of action effects and
events with planned time.

The FAPE system currently includes modular compo-
nents to perform Planning and Acting (as introduced in (In-
grand and Ghallab, 2013)).

FAPE includes a first ANML planner that supports a
unique combination of features of least-commitment plan-
space planning, explicit time maintained by a sparse sim-
ple temporal network and hierarchical task decomposition.
There are several motivations for our design choices:

• plan-space planning with least-commitment naturally
supports plan repair, which is essential when acting is a
concern,

• simple temporal network supports efficient consistency
checking and having a sparse network (without saving
constraint propagations) allows us to update temporal re-
lations along with the feedback from execution, and

• hierarchical task decomposition allows for highly scalable
domain adaptable planning.

FAPE has been integrated to a PR2 robot and experi-
mented with in a real home-like environment. This is a work
in progress. A formalization of the planning–acting integra-
tion and a full characterization of the performance of the
system are beyond the scope of this paper. Its contribution is
to present FAPE at the planning, acting, and execution lev-
els, to describe the robotics experiments and report on initial
performances. The outline of the rest of the paper follows
these steps, preceded by a brief section on the state of the art
and an introduction to ANML.

Related work
Numerous planners implements the PDDL2.1 extended state
space representation with durative actions, e.g., RPG, LPG,
LAMA, TGP, VHPOP and Crickey. Among these planners,
COLIN (Coles et al., 2012) is a notable exception that can
manage concurrency and even linear continuous change.

The timeline approach goes back to the IxTeT plan-
ner (Ghallab and Laruelle, 1994) that reasons on chroni-
cles. A chronicle defines time-points, temporal constraints
between its instants, changes in the values of state vari-
ables, persistence of these values over time, and atem-
poral constraints over state variables parameters and val-
ues. Other planners such as RAX-PS (Jónsson et al.,
2000), ASPEN (Rabideau et al., 1999), Europa/IDEA/T-
ReX (Frank and Jónsson, 2003; Muscettola et al., 2002;
Rajan et al., 2009) and APSI (Fratini et al., 2011), rely on
a similar temporal representation with timelines and tokens
representing change and persistence of the values of state
variables over time. Some of these timelines are directly

connected to actions and percepts (to integrate perception).
These systems express temporal constraints in planning op-
erators using the interval algebra. The organization of the
planner along agents (IDEA) or reactors (T-ReX) offers a
hierarchical representation of the domain. Still the action
models representation with compatibilities (temporal con-
straints over state variables), which tends to spread out the
hierarchical decomposition over more than one compatibil-
ities/reactors, makes them tedious to write and difficult to
debug.

The HTN approach is implemented into several plan-
ners, e.g., Sipe (Wilkins, 1988), SHOP2 (Nau et al., 2003),
SIADEX (Castillo et al., 2006). The latter integrates time to
HTN planning without handling concurrency.

ANML (Smith et al., 2008) extends the languages used
in Europa and ASPEN with recent constructs from PDDL
together with HTN task decomposition methods. We are
aware of ongoing developments on the basis of this lan-
guage2, but to our knowledge, FAPE is the first system in-
cluding an ANML planner supporting task decomposition
and temporal planning.

Several systems integrates planning and acting, in partic-
ular with procedure-based approaches to refine actions into
lower level commands with systems such as RAP (Firby,
1987) or PRS (Ingrand et al., 1996). Among these sys-
tems, Cypress (Wilkins and Myers, 1995) (Sipe & PRS),
TCA (Simmons, 1992) (Task Description Language & As-
pen) and XFRM (Beetz and McDermott, 1994) are examples
relevant for our approach. IxTeT-Exec (Lemai-Chenevier
and Ingrand, 2004) and “Configuration Planner” (Di Rocco
et al., 2013) are closer to FAPE since they are based on a
timeline planner, but without decomposition method.

Representation and ANML
The FAPE planner uses ANML as representation language.
ANML is a rich language allowing the user to introduce
planning models in a multitude of ways. While the syntactic
sugar is important from the perspective of knowledge engi-
neering, let us focus this presentation on the fundamental
representations used.

The FAPE planner relies on parametrized state variables,
with typed object variables as parameters, and on time-
lines over these state variables. The advantages of the state
variable representation, as in SAS+ (Bäckström and Nebel,
1995) are well known. The state space represented by state-
variables is significantly smaller (we cut out unreachable
states) and planning algorithms strongly benefit from such
reduction as shown in (Helmert, 2009).

ANML allows us to specify the state variables directly in
the planning problem definition. Typing is a natural way
to reduce the combinatorics of the parameters in operators.
FAPE supports typing and single inheritance between types,
as illustrated in this simple example (where < denotes inher-
itance):
type Location;
type Gripper < Location {

boolean empty; };

2In particular at NASA Ames Research Center

PlanRob 2014 Proceedings

13

type Locatable{
Location myLocation; };

type Robot < Locatable {
variable float battery;
variable Gripper left;
variable Gripper right; };

type Item < Locatable;

The objects of the domain are type instances:
instance Location L1, L2, L3;
instance Robot R1;
instance Item I1;
instance Gripper G1, G2;

Temporally annotated statements are for example:
[start] R1.myLocation := L1;
[50, 70] I1.myLocation == G1 :-> L3;
[end] I1.myLocation == L3;

A temporal annotation is either a time point or interval
defined by two time points. These can be relative to a context
(e.g. an operator, or a planning problem), such as start,
end and all, or absolute time points.

According to the definitions given in (Ghallab et al.,
2004), we define a temporal statement to be an assertion over
the evolution of a parameterized state variable. We consider
three type of statements:
• an event specifies a change of the value of the

state variable. For instance, the ANML statement
[t1 , t2] r .myLocation == l1 :−> l2 represents a change
of the state variable myLocation(r) from l1 to l2 between
time t1 and t2, where r, l1 and l2 are object variables and
t1, t2 are time points. The value of the state variable is
l1 at time t1 and l2 at t2; it is unspecified in]t1, t2[. An
event referring to a single time point is considered as be-
ing instantaneous, e.g., [t] Switch == On :−> Off indi-
cates a value of the switch as On at time t and as Off right
after t.
• a persistence condition specifies a constraint on the value

of a state variable over an interval. For instance, the
ANML statement [t1 , t2] s .myLocation == l3 states
that myLocation(s) keeps the value l3 over the interval
[t1, t2], where s and l3 are object variables and t1, t2 are
time points. For the moment, FAPE only handles equality
and non-equality constraints.3

• an assignment is a special case of event specifying a new
value to a state variable regardless of its previous one. For
instance, the ANML statement [t] r .myLocation := l3
states that r will be at location l3 at time t without any
condition on its previous location.
Actions are defined as partially instantiated operators that

may have several possible decompositions into a partially or-
dered set of primitive actions. Effects and preconditions are
represented as temporally annotated statements occurring
between the start and end time of the action. Thus a planing
operator is a tuple (name,maxDuration, P,E,D), where
name is the unique name of the operator, maxDuration is

3Inequality constraints, e.g., <,≤ etc., will be added together
with the management of resources.

the function that can be evaluated into a number at the mo-
ment of operator application and represents its maximal du-
ration (after which the operator is considered to be failed), P
is a set of typed parameters,E is a set of temporal statements
and D is a set of decompositions. Parameters of an operator
are typed object instances as defined in ANML, they are fur-
ther used to impose binding constraints between events and
decomposition operators. A decomposition is a set of par-
tially ordered and partially instantiated operator references
(the action must always occur in the time interval of its par-
ent operator, its parameters are bounded to the values de-
fined in the parent, if any).
action Pick(Robot r, Item i, Location l){

:decomposition{
PickWithGripper(r, r.left, i, l); };

:decomposition{
PickWithGripper(r, r.right, i, l);};};

action PickWithGripper
(Robot r, Gripper g, Item i, Location l){

maxDuration := 10;
[start, end]{ g.empty == true :-> false;

r.myLocation == l;
i.myLocation == l :-> g;

}; };

The power of hierarchical decomposition (as in HTN) lies
in being able to encode expert level knowledge into the do-
main by making explicit the various possible decomposi-
tions of a task, instead of relying on a search mechanism to
find these possible decompositions from basic action mod-
els. Of course, this also depends of the skill of the program-
mer, yet, our experiences with various formalisms indicate
that HTN are better suited for planning in robotics. While
the refinement of the action can be as simple as the action
Pick we have introduced, one can imagine going further,
e.g., Transport→ TransportByRobot→Move, Pick, Move,
Drop, or even PickWithGripper decomposed with motion
planning techniques.

FAPE internal structures
FAPE planning and acting components rely on several key
data structures that provide efficient handling of state vari-
able evolutions, constraints and plans. In the following sub-
sections we present the timelines, temporal network, con-
straint network and task network.

Timelines and Chronicles
To capture the information on the evolution of state variables
over time, we use timelines with the same semantics as used
in (Ghallab et al., 2004, Sec. 14.3). A timeline is a set of
temporal statements related to a unique state variable. A
timeline Φ is a tuple (x, F,C) where x is a parameterized
state variable, F is a set of temporal statements and C is a
set of temporal constraints and binding constraints over the
time points and object variables in F .

Two essential properties of timelines need to be handled:
consistency and causal support. A timeline (x, F,C) is con-
sistent when the constraints in C are consistent and when no
pair of assertions in F are possibly conflicting. Intuitively,

PlanRob 2014 Proceedings

14

two assertions are conflicting when they specify two possi-
bly distinct values of x at the same time. This may happen
when the two assertions are allowed to overlap in time with
possibly incompatible values (with straightforward cases re-
lated to conflicts between persistence, events and mixed con-
flicts). Additional temporal or binding constraints, called
separation constraints, may be needed in C to remove pos-
sible conflicts and make the timeline consistent.

A timeline (x, F,C) supports an assertion α when there
is an assertion β ∈ F that can be used as a causal support
for α and when α can be added to the timeline consistently.
More precisely, when α asserts a persistent value v for x or a
change of value from v to v′ starting at time t, we require β
to establish a value w at a time t′ such that t′ < t and w = v
and that this value can persist consistently until t. Here also
additional constraints, i.e., t′ < t and w = v and separation
constraints, can be needed to make the timeline support α.

We define a chronicle as a tuple (T,C) where T is a set of
timelines and C is a set of temporal and binding constraints.
We say that a chronicle is consistent if each timeline in T is
consistent, and the union of constraints in the timelines of T
with those of C is consistent.

Temporal Constraint Network
Dealing with explicit time implies taking into account tem-
poral constraints between identified time points of the plan-
ning process (such as the beginning of an action or the oc-
currence of a contingent event). Repairing plans further
requires the ability of removing constraints to reflect real
events that might be contradictory with our previous knowl-
edge.

Our temporal network manager is based on the Simple
Temporal Problem introduced by (Dechter et al., 1991). It is
encoded as a directed weighted graph in which an edge from
ti to tj with weight wij represents the constraint tj − ti ≤
wij .

Consistency is checked on constraint addition by detect-
ing negative cycles in the graph which is a sufficient and
necessary condition of STN consistency. This step is per-
formed by running, upon constraint addition or removal, an
incremental Bellman-Ford algorithm as presented in (Cesta
and Oddi, 1996). This allows us to efficiently check STN
consistency while keeping a sparse network containing only
constraints that were explicitly stated, thus allowing us to
easily remove constraints from the network.

In general, temporal plans include uncontrollable dura-
tions (e.g. the time for the robot to go from the kitchen to
the living room may vary between 1 and 2 minutes). These
durations should not be squeezed by the planner temporal
propagation and we must use an approach which guarantee
the dynamic controllability (DC) of the plan. We plan to im-
plement the algorithms proposed in (Morris and Muscettola,
2005) to guarantee that the plan remains DC while squeez-
ing controllable duration as needed.

Binding Constraint Network
While planning, new object variables are created when a
new lifted action is inserted into a plan: every parameter of
the action gives birth to a new typed object variable. These

variables appear either as parameters of state variables or as
values of state variables. Separation and causal support con-
straints on these object variables are managed as a binding
constraint network. This constraint network is consistent iff
there exists an instantiation of variables such that all equality
and non-equality constraints are satisfied. We use AC-3 to
maintain the arc-consistency, which is a well-known trade-
off between earliness of the failures and computational per-
formance.

Task Network
A task network is a forest of partially instantiated operators,
where the branches represent the conjunction of actions into
which an action decomposes. We say that the network is
decomposed if all leaves are primitives. A single tree cor-
responds to the decomposition of a single root action. New
trees can be added in the task network when new actions are
added in the current plan. This mechanism combines HTN
techniques with Plan-Space techniques.

The FAPE planner does not support recursive decompo-
sition methods. Recursive methods raise termination and
completeness issues, in addition to complexity issues.

Planning
The planning component of FAPE relies on two mecha-
nisms: task decomposition, as in HTN, and resolver inser-
tion, as in Plan-Space Planning (PSP). A planning problem
is defined as a triple (V,O, sinit), where V is a set of state
variables,O is a set of operators and sinit is the initial search
node. Since we are in plan-space, we do not define a goal
state but an initial search node, which is specified with (i)
a set of initial statements, giving the initial values of state
variable and the expected events and persistences, and (ii)
the plan objectives. The statements in (i) are considered to
be causally supported. Those of (ii) need to be supported by
the plan to be built. They are given as a set of goal state-
ments, temporally qualified with the end time point, and/or
the task to perform (as in HTN), called here the seed action,
e.g.,

action Seed(){
:decomposition{

Transport(anyRobot_, I1, anywhere_, L2);
};

};
[end] I1.myLocation == L3;

In this example, the objective is to achieve the
Transport task and, at the end to have item I1 at location
L3. Note that this specification of the objectives through as-
sertions and a seed action can be redundant, or even incon-
sistent. It is up to the domain designer to make sure that the
domain and problem specification are consistent. While it
may be useful to specify goals for one state variable through
goal statements and use the seed actions for another state
variable, we discourage the domain designer to use both for
a single state variable, where the semantics is not clear —
there is no syntactical construct to temporarily relate seed
actions with goal statements.

PlanRob 2014 Proceedings

15

The planner search node is a tuple (Φ, T), where Φ is a
chronicle and T is the task network. We say that a search
node is consistent if both Φ and T are consistent. Planning
proceeds by identifying flaws in a search node and iteratively
applying resolvers until a search node is reached that is con-
sistent and with no flaws.

Flaws and Resolvers
Planning proceeds as in PSP, by addressing the flaws of a
current search node. A search node n = (Φ, T) may contain
the following flaws:

Open goal. An open goal is any statement in Φ that does
not have a causal support.

Undecomposed actions. An undecomposed action is a
non primitive action appearing as a leaf in the task network;
it needs to be decomposed.

Threats are dealt with incrementally through separation
constraints, that maintain each timeline consistent, and
through causal support constraints.

The resolvers for an undecomposed action flaw are the ex-
isting methods specified for its decomposition. Applying a
method as a resolver consists in expanding the action node
with its specified decomposition with the temporal and bind-
ing constraints inherited by the decomposed action.

An open goal α may have two types of resolvers:
• any assertion β ∈ Φ that can be used to support α; apply-

ing such a resolver consists of adding the causal support
constraints and the separation constraints required to have
α supported.
• an action that provides an assertion β that can be used to

support α. Applying such a resolver requires adding the
action together with the support constraints and separation
constraints.

The newly added action may in turn bring new unsupported
statements.

Notice that there are two ways of inserting an action into a
partial plan: through a decomposition, or directly by adding
an action as a provider of a support for an open goal. The
same action may be added as a provider at some point and
appear through a decomposition at a later point. A possible
redundancy may result from this. The FAPE planner does
not currently implement a merging operation over the task
network. This will be the object of future work.

Search
Given that a search node π is a solution if it is consistent and
with no flaws, search proceeds by identifying flaws of π (i.e.
its open goals and undecomposed actions) and applying a re-
solver for one selected flaw while maintaining the resulting
search node consistent. For the purposes of demonstration,
we stick, for the moment, to the PSP recursive nondetermin-
istic schema (Ghallab et al., 2004).

The PSP algorithm (See Algorithm 1) at each step of the
recursion deterministically chooses a flaw to resolve (selec-
tion is done with the simple min-domain heuristic) and then
chooses nondeterministically the resolver as follows:
• if the application of a resolver returns a failure then an-

other recursion with a different resolver is performed

Algorithm 1 Main PSP Algorithm
function PSP(π)

flaws← OpenGoals(π) ∪ UndecomposedLeaves(π)
if flaws = ∅ then return (π)
end if
select any flaw φ ∈ flaws
resolvers← Resolve(φ,π)
if resolvers = ∅ then return failure
end if
nondeterministically choose a resolver ρ ∈ resolvers
π← Apply(ρ,π)
return PSP(π)

end function

• if all resolvers were tried unsuccessfully then a failure is
returned to the previous choice point

We can as well modify the non-determinism to reach the
optimal solution with regard to some objective function. In
practice, our current implementation uses a best-first search
strategy, with the number of open goals as a distance evalu-
ation to a consistent search node.

Acting
In a system like FAPE, Acting and Planning are integrated.
Acting, is more complex than just Execution of platform
commands. Often, the actions in the plan are still at a too
high level to be directly executed on the platform. From
our point of view, we consider in FAPE the basic functions
relevant to Acting, and introduced in (Ingrand and Ghallab,
2013), to include: refinement, instantiation, time manage-
ment and coordination, non determinism and uncertainty,
plan repair. In the current FAPE implementation, they are
all but one (non determinism and uncertainty) handled.

Acting refines online an action into a collection of closed-
loop functions, referred to here as skills; a skill processes
a sequence (or a continuous stream) of stimulus input from
sensors and output to actuators, in order to trigger motor
forces and control the correct achievement of chosen ac-
tions. We currently use PRS procedures to refine fully in-
stantiated plan actions into motor commands, as well as to
perceive the environment and inform the Planner of impor-
tant changes. PRS skills also provide some local action re-
coveries for situations where the procedure can handle an
alternative way to perform the action (e.g. to consider an al-
ternative grasping pose, or an alternative path to reach a par-
ticular location). For our PR2 implementation, the basic mo-
tor commands and perception are provided by ROS actions,
nodes and also GenoM3 (Mallet et al., 2010) modules. We
plan to integrate other skill execution frameworks which can
handle different type of acting representation (MDP, DBN,
FSM, etc).

For dispatching, fully instantiated and scheduled actions
are passed to the Acting component according to their start-
ing time. The planner maintains a partially instantiated plan
(only the necessary binding and temporal constraints are ap-
plied), which represents a set of valid plans (time and object
variables are instantiated when needed). Actions selected for

PlanRob 2014 Proceedings

16

execution are found by taking the ones whose preconditions
are met and whose start times fit in an execution window
(e.g. we want to get actions that can be started in the next x
seconds). The temporal variables and constraints of those
actions are instantiated and the actions are then returned.
Further calls instantiate more and more actions while the
future instantiation of the actions not yet scheduled is kept
as open as possible. Once an action is finished, acting re-
ports the actual end date of its execution. This exact date is
then integrated in the current plan, and the temporal propa-
gation, as described in the “Temporal Constraint Network”
section, is performed. The action fails if it take less or more
time than planned. Such temporal failure is reported to the
planner which can then attempt to repair the plan accord-
ingly. Note that in the general case, the acting component
can also inform the planner that an action is taking too long,
yet, wait for the planner to plan and send an abort action
as a result of this problem (the acting component does not
take the freedom to abort an action which is running late).
An action can also fail because the skill failed (e.g. despite
multiple attempts, the robot cannot grasp an object, or reach
a location). The acting component then retrieves a descrip-
tion of the changes of the world that occurred and send it
to the planner which integrate these “unexpected” state vari-
able transitions in its plan.

Considering we have a plan and one of the actions in the
plan fails during the execution, the plan-repair consists of
the following steps:

1. Removing the action from the task network.
2. Removing all the statements introduced by the failed ac-

tion from the timelines which shall generate new flaws.
3. Running the PSP algorithm until the flaws are resolved.
Our repair approach is limited to the removal of just the one
failing action, we do not consider cascades of other potential
failures. There certainly are cases when the repair does not
find a plan and we need to replan, making the repairing a
wasted effort. However, most of the time repairing the plan
is much faster than replanning and the overall benefit for
the responsiveness of a real-time system is significant, as we
shall show in the following section.

Experimental Setup and Results
FAPE is designed to be used as an embedded system. The
current implementation has been experimented on a PR2
(Figure 1) to plan service robot type of tasks. For example,
the PR2 moves around in an apartment and detects objects
which are misplaced (e.g. a video tape in the bedroom, or
a book on the dining table) picks them up and stores them
away in their proper location (respectively by the TV set,
and in the bookshelf).

In the current setup, we rely on some of PR2 basic capa-
bilities4: navigating in a household like environment; recog-
nizing objects; picking them up and putting them down. Ac-
tions are dispatched just in time to PRS which executes them
when their start time has arrived. PRS monitors the proper

4http://wiki.ros.org/pr2 navigation
http://wiki.ros.org/pr2 tabletop manipulation apps

Figure 1: The PR2 Robot.

execution and reports success or failure. In case of failure,
the proper relevant state variable values are sent back to the
planner as an ANML block which needs to be introduced
into the current plan, leading to repair or replan. The implicit
behavior of the actor is always to repair the plan, while the
replanning is only called once the repair fails completely.

The real-world scenarios we have used were not as de-
manding as we needed to stress-test the planner, therefore
we have generated a spectrum of much larger problems and
ran experiments on them. One of the positive discoveries
is that the planning time is linearly dependent on the num-
ber of objects in the system — problems with hundreds of
objects are completely planned in less than a second, thou-
sands of objects do not increase the planning time over ten
seconds. This is caused mainly by our non-ground represen-
tation, where the combinatorial explosion on operators does
not occur. Figure 2 reports on experiments conducted with
increasing length of the plan. It should be noted that the
planning problem at hand, while realistic in robotics, is sim-
ple and cannot be compared to traditional planning bench-
marks. As expected, the planning time increases rapidly
with the length of the plan up to a 20 actions threshold where
the planner no longer finds plan.

To thoroughly test the complete system, we also wrote
a simple simulator in PRS which randomly simulates ac-
tion failures (navigation does not reach the final destina-
tion, pickup misses or drops the object, etc), and out of
bound time execution (the action takes less or more than the
planned duration interval) on a domain with multiple robots.
We show that, independently of the number of search nodes
generated while producing the initial plan, the FAPE plan-
ning component is able to find a trivial repair in a matter of

PlanRob 2014 Proceedings

17

0.01

0.1

1

10

4 6 8 10 12 14 16 18 20

P
la
n
n
in
g
ti
m
e
(s
)

Plan length

Figure 2: Planning time on simple navigation, pick and place
problems with a hundred object constants. Timeout occurred
for three instances with a plan length of 20. Over twenty
actions in the plan, the planner has a high ratio of timeouts.

Number of instances
nrepair ≤ 15 102 (82.2%)

15 < nrepair < nplanning 7 (5.7%)
nrepair ≥ nplanning 6 (4.8%)

repair failed 9 (7.3%)

Table 1: Number of search nodes generated while repairing
the plan (nrepair) with respect to the number of nodes gen-
erated while producing the initial plan (nplanning). Over the
experiment, nplanning has an average value of 319.

milliseconds in the vast majority of cases. Table 1 reports
on the number of plan space search nodes explored while
repairing a plan compared to the ones explored while gener-
ating the initial plan. This result is particularly important as
it shows that repairing the plan instead of replanning often
saves significant computational effort, which is even more
crucial in embedded planning, where the responsiveness of
the planner often directly projects into the system perfor-
mance. Furthermore, repairing the plan allows entities that
are not affected by the failure (such as other robots) to keep
acting while the plan is being repaired.

Future work
As far as we know, FAPE is the first system including a
planner supporting most ANML features – combination of
HTN planning and explicit time representation; and plan-
space planning. It integrates acting together with planning
and both decisional functionalities rely on the same internal
representation. Each functionality is critical with regard to
the efficiency of the whole system and as such it deserves our
attention in future development. The planner shall benefit
significantly from the addition of proper resource manage-
ment similar to the one implemented in IxTeT (Laborie and

Ghallab, 1995), a stronger heuristic, as well as the addition
of specific and domain dependent planners (e.g. motion or
manipulation planner). Meanwhile the Acting system will
provide other acting framework than the PRS refinement
procedures used for now (e.g. MDP policies (Morisset and
Ghallab, 2008), DBN (Infantes et al., 2010), etc). We also
plan to implement and compare new models of interleaving
planning and acting, where we would concentrate on the de-
cision making between alternative action refinement, repair-
ing and replanning — how to recognize and predict when
one is preferred to the other. Similarly, we plan to investi-
gate the inclusion of delayed methods decomposition. The
planner, instead of expanding all tasks down to the action
leaves may delay and delegate some designated decomposi-
tion to the acting component.

We have designed but not yet experimentally tested new
control mechanics for decomposition that bring the domain
designer more power to fine tune the search and also provide
more support for embedded planning. All of the extensions
are part of method definition, we call those extensions hard,
soft and weak.

The hard extension is an additional condition (a temporal
statement) that tells the planner if the method needs to be de-
composed (if the condition does not hold then we do not de-
compose the method and it does not invalidate consistency).
The extension allows a multitude of control use-cases to be
introduced, e.g. we may start decomposing certain methods
only once we get close to their execution — this is the case
for the navigation action that can be abstracted as a motion
from a to b, until we approach the time of the action and need
refine it into a sequence of path following actions that would
be otherwise unnecessary to keep in the plan in advance.

The soft extension allows us to define priorities of decom-
positions — we simply assign a priority to every method
then we try expand those with the highest priority first, we
can see this extension as an explicit heuristic entered by the
domain designed or the real-time environment.

The weak extension represents a look ahead for a decom-
position of a method, its main purpose is to propagate new
time bounds and constraints. Having a method with sev-
eral possible decompositions (we call the regular decom-
positions hard), we add at most one weak decomposition.
The weak decomposition method is then always performed
when we add the method to the plan and it is non-colliding
with any hard decomposition that is chosen later during the
search.

We do not directly support conditional decomposition
(conditions for each hard decomposition in a method),
which can be simulated by using more methods — for each
conditional decomposition we instead add a new method
having just one decomposition but having the conditional
statements as its event, then the original method decomposes
into one of the method representing the original conditional
decompositions.

While we currently support multi-agent planning (there
can be any number of robots in the system that perform their
actions in parallel), we are particularly interested in extend-
ing the system towards multi-agent planning where actions
of some of the entities are not controllable, which shall allow

PlanRob 2014 Proceedings

18

us to reason and plan human-robot interactions.

Conclusion
We have introduced FAPE, a new framework that integrates
Planning and Acting to be embedded in autonomous real-
time system such as robots. Using ANML as an input plan-
ning langage, we have the expressivity to plan for complex
temporal plans with requirements on concurrent actions in
dynamic and changing environments and we also allow the
user to improve and fine-tune the efficiency of the system by
introducing task decompositions which can efficiently prune
the search in plan space. We have experimented both Plan-
ning and Acting in simulation with large problems and on a
PR2 robot which performs service robot type of activities.
The development of FAPE continues as a multi-institutional
effort to provide a planning/acting system, which we would
like to see positioned as a system capturing the state-of-the-
art of planning, integrating domain specific planners while
maintaining the expressivity of ANML and ease of integra-
tion with different type of acting components.

References
Bäckström, C. and Nebel, B. (1995). Complexity Results for SAS+
Planning. Computational Intelligence, 11:625–656.
Beetz, M. and McDermott, D. (1994). Improving Robot Plans Dur-
ing Their Execution. In International Conference on AI Planning
Systems.
Castillo, L., Fdez-Olivares, J., Garcı́a-Pérez, O., and Palao, F.
(2006). Efficiently handling temporal knowledge in an HTN plan-
ner. Sixteenth international conference on automated planning and
scheduling, ICAPS.
Cesta, A. and Oddi, A. (1996). Gaining efficiency and flexibil-
ity in the simple temporal problem. Temporal Representation and
Reasoning, International Syposium on, 0:45.
Coles, A. J., Coles, A., Fox, M., and Long, D. (2012). COLIN:
Planning with Continuous Linear Numeric Change. J. Artif. Intell.
Res. (JAIR), 44:1–96.
Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal constraint
networks. Artificial Intelligence, 49(1-3):61–95.
Di Rocco, M., Pecora, F., and Saffiotti, A. (2013). When robots
are late: Configuration planning for multiple robots with dynamic
goals. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2013), pages 9515–5922. IEEE.
Firby, R. J. (1987). An investigation into reactive planning in com-
plex domains. In Proceedings of the sixth National conference on
Artificial intelligence, pages 202–206. Seattle, WA.
Fox, M. and Long, D. (2002). PDDL 2.1 : An Extension to PDDL
for Expressing Temporal Planning Domains. Technical Report,
University of Durham, UK.
Frank, J. and Jónsson, A. K. (2003). Constraint-Based Attribute
and Interval Planning. Constraints, 8(4).
Fratini, S., Cesta, A., De Benedictis, R., Orlandini, A., and Ras-
coni, R. (2011). APSI-based deliberation in Goal Oriented Au-
tonomous Controllers. In 11th Symposium on Advanced Space
Technologies in Robotics and Automation (ASTRA).
Ghallab, M. and Laruelle, H. (1994). Representation and Control
in IxTeT, a Temporal Planner. In International Conference on AI
Planning Systems, pages 61–67.

Ghallab, M., Nau, D. S., and Traverso, P. (2004). Automated Plan-
ning: Theory and Practice. Morgann Kaufmann.
Helmert, M. (2009). Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence, 173(5-6):503–535.
Infantes, G., Ghallab, M., and Ingrand, F. (2010). Learning the
behavior model of a robot. Autonomous Robots Journal, pages 1–
21.
Ingrand, F., Chatilla, R., Alami, R., and Robert, F. (1996). PRS:
a high level supervision and control language for autonomous mo-
bile robots. In IEEE International Conference on Robotics and
Automation, pages 43–49.
Ingrand, F. and Ghallab, M. (2013). Robotics and Artificial Intel-
ligence: a Perspective on Deliberation Functions. AI Communica-
tions, 27:63–80.
Jónsson, A. K., Morris, P. H., Muscettola, N., Rajan, K., and Smith,
B. (2000). Planning in Interplanetary Space: Theory and Practice.
In International Conference on AI Planning Systems.
Laborie, P. and Ghallab, M. (1995). Planning with Sharable Re-
source Constraints. In International Joint Conference on Artificial
Intelligence.
Lemai-Chenevier, S. and Ingrand, F. (2004). Interleaving Temporal
Planning and Execution in Robotics Domains. In Proceedings of
the National Conference on Artificial Intelligence.
Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., and Ingrand, F.
(2010). GenoM3: Building middleware-independent robotic com-
ponents. In IEEE International Conference on Robotics and Au-
tomation, pages 4627–4632.
Morisset, B. and Ghallab, M. (2008). Learning how to combine
sensory-motor functions into a robust behavior. Artificial Intelli-
gence, 172(4-5):392–412.
Morris, P. H. and Muscettola, N. (2005). Temporal dynamic con-
trollability revisited. In National Conference on Artificial Intelli-
gence, pages 1193–1198.
Muscettola, N., Dorais, G., Fry, C., Levinson, R., and Plaunt, C.
(2002). IDEA: Planning at the Core of Autonomous Reactive
Agents. In Proceedings of the AIPS Workshop on On-line Plan-
ning and Scheduling.
Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu,
D., and Yaman, F. (2003). SHOP2: An HTN Planning System. J.
Artif. Intell. Res. (JAIR), 20:379–404.
Rabideau, G., Knight, R., Chien, S., Fukunaga, A., and Govind-
jee, A. (1999). Iterative Repair Planning for Spacecraft Operations
in the ASPEN System. In International Symposium on Artificial
Intelligence, Robotics and Automation for Space.
Rajan, K., Py, F., McGann, C., Ryan, J. P., O’Reilly, T., Maughan,
T., and Roman, B. (2009). Onboard Adaptive Control of AUVs us-
ing Automated Planning and Execution. In International Sympo-
sium on Unmanned Untethered Submersible Technology (UUST),
Durham, NH.
Simmons, R. (1992). Concurrent planning and execution for au-
tonomous robots. Control Systems, IEEE, 12(1):46–50.
Smith, D. E., Frank, J., and Cushing, W. (2008). The ANML Lan-
guage. The ICAPS-08 Workshop on Knowledge Engineering for
Planning and Scheduling (KEPS).
Wilkins, D. E. (1988). Practical Planning. Extending the Classical
AI Planning Paradigm. Morgan Kaufman.
Wilkins, D. E. and Myers, K. L. (1995). A common knowledge
representation for plan generation and reactive execution. Journal
of Logic and Computation, 5(6):731–761.

PlanRob 2014 Proceedings

19

HATP: An HTN Planner for Robotics
Raphaël Lallement1,2 and Lavindra de Silva1 and Rachid Alami1

1CNRS, LAAS,
7 avenue du Colonel Roche,
F-31400 Toulouse, France

2Univ de Toulouse, INSA, LAAS,
F-31400 Toulouse, France

Abstract
Hierarchical Task Network (HTN) planning is a popular ap-
proach that cuts down on the classical planning search space
by relying on a given hierarchical library of domain con-
trol knowledge. This provides an intuitive methodology for
specifying high-level instructions on how robots and agents
should perform tasks, while also giving the planner enough
flexibility to choose the lower-level steps and their order-
ing. In this paper we present the HATP (Hierarchical Agent-
based Task Planner) planning framework which extends the
traditional HTN planning domain representation and seman-
tics by making them more suitable for roboticists, and treat-
ing agents as “first class” entities in the language. The for-
mer is achieved by allowing “social rules” to be defined
which specify what behaviour is acceptable/unacceptable by
the agents/robots in the domain, and interleaving planning
with geometric reasoning in order to validate online–with
respect to a detailed geometric 3D world–the human/robot
actions currently being pursued by HATP.1

Introduction
Real-world robotics domains and problems offer natural
testbeds for HTN (Hierarchical Task Network) planning.
The intuitive hierarchical representation used by such plan-
ners allows the often available expert knowledge about a do-
main to be included with relative ease to guide the search
process. This guidance might be abstract steps detailing
how a task, such as cleaning a table full of different types
of objects, should be performed by the robot, with sufficient
flexibility over the more detailed steps and states—e.g. the
final locations of objects on the shelf. In practice, the inclu-
sion of such search control knowledge makes HTN planning
faster than classical planning, which is particularly impor-
tant when dealing with robots as they need to be responsive
to environmental changes involving other robots, and more
importantly, humans.

In this paper we describe the HATP (Hierarchical Agent-
based Task Planner) HTN planner and show how it is partic-

1This work has been conducted within the EU ARCAS project
(http://www.arcas-project.eu/) funded by the E.C. Division FP7-
IST under Contract ICT 287617. We thank the anonymous review-
ers for their feedback. The second author has now moved to The
University of Nottingham, Nottingham, UK.

ularly suited for use in robotics. HATP is based on SHOP
(Nau et al. 1999), but unlike this planner and other HTN
planners such as Nonlin (Tate 1976), SHOP2 (Nau et al.
2003) and UMCP (Erol, Hendler, and Nau 1994), HATP
offers a user-friendly domain representation language in-
spired by popular programming languages, making it eas-
ier for roboticists, and indeed computer scientists alike, to
become quickly acquainted with the syntax and semantics.
We give insights into a formal mapping from this HATP lan-
guage into an equivalent classical representation, but leave
the detailed treatment for a separate paper.

An important feature of HATP is that it treats agents as
“first-class entities” in the domain representation language.
It can therefore distinguish between the different agents in
the domain as well as between agents and the other entities
such as tables and chairs. This facilitates a post-processing
step in HATP that splits the final solution (sequence of ac-
tions) into multiple synchronised solution streams, one per
agent, so that the streams may be executed in parallel by the
respective agents by synchronising when necessary.

The planning algorithm of HATP has also been extended
in various ways. First, it incorporates a simple mechanism
to take into account the (user-defined) cost of executing ac-
tions, so that instead of returning the first arbitrary solution
found, it keeps searching until an optimal (least-cost) one
is found.2 Second, HATP has been extended to be more
suitable for Human-Robot Interaction (HRI); in particular,
“social rules” can be included by the user to define what
the acceptable (and unacceptable) behaviours of the agents
are. Two examples are: what sequences of steps should be
avoided in final solutions, and a limit on the amount of time a
person should spend waiting (and doing nothing). The rules
are then used to filter out the primitive solutions found that
do not meet the constraints.

Finally, there is much ongoing work on interleaving
HATP with geometric planning algorithms, so as to vali-
date online the actions being pursued by HATP, by consult-
ing its geometric counterpart. This results in motion plan-
ning being performed by the geometric planner to check
if the HATP action being planned is actually feasible in

2The notion of optimality here is “local”: HATP finds an opti-
mal solution only from the set of HATP solutions obtained using
the given methods.

PlanRob 2014 Proceedings

20

the real world, modelled in great detail via the Move3D
(Siméon, Laumond, and Lamiraux 2001) simulation envi-
ronment. This integration takes an important step towards
interfacing HATP’s AI planning algorithms and techniques
with the planning algorithms and techniques more com-
monly used by roboticists. In this paper we summarise all
of these extensions to HATP, and explicate how they make
HATP particularly suited for the Robotics community.

HTN Planning
While classical planners such as STRIPS focus on achieving
some goal state, Hierarchical Task Network (HTN) planners
focus on solving abstract tasks. We have found HTN plan-
ning to be particularly useful for robotics applications, as it
allows—the often available—instructions from the domain
expert to be included in the domain as an intuitive hierar-
chy. This helps guide the search, making it faster in general
than classical planning approaches, and thereby also more
practical for real robots that need to be responsive to envi-
ronmental changes.

The Hierarchical Agent-based Task Planner (HATP) is
based on the popular “totally-ordered” HTN planning ap-
proach, which unlike “partially-ordered” HTN planning al-
lows calls to external functions—a necessity in our work.
This is also highlighted as a feature in the SHOP (Nau et
al. 1999) planner, on which HATP is based. The rest of this
section focusses on totally-ordered HTN planning.

We define an HTN planning problem as the 3-tuple
〈d, s0,D〉, where d, the “goal” to achieve, is a sequence
of primitive or abstract tasks, s0 is the initial state, and D
is an HTN planning domain. An operator is as in classi-
cal planning, and actions are ground instances of operators.
We generally use the terms operator and action interchange-
ably in this paper. An HTN planning domain is the pair
D = 〈A,M〉 where A is a finite set of operators, and M
is a finite set of HTN methods. A method is a 4-tuple con-
sisting of: the name of the method, the abstract task that it
needs to solve, a precondition specifying when the method
is applicable, and a body realising the “decomposition” of
the task associated with the method into more specific sub-
tasks. Specifically, the method-body is a sequence of primi-
tive and/or abstract tasks.

The HTN planning process works by selecting applicable
methods from M and applying them to abstract tasks in d
in a depth-first manner. In each iteration, this will typically
result in d becoming a “more primitive” sequence of tasks.
The process continues until d has only primitive tasks left,
which map to action names. At any stage during planning
if no applicable method can be found for an abstract task,
the planner essentially “backtracks” and tries an alternative
method for an abstract task refined earlier.

In more detail, the main steps of the HTN planning pro-
cess are the following: in each iteration all ground instances
are found of the methods available to decompose a chosen
task from task network d; one such method instance is cho-
sen arbitrarily that is applicable (whose precondition holds)
in the current state of the world; and the instance is applied
to d by basically replacing the chosen task with the subtasks
in the method’s body. The planner backtracks to choose an

alternative method instance to one that was previously ap-
plied to d only if that method instance did not eventually
allow a complete (and successful) decomposition of the top-
level goal task(s).

Features of HATP
In this section we present our own encoding in HATP of the
Dock-Worker Robots domain (Nau, Ghallab, and Traverso
2004). In this domain, there is a robot (R1) that can move
and carry containers, and two crane-agents (K1 and K2) that
can lift and put down containers. Furthermore, there are two
locations (L1 and L2), each containing two piles (P11 and
P12 at L1, and P21 and P22 at L2) that can hold containers.
The goal is to place the two containers C1 and C2 on piles
P21 and P22, respectively.

P11 P12

K1

L1

P21 P22

K2

L2

C2C1

R1

Figure 1: A planning problem in the Dock-Worker Robot
domain: robot R1 has to carry the container C1 from P11 to
P21, and the container C2 from P12 to P22.

World state representation
In addition to having the standard advantages of total-order
HTN planning, HATP also provides an intuitive object-
oriented-like syntax for representing and manipulating the
world state. This allows roboticists and computer scientists
alike to quickly get acquainted with the syntax and start de-
veloping HATP domains.

The HATP world specification is defined as a collection
of entities, which represent the agent types and object types
in the world. This distinction between agents and other ob-
jects is important. Agents are treated as first class entities in
the language of HATP; moreover, different types of agents
may be defined by simply instantiating the default Agent en-
tity. This distinction also facilitates a post-processing step
in HATP, which splits the final solution into separate sub-
solutions to be executed by the respective agents.

An entity has a set of attributes, where an attribute either
represents a data value, or a relation between the entity
and other entities. For example, a robot-agent may have an
attribute carry of type Container indicating that the robot
can carry objects of type Container. HATP supports some
of the standard data types found in programming languages,
such as integers and strings, and also allows defining sets
of objects, which are manipulated using the standard set
operations. An example of an HATP world specification is
shown in listing 1.

PlanRob 2014 Proceedings

21

define entityType Crane, Location, Pile, Container;

define entityAttributes Agent {
//An agent can be of type Robot or Crane
static atom string type;

//For cranes
static atom Location attached;

//For robots
dynamic atom Location at;
dynamic atom Container carry;
dynamic atom bool loading;

}

define entityAttributes Location {
static set Location adjacent;
dynamic atom bool occupied;

}

define entityAttributes Pile {
static atom Location attached;
dynamic set Container contains;
dynamic atom Container top;

}

define entityAttributes Container {
dynamic atom Location in;
dynamic atom Container on;

}

Listing 1: HATP entities for the Dock-Worker Robot domain
in figure 1. There are five entity types: Agent (default en-
tity), Crane, Location, Pile and Container. The initial value
assigned to a static attribute cannot change during planning,
whereas a dynamic attribute can be assigned different val-
ues over the course of planning. An attribute classified as an
atom can only have one value, whereas one classified as a
set can have a set of values. The type of an attribute can be
any of the primitive types allowed as well as an entity.

The HATP initial world state is then an instantiation of
the defined entities, along with value assignments to their at-
tributes. An example of an HATP initial world state is shown
in listing 2. Notice that attributes of entities generally map
to predicate symbols in standard “classical” initial states,
and the entities and values to the parameters of the predi-
cate. For example, K1.attached = L1 could map to predi-
cate attached(K1,L1) in a classical initial state, R1.loading
= false to ¬loading(R1), and R1.carry = NULL could be
represented in the classical initial state by not including any
positive literal in it that has predicate symbol carry, with R1
as its first parameter.

R1, K1, K2 = new Agent;
L1, L2 = new Location;
P11, P12, P21, P22 = new Pile;
C1, C2 = new Container;

R1.type = ‘‘ROBOT’’;
R1.at = L1;
R1.carry = NULL;
R1.loading = false;

K1.type = ‘‘CRANE’’;
K1.attached = L1;

K2.type = ‘‘CRANE’’;
K2.attached = L2;

L1.adjacent <<= L2;
L1.occupied = true;
L2.adjacent <<= L1;
L2.occupied = false;

P11.attached = L1;
P11.contains <<= C1;
P11.top = C1;
P12.attached = L1;
P12.contains <<= C2;
P12.top = C2;
P21.attached = L2;
P22.attached = L2;

C1.in = L1;
C1.on = NULL;
C2.in = L1;
C2.on = NULL;

Listing 2: An HATP initial state for the Dock-Worker Robot
domain. After instantiating the entity types, their attributes
are assigned initial values. Note that symbol “<<=” is used
to add the element on its RHS to the set on its LHS.

Domain representation
As in standard HTN planning, an HATP domain consists of a
set of methods and a set of operators. These are written sim-
ilarly to traditional HTN domains with the exception where
the HATP language offers some user-friendly constructs for
defining preconditions of methods and operators, bodies of
methods and effects of operators. In particular, variables are
defined in HATP methods, and their bindings controlled, via
the following constructs; examples of their use can be found
in listing 3.

• SELECT binds the given variable in the usual way. In
essence, the construct amounts to a “backtrack point” that
allows all values of the associated variable—and thereby
all ground instances of the method—to be considered.

• SELECTORDERED binds the variable in some given
order, governed by a user-supplied ordering relation.
Moreover, the variable can be bound in ascending or de-
scending order with respect to the relation.

• SELECTONCE binds the variable only once—the re-
maining bindings are disregarded. This offers a reduction
in the branching factor at the expense of completeness, as
some of the ignored bindings may also yield HATP solu-
tions.

While the last construct may result in the loss of HATP so-
lutions, this heuristic is useful in domains where if a solution
pursued by taking one binding of the variable—and applying
the resulting ground instance of the HATP method—turns
out to not work, then no other binding for that variable will
work either. For example, imagine a slightly different Dock-
Worker Robot domain/problem that has multiple robots, and
where taking the shortest path during navigation is not im-
portant. This means that if one robot cannot navigate from
one location to another, then none of the others will be able

PlanRob 2014 Proceedings

22

to either. Therefore, there is no need to consider all possible
robot-agent bindings as done in listing 3: a single binding
will be sufficient.

method Transport(Container C, Pile Target) {
// do nothing if container is in target pile
empty{C.in == Target;};
{

preconditions {
// container not already in target location
EXIST(Pile Source2, {C.in == Source2;},

{Source2.attached != Target.attached;});
};
subtasks {

S = SELECT(Pile, {C.in == S;});
R = SELECTORDERED(Agent, {R.type == ‘‘ROBOT’’;},

distance(R.at, S.attached), <);
K1 = SELECT(Agent,

{K1.type == ‘‘CRANE’’; K1.at == S.attached;});
K2 = SELECT(Agent,

{K2.type == ‘‘CRANE’’; K2.at == Target.attached;});
1: GetReady(R, C, S);
2: LoadRobot(K1, R, C)>1;
3: NavFromTo(R, S.attached, Target.attached)>2;
4: UnloadRobot(K2, R, C)>3;
5: Put(K2, C, Target)>4;

};
...

}

Listing 3: Part of an HATP method to move a container from
a source pile to a target pile in a different location. Note that
distance is a user-supplied ordering relation; “<” means
that the variable bindings should be in descending order; and
“N1 : T > N2;” means that task T (labelled N1) must pre-
cede the task labelled N2.

Observe from listing 3 that, as expected, the subtasks
within the method’s body are totally ordered. HATP, how-
ever, also allows partially ordering subtasks; this is achieved
by not specifying ordering constraints between some (or all)
of the tasks in the method’s body. For example, remov-
ing constraint “> 2” from the method in listing 3 would
then not require that the task with label 3 occur after the
one with label 2. Note that such partial ordering of tasks is
merely a convenience: it is an alternative to supplying mul-
tiple totally-ordered methods corresponding to every possi-
ble linearisation of the partially ordered subtasks. This is
exactly what happens during planning: the set of partially
ordered subtasks in a method’s body is handled by taking all
possible linearisations of the set, essentially creating addi-
tional HATP method options to consider for the parent task’s
decomposition. Since partially ordering subtasks results in
an exponential increase in the number of method options,
it should be used with appropriate care. Introducing “true”
partially-ordered planning into HATP is left as future work:
the algorithms are not obvious as we want to have the ability
to use evaluable predicates in preconditions, for which main-
taining the complete state of the world at each step of the
planning process is the obvious solution (Nau et al. 1999).

Some other useful constructs supported by HATP are EX-
IST, IF, and FORALL. As in other HTN planners such as
SHOP, construct EXIST is used only in preconditions of
methods and operators; IF only in the effects of operators;

and FORALL in both preconditions of methods and opera-
tors, as well as in the effects of operators. Examples of how
these constructs may be used are shown in listings 3 and 4.

action Move(
Agent R, Location From, Location To, Location FinalDest) {
preconditions {

R.type == ‘‘ROBOT’’;
To >> From.adjacent;
R.at == From;
To.occupied == false;

};
effects {

R.at = To;
From.occupied = false;
To.occupied = true;
R.path <<= To;
IF{From !>> R.path;}{R.path <<= From;}
IF{To.isForbiddenBy == R;}{To.isForbiddenBy = NULL;}
IF{To == FinalDest;}{

FORALL(Location LocP,
{LocP >> R.path;},{R.path =>> LocP;});

}
};
cost{costToMove(From, To)};

}

Listing 4: An HATP operator. The expression “A >>
B.attr” holds if element A is in the set B.attr, and the ex-
pression’s negation is specified using “A! >> B.attr”. Ex-
pression “B.attr <<= A” adds element A to set B.attr,
and “B.attr =>> A” removes A from B.attr.

Plan production
HATP is able to find the least-cost primitive solution that
solves the goal task(s) at hand, as done for example in (Nau
et al. 2003). To this end, HATP keeps track of the least-
costly plan computed so far, as well as the total cost of the
current partial plan being pursued, and then avoids adding
any action to it that will definitely lead to a costlier partial
plan. Indeed, in the worst case this requires looking through
all HATP solutions for the given goal task(s). Moreover,
since the HATP search space is governed by the methods
supplied, there may be other low-cost solutions (correspond-
ing to methods not supplied) that HATP does not take into
account.

The cost of the partial plan is computed via “cost func-
tions”. A cost function is a user-supplied C++ function that
is linked to an HATP operator as shown at the bottom of list-
ing 4. The function can perform any arbitrary calculation to
estimate the cost of executing the action; however, for ef-
ficiency reasons the function should terminate quickly. An
example of such a function is one that computes the cost of
executing an action to send data from one robot to another.
This might involve checking how much data needs to be sent
and thereby how much time it would take to do the transfer.

By using cost functions associated with the sequence of
primitive actions pursued so far, HATP determines the total
cost of the sequence, and avoids pursuing it further if by
adding the next action the total cost would exceed the cost
of the lowest-cost solution found so far.

Once HATP finds a solution—a sequence of primitive
actions—it then splits the solution into multiple “streams”,

PlanRob 2014 Proceedings

23

one per agent in the domain, and adds causal links between
streams for synchronisation (Alami et al. 2011). To deter-
mine which actions in the final solution belong to which
agents, the HATP language reserves the first variable of ev-
ery operator’s name: it must always bind to the name of the
agent responsible for eventually executing the operator. The
second and subsequent variables of an operator’s name may
also be used as placeholders for agent names if necessary.
Such an operator would then be a “joint operator”: one that
needs to be executed in parallel by all the robots/agents that
it refers to.

Once the different streams are separated, they may then
be executed. The stream (if any) belonging to the agent that
formulated the plan may be executed by the agent directly,
whereas actions in other streams need to be delegated to their
respective agents, and the environment monitored to deter-
mine if the actions were successfully executed. Figure 2
shows a plan produced for the Dock-Worker Robots prob-
lem depicted in figure 1 with different streams belonging to
the different agents in the domain.

Note that in the case of joint operators, all the agents in-
volved need a “stronger” synchronisation than what causal
links entail. For instance in a robot-robot synchronisation
they may need to set some rendezvous points so as to ex-
change information just before starting. This may also in-
volve visual servoing, both in robot-robot and human-robot
joint operators.

HATP in an HRI context
As highlighted by (Alili, Alami, and Montreuil 2009) one
challenge in robotics is to develop socially interactive and
cooperative robots. The meaning of socially interactive
robots is defined in (Fong, Nourbakhsh, and Dautenhahn
2003) which states that they must “operate as partners, peers
or assistants, which means that they need to exhibit a certain
degree of adaptability and flexibility to drive the interaction
with a wide range of humans”. (Klein et al. 2004) imple-
mented that in what they called “ten challenges for human
robot teamwork”. We are convinced that task planners can
take care of several of these challenges. In this case the robot
should be able to (Klein et al. 2004): (1) signal in what tasks
it can/wants to participate; (2) act in a predictable way to en-
sure human understanding of what it is doing; (3) publicise
its status and its intentions; (4) negotiate on tasks with its
human partner in order to determine roles and decide how to
perform the tasks; and (5) deal with social conventions, as
well as its human partner’s abilities and preferences.

To address some of those challenges HATP includes
mechanisms to filter plans so as to keep only those suitable
for HRI. To this end, HATP allows the specification of the
following filtering criteria.

Wasted time: Avoids plans where an agent(s) mentioned in
a plan spends a lot of its time waiting.

Effort balancing: Avoids plans where efforts are not fairly
distributed among the agents mentioned in a plan.

Control of intricacy: Avoids plans with too many interde-
pendencies between the actions of agents mentioned in

the plan, as a problem with executing just one of those
actions could invalidate the entire plan.

Undesirable sequences: Avoids plans that violate specific
user-defined sequences.

Combining some of the above criteria could help yield
the following interesting behaviours: (1) the human ends
up doing a lot of the tasks, but yet the overall effort (Alili,
Alami, and Montreuil 2009) taken to do them is significantly
lower than what the robot puts to do a lower number of
effort-intensive tasks; (2) avoiding, when possible, having
the human wait for the robot several times, which essentially
prevents the streams from having too many causal links be-
tween them. The filtering criteria are implemented by look-
ing through all the plans produced and filtering out the ones
that do not meet the requirements specified. In the future
we intend to study algorithms that do such filtering online,
rather than after primitive solutions are found.

Interleaving with geometric reasoning
While an HTN hierarchy allows one to intuitively reason
about high-level tasks such as Transport in terms of more
specific tasks, and eventually in terms of basic actions, these
still “abstract out” the lowest possible level of detail by
making certain assumptions about the world. For example,
HATP operator Move in listing 4 assumes that as long as
location To is adjacent to location From, and To is not oc-
cupied, that the robot at From will be able to navigate to
location To. Clearly, this may not always work for various
reasons, such as there being an obstacle in the path, or cer-
tain geometrical characteristics of the robot and the connect-
ing path making the move physically impossible. Combin-
ing HATP—and symbolic/task planning in general—with
the geometric planning algorithms used in robotics is there-
fore essential to be able to obtain primitive solutions that are
viable in the real world.

The work in (de Silva, Pandey, and Alami 2013; de Silva
et al. 2014; 2013) proposes an interface between HATP and
a geometric planner. This interface is mainly provided via
“evaluable predicates”—predicates in HATP preconditions
that are evaluated by calling associated external procedures.
Such a predicate evaluating to true amounts to a geomet-
ric solution existing for the “geometric task” that the predi-
cate represents, and evaluating to false amounts to the non-
existence of such a solution. For example, the precondition
of an HATP action that gives an object to a person might
have an evaluable predicate that invokes the geometric plan-
ner to check the feasibility of the task of giving the object to
the person, and to store the resulting geometric trajectory if
any. This notion of a geometric task is something that is both
important in order to have a meaningful link between the two
planning approaches, and also specific to the type of geomet-
ric planner used. A geometric task essentially corresponds
to one or more motion planning goal-configurations, com-
puted (automatically) by the geometric planner by taking
into account various criteria such as the visibility and reach-
ability of objects from the perspectives of different robots
and humans in the domain. Aptly called Geometric Task
Planner (GTP) (Pandey et al. 2012), this planner liberates

PlanRob 2014 Proceedings

24

Take
(K1 C1 P11 L1) Load

(K1 C1 R1 L1)

Take
(K1 C2 P12 L1)

Load
(K1 C2 R1 L1)

Move
(R1 L1 L2)

Unload
(K2 C1 R1 L2)

Put
(K2 C1 P21 L2)

Unload
(K2 C2 R1 L2)

Move
(R1 L2 L1)

Move
(R1 L1 L2)

Put
(K2 C2 P21 L2)

Figure 2: The HATP solution for the DWR problem. There are three streams corresponding to the actions belonging to the
three agents, ordered using causal links (shown as arrows). The yellow stream represents the actions of the first crane, the green
the actions of the other crane, and the blue the actions of the robots.

HATP from having to reason in terms of low-level details
such as grasps and orientations. Using this particular plan-
ner for forming the link with HATP also makes the inter-
face proposed different to other interfaces in the literature,
such as (Dornhege et al. 2009b; 2009a; Karlsson et al. 2012;
Lagriffoul et al. 2012).

The interface between HATP and the GTP is used to in-
terleave their planning algorithms. In one approach, when-
ever the GTP is invoked by HATP while testing an evaluable
predicate, the non-existence of a GTP solution for the as-
sociated geometric task (from the current geometric world
state) does not lead to the predicate evaluating to false; in-
stead, the GTP backtracks to try alternative solutions for the
previously invoked geometric tasks in an effort to make a so-
lution possible for the most recently invoked one. Since this
may cause changes to intermediate geometric world states,
this approach comes with mechanisms to ensure that such
changes do not affect the symbolic world state in a way that
invalidates the HATP plan being pursued. Such mechanisms
are, however, not necessary in the second approach to in-
terleaved planning that the authors present. Here, whenever
the GTP cannot find a solution for a geometric task, it does
not—as before—backtrack to find alternatives for previous
geometric tasks, but instead immediately returns with “fail-
ure”. If this leads to HATP backtracking, HATP then has
the option to try, intuitively, a different “instance” of the
action that needs to be “undone” as a consequence of the
backtrack (in addition to the standard option of trying differ-
ent actions); this different “instance” is basically the same
HATP action that needs to be undone, but this time with a
different geometric solution attached to it.

An interesting feature of the GTP is its ability to plan not
just the robots’ tasks/actions but also the humans’, by taking
into account their respective kinematic models. This makes
way for the multiple robots/agents defined in an HATP do-
main to have a clear association with those defined in the
GTP domain. For example, figure 3 shows a simplified li-
brary domain (de Silva et al. 2014) where a PR2 robot serves
a human customer, consisting of both human and robot ac-
tions. While the PR2-actions will be planned by the GTP
from the perspective of the PR2 (using its kinematic model),
those of the human, which involve paying and taking a book,
will be planned from the human’s perspective.

The planning and execution architecture
Both HATP and the GTP are part of the larger LAAS
robotics architecture (Fleury, Herrb, and Chatila 1997;
Alami et al. 2011). This architecture has many components.
It uses the Move3D (Siméon, Laumond, and Lamiraux
2001) motion and manipulation planner for representing the
robot’s version of the real world in 3D and for doing geo-
metric task planning. Through various sensors the robot can
also update its 3D world state in real-time. To this end, a tag-
based stereo vision system is used for object identification
and localisation, and a Kinect (Microsoft) sensor for localis-
ing and tracking the human. The execution controller—the
Procedural Reasoning System (PRS)(Ingrand et al. 1996)—
is responsible for invoking HATP when a task needs to be
planned, and also executing the resulting primitive solution
returned by HATP by invoking various actuators via the
interface provided by Genom (Fleury, Herrb, and Chatila
1997) to the low-level controllers, which is also the frame-
work used to wrap them into individual well-defined mod-
ules.

In the current architecture, PRS receives goals from the
environment, which it validates by checking for things such
as whether the goal has already been achieved. If the goal is
valid, it is sent as a task to HATP. If HATP (possibly together
with the GTP) successfully returns a solution, it is then exe-
cuted by PRS, by directly executing the robot’s actions and
indicating in the right order to other agents, via a dialogue
module, what actions they need to execute. To execute an
action directly, PRS sends requests to the relevant Genom
modules which may result in the robot or an arm moving,
for example. Indeed, the Genom modules may actually ex-
ecute the trajectories found and stored by the GTP if it was
invoked by HATP during the planning process. PRS is also
able to confirm whether the robot’s actions and those of the
other agents were successfully executed, by examining the
current state of the (symbolic and geometric) world.

Conclusion and future work
We have described in this paper the HATP HTN planner,
which has been used extensively for practical robotics ap-
plications in the LAAS architecture (Alami et al. 1998)
over many years (Alili, Alami, and Montreuil 2009; Guit-
ton, Warnier, and Alami 2012; Warnier et al. 2012; de Silva,
Pandey, and Alami 2013; de Silva et al. 2014). We have fo-
cussed on describing how HATP is suited for not just HTN
planning but also planning in the context of Human-Robot

PlanRob 2014 Proceedings

25

!"#"$%&'(%')*+,

!-,

,.%#()*+,

!/,
!0,

!1,%!234,

5"4)6+,

!"7%879::)8;*+, "(()8;*+,(<52."4)8;6;*+,

!=,

2<:7)8+, 5>?@)8;*+,

5"4)6+, $<A%87)8;*+, 3"7%)8;B+,

!1,

3"7%C"4!%#3)*+,

&B,D'"#:>,

9EF,D'"#:>,

G6E,):?!2?H#(+,3"57,

G6E,!%3>?(,
'?D?3,":I?#,

2"4)*+,"57C"4)*+,

>H!"#,":I?#,

!=,

Figure 3: This figure depicts a simplified version of the library domain in (de Silva et al. 2014). Members (M) reserve library
books (B) online and then come in person to pick them up from the PR2 (R). The PR2 manages the order placed for the books
by recursively lending all the books ordered until there are no more books to lend—in which case it will stop the recursion
by choosing method m2—and then taking payment from the member. Books can either be made accessible on the table
(makeBkAcc) via method m3, or displayed to the member and then given to his/her hand via methods m5 and m4. Action say
involves speaking out the title (T) of the book.

Interaction, in a multi-agent setting consisting of multiple
humans and robots. This was based on two main extensions
to HATP: the ability to handle user-supplied “social rules”
that specify what is appropriate behaviour for the agents in
the domain; and interleaving the HATP planning algorithm
with geometric planning algorithms from the robotics com-
munity. We have also presented the advantages of the user-
friendly syntax and semantics of HATP using our own en-
coding of the Dock Worker Robot domain described in (Nau,
Ghallab, and Traverso 2004).

There has also been some initial efforts toward extend-
ing HATP to support separately modelling the beliefs of the
different agents in the domain (Alami et al. 2011). This al-
lows reasoning about what the different agents know, includ-
ing finding conflicting beliefs, and synchronising beliefs by
planning to notify agents when there are inconsistencies be-
tween their beliefs. Other interesting work on HATP that is
currently underway is formalising its domain representation
language to show its relation with more traditional represen-
tations such as that used by the SHOP planner (Nau et al.
1999). Indeed, this involves developing a mapping from the
syntax and notions of HATP to PDDL-like syntax and no-
tions.

In terms of the link between HATP and the GTP, it would
be interesting to compare the two different combined back-
tracking strategies. As the authors in (de Silva et al. 2014)
have stated, this would require completing the implementa-
tion of the system presented in (de Silva, Pandey, and Alami
2013) so that it may be compared empirically with the sys-

tem in (de Silva et al. 2014). An analytical evaluation would
also be useful to understand in what situations/domains one
combined backtracking approach should be favoured over
the other. Finally, modifying HATP to interleave planning
with execution to make HATP more “responsive” to changes
in the environment would make it even more suitable for
real-world robotics applications (de Silva et al. 2014).

References
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand,
F. 1998. An architecture for autonomy. In Internatonal Jour-
nal of Robotics Research, Special Issue on Integrated Archi-
tectures for Robot Control and Programming, volume 17,
315–337.
Alami, R.; Warnier, M.; Guitton, J.; Lemaignan, S.; and
Sisbot, E. A. 2011. When the robot considers the hu-
man... In Proceedings of the 15th International Symposium
on Robotics Research.
Alili, S.; Alami, R.; and Montreuil, V. 2009. A Task Plan-
ner for an Autonomous Social Robot. In Distributed Au-
tonomous Robotic Systems 8, 335–344. Springer Berlin Hei-
delberg.
de Silva, L.; Pandey, A. K.; Gharbi, M.; and Alami, R. 2013.
Towards combining HTN planning and geometric task plan-
ning. In RSS Workshop on Combined Robot Motion Plan-
ning and AI Planning for Practical Applications.
de Silva, L.; Gharbi, M.; Pandey, A. K.; and Alami, R.
2014. A new approach to combined symbolic-geometric

PlanRob 2014 Proceedings

26

backtracking in the context of human-robot interaction. In
ICRA, To Appear.
de Silva, L.; Pandey, A. K.; and Alami, R. 2013. An inter-
face for interleaved symbolic-geometric planning and back-
tracking. In IROS, 232–239.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.;
and Nebel, B. 2009a. Semantic Attachments for Domain-
Independent Planning Systems. In ICAPS, 114–121.
Dornhege, C.; Gissler, M.; Teschner, M.; and Nebel, B.
2009b. Integrating Symbolic and Geometric Planning for
Mobile Manipulation. In IEEE International Workshop on
Safety, Security and Rescue Robotics, 1–6.
Erol, K.; Hendler, J.; and Nau, D. 1994. UMCP: A sound
and complete procedure for hierarchical task-network plan-
ning. In International Conf. on AI Planning Systems, 249–
254.
Fleury, S.; Herrb, M.; and Chatila, R. 1997. Genom: A Tool
for the Specification and the Implementation of Operating
Modules in a Distributed Robot Architecture. In IROS-97,
842–848.
Fong, T.; Nourbakhsh, I. R.; and Dautenhahn, K. 2003.
A survey of socially interactive robots. Robotics and Au-
tonomous Systems 42(3-4):143–166.
Guitton, J.; Warnier, M.; and Alami, R. 2012. Belief Man-
agement for HRI Planning. In Workshop on Belief change,
Non-monotonic reasoning and Conflict resolution.
Ingrand, F. F.; Chatila, R.; Alami, R.; and Robert, F. 1996.
PRS: A High Level Supervision and Control Language for
Autonomous Mobile Robots. In ICRA, 43–49.
Karlsson, L.; Bidot, J.; Lagriffoul, F.; Saffiotti, A.; Hillen-
brand, U.; and Schmidt, F. 2012. Combining task and path
planning for a humanoid two-arm robotic system. In Work-
shop on Combining Task and Motion Planning for Real-
World Applications, 114–122.
Klein, G.; Woods, D. D.; Bradshaw, J. M.; Hoffman, R. R.;
and Feltovich, P. J. 2004. Ten Challenges for Making Au-
tomation a “Team Player” in Joint Human-Agent Activity.
IEEE Intelligent Systems 19(6):91–95.
Lagriffoul, F.; Dimitrov, D.; Saffiotti, A.; and Karlsson, L.
2012. Constraint propagation on interval bounds for dealing
with geometric backtracking. In IROS, 957–964.
Nau, D.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In IJCAI, 968–
973.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, W.;
and Wu, D. 2003. SHOP2: An HTN Planning System. In
JAIR, volume 20, 379–404.
Nau, D.; Ghallab, M.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
Pandey, A. K.; Saut, J.-P.; Sidobre, D.; and Alami, R.
2012. Towards planning human-robot interactive manipula-
tion tasks: Task dependent and human oriented autonomous
selection of grasp and placement. In IEEE RAS EMBS Inter-
national Conference on Biomedical Robotics and Biomecha-
tronics, 1371–1376.

Siméon, T.; Laumond, J.-P.; and Lamiraux, F. 2001.
Move3D: a generic platform for path planning. In 4th Inter-
national Symposium on Assembly and Task Planning, 25–
30.
Tate, A. 1976. Project Planning Using a Hierarchic Non-
linear Planner. In Department of AI Research Report No.
25, University of Edinburgh.
Warnier, M.; Guitton, J.; Lemaignan, S.; and Alami, R.
2012. When the robot puts itself in your shoes. Managing
and exploiting human and robot beliefs. In RO-MAN, 948–
954.

PlanRob 2014 Proceedings

27

A Cooperative Model-based Control Agent for
a Reconfigurable Manufacturing Plant

Stefano Borgo, Amedeo Cesta, Andrea Orlandini,
Riccardo Rasconi, Marco Suriano
CNR – National Research Council of Italy

Institute for Cognitive Science and Technology
{name.surname}@istc.cnr.it

Alessandro Umbrico
Roma TRE University

Department of Engineering
alessandro.umbrico@uniroma3.it

Abstract
This paper presents an overview of the use of planning and
execution techniques in nodes of a Reconfigurable Trans-
portation Systems (RTSs). A manufacturing plant is here con-
ceived as multiple independent modules to implement alter-
native inbound logistic systems’ configurations. To support
this capability of the robotic hardware, an integrated solu-
tion is proposed using timeline-based planning and control
responsible for managing both the node regular activities and
reconfiguration activities. A cooperation layer dedicated to
multi-robot coordination completes the overall architecture.

Introduction
The capability of production environment to dynamically
cope with changes of the production requirements is seen
as one of the key enabling factors for highly automated
and competitive production systems (Wiendahl et al. 2007;
Terkaj, Tolio, and Valente 2009). In this regard, Reconfig-
urable Manufacturing Systems (RMSs), see e.g., (Crawford
et al. 2013; Ruml, Do, and Fromherz 2005; Do, Ruml, and
Zhou 2008), are endowed with a set of reconfigurability ca-
pabilities that can be related either to the single component
of the system (e.g., a mechatronic device) or to the entire
production cell and system layout. The role of such dynamic
capabilities is to implement the correct system reconfigura-
tion in response, for instance, to a change of the produc-
tion demand. Such fast adaptation capabilities entail that the
control architecture integrates knowledge-based and modu-
lar features, so as to allow for high reconfigurability from
both a reasoning and mechanical standpoint.

This work describes the mid-term outcomes of the
GECKO project. GECKO (Generic Evolutionary Control
Knowledge-based mOdule) proposes an adaptive control in-
frastructure in which the production environment is mod-
eled as a community of autonomous, self-declaring, col-
laborating GECKO modules encapsulated in the physical
mechatronic equipment. Each GECKO node gathers the in-
formation from the environment, reproduces an abstraction
of the shop-floor and interprets the production dynamics.
This potentially allows evaluating, configuring and tuning
the GECKO capabilities on the requirements by automati-
cally activating the control functions and implementing re-
source production and energy efficiency optimization strate-
gies over time.

To this aim, three main lines of research are active within
the GECKO project: a distributed auction-based approach to

part routing; a timeline-based control approach for super-
visory node control; an ontology-based approach aiming at
providing a viable connection between manufacturing con-
cepts and control models.

This paper offers first an overview of the project then de-
scribes how P&S techniques are integrated with other fea-
tures to serve the GECKO aims. The rest of the paper is sub-
divided in three parts: (1) a relevant case study in the man-
ufacturing environment; (2) the comprehensive GECKO ap-
proach, and (3) the deployment of a state-of-the-art Planning
& Execution system to address the project requirements on
dynamic reconfiguration.

A Reconfigurable Shop-Floor Plant
The Pilot Case of the GECKO project is an automatic manu-
facturing system for printed circuit boards (PCB) reworking
– see the birds eye diagram is presented in Figure 1. The ob-
jective of the system is to analyze defective PCBs, automati-
cally diagnose their defects and, depending on the gravity of
the malfunctions, attempt an automatic repair of the PCBs
or send them directly to the shredding.

M1

M2

M5

M6

M7

M4

S1

M2
S2M3

M5

M6

M4

Figure 1: PCB Plant Shop Floor

More specifically, the system in Figure 1 contains 6 ma-
chines (M1, ..., M6) and a conveyor system that connects all

PlanRob 2014 Proceedings

28

the machines. M1 is the loading/unloading cell, and repre-
sents both the entry point of all the parts (i.e., the PCBs) that
have to be worked, and the exit point of all the PCBs that
have undergone automatic successful repair. Machines M2
and M5 are manual repair stations, while machine M6 is an
automatic repair station. Machine M4 is the in-circuit Diag-
nose&Testing station, and finally M3 is the shredding sta-
tion, representing the exit point of all the PCBs either found
damaged beyond repair at M2, or whose repair did not solve
the malfunction.

All the stations are connected by means of a recon-
figurable transportation system, composed of mechatronic
components (i.e., transport modules), integrating dedicated
sensors and actuators, as well as the related control system.
Figure 2(a) provides a picture of a transport module. Each
transport module is composed of three transportation units.
The units belong to two major categories: unidirectional
and bidirectional units; specifically the bidirectional units
enable the lateral movement (i.e., cross-transfers) between
two transportation modules. More specifically, each trans-
port system module can support two main (straight) transfer
services and one to many cross transfer services. Figure 2(b)
depicts two possible configurations as an example.

F

LC
1

RC
1

B

F B

C
O

N
FI

G
U

R
A

TI
O

N
 2

C
O

N
FI

G
U

R
A

TI
O

N
 1

LC
1

RC
1

LC
2

RC
2

(a) (b)

Figure 2: (a) A transport module; (b) Transport module transfer
services

Configuration 1 supports the forward (F) and backward
(B) transfer capabilities as well as a specific position (i.e.,
the bidirectional transportation unit) with left (LC1) and
right (RC1) cross transfer capabilities. Configuration 2 ex-
tends Configuration 1 by the integration with a further bidi-
rectional transportation unit (LC2 and RC2). The maximum
number of bidirectional units within a module is limited just
by its straight length, defined during the transport system
module design phase, considering the number of pallet po-
sitions which are requested within a module (three, in this
particular case).

The transport system modules can be connected back to
back to form a desired conveyor layout, such as the one
depicted in Figure 1, in a flexible and agile fashion. The
PCBs manufacturing process requires PCB to be loaded on
a fixturing system (pallet) in order to be transported to and
processed by the machines. The transportation system is
to move one or more pallets (i.e., a fixed number of pal-
lets can simultaneously traverse the system) and each pallet
can be either empty or loaded with a PCB to be processed.
The transportation system plays two major tasks within the
shop-floor: (i) the transportation of pallets with PCB to be
processed by the system’s machines and (ii) the transporta-

tion of pallets with PCB as an interoperation buffer. Figure
3 presents an example of routing configuration involving 9
transportation modules.

Figure 3: A possible routing configuration from 9 transportation
modules

Such a flexible transportation system generally allows for
a number of possible routing solutions for each single pallet
which is associated to a given destination. Depending on the
part type, and especially on the response given by the diag-
nosis machine M4 after the analysis of the current PCB, the
pallet carrying the part will be assigned a different destina-
tion (e.g., the shredding station M3, or the loading/unloading
cell M1), and this information will be made available only
at execution time.

A GECKO Control Module
The GECKO production environment is composed by a com-
munity of control modules encapsulated in the physical
mechatronic equipment that persistently communicate, co-
operate and negotiate to guarantee the production goals.
Each GECKO module operating in the shop-floor is equipped
with a suitable I/O communication system capable of sens-
ing the environment (i.e., data from sensors, other possibly
connected entities, etc.) as well as publishing its own iden-
tity and capabilities, therefore providing a suitable informa-
tion for identifying the production context and communi-
cating its presence to the external world. Then, in the case
study introduced above, every transportation module and ev-
ery working machine composing the shop floor plant repre-
sents a GECKO module.

GECKO entities receive the information from the exter-
nal environment and will interpret such information, thus
inferring the actual production context (tasks and produc-
tion goals). Consequently, they automatically recognize, ne-
gotiate and select, and configure the internal settings, func-
tionalities and status. Their real-time controllers monitor the
execution of the production processes and tasks with respect
to both the dynamic status of the resources/modules of the
transportation module and the general production context.
After tasks completion, the entities communicate the suc-
cessful execution to other entities, thus synchronizing them-
selves with the shop-floor environment.

To this aim, a layered control architecture has been de-
signed to implement a cooperative model-based control
agent for a reconfigurable manufacturing plant (Borgo et al.
2014). The architecture is defined as the composition of four
interacting layers: a Coordination Layer, to manage inter-
module communication and information exchange; a Pro-
duction Layer, to implement a real-time controller to mon-

PlanRob 2014 Proceedings

29

itor the execution of production tasks; a Control layer, to
provide low-level functionalities; an Ontology-based layer,
to enrich the module with knowledge-based capabilities.

Module	 Knowledge	 Base	

GECKO	 Control	 Module	

Coordina2on	 Layer	

Produc2on	 Layer	

Control	 Layer	

Communica3on	 Manager	

Part	 Rou3ng	 Manager	

Flexible	 P&S	 Controller	

Execu3ve	 System	

Control	 So@ware	 	

Mechatronic	 Module	

Configuration Information & Part Requests
Shared Communication Channel

Shop	 Floor	
Models	

P&S	
Models	

Control	
Procedures	
Model	

Ontology-‐Based	 Layer	

Factory	
Context	

Shop	 Floor	
Context	

Performance	
Context	

Module	
Context	

Topological	
Context	

Figure 4: The GECKO Control Module Layered Architecture

Coordination Layer
One of the more crucial objective of the GECKO project is to
realize a community of independent and self-contained mod-
ules able to cooperate together with the aim of managing the
parts routing. In this regard, each module participates to a
distributed reasoning process in order to dynamically define
the work flow of the production environment. Then, a Coor-
dination Layer has been designed in order to constitute the
architectural element responsible to make the module able
to interact with other modules as well all to participate in
the distributed routing process.

The Coordination Layer is composed by two main com-
ponents: a Communication Manager, in charge of provid-
ing an interface through a communication channel shared
among all the GECKO control modules as well as imple-
menting the module communication facility; a Part Routing
Manager, responsible for negotiating with other modules the
routing of working parts and pallets.

In (Carpanzano et al. 2014), a description of the specific
work on the part routing dynamic policies is given. In par-
ticular, a distributed part routing approach inspired by auc-
tioning techniques is proposed. That solution constitutes a
reasoning system embedded in the GECKO modules in order
to give them the autonomy to decide whether to take part
in a certain transportation path and/or negotiate the routing
policies, depending on the specific goals, while maintaining
full awareness of the surrounding production environment.

With respect to the GECKO case study, the distributed rea-
soning process is started every time a new pallet enters the
shop floor. The goal of the distributed process is to com-
pute the pallet’s path toward all the destinations according
to the pallet’s work-plan (i.e., the sequence of machine the
part should visit to be properly worked). In this process ev-
ery module participates in the definition of the path by mak-
ing an evaluation of the feasibility of receiving that pallet.

That is, every involved module computes a measure of the
“suitability” of taking charge of the pallet and the path of
the pallets is decided according to these values. The Coor-
dination Layer implements such an assessment by reasoning
on the Shop-Floor model and querying the production layer
which provides timeline-based representation functionalities
(see later) by means of which the module is able to reason
about time and physical constraints.

Production Layer
The Production Layer is responsible for real-time control
and to adapt the module’s features to the production needs.
It is responsible to make the module able to actually par-
ticipate to the work flow of the shop floor, i.e., it interacts
with the Control Layer by dispatching commands and gath-
ering feedbacks in order to safely execute the planned activ-
ities. For this purpose it realizes the GECKO agent’s control
loop by integrating an APSI-TRF planner, called EPSL, in-
tegrated with a suitable executive system that will be further
described in the next sections. The planner synthesizes the
commands to dispatch at the Control Layer by reasoning on
the set of high-level requests which is incrementally built by
the Coordination Layer during the module life cycle. A more
detailed description of the modules composing the Produc-
tion Layer is provided later in the paper.

Control Layer
The Control Layer is the composition of a Control Soft-
ware and a Mechatronic Module (i.e., either a Machine or
a Transport Module). The GECKO control software is based
on a distributed approach supported by an IEC61499 stan-
dard reference model. Each mechatronic module is then rep-
resented by a dedicated hardware resources virtually repre-
sented by a software function block encapsulating the mod-
ule control logic. The GECKO control software has to be ca-
pable of dynamically changing their reactive behavior fol-
lowing the mechatronic system reconfigurations and pro-
vide low level failures detection. The automation services
embedded within each software function block has to be
activated/disactivated when a mechatronic module is inte-
grated/removed from the automation system due to fore-
seen ad unforeseen events (e.g., production reconfigurations,
system failures, maintenance). In order to support such on-
line adaptation, dedicated software mechanisms have been
designed and developed in a prototype version within the
GECKO project. The description of such layer is out of the
scope of the paper.

Ontology-based Layer
The GECKO project aims to develop an adaptive control in-
frastructure for manufacturing based on modular elements
and distributed reasoning. A flexible and adaptable environ-
ment as the one foreseen in GECKO must be monitored and
controlled within the system and by the system’s elements
via a shared and suitably rich language. Two aspects are par-
ticularly important in this perspective.

The first amounts to ensure that all the modules have ac-
cess to the types of information relevant for their (actual
and expected) functioning within the system. To this end,
in GECKO the overall information system is based on the
ontological analysis of the communication needs among the

PlanRob 2014 Proceedings

30

modules. The aim of this analysis is to provide a coherent
classification of data into information types and to ensure
that the types cover the spectrum of relevant information.

The second aspect at the center of information manage-
ment within the GECKO perspective is the adoption of an
articulated information structure that allows each GECKO
module to reliably interpret the information it receives and
to coherently and consistently produce information to dis-
tribute.

In this regard, the idea of using ontology aims at defining
a mechanism for dynamically generate a high-level descrip-
tion of the module by using a shared language. Thus, the
Ontology-based Layer in Fig. 4 is responsible to use such
a language to build the Knowledge Base which captures all
the structural, performance and production information con-
cerning the mechatronic device. Then, from the control per-
spective, the Production Layer is able to exploit Knowledge
Base’s information in order to dynamically infer the module
actual status and build a model capturing all the information
required to safely/effectively control the mechatronic mod-
ule. Therefore, every time the Knowledge Base is updated,
also the control model must be updated.

Then the GECKO Knowledge Base is to represent differ-
ent types of information, like machine capacities, product
classification and operational time for transportation, a clear
and efficient classification of the information of interest can-
not be built ad hoc without jeopardizing the flexibility and
adaptability of the overall system. The adopted approach in
facing such problem leads to disregard systems of classifica-
tion based on roles (classification based on time constraints
is particularly interesting in dealing with emergency situa-
tions but is too limited in standard situations) or on event
evolution (classification by time is particularly interesting in
dealing with unexpected changes or emergencies) and to fo-
cus first of all on the information content. Here, we briefly
describe the GECKO approach to information modeling that
introduces a global information structure based on discrimi-
nating contexts.

Knowledge Based and Contexts
The use of contexts in the GECKO framework is to filter in-
formation, as used at the shop floor level, according to a
classification based on ontological principles. This means
that contexts are exploited to model the factory along two
perspectives: entity and data classification provided by the
ontology on the one hand, and role of information provided
by the contexts on the other. An analysis has been performed
to identify relevant information flow and types of informa-
tion that are potentially needed in a generic GECKO factory
structure, and applied the methodology for ontology analy-
sis used to develop DOLCE (Borgo and Masolo 2009). This
led to identify types of information and how they can affect
the reasoning and the activities of a given GECKO module.

Our analysis, which is carried out from the viewpoint
of a GECKO module, suggested to separate three types of
information: external, internal and topological. The ‘exter-
nal’ contexts are about information the GECKO module can-
not control nor modify. This amounts to three distinct sub-
contexts: the shared language in the system, the elements ex-
isting in the systems, and the system performance. The ‘in-
ternal’ context collects the information the GECKO element

has about itself and its own capacities to act and change.
Finally, the ‘topological’ context provides information on
the relationship between the GECKO element at stake and
its neighbour modules (and other agents), thus providing a
local view of the topological setting across the agents.

External contexts. Since the GECKO modules are consid-
ered as constituting an integrated and coordinated shop floor,
it is fundamental to ensure they understand and use a com-
mon language to exchange information. For this reason, one
type of context is dedicated to the factory as a whole: Fac-
tory language context (FLC). This context is constituted by
the language that all the modules of the factory must use for
public communications. In particular the language provides
vocabulary, rules and semantics to establish primarily func-
tionalities and capacities that a modules can recognize and
talk about; temporal and topological information that can be
collected and shared, requests of actions and committed ac-
tions (shared plans).

A second type of external contexts collects information
about the status of the factory at run-time: Factory Shop
Floor context (FSC). This context is constituted by informa-
tion on the elements (modules and products) presently at the
shop floor and the requests for action or availability made or
received by a GECKO module.

The last type of external contexts is related to the con-
straints and parameters that apply to the performance of the
factory as a whole: Factory performance context (FPC). This
context is constituted by information related to efficient use
of the factory, productivity, energy consumption, throughput
and other general constraints.

Internal context. In contrast to the external contexts, this
type is dedicated to the local view of a single module.
This context collects information which is about the inter-
nal structure and the capacities of the given module: Mod-
ule internal context (MIC). This context is constituted by
information about the single module (its identifier), its ac-
tual capacities (what it can possibly do) and, for each ca-
pacity, the time it takes to perform it plus auxiliary informa-
tion (e.g., it can continuously perform action a for at most
5 min without break; it can perform the action on piece of
min/max size/weight xyz etc.), the possible configurations
and attributions it can undergo, how long it takes to actu-
ate the change, possible limitations in the changes, timing
for maintenance, when the next maintenance is scheduled,
information on partial or total malfunctioning of some fea-
tures and so on.

Topological context. Finally, each GECKO module is con-
nected to other modules, its neighbors. The information
about actual connections, coordination activities and com-
mitments across neighbors (e.g., their agreed local sched-
ules) is collected by the topological context: Module topo-
logical context (MTC).

In GECKO, we are currently generating a suitable ontol-
ogy based on the set of contexts defined above and investi-
gating ways for connecting such ontology and the timeline-
based models the Production Layer uses to control a GECKO
module. This is currently a challenging research goal we are
pursuing and, here, we just give few examples of possible
interesting connections.

PlanRob 2014 Proceedings

31

For instance, the Module Internal Context describes the
module internal composition, the set of transportation unit
that logically compose the transportation module, their type,
and module possible configurations, capabilities and timing
information. This information can be exploited in order to
define the set of state variables and components compos-
ing the planning domain and their possible states. Indeed,
this information completely describes the module’s phys-
ical composition together with its physical and temporal
constraints. Similarly, the Functional Context describes the
high-level functionalities the module exposes to other mod-
ules in the shop floor. These functionalities represent oper-
ational and/or maintenance activities (high-level requests) a
module is able to perform during its lifecycle within the pro-
duction environment. An high-level request can be decom-
posed in a set of actions the module has to perform in order
to satisfy the request. Therefore this context describes de-
pendencies and constraints that hold among module’s com-
ponents that guarantee a safe and successful completion of
these activities. We can exploit this context to define the
high-level input state variable whose values represent the
requests received by the module over time. Moreover we can
extract the set of rules and constraints that define the model
synchronizations that allow the planner to safely synthesize
the set of actions needed to satisfy the planning goals (i.e.,
the requests received by the planner).

A Flexible P&S Controller

To implement the Production Layer of a GECKO module,
a timeline-based Planning and Scheduling (P&S) approach
has been used aiming to design a flexible supervision mod-
ule for GECKO. The timeline-based approach has been in-
troduced in (Muscettola 1994) and has demonstrated suc-
cessful in a number of space applications (Muscettola 1994;
Jonsson et al. 2000; Cesta et al. 2007).

The modeling assumption underlying this approach is in-
spired by the classical Control Theory: the problem is mod-
eled by identifying a set of relevant components whose
temporal evolutions need to be controlled to obtain a de-
sired behavior. Components are primitive entities for knowl-
edge modeling, and represent logical or physical subsystems
whose properties may vary in time. In this respect, the set
of domain features under control are modeled as a set of
temporal functions whose values have to be decided over a
time horizon. Such functions are synthesized during prob-
lem solving by posting planning decisions. The evolution of
a single temporal feature over a time horizon is called the
timeline of that feature. In particular, for the purpose of this
paper multi-valued state variables are considered as the ba-
sic type of time varying features (Muscettola 1994). As in
classical control theory, the evolution of those features are
described by some causal laws which determine legal tem-
poral evolutions of timelines. For the state variables, such
causal laws are encoded in a Domain Theory which deter-
mines the operational constraints of a given domain. Task
of a planner is to find a sequence of control decisions that
brings the variables into a final set of desired evolutions (i.e.,
the Planning Goals) always satisfying the domain specifica-
tion.

APSI Timeline Representation Framework. The APSI-
TRF is a software development framework for planning and
scheduling, developed by our group within the Advanced
Planning and Scheduling Initiative (APSI) promoted by the
European Space Agency (ESA). The framework supports
the development effort by providing a library of basic plan-
ning and scheduling domain independent solvers and a uni-
form representation of the solution database. It allows to
represent several planning and scheduling concepts in the
form of timelines. Indeed, components such as multi-valued
state variables and resources like those commonly used
in constraint-based schedulers provide enough modelling
power for a good set of planning and scheduling needs.

It is worth noting that the APSI-TRF is not a planner per
se but a development environment for planners and sched-
ulers. Therefore to create a complete application it is nec-
essary to insert a further module (a Problem Solver) on top
of the domain representation in the Domain Layer. Such ad-
ditional module is responsible for either driving a generic
search or implementing a specific constructive heuristic for
solving the problems at hand.

The EPSL planner. Aiming at the definition of a new
P&S solver on top of the APSI-TRF, enhancing the defi-
nition of different general purpose solvers as well as pre-
serving some interfaces with respect to the original tool, a
research result achieved in GECKO was the definition of the
Extensible Planning and Scheduling Library (Cesta, Orlan-
dini, and Umbrico 2013) (EPSL).

The main goal of EPSL is to provide a planning environ-
ment in which it is possible to easily define new timeline-
based planners, customized for the particular problem to ad-
dress. The EPSL key point is the “planner-interpretation”
which defines a timeline-based planner as the composition
of several independent modules combined together accord-
ing to a set of interfaces defined within the environment.
EPSL, defines a planner as the tuple 〈P, S, H, E〉. P is the
problem to solve. S is the strategy used to manage the search
space fringe. The strategy S can be choosen among several
built-in options (A*, DFS, BFS, etc). H is the heuristc ex-
ploited to analyze the current plan p and to extract the “more
relevant” (according to H) flaw to be solved. A flaw repre-
sents either a goal or a threat that must be solved in order to
find a valid solution plan. E is the resolver engine encapsu-
lating the reasoning capabilities of the EPSL framework. E
is composed by several solving algorithms, called resolvers,
each of which is used to solve a particular type of flaw dur-
ing any plan refinement.

The GECKO Planning Problem
The GECKO project represents an effort for developing a
software module which is able to control a highly reconfig-
urable mechatronic device by dynamically adapting device’s
features to the specific needs of the production environment.
To reach these challenging objectives, our idea is to combine
the capabilities coming from two distinct worlds, the world
of Ontology and the world of Planning. With Ontology we
want to define a semantic for the information that describe
device’s features, e.g., device physical composition, device
functionalities, etc. With Planning we want to exploit this
structured information to automatically infer actual capabil-
ities of the device and to dynamically control its features in

PlanRob 2014 Proceedings

32

order to satisfy the production flow requests. As anticipated
in the description of the reconfigurable shop-floor we are
implementing, the GECKO project objective, w.r.t the case
study described above, is to control a single Transportation
Module (see Figure 2) for transporting pallets within a man-
ufacturing plant (see Figure 1). The plant can be seen as a set
of rails on which pallets are transported from one working
machine to another. A Transportation Module is a compo-
nent of these rails, it is responsible to actually move a pallet
through the plant.

A Transportation Module (TM) can be seen as logically
composed by one or more unit, called Transportation Unit
(TU), that represent pallet “locations” inside a module dur-
ing the transportation. A Transportation Unit can hold only
one pallet at a time. The module is endowed with a main
conveyor by means of which the module can transport pal-
lets in FRONT and BACK directions (the module’s base ex-
changing directions) and exchange them with other modules
in the plant. In order to support additional exchanging di-
rections, such as LEFT and RIGHT, some modules may be
endowed with a special type of Transportation Unit, called
Cross Transfer.

This special unit is endowed with an additional dedicated
conveyor which allows the unit (and the module) to support
additional transportation directions (i.e. LEFT and RIGHT).
However a Cross Transfer Unit must be properly configured
in order to transport the pallet toward the desired direction.
A module has to switch to a proper configuration in order
to transport a pallet towards FRONT or BACK direction,
namely, it has to set all its Cross Transfer Unit in DOWN
position in order to let them be able to use the main con-
veyor. Similarly, a module has to set a Cross Transfer Unit
in UP position in order to transport a pallet toward an ad-
ditional direction (i.e., LEFT or RIGHT). A Cross Transfer
Unit can use its dedicated conveyor only in UP position.

The types of Transportation Unit composing a Trans-
portation Module determine both the set of possible work-
ing configuration of the module and the module’s func-
tionalities. Let us take as example a module composed
only by “simple” Transportation Units (i.e. without Cross
Transfer Units). Such a module will be able to transport
pallets by means of its main conveyor only (i.e., FRONT
and BACK transportation directions only supported). Con-
versely, a module with one Cross Transfer Unit at least, will
be able to transport pallets towards LEFT and RIGHT direc-
tions also, if properly configured.

A manufacturing plant can be composed by different
types of modules where each module can have a different
type and number of Transportation Units. In this context,
we want to dynamically recognize the actual capabilities and
functionalities of a module in order to produce a general de-
scription of the module (an abstract model). The planner de-
liberates on this model in order to adapt module’s features to
the production flow. When a module receives a request for
transporting a pallet, the planner, given a consistent descrip-
tion of the module, is responsible to synthesize and execute
the sequence of actions that allow to successfully satisfy the
request.

Figure 5 illustrates the abstract representation of a generic
Transportation Module we have taken into account as a case
study. Thus, according to the above description of a module

TU1	 TU2	 TU3	

L1	

F1	 B3	

R1	 R2	 R3	

L2	 L3	

Figure 5: The GECKO Module Case Study

in the manufacturing plant of Figure 1, it is possible to iden-
tify the following elements: A main conveyor which allows
to move pallets forward and backward through the module,
the dashed red line in Figure 5; A set of ports {F1, B3, L1,
L2, ..., R1, R2, ...} that allow the module to exchange pallets
externally with other modules, the orange blocks in Figure
5; A set of Transportation Unit {TU1, TU2, TU3, ...} the
module has to synchronize in order to safely transport pal-
lets. In Figure 5 all TUs composing the module are Cross
Transfer Units

A Timeline specification for the GECKO planning prob-
lem. The reasoning process of the planner relies on an ab-
stract representation of the physical module to control which
is represented by means of a timeline-based model. The
model has to capture all (and only) the constraints and fea-
tures of the system that are relevant to the control perspec-
tive. Therefore, according to the abstraction given in Figure

	 	 	 TM	 Ac&vity	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 TU	 Ac&vity	

Shi.ing	 Idle	

	 	
	 	 	 	 	 	 	 	 	 TU	 Cross	 	
	 	 	 	 	 	 	 	 Posi&on	 Mov	

Up	

Down	 Up	

Mov	
Down	

TU1

	 	 	 	 	 	 	 	 	 	 	 TU	 Ac&vity	

Shi.ing	 Idle	

	 	
	 	 	 	 	 	 	 	 	 TU	 Cross	 	
	 	 	 	 	 	 	 	 Posi&on	 Mov	

Up	

Down	 Up	

Mov	
Down	

TU2

	 	 	 	 	 	 	 	 	 	 	 TU	 Ac&vity	

Shi.ing	 Idle	

	 	
	 	 	 	 	 	 	 	 	 TU	 Cross	 	
	 	 	 	 	 	 	 	 Posi&on	 Mov	

Up	

Down	 Up	

Mov	
Down	

TU3

Transport	
Pallet	

Request	

Transport	
Pallet	
Ack	

Idle	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Transporta&on	 Engine	 	 	 	 	 	 	 	
On	 Off	

TM

Figure 6: Transportation Module State Variables

5 the TM supports the following transportation directions
{F1, B3, L1, L2, L3, R1, R2, R3} where the number near the
direction label represents the Transportation Unit associated.
It is possible to identify several State Variables defining the
physical constraints of the module, see Figure 6.

The Transportation Module Activity State Variable mod-
els the transportation requests (high-level goals) received by
the module over time. The blue Automata depicted in Fig-
ure 6 defines the transition constraints among State Vari-
able values: Idle(), no request to process; TransportPalletRe-

PlanRob 2014 Proceedings

33

quest(?pid, ?in, ?out), the module receives a request to trans-
port the pallet ?pid entering the module from port ?in, to-
wards port ?out. The ports combination identifies the trans-
portation direction; TransportPalletAck(?pid, ?in, ?out), the
modules has satisfied a transportation request previously
received. The Transportation Unit Activity State Variable
models the possible states of a TU within the module lifecy-
cle. The idea is to model a single TU like an atomic TM, i.e.
a TM without TUs. The violet Automata depicted in Figure
6 defines the transition constraints among State Variable val-
ues: Idle(), no pallets are traversing the transportation unit;
Shifting(?pid, ?in, ?out), a pallet ?pid is traversing the trans-
portation unit from ?in to ?out. This state is equivalent to
Transport Pallet Request(?pid, ?from, ?out) state of a TM.
It represents that a pallet is traversing the TU from ?in to
?out. The parameters ?in and ?out defines loca ports that
“logically” allow TUs exchanging pallets. The Transporta-
tion Unit Cross Position State Variable models the configu-
ration of the transportation unit’s cross-transfer engine. The
red Automata of Figure 6 defines the transition constraints
among State Variable allowed values: Down(), the unti’s
cross-transfer is set to be in down position; MovingUp(), the
unit’s cross-transfer is changing its configuration from down
to up; Up(), the unit’s cross-transfer is set to be in up po-
sition; MovingDown(), the unit’s cross-transfer is changing
its configuration from up to down. The Transportation En-
gine State Variable models the module’s transportation en-
gine status and its movement directions (its configurations).
The green Automata depicted in Figure 6 defines the transi-
tion constraints among State Variable allowed values: Off(),
the conveyor is not moving On(?dir), the conveyor is mov-
ing toward direction ?dir. The parameter ?dir identify the
transportation direction of a pallet.

State Variables define constraints guiding the timeline
building process. They describe the set of values the state
variable can assumes, i.e. values which can be on the com-
ponent’s timeline, and the set of state transitions allowed,
i.e. the value sequences admitted on the component’s time-
line (legal behaviours). However, they do not describe how
these components work together.

State Variables describe the component types of the trans-
portation module and the constraints that should be satisfied
in order to correctly use a single instance of these compo-
nent types. Further constraints are needed in order to coordi-
nate the components and to plan a pallet request (i.e., satisfy
a goal). Thus, when a module receives a request, it has to
suitably synchronize all its components (i.e. its Transporta-
tion Units and conveyors) in order to satisfy such requested
operation. And to model such information, additional con-
straints, called synchronizations are needed to define tempo-
ral constraints among timeline’s values in the form of Allen’s
Interval algebra (Allen 1983).

A synchronization applies to a component’s decision in
order to specify conditions that must hold to avoid inconsis-
tencies with respect to other component behaviors. Figure 7
illustrates the timeline-based plan resulting from a request
for transporting a pallet from F1 to B3 (w.r.t. the model in
Figure 5). The dashed arrows represent temporal constraints
among values introduced applying synchronizations in or-
der to guarantee a consistent behaviour of the overall mod-
ule. Such synchronizations are to guarantee that functional

Transport	
Pallet(0,	 F,	 R3)	

Transport	
PalletAck(0,	 F,	 R3)	 TM

Shi:ing(0,	 N,	 S)	 TU1

Shi:ing(0,	 N,	 S)	
TU2

Shi:ing(0,	 N,	 E)	
TU3

On(BACKWARD)	 Main
Engine

START-START

END-START

MEETS

MEETS
STARTS-
DURING

STARTS-
DURING

STARTS-
DURING

ENDS-
DURING ENDS-

DURING

Figure 7: A Timeline-based plan for a GECKO module

requirements on one or more timelines (the target of the
synchronization) hold when the “origin” timeline assumes a
particular value (the reference value of the synchronization).

The constraints depicted in Figure 7 belong to the same
synchronization and define the values module’s component
must assume during pallet traversal. When a module re-
ceives a request for transporting a pallet from F1 to B3, the
Transportation Unit - TU1 - must be set in Shifting() state, it
means that the unit is ready to receive the pallet from nearby
module and send the pallet to TU2.

So, as soon as Shifting() state ends on TU1, another Shift-
ing() state starts on TU2 and the same happens between TU2
and TU3. This means that when a pallet is traversing from a
TUx to a TUy, both must be ready to respectively send and
receive the pallet. Every time a Shifting() state occurs on a
TU, the associated temporal interval must starts and ends
during the On() state of the module’s main conveyor. That
is, while TUs are exchanging pallets the main conveyor must
be turned on in order to actually move the pallet through the
module.

Moreover, looking again at Fig. 7, it is possible to notice
that the value On() of the main conveyor’s timeline has a
dashed border. It means that the pallet traversal may require
more than one On() value, i.e. the pallet may stay without
moving on one or more TUs during the traversal. Indeed,
every Shifting() interval may starts and/or ends during differ-
ent On() intervals. Therefore a Shifting() interval duration is
not fixed in time. The number of On() values needed to sat-
isfy the request depends on other activities planned by the
module, i.e. it depends on the set of constraints (synchro-
nizations) the planner has to consider during the planning
process.

The reasoning capabilities needed to synthesize such a
plan are obtained by integrating in the control infrastruc-
ture a timeline-based planner developed within the EPSL
library. This library provides a set of general purpose op-
erators that allow to build timeline-based plans. Relying on
these functionalities, it is possible to easily define timeline-
based planners that can be tuned according to the specific
features of the problem to address. Therefore we defined an
ad-hoc GECKO timeline-based planner we used to dynami-
cally control and adapt modules to the production environ-
ment.

PlanRob 2014 Proceedings

34

A GECKO Executive Module
Previous works have tackled the robust execution is-
sue within a Constraint-based Temporal Planning (CBTP)
framework deploying specialized techniques based on
temporal-constraint networks. Several authors (e.g., (Mor-
ris and Muscettola 2005; Hunsberger 2010)) have proposed
a dispatchable execution approach where a flexible tem-
poral plan is then used by a plan executive that schedules
activities on-line while guaranteeing constraint satisfaction.
This general line of research has concerned specifically the
use of timeline-based planning and their temporal constraint
networks implementation for an homogeneous synthesis of
controllers. Among the architectures that use a uniform rep-
resentation for the continuous planning and execution task
are IDEA (Muscettola et al. 2002), T-REX (Py, Rajan, and
McGann 2010) and, more recently, GOAC (Ceballos et al.
2011).

Within the GECKO project, the research effort has been
focused on a complete deploy of our current effort on ro-
bust plan execution (Orlandini et al. 2013). In particular, we
have extended the timeline-based, domain independent de-
liberative control system, called APSI Deliberative Reactor
(ADR) described in (Fratini et al. 2011). This section sum-
marizes the recent advances on the enhanced ADR system.
The ADR has been designed to address a set of open is-
sues in planning and execution with timelines, i.e., the dy-
namic management of goals during planning and execution,
the assessment of the status of partially executed goals and
the dynamic dispatching of commands. More in detail, the
ADR is an instance of a proactive control system entirely
based on APSI-TRF technology and is constituted by (i) an
execution module, to dispatch planned timelines, to super-
vise their execution status and to entail continuous planning
and re-planning, (ii) a timeline-based planning module, i.e.,
EPSL, to model and solve planning problems.

The ADR is designed to be domain independent, i.e., once
provided with a suitable timeline-based description model of
the system to be controlled and a set of temporal goals to be
achieved it fully implements all the required functionalities
to plan for goals, dispatch planned values to the controlled
system and supervise plan execution collecting the teleme-
try of the controlled system. One of the main advantage of
domain independence is the capability of the deliberative re-
actor to both plan for user goals and dynamically react to
off-nominal conditions detected from the controlled system
telemetry. Additionally, it allows flexibility in two direction:
it can achieve different classes of user goals in the same sys-
tem by substituting the controller model and it can be de-
ployed to control different systems by substituting the do-
main description of the controlled system.

Within GECKO, it has been investigated the integration
in APSI-TRF of an alternative and novel approach to flex-
ible plan dispatching/execution proposed in (Orlandini et
al. 2011), where robust plan execution is pursued by rely-
ing on Timed Game Automata (TGA) formal modeling and
controller synthesis. The technique used to synthesize plan
controllers is a direct consequence of the formalization pro-
posed in (Cesta et al. 2010) in which plan correctness as
well as dynamic controllability are checked by means of
TGA model checking. Analogously to that work, the dy-
namic P&S domain and the generated flexible temporal plan

are encoded into TGA models. However, a different perspec-
tive is exploited through the use of a model checker (i.e.,
UPPAAL-TIGA (Behrmann et al. 2007)) to directly synthe-
size a real-time plan controller for the flexible plan. Such
controller guarantees robust plan execution along with dy-
namic controllability.

In (Orlandini et al. 2013), an experimental evaluation
of the TGA-based method has been reported discussing
the practical feasibility of the on-line deployment of such
TGA-based approach in different operative modalities and
considering increasingly complex instances of a real-world
robotics case study. The reported results show the viability
of the approach as well as confirm the benefits of two impor-
tant general advantages: i) the presented methodology relies
on off-the-shelf planning/verification tools and, thus, it en-
ables its application to any generic layered control architec-
ture that integrates a temporal P&S system; ii) the possi-
bility of applying different settings for the control system
allows to look for trade-off between planning, verification
and execution costs, i.e., the control system can be tuned up
according to the actual criticality of the controlled system.

TGA-based controllers for flexible plan execution.
Timed Game Automata (Maler, Pnueli, and Sifakis 1995)
(TGA) allow to model real-time systems and controllability
problems representing uncontrollable activities as adversary
moves within a game between the controller and the envi-
ronment. Following the same approach presented in (Cesta
et al. 2010), flexible timeline-based plan verification can be
performed by solving a Reachability Game using UPPAAL-
TIGA. To this end, flexible timeline-based plans, state vari-
ables, and domain theory descriptions are compiled into a
network of TGA (nTGA). This is obtained by means of
through following steps: (1) a flexible timeline-based plan
P is mapped into a nTGA Plan. Each timeline is encoded
as a sequence of locations (one for each timed interval),
while transition guards and location invariants are defined
according to (respectively) lower and upper bounds of flex-
ible timed intervals; (2) the associated set of state variables
SV is mapped into a nTGA StateVar. Basically, a one-to-one
mapping is defined between state variables descriptions and
TGA. In such encoding, value transitions are partitioned into
controllable and uncontrollable according to their actual ex-
ecution profile; (3) an Observer automaton is introduced to
check for violations of both value constraints and Domain
Theory. In particular, two locations are defined: an Error lo-
cation, to state constraint violations, and a Nominal (OK)
location, to state that the plan behavior is correct. The Ob-
server is defined as fully uncontrollable. (4) the compound
nTGA PL = StateVar ∪ Plan ∪ {Observer} encapsulates
flexible plan, state variables and domain theory descriptions.

Then, considering a Reachability Game RG(PL, Init,
Safe, Goal) where Init represents the set of the initial lo-
cations of each automaton in PL, Safe is the OK location
of the Observer automaton, and Goal is the set of goal lo-
cations (one for each automaton in Plan), plan verification
can be performed solving/winning the RG(PL, Init, Safe,
Goal) defined above. In order to win/solve the reachability
game RG, UPPAAL-TIGA is exploited as verification tool
checking a suitable CTL formula, i.e., Φ = A [Safe U Goal]
in PL. In fact, the formula Φ states that along all its possible
temporal evolutions, PL remains in Safe states until Goal

PlanRob 2014 Proceedings

35

states are reached. That is, in all the possible temporal evolu-
tions of the timeline-based plan P all the constraints are ful-
filled and the plan is completed. Thus, if the solver verifies
the above property, then the flexible temporal plan is valid.
Whenever the flexible plan is not verified, UPPAAL-TIGA
produces an execution trace showing one temporal evolution
that leads to a fault. Such a strategy can be analyzed in order
to check either for plan weaknesses or for the presence of
flaws in the planning model.

Furthermore, a mapping between flexible temporal behav-
iors defined by P over the temporal horizon [0, H] and the
automata behaviors defined by PL can be shown: for each
partial temporal behavior pb ∈ P defined over H ′ < H ,
it there exists a unique temporal evolution ρpb of PL such
that ρpb represents the partial temporal behavior pb over the
same horizonH ′. That is, ρpb represents the same valued in-
tervals sequence in P limited to H ′ and the duration of ρpb
is exactly the horizon H ′. As a consequence, the winning
strategy f generated by UPPAAL-TIGA solving the reach-
ability game on PL represents a flexible plan controller Cf
that achieves the planning goals maintaining the dynamic
controllability during the overall plan execution. In (Orlan-
dini et al. 2011), the reader finds a formal account of the
generation of a plan controller Cf derived from a winning
strategy f generated by UPPAAL-TIGA.

Integrating the TGA-based controller in the ADR.
Here, the integration in the ADR of the TGA-based method
discussed above is presented. In particular, a suitable embed-
ding of the UPPAAL-TIGA tool within the ADR planning
and execution cycle is shown and, then, the advantages in
terms of plan correctness and robust execution enforcement
(i.e., dynamic controllability) are discussed.

Component
Based

Modeling
Engine

Domain
Description
Language

Problem
Description
Language

Dispatch	
Services	

Execu1on	
Feedback	

APSI Deliberative Reactor

Current Plan

APSI-TRF

TGA-‐based	
Controller	

TIGA

Verify
Plan

Generate
Strategy Problem Solver

Strategy
Manager

Figure 8: Integration of TGA-based controller in the APSI
Deliberative Reactor

The integration schema is shown in Figure 8. The left
part of the figure shows the APSI-TRF general architecture.
The domain and problem models are encoded as Domain
Definition Language (DDL) and Problem Definition Lan-
guage (PDL) input files. Then, both DDL and PDL files
are parsed and managed by the Component-based Domain
Modeling Engine and a Current Plan (i.e., the initial plan-
ning problem) is created to be manipulated by a Problem
Solver. Indeed, the Current Plan is specialized as a data
structure called Decision Network in APSI-TRF. Then, a
generic problem solver, e.g., EPSL, applies a solving pro-
cedure until the Current Plan satisfies all the planning goals
(or fails in finding a solution plan).

The right part of Fig. 8 depicts a simplified view of the
APSI Deliberative Reactor with two relevant services, i.e.,
the Dispatch services and the Execution Feedback mod-

ules, in charge of (respectively) dispatching suitable com-
mands for the controlled system and collecting feedback
from the field. The new APSI Deliberative Reactor architec-
ture still reflects the structure of a T-REX reactor (as defined
in (Fratini et al. 2011)) as well as it introduces two new com-
ponents, i.e., the TGA-based Controller (TC) and the Strat-
egy Manager (SM), enabling robust plans execution through
the use of strategies generated by UPPAAL-TIGA.

The TC is in charge of managing plans in order to (i) ver-
ify plan correctness and (ii) generate a dynamically control-
lable execution strategy: once a solution plan P is generated
by the problem solver (i.e., the stored Current Plan is actu-
ally the valid plan to be executed), the TC automatically gen-
erates the associated TGA encoding (PL) and, then, invokes
UPPAAL-TIGA in order to verify the correctness of the plan
as well as to check for the existence of (at last) one tem-
poral plan execution guaranteeing the correct achievement
of the plan goals, independently from the exogenous events
generated by the environment (i.e., enforcing the dynamic
controllability). If the verifier finds one of these sequences,
then a strategy for the plan execution is generated. Namely,
a strategy generated by UPPAAL-TIGA is a set of tempo-
ral rules that should guide the controlled system through the
execution space avoiding plan failures during its execution.
More formally, an UPPAAL-TIGA strategy is a set of rules
f(t, s) defined as follows:

f(t, s) =

{
twl < t < twu Wait
tal < t < tau Action an
t > terr Error

where t is the execution time, s is one of the possible state
of the system, twu and twl represent, respectively, lower
and upper bounds of a time interval in which the system
must wait for the environment to act, tal and tau represent
lower and upper bounds of a time interval in which the sys-
tem should perform the action an (i.e., one of the timeline
should change value) and terr is a time limit beyond which
the system generates an error. The latter represents the case
in which the execution strategy is coping with exogenous
events that are not properly modeled in the planning do-
main, e.g., the actual duration of an uncontrollable event is
shorter/longer than the minimal/maximal duration stated in
the domain model. This implies that the planning model is
inconsistent with the actual behavior of the controlled sys-
tem and, thus, a revision of that model (and the TGA encod-
ing) is required.

The SM is the module in charge of implementing the
concrete dispatching policy relying on the UPPAAL-TIGA
strategy. In fact, once generated, the SM exploit such strat-
egy to to choose the more suitable f(t, s) rule to be exe-
cuted, thus, extracting the associated action to be dispatched
(or to wait while the controlled system is evolving) as well
as to continuously monitor the internal status of the reactor
timelines and the execution feedback received from the field.

Given the above, the new integrated reactor architecture
guarantees plans correctness as well as the robust execution
of the generated plans, thus, increasing the probability of
successfully performing the temporal plan.

PlanRob 2014 Proceedings

36

Conclusions
This paper has described the GECKO control module offered
as a proposal for a Reconfigurable Transportation System.
The general GECKO architecture has been synthesized dur-
ing the first year of the project and the single components
have been developed and tested under laboratory conditions.
During the second year, recently started, an integration of
all the components will be provided in the pilot plant for
re-manufacturing of electronic components. Then, an exten-
sive experimental tests will be performed to assess the ro-
bustness and effectiveness of the comprehensive approach.
Among future works, the dynamic management of unfore-
seen events (such as, e.g., maintenance tasks, module fail-
ures and transportation delays) by means of the integration
of suitable mechanisms for robust replanning and/or plan re-
pair is currently under investigation.

Acknowledgments. CNR authors are supported by MIUR/CNR Flagship

Initiative FdF-SP1-T2.1 Project GECKO “Generic Evolutionary Control Knowledge-

based mOdule”. Thanks to the colleagues of ITIA and IEIIT for the collaboration in

the project. A special thanks to Anna Valente and Emanuele Carpanzano for the long

term collaboration on the integration of AI in Reconfigurable Manufacturing.

References
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals. Commun. ACM 26(11):832–843.
Behrmann, G.; Cougnard, A.; David, A.; Fleury, E.; Larsen,
K.; and Lime, D. 2007. UPPAAL-TIGA: Time for playing
games! In Proc. of CAV-07, number 4590 in LNCS, 121–
125. Springer.
Borgo, S., and Masolo, C. 2009. Foundational choices in
DOLCE. In Staab, S., and Studer, R., eds., Handbook on On-
tologies, International Handbooks on Information Systems.
Springer Berlin Heidelberg. 361–381.
Borgo, S.; Cesta, A.; Orlandini, A.; Rasconi, R.; Suri-
ano, M.; and Umbrico, A. 2014. Towards a cooperative
knowledge-based control agent for a reconfigurable manu-
facturing plant. In ETFA-2014. Proc. 19th IEEE Int. Conf.
on Emerging Technologies and Factory Automation.
Carpanzano, E.; Cesta, A.; Orlandini, A.; Rasconi, R.; and
Valente, A. 2014. Intelligent dynamic part routing poli-
cies in plug&produce reconfigurable transportation systems.
CIRP Annals – Manufacturing Technology (in press).
Ceballos, A.; Bensalem, S.; Cesta, A.; de Silva, L.; Fratini,
S.; Ingrand, F.; Ocon, J.; Orlandini, A.; Py, F.; Rajan, K.;
Rasconi, R.; and van Winnendael, M. 2011. A Goal-
Oriented Autonomous Controller for Space Exploration. In
ASTRA-11. 11th Symposium on Advanced Space Technolo-
gies in Robotics and Automation.
Cesta, A.; Cortellessa, G.; Fratini, S.; Oddi, A.; and Poli-
cella, N. 2007. An Innovative Product for Space Mission
Planning: An A Posteriori Evaluation. In ICAPS-07, 57–64.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci,
E. 2010. Analyzing Flexible Timeline Plan. In ECAI 2010.
Proceedings of the 19th European Conference on Artificial
Intelligence, volume 215. IOS Press.
Cesta, A.; Orlandini, A.; and Umbrico, A. 2013. Toward
a general purpose software environment for timeline-based

planning. In 20th RCRA International Workshop on ”Exper-
imental Evaluation of Algorithms for solving problems with
combinatorial explosion”.
Crawford, L. S.; Do, M. B.; Ruml, W.; Hindi, H.; Elder-
shaw, C.; Zhou, R.; Kuhn, L.; Fromherz, M. P.; Biegelsen,
D.; de Kleer, J.; et al. 2013. Online reconfigurable machines.
AI Magazine 34(3).
Do, M. B.; Ruml, W.; and Zhou, R. 2008. On-line plan-
ning and scheduling: An application to controlling modular
printers. In AAAI, 1519–1523.
Fratini, A.; Cesta, A.; De Benedictis, R.; Orlandini, A.; and
Rasconi, R. 2011. APSI-Based Deliberation in Goal Ori-
ented Autonomous Controllers. In ASTRA-11. 11th Sym-
posium on Advanced Space Technologies in Robotics and
Automation.
Hunsberger, L. 2010. A fast incremental algorithm for
managing the execution of dynamically controllable tempo-
ral networks. In Temporal Representation and Reasoning
(TIME), 2010 17th International Symposium on, 121–128.
Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and
Smith, B. 2000. Planning in Interplanetary Space: Theory
and Practice. In AIPS-00. Proceedings of the Fifth Int. Conf.
on AI Planning and Scheduling.
Maler, O.; Pnueli, A.; and Sifakis, J. 1995. On the Synthe-
sis of Discrete Controllers for Timed Systems. In STACS,
LNCS, 229–242. Springer.
Morris, P. H., and Muscettola, N. 2005. Temporal Dynamic
Controllability Revisited. In Proc. of AAAI 2005, 1193–
1198.
Muscettola, N.; Dorais, G. A.; Fry, C.; Levinson, R.; and
Plaunt, C. 2002. Idea: Planning at the core of autonomous
reactive agents. In Proc. of NASA Workshop on Planning
and Scheduling for Space.
Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., ed., Intelligent
Scheduling. Morgan Kauffmann.
Orlandini, A.; Finzi, A.; Cesta, A.; and Fratini, S. 2011. Tga-
based controllers for flexible plan execution. In KI 2011: Ad-
vances in Artificial Intelligence, 34th Annual German Con-
ference on AI., volume 7006 of Lecture Notes in Computer
Science, 233–245. Springer.
Orlandini, A.; Suriano, M.; Cesta, A.; and Finzi, A. 2013.
Controller synthesis for safety critical planning. In IEEE
25th International Conference on Tools with Artificial Intel-
ligence (ICTAI 2013), 306–313. IEEE.
Py, F.; Rajan, K.; and McGann, C. 2010. A System-
atic Agent Framework for Situated Autonomous Systems.
In AAMAS-10. Proc. of the 9th Int. Conf. on Autonomous
Agents and Multiagent Systems.
Ruml, W.; Do, M. B.; and Fromherz, M. P. 2005. On-line
planning and scheduling for high-speed manufacturing. In
ICAPS-05. Proc. 15th Int. Conf. on Automated Planning and
Scheduling, 30–39.
Terkaj, W.; Tolio, T.; and Valente, A. 2009. A review on
manufacturing flexibility. In Design of Flexible Production
Systems. Springer. 41–61.
Wiendahl, H.-P.; ElMaraghy, H. A.; Nyhuis, P.; Zäh, M. F.;
Wiendahl, H.-H.; Duffie, N.; and Brieke, M. 2007. Change-
able manufacturing-classification, design and operation.
CIRP Annals – Manufacturing Technology 56(2):783–809.

PlanRob 2014 Proceedings

37

Continual Planning via Reconfiguration and Goal Revision

Enrico Scala
Dipartimento di Informatica

Corso Svizzera 185
Torino - Italy

scala@di.unito.it

Abstract

The execution of plans in real world domains can be
several times threatened by the occurrence of unex-
pected contingencies. Beside propositional conditions,
realistic scenarios require plans to satisfy constraints on
consumable resources, too. Relying on the notion of ex-
ecution modalities, the paper presents a continual plan-
ning system for the efficient management of unforeseen
resources consumption. In particular, the proposal com-
bines plan reconfiguration and goal revision in order to
efficiently (i) recovery from the impasse and (ii) reason-
ing on the current mission constraints whenever the re-
configuration is not possible. Both mechanisms exploit
a CSP encoding and have been experimentally validated
on a planetary rover domain. Experiments analyze the
benefits (and the limits) of the approach in terms of
competence and efficiency under different timeout set-
tings.

Introduction
The plan execution in real world domains is a critical activ-
ity that has to take into account several challenges (Ghallab,
Nau, and Traverso 2014). In particular, in realistic scenar-
ios, an agent operates in an environment which is just par-
tially observable and loosely predictable; unexpected con-
tingencies can arise at each step of the execution. As a con-
sequence, the agent must have some form of autonomy in
order to guarantee robust plan execution (i.e., accomplish-
ing the mission).

Robust plan execution has been tackled in two ways: on-
line and off-line. On-line approaches, such as (Gerevini and
Serina 2010; van der Krogt and de Weerdt 2005; Garrido,
C., and Onaindia 2010; Brenner and Nebel 2009; Mical-
izio 2013), interleave execution and replanning: whenever
some unexpected contingency makes the plan unfeasible,
the plan execution is stopped and a new plan is synthesized
as a result of a new planning phase. Off-line approaches,
such as (Block, Wehowsky, and Williams 2006; Conrad and
Williams 2011), avoid replanning by anticipating, at plan-
ning time, possible contingencies. The result of such a plan-
ning phase is a contingent plan that encodes choices between
functionally equivalent sub-plans1. At execution time, the

1The notion of alternative (sub)plans is also present for (off-
line) scheduling; for details see (Barták, Ĉepek, and Hejna 2008)

plan executor is able to select a contingent plan according to
the current contextual conditions. However, as for instance
in the work of (Policella et al. 2009), the focus is mainly on
the temporal dimension and they do not consider consum-
able and continuous resources.

This paper presents an on-line methodology to deal with
unexpected deviations in the resources consumption. First,
in line with the action-based approach a-la STRIPS (Fox and
Long 2003) and differently from the constrained based plan-
ning (Fratini, Pecora, and Cesta 2008; Muscettola 1993), we
model consumable resources as numeric fluents (introduced
in PDDL 2.1 (Fox and Long 2003)). Then, we enrich the
model of the agent’s actions by expliciting a set of execution
modalities. The basic idea is that the propositional effects
of an action can be achieved under different configurations
of the agent’s devices. These configurations, however, may
have a different impact on the consumption of the resources.
An execution modality abstracts the low level behavior of
an action modeling its resource consumption profile when
such an action is carried out in a given configuration. The
integration of execution modality at the PDDL level allows
a seamless integration between planning and execution.

Relying on the concept of execution modalities, we han-
dle exceptions as a reconfiguration of action modalities,
rather than as a replanning problem (Scala, Micalizio, and
Torasso 2014). In particular, the approach at the basis of this
paper is a plan execution strategy, denoted as ReCon; once
(significant) deviations from the nominal trajectory are de-
tected, ReCon intervenes by reconfiguring the modalities of
the actions still to be performed with the purpose of restor-
ing the validity of resource constraints imposed by the agent
mission. As we will see the reconfiguration could be handled
by means of a CSP encoding.

Whenever the adaptation turns out to be unfeasible, as a
novel contribution, the paper combines the reconfiguration
with a goal reasoning facility. Exploiting the CSP interpre-
tation above, and recent advancement in the SAT literature
(Marques-Silva et al. 2013; Liffiton and Sakallah 2008), the
paper shows how extending a SAT based methodology for
the goal reasoning problem. In particular, our approach aims
at individuating the set(s) of goals preventing the CSP to find
a valid allocation of modalities. Doing so, the agent (or the
human operator supervising its execution) can have a more
accurate description of the problem and (if possible) can de-

PlanRob 2014 Proceedings

38

cide to relax one or more constraints in order to make the
reconfiguration newly feasible.

In extension to the results presented in (Scala, Micalizio,
and Torasso 2014), this paper provides new experimental ev-
idences of the benefit of the reconfiguration characterization
over replanning. In particular, we tested the reconfiguration
for near real-time settings, that is where deliberative activi-
ties have to be performed very quickly, in order to be useful
for the acting.

For reasoning on the arising CSP formulation, the paper
uses Choco2 as solver, for both the reconfiguration and the
goal reasoning task. Doing so, the approach turns out to be
solver independent.

After introducing a motivating example, the paper de-
scribes the employed action model, enriched with the notion
of execution modality. Then we introduce the ReCon strat-
egy and the goal revision mechanism. Afterwards, an exam-
ple shows how the system actually works in a exploration
rover mission. The paper concludes with an experimental
section evaluating the competence and the efficiency of the
strategies reported in this paper. In particular, the reconfig-
uration is experimentally compared with the LPG-ADAPT
system (Gerevini, Saetti, and Serina 2012).

Motivating Example
Let us consider a planetary rover in charge of exploring (and
analyzing) a number of potentially interesting sites and able
to transmit information towards the Earth. In doing so the
rover is capable of moving, taking pictures, and starting the
data upload once the pieces of information must be trans-
mitted. For simplicity reasons, consider the mission plan
of Figure 1, involving take picture, drive and communica-
tions activities. This mission represents a feasible solution
for a planning problem with goal: {in(r1,l3), mem>=120,
pwr>=0, time<=115} ; that is, at the end of plan the rover
must be located in l3 (propositional fluent), the free memory
must be (at least) 120 memory units, there must be a positive
amount of power, and the mission must be completed within
115 secs.

The figure shows how the four actions (regular boxes)
change the status of the rover over the time (rounded-corner
boxes)3. Note that the status of a rover involves both propo-
sitional fluents, (e.g., in(r1, l1) means that the rover r1
is in location l1); and numeric fluents: memory represents
the amount of free memory, power is the amount of avail-
able power, time is the mission time given in seconds, and
com_cost is an overall cost associated with communica-
tions.

The estimates about the rover’s status are inferred by pre-
dicting, deterministically, the effects of the actions. In par-
ticular, the numeric fluents have been estimated by using a
“default setting” (i.e., a standard modality) associated with
each action.

2The software is at disposal at http://www.emn.fr/z-info/choco-
solver/, while the work has been presented in (Narendra, Rochart,
and Lorca 2008)

3To simplify the picture, we show in the rover’s status just a
subset of the whole status variables

Let us now assume that during the execution of the first
drive action the rover has to travel across a rough terrain.
Such an unexpected condition affects the drive as the rover is
forced to slowdown4, and as a consequence the drive action
will take a longer time to be completed; the effects are prop-
agated till the last snapshot, s 4 where the goal constraint
time <= 115 will be no longer satisfied.

After detecting this inconsistency, approaches based on
a pure replanning step would compute a new plan achiev-
ing the goal by changing the original mission. For instance,
some actions could be skipped in order to compensate the
time lost during the first drive.

However, robotic systems as a planetary rover have typi-
cally different configurations of actions to be executed and
each configuration can have a different impact on the mis-
sion progress. For instance the robotic systems described
in (Calisi et al. 2008) and in (Micalizio, Scala, and Torasso
2011) can perform a drive action in fast or slow modes. Re-
liable transmission to the earth, for example, can be slow
and cheap, or fast and expensive, depending on the devices
actually used.

Our proposal is to explicitly represent such different con-
figurations within the action models, and hence try to re-
solve an impasse via a reconfiguration of the actions still to
be performed. Intuitively, our objective is to keep the high
level plan structure unchanged, but to adjust the modalities
of the actions still to be performed.

In the next section we will introduce the action model
adopted that explicitly expresses the set of execution modal-
ity at disposal.

The Action Model
This section introduces the action model adopted in this
work. The model exploits (and extends) the numeric PDDL
2.1 action model (Fox and Long 2003), i.e. where the notion
of numeric fluents has been proposed. In particular, we use
the numeric fluents to model continuous and consumable re-
sources.

The intuition is that, while actions differ each other in
terms of qualitative effects (e.g. a drive action models how
the position of the rover changes after the action applica-
tion), the expected result of an action can actually be ob-
tained in many different ways, for instance by appropriately
configuring the rover’s devices (e.g. the drive action can be
performed with several engine configurations). Of course,
different configurations have in general different resource
profiles and it is therefore possible that the execution of an
action in a given configuration would lead to a constraint vi-
olation (or it is not applicable in that setting), whereas the
same action performed in another configuration would not.
We call these alternative configurations modalities and we
propose to capture the impact of a specific modality by mod-
eling the use of specific configurations in terms of pre/post
conditions on the numeric fluents involved; such modalities
become explicit in the action model definition.

4The slowdown command of the rover may be the consequence
of a reactive supervisor, which operates as a continuous controller
as shown in (Micalizio, Scala, and Torasso 2011)

PlanRob 2014 Proceedings

39

Figure 1: A simple mission plan.

The resulting model expresses the actions at two differ-
ent levels of abstraction. The higher one is the qualitative
level indicating ”what” the action does. The lower one is the
quantitative level expressing ”how” the action achieves its
effect.

The idea of alternative behaviors has also been investi-
gated in (off-line) scheduling, where the notion of Tempo-
ral Network with Alternatives has been introduced (Barták,
Ĉepek, and Hejna 2008). It is quite evident however that,
as anticipated in the introduction, the concept of execu-
tion modality is inspired to an (on-line) action centered ap-
proach (Brenner and Nebel 2009), rather than on a con-
straints/scheduling based one (Cesta and Fratini 2009).

By recalling our motivating example, Figure 2 shows the
model of the drive action. The action template drive (?r,
?l1, ?l2) requires a rover ?r to move from a location ?l1
to location ?l2. :modalities introduces the set of modal-
ities associated with a drive; in particular, we express for
this action, three alternative modalities:
- safe: the rover moves slowly and far from obstacles; in-
tuitively the action should spend more time but consuming
less power
- cruise: the rover moves at its cruise speed and can go
closer to obstacles;
- agile: the rover moves faster than cruise, consuming
more power but requiring less time.
The :precondition and :effect fields list the applicabil-
ity conditions and the effects, respectively, and are struc-
tured as follows: first a propositional formula encodes the
condition under which the action can be applied; the second
field (:effect) indicates the positive and the negative ef-
fects of the action. For each modality m in :modalities we
have the amount of resources required (numeric precondi-
tion) or consumed/produced (numeric effect) by the action
when performed under that specific modality m.

For instance, the preconditions (reachable ?l1, ?l2)
and (in ?r1, ?l1) are two atoms required as precon-
ditions for the application of the action. These two
atoms must be satisfied independently of the modality
actually used to perform the drive action. While the
comparison (safe: (>= (power ?r) (* (safe_cons ?r)
(/ (distance ?l1 ?l2) (safe_speed ?r))))) means
that the modality safe can be selected when the rover’s
power is at least larger than a threshold given by eval-
uating the expression on the right side. Analogously,
(safe: (decrease (power ?r) (*(safe_cons ?r)
(/ (distance ?l1 ?l2) (safe_speed ?r)))) describes
in the effects how the rover’s power is reduced after the

execution of the drive action. More precisely, we have
modeled the power consumption as a function depending
on the duration of the drive action (computed considering
distance and speed) and the average power consumption per
time unit given a specific modality. For instance, in safe
modality, the amount of power consumed depends on two
parameters (safe_cons ?r) and (safe_speed ?r) which
are the average consumption and the average speed for the
safe modality, respectively, while (distance ?l1 ?l2) is
the distance between the two locations ?l1 and ?l2.
Finally, note that in the numeric effects of each modality, the
model updates also the fluent time according to the selected
modality. Also in this case, the duration of the action is
estimated by a function associated with each possible action
modality.

Analogously to the drive action we model modalities also
for the Take Picture (TP) and the Communication (COMM).
For TP we have the low (LR) and high (HR) resolution
modalities which differ in the quality of the taken picture and
the occupied memory. Intuitively, the more the resolution is,
the more the memory consumption will be. Whereas for the
Communication we assume to have two different channels
of transmissions: CH1 with low overall comm cost and low
bandwidth, and CH2 with high overall comm cost but high
bandwidth.

The selection of action modalities has to take into account
that complex dependencies among resources could exist. For
instance, even if a high resolution TP takes the same time as
a low resolution TP, the selection has a big impact on the
amount of time spent globally, too. As a matter of facts, as
long as the amount of stored information increases, the time
spent by a (possible) successive COMM grows up accord-
ingly, which means that also the global mission horizon will
be revised.

Given the actions defined so far, a plan is a total ordered
set of fully instantiated action templates5. Given a state S
and a set of goals G to be reached (including both proposi-
tional/classical conditions and constraints on the amount of
resources, (Fox and Long 2003)), the mission plan is valid
iff it achieves G from S, and each action is executable in the
trajectory of states resulting from the plan application.
Executing the mission plan. As we have seen in the previ-
ous section, the plan can be threatened many times by unex-

5The plan can be also generated automatically by exploiting a
numeric planner system, properly modified to handle actions with
modalities. (e.g., the Metric-FF planning system (Hoffmann 2003)
or LPG (Gerevini, Saetti, and Serina 2008)

PlanRob 2014 Proceedings

40

(:action drive
:parameters (?r - robot ?l1 - site ?l2 - site)
:modalities (safe,normal,agile)
:precondition (and (in ?r ?l1) (road ?l1 ?l2)
(safe: (>= (power ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r)))))
(cruise: (>= (power ?r) (* (cruise_cons ?r)

(/ (distance ?l1 ?l2) (cruise_speed ?r)))))
(agile: (>= (power ?r) (* (agile_cons ?r)

(/ (distance ?l1 ?l2) (agile_speed ?r)))))
)
:effect
(and
(in ?r ?l2) (not (in ?r ?l1))
(safe: (decrease (power ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r))))
(increase (time) (/ (distance ?l1 ?l2)) (safe_speed ?r)))
(increase (powerC ?r) (* (safe_cons ?r)

(/ (distance ?l1 ?l2) (safe_speed ?r))))
(cruise: (decrease (power ?r) (* (cruise_cons ?r)

(/ (distance ?l1 ?l2) (cruise_speed ?r))))
(increase (time) (/ (distance ?l1 ?l2)) (cruise_speed ?r))
(increase (powerC ?r) (* (cruise_cons ?r)

(/ (distance ?l1 ?l2) (cruise_speed ?r)))))
(agile: (decrease (power ?r) (* (agile_cons ?r)

(/ (distance ?l1 ?l2) (agile_speed ?r))))
(increase (time) (/ (distance ?l1 ?l2)) (agile_speed ?r))
(increase (powerC ?r) (* (agile_cons ?r)

(/ (distance ?l1 ?l2) (agile_speed ?r)))))
)

Figure 2: The augmented model of a drive action.

pected contingencies; so the validity of the mission can be
easily compromised during its actual execution.

Nevertheless, when the detected unexpected contingency
invalidates the resource consumption, a replanning mech-
anism could be an excessive reaction. While the current
modality allocation would not be valid with the constraints
involved in the plan and in the goal, there could be ”other”
allocations of modalities still feasible. By exploiting this in-
tuition, the next section introduces the adaptive execution
technique which, instead of abandoning the mission being
executed, tries first to repair the flaws via a reconfiguration
of the action modalities. The reconfiguration considers all
those actions still to be executed.

As we will see moreover, even in case of failure, i.e. there
are no valid reconfigurations, by exploiting this characteri-
zation, the system is able to provide the user with an expla-
nation of the occurred impasse indicating a set of possible
constraints that should be relaxed in order to make the mis-
sion feasible.

Given a plan P, to indicate when a plan is just resource
invalid, we will use the predicate res invalid over P, i.e.
we will say res invalid(P). Otherwise we will say that the
plan is valid or structurally invalid. This latter case happens
when, given the current plan formulation, at least an action
in the plan is not propositional applicable, or there is at least
a missing (propositional) goal. Moreover, we will say that
the plan is consistent when there is at least an allocation of
modalities such to satisfy the goal. Otherwise we will say
that the plan is not consistent. As we will see, this last def-
inition highlight the relation between the plan consistency
and the underlying CSP encoding.

The Continual Planning Strategy
As anticipated in the introduction, for the successful execu-
tion of the plan, it should be supervised all along the task

execution. Algorithm 1 shows the main steps required to ac-
complish this task. The algorithm takes in input the initial
state S0, the mission goal Goal, and the plan P expressed as
discussed in the previous section. Note that each action has
to have a particular modality of execution instantiated. The
algorithm returns Success when the execution of the whole
mission plan achieves the goal; Failure otherwise.

In this case, a failure means that there is no way to adapt
the current plan in order to reach the goal satisfying mission
constraints. To recover from this failure, a replanning step
altering the structure of the plan should be invoked.

The first step of the algorithm is to build a CSPModel rep-
resenting the mission plan (line 1). Due to lack of space, we
cannot present this step in details; our approach, however,
inherits the main steps by Lopez et al. in (Lopez and Bac-
chus 2003) in which the planning problem is addressed as
a CSP6. As a difference w.r.t. the classical planning, the en-
coding exploited by our approach needs to store variables for
the modalities to be chosen, and variables for the numeric
fluents involved in the plan. Numeric fluents variables are
replicated as many steps in the plan. The purpose is to cap-
ture all the possible evolutions of resources profiles given the
modalities that will be selected. The constraints oblige the
selection of the modality to be consistent with the resource
belonging to the previous and successive time step. More-
over, further constraints allow only reconfigurations consis-
tent with the current observation acquired (which at start-up
corresponds to the initial state), and the goals/requirement
of the mission.

Once the CSPModel has been built, the algorithm loops
over the execution of the plan. Each iteration corresponds to
the execution of the i-th action in the plan. At the end of the
action execution the process verifies the current observation
obsi+1 with the rest of the mission to be executed. In case the
plan is structurally invalid (some propositional conditions
are not satisfied or the goal cannot be reached) ReCon stops
the plan execution and returns a failure; i.e., a replanning
procedure is required.

Otherwise we can have two other situations. First, there
have been no consistent deviations from the nominal predic-
tions therefore the execution can proceed with the remain-
ing part of the plan. Second the plan is just resource in-
valid (res incon(P), line 10). In this latter case, ReCon has
to adapt the current plan by finding an alternative assign-
ments to action modalities that satisfies the numeric con-
straints (line 11). If the adaptation has success, a new non-
empty plan newP is returned and substituted to the old one.
This new plan is actually the old plan, but with a different
allocations of action modalities. Otherwise, the plan cannot
be adapted and a failure is returned; in this case, the plan ex-
ecution is stopped and a new planning phase (or a revision
of the current goal constraints, see next section) is needed.

Update
The Update step is sketched in Algorithm 2. The algorithm
takes in input the CSP model to update, the last performed

6Alternative CSP conversions are possible; for instance see
(Barták and Toropila 2010)

PlanRob 2014 Proceedings

41

Algorithm 1: ReCon
Input: S0, Goal, P
Output: Success or Failure

1 CSPModel = Init(S0,Goal,P) ;
2 i = 0;
3 while ¬ P is completed do
4 execute(ai, curMod(ai));
5 obsi+1 = observe();
6 if P is structurally invalid w.r.t. obsi+1 and Goal

then
7 return Failure
8 else
9 Update(CSPModel,ai,num(obsi+1));

10 if res incon(P) then
11 newP = Adapt(CSPModel,i,Goal,P);
12 if newP 6= /0 then
13 P = newP
14 else
15 return Failure

16 i = i+1
17 return Success

action ai, and the set NObs of observations about numeric
fluents. The algorithm starts by asserting within the model
that the i-th action has been performed; see lines 1 and 2
in which variable modi is constrained to assume the special
value exec. In particular, a first role of the exec value is to
prevent the adaptation process to change the modality of an
action that has already been performed. exec allows the ac-
quisition of observations even when the observed values are
completely unexpected. In fact, by assigning the modality
of action ai to exec, we relax all the constraints over the nu-
meric variables at (i+ 1)-th step (which encode the action
effects). This is done in lines 3-5 in which we iterate over
the numeric fluents N j mentioned in the effects of action ai,
and assign to the corresponding variable at (i+1)-th step the
value observed in NObs. On the other hand, all the numeric
fluents that are not mentioned in the effects of action ai do
not change, so the corresponding variables at step i+ 1 as-
sume the same values as in the previous i-th step (lines 6-8).
The idea of the Update is to make the CSP aware of the cur-
rent new observations and the modalities already executed.
In this way, a reconfiguration task does not need to rebuild
the structure completely from scratch.

Adapt
The Adapt procedure, shown in Algorithm 3, takes in input
the CSP model, the index i of the last action performed by
the rover, the mission goal, and the plan P; the algorithm
returns a new adapted plan, if it exists, or an empty plan
when no solution exists.

The algorithm starts by removing from CSPModel the
constraints on the modalities of actions still to be performed;
i.e., each variable modk with k greater than i is no longer con-
strained (ai is the last performed action and its modality is

Algorithm 2: Update
Input: CSPModel, ai,NObs
Output: modified CSPModel

1 delConstraint(CSPModel,modi=curMod(ai));
2 addConstraint(CSPModel,modi=exec);
3 foreach N j ∈ a f f ected(ai) do
4 addConstraint(CSPModel,
5 (modi=exec)→ N j

i+1=get(NObs,N j
i+1))

6 foreach N j ∈ ¬a f f ected(ai) do
7 addConstraint(CSPModel,
8 (modi=exec)→ N j

i+1=N j
i)

set to exec) (lines 1-2). This step is essential since the cur-
rent modalities allocation inside the CSPModel is not valid;
that is, the current assignment of modalities does not satisfy
the global or the local constraints. By removing these con-
straints, we allow the CSP solver to search in the space of
possible assignments to modality variables (i.e., the actual
decisional variables, since the numeric fluents are just side
effects of the modality selection), and find an alternative as-
signment that satisfies the global constraints (line 3). If the
solver returns an empty solution, then there is no way to
adapt the current plan and Adapt returns no solution. Oth-
erwise (lines 6-10), at least a solution has been found. In
this last case, a new assignment of modalities to the vari-
ables modk (k : i+1..|P|) is extracted from the solution, and
this assignment is returned to the ReCon algorithm as a new
plan newP such that the actions are the same as in P, but the
modality labels associated with the actions ai+1, ..,a|P| are
different.

Note that, in order to keep updated the CSP model for
future adaptations, the returned assignment of modalities is
also asserted in CSPModel; see lines 6 to 10.

Algorithm 3: Adapt
Input: CSPModel, i,Goal,P
Output: a new plan, if any

1 for k=i+1 to |P| do
2 delConstraint(CSPModel modk=currentMod(ak))
3 Solution = solve(CSPModel);
4 if Solution = null then
5 return /0

6 else
7 newP=extractModalitiesVar(Solution);
8 for k=i+1 to |newP| do
9 addConstraint(CSPModel,

modi=curMod(newP[i]))
10 return newP

Goal Revision
In the previous section we have seen that when the observa-
tions invalidate the current configuration, an adaptation in-

PlanRob 2014 Proceedings

42

side the modalities search space is started. Of course this
step is sufficient when the underlying CSP formulation still
contains solutions, whereas it is ineffective when there is no
valid allocation at disposal; that is, the flexibility provided
by the reconfiguration is not enough.

While this flexibility could be obtained by means of a
generative approach, e.g. by replanning completely from
scratch, if the problem is over-constrained, neither a replan-
ning mechanism could be able to recover the mission.

There could be situations where the current mission con-
straints are too strict, while a small relaxation (for some con-
straints) could be beneficial for newly achieving consistency
(i.e., at least a configuration of action modalities). The prob-
lem is hence to understand whether it is actually the case.

By reasoning directly on the (i) CSP interpretation pro-
vided by the encoding presented in previous section, (ii) the
model of the actions, and (iii) the problem we are interested
in, we consider constraints split into two different sets7:
• System constraints
• User constraints
System constraints are the ones generated by the action
model (and in particular by the model of execution modali-
ties), and the current observation coming from the environ-
ment; while the user constraints are the ones expressed in
the goals set (which are the numeric constraints a given re-
configuration has to satisfy).

From a constraints perspective, we hence are interested
in answering to the following question: which is the min-
imum set of user constraints such that if we remove these
constraints from the CSP, then the CSP becomes newly con-
sistent?

For instance, in our mission rover example it could be the
case that the discrepancy between the predicted time and the
actual time spent by the rover is actually very large, and also
a reconfiguration is unable to recovery the situation. For this
reason a possible way to restore the CSP consistency could
be to relax the time constraint. However, it is interesting to
note that also the constraint on the power could be relaxed,
as a new allocation for the modalities can be found by pro-
moting all the actions to be performed quicker.

In the context of diagnosis, satisfiability and constraint
programming, a very similar issue is referred as the problem
of computing the MCS (Minimal Correcting Set) of an in-
consistent SAT/CSP. Recently this topic has received a quite
big attention (Marques-Silva et al. 2013). In that work, in
particular, multiple invocations of the solver are employed
in order to recognize the threatening constraint(s).

In our scenario, to limit the computational impact due
to the combinatorial explosion of cases to consider (which
relies on considering a CSP consistency problem for each
element of the power-set of the constraints involved in the
goal), we focus just on those sets whose cardinality is min-
imal. These are in fact the most interesting ones in our sce-
nario, as they represent just the less impact on the user pref-
erences.

7A similar characterization is also usual in the context of model
based diagnosis; for instance see (Felfernig, Schubert, and Reiterer
2013)

Similarly to the work presented by (Marques-Silva et al.
2013), our approach exploits the idea to reformulate the CSP
in a partial MAXCSP, whose objective is to maximize the
satisfiability of the constraints in the goal set, while pre-
serving the consistency of the ones belonging to the system
constraints set. The solution of this problem makes evident
which are the satisfiable constraints, and hence, by reason-
ing on the complementary set, the ones threatening the CSP
consistency.

Unfortunately, in the general case, there could be several
sets of constraints of this kind, each of them with mini-
mum cardinality; for this reason the mechanism has to be
repeated as many of them can be inferred. To exploit the
same MAXCSP mechanism, the intuition is to keep trace to
the ones already discovered.

Algorithm 4 reports the relative pseudo-code.

Algorithm 4: MCS
Input: C : System Constraints, G : User Constraints, k :

Integer
Output: S : Minimal Correcting Sets

1 S = /0

2 while true do
3 S′ = CO-MAXCSP(C,G,S)
4 if |S′| ≤ k then
5 S = S∪{S′}
6 k = |S′|
7 else
8 return S

The procedure takes in input the system constraints (C),
the user constraints (G) and an integer k.

C and G indicate the sets of constraints as described
above, while k aims at limiting the search to sets of cardi-
nality less or equal to k.

The algorithm exploits the same CSP solver employed for
the reconfiguration task, but in a different modality. More
precisely the invocation to the solver is due to CO-MAXCSP
routine. This function finds (incrementally) all the set of
constraints which should be removed for achieving consis-
tency of the CSP. The third parameter allows to keep trace
of the constraints previously selected; such constraints are
formulated as hard constraints in the CSP representation. At
the end of the process, each element s from S will be such
that s⊆ G.

This mechanism completes the tools at disposal to our
agent. Let us see now how the mission rover example can
be handled by exploiting these facilities.

Running the Mission Rover Example
Let us consider again the example in Figure 1, and let us
see how ReCon manages its execution. First of all, the plan
model must be enriched with the execution modalities as
previously explained; Figure 3 (top) shows the initial config-
uration of action modalities: the drive actions have cruise
modalities, the take picture (TP) has HR (high resolution)

PlanRob 2014 Proceedings

43

Figure 3: The initial configuration of modalities (above), and the reconfigured plan (below).

modality, and the communication (Comm) uses the low band-
width channel (CH1). This is the enriched plan ReCon re-
ceives in input.

Now, let us assume that the actual execution of the first
drive action takes a longer time than expected, 47s instead
of 38s, and consumes more power, 3775 Joule instead of
3100 Joule. While the discrepancy on power is not a big is-
sue as it will not cause a failure, the discrepancy on time
will cause the violation of the constraint time <=115; in fact,
performing the subsequent actions in their initial modalities
would require 120 seconds. In other words, the assignment
of modalities to the subsequent actions does not satisfies the
mission constraints. This situation is detected by ReCon that
intervenes and, by means of the Adapt algorithm discussed
above, tries to find an alternative configuration of modalities.

Let us assume that communication cost is con-
strained; that is, the mission goal includes the constraint
com_cost = 1; this prevents ReCon from using the fast com-
munication channel. The more intuitive decision is to pro-
mote the execution of the drive to agile. However, this would
cause the violation on the constraint concerning the maxi-
mum amount of power to be spent. Therefore ReCon has to
look for an alternative assignments of modalities.

Observing the model of the action, it is interesting to note
that a lower resolution image consumes less memory, mean-
ing that the successive communication, in our case (COMM
R1 L3), will need less time (and also less power) for achiev-
ing its effects. For this reason ReCon demotes the next activ-
ity, i.e. TP, to be executed to modality LR and so the global
constraints are now satisfied.

Of course, we assume that mission constraints leave Re-
Con some room to repair resource inconsistent situations.
For instance, if the mission has required an hard constraint
on the quality of the taken images, the low resolution would
have not been possible, and hence an overall replanning
would have been necessary.

In principle, by flattening all the actions and the given
modalities as explained in (Scala 2013b), replanning is pos-
sible as alternative to the reconfiguration mechanism. In this

case, however, the problem to be handled would become
much more difficult, since all the possible action sequences
applicable starting from the current state could be explored.

To highlight the complexity arising from a replanning for-
mulation, let us assume that in our example there is a con-
nection from location l3 to l4, and from l2 and l4. That is,
the rover can move not only from l1 to l2, but also from l2
to l4 and from l4 to l3, for all the provided modalities. In
addition, for simplicity reasons, assume that from that point
(l3), the only possible sequence of actions toward the goal is
given by a2 and a3.

While the reconfiguration mechanism can focus just on
the impact on resources given by the selection of modali-
ties for the next actions (tp, drive, comm), it is quite evident
that a traditional replanner should deal with a larger search
space. As matter of fact, it should consider also the (several)
possible trajectories of states given by exploring the alter-
natives ways of reaching location l2 (drive(r1,l2,l4)), for all
the possible modalities of execution. That is, it will have to
cope with both the propositional and resource constraints of
the arising planning problem. For a deeper discussion on this
aspect, see (Scala 2013b).

To limit the intervention of the replanning mechanism
also in this situation, or in case the plan structure should
not be violated for any reasons (e.g., in space exploration
scenarios), the goal revision could be activated. In this case
the mechanism will find that a solution is possible whenever
either the constraint on the info-loss, or the communication
or the time should be removed or relaxed. This information
could be provided to the ground control station that will de-
cide the preferred solution, for instance by reasoning on the
constraint that requires the less relaxation.

Experimental Validation
To assess the effectiveness of our proposal, we evaluated
three main aspects: (1) the efficiency (time spent for the
deliberation throughout the plan execution process), (2) the
competence (the ability of completing a mission) and (3) the
goal revision mechanism.

PlanRob 2014 Proceedings

44

For the sake of evaluation we compared ReCon with
a state of the art mechanism for plan repair, i.e. LPG-
ADAPT8. In our experimental setup we used the same high
level continual planning mechanism developed around Re-
Con. That is, whenever the plan becomes invalid from the
point of view of the resources, LPG-ADAPT stops the exe-
cution of the plan and try to recover from the impasse.

We have implemented ReCon in Java 1.7 by exploiting
the PPMaJaL library9; the Choco CSP solver (version 2.1.3)
10 has been used in the Adapt algorithm to find an alterna-
tive configuration. LPG-ADAPT is used by converting the
rover actions with modalities in PDDL 2.1 actions. In order
to emulate an (on-line) plan execution context, we stressed
the ability of the system to provide solutions in a near real
time way. In particular our experiments have been performed
by considering 4 different timeout configurations (1, 2, 5 and
10 seconds). We aim at understanding the behavior of the re-
configuration mechanism in extreme conditions.

Our tests set consists of 168 plans; each plan involves
up to 34 actions (i.e., drives, take pictures, and communica-
tions), it is fully instantiated (a modality has been assigned
to each action), and feasible since all the goal constraints are
satisfied when the plan is submitted for the execution.

To simulate unexpected deviations in the consumption of
the resources, we have run11 each test in four different set-
tings. In each of these settings we have noised the amount of
resources consumed by the actions. In particular, in setting
1, an action consumes 10% more than expected at planning
time. In setting 2, the noise was increased to 20%, and so on
until in setting 4 where the noise was set to 40%, i.e. an ac-
tion consumes 40% more resources than initially predicted.

Figure 4 reports the competence - measured as the per-
centage of cases accomplished with success - for the two
strategies, in the four settings of noise we have considered,
over all the timeout configurations. As expected, the compe-
tence decreases as long as the amount of noise increases, for
all the strategies tested. ReCon turned out to be more com-
petent than LPG-ADAPT in the first two timeout settings.
Even though LPG-ADAPT can modify all the aspects of the
plan structure, and hence it is theoretically more competent
than ReCon, the search spaces generated by the overall aris-
ing planning problems turned out to be too large from the
point of view of LPG-ADAPT. As a consequence it often
trespassed the time limit. We can observe a significant gap in
the 1 second setup, while the margin is limited in the 2 secs
setting. In the 10 secs setting LPG-ADAPT is instead more

8LPG-ADAPT, (Gerevini, Saetti, and Serina 2012), is the plan
adaptation extension of LPG, (Gerevini, Saetti, and Serina 2008),
one of the more awarded systems throughout the planning compe-
titions of the last decade. In this experimental phase we used the
”speed” parameter, which substantially improves the performance
of the system.

9www.di.unito.it\̃ scala
10The Choco Solver implements the state of the art algorithms

for constraint programming and has already been used in space ap-
plications, see (Cesta and Fratini 2009). Choco can be downloaded
at http://www.emn.fr/z-info/choco-solver/.

11Experiments have run on a 2.53GHz Intel(R) Core(TM)2 Duo
processor with 4 GB.

10% 20% 30% 40%

UNSOL(%) 100 100 100 100

CPU-TIME(msec) 154 98 233 103

GOALACH(%) 0 29 82 85

Table 2: Goal Revision Strategy Performances. Percentage
of unsuccessful cases where ReCon has been able to shows
the un-solvability (UNSOL), the average time spent for in-
ferring the set of constraints to be relaxed (CPU-TIME), the
percentage of cases where the goal revision strategy pro-
vided the user with at least a constraint to be relaxed.

competent as it is able to exploit the flexibility provided by
the overall numeric planning problem. As expected, the gap
between ReCon and LPG-ADAPT decreases as long as the
noise increases; this is of course due to the contribution of
the flexibility of the search space in which LPG-ADAPT can
find a solution.

Table 1 reports the cpu-time score for the two systems.
For providing an informative parameter we have adopted the
International Planning Competition metric12. That is, each
case submitted is evaluated according to T ∗

T , where T ∗ and
T are the time spent by the best and the evaluated system,
respectively. A not solved case takes 0.

For this aspect, the advantage of ReCon is very large. In
fact, even for the worst case (when the noise is set to be
40%), ReCon is extremely efficient; in our raw data we mea-
sured that it takes, on average, just 356 msec. The score of
course decreases as long as the contribution of the coverage
comes into play.

Finally, in order to evaluate the feasibility of the goal re-
vision strategy, we performed a preliminary testing phase on
the same set of cases. In particular, we focused our attention
on cases where the reconfiguration mechanism was not able
to provide a solution. Table 2 collects the percentage of situ-
ations where the system was able to verify the un-solvability
of the reconfiguration problem (UNSOL), the average time
spent for inferring the candidate goals to relax (in order to
achieve CSP consistency) (CPU-TIME), the percentage of
situations where the goal revision strategy has been able to
find a relaxation (GOALACH). In these experiments we set
our parameter k to 1, so the system can relax at maximum
one constraint in the goal set.

The system turned out to be very efficient, and for high
levels of noise also quite informative. As matter of facts,
when the noise is large, the system was able to provide a
goal revision strategy for the most of the situations (84%,
85%). In particular the strategy was able to indicate which
of the numeric goal constraints should be relaxed in order to
make possible an alternative actions modality configuration.

It is important to note that, for the unsuccessful cases,

12As it has been noticed in occasion to the various International
Planning Competitions, the average CPU time is few informative
as planners tend to consume the time at disposal in a very dif-
ferent way from a case to another case; for further details see
http://ipc.icaps-conference.org/

PlanRob 2014 Proceedings

45

Figure 4: Competence of the ReCon and LPG-ADAPT. Each bar represents the number of cases that have been solved by a
system, for each noise, over all the timeout configurations.

1sec 2secs 5secs 10secs

ReCon LPGADAPT ReCon LPGADAPT ReCon LPGADAPT ReCon LPGADAPT

10% 155 69 156 73 155 73 154 73

20% 143 68 145 87 155 59 145 92

30% 117 62 109 74 143 58 109 88

40% 78 52 76 71 106 67 80 76

total 493 251 486 305 559 257 488 329

Table 1: Cpu-Time score according to the International PLanning Competition Metric, for the two systems, over all the noise
settings and timeout configurations.

while the reconfiguration task has been always able to show
the absence of alternative configurations, the complexity of
the numeric planning task completely prevented the LPG-
ADAPT to terminate the execution with a response. As mat-
ter of facts, apart for very few cases, the unsuccessful situa-
tion reported in the architecture with the LPG-ADAPT have
been due to the occurrence of the timeout.

Conclusion
We have proposed in this paper an approach for dealing
with plan execution in presence of consumable resources.
Rather than recovering from plan failures via a re-planning
step (see e.g., (Gerevini and Serina 2010; van der Krogt
and de Weerdt 2005; Garrido, C., and Onaindia 2010; Scala
2013a)), the work presented in this paper relies on a method-
ology, called ReCon, based on the re-configuration of the
plan actions. ReCon is justified in all those scenarios where
a pure replanning approach is unfeasible. This is the case, for
instance, of a planetary rover performing a space exploration
mission. Albeit a rover must exhibit some form of auton-
omy, its autonomy is often bounded by two main factors: (1)
the on-board computational power is not always sufficient to
handle mission recovery problems, and (2) the rover cannot
in general deviate from the given mission plan without the
approval from the ground control station.

ReCon presents advantages w.r.t. generative (e.g., LPG-
ADAPT) approaches. First of all, as the experiments have
demonstrated, reconfiguring plan actions is computationally
cheaper than synthesizing a new plan by adaptation (as the
one reported in (Gerevini, Saetti, and Serina 2012)). More-
over, ReCon leaves the high-level structure of the plan (i.e.,
the sequence of mission tasks) unchanged, but endows the
agent with an appropriate level of autonomy for handling un-

expected contingencies. In particular, this paper presented a
novel experimental analysis showing that, also if we con-
strain the search with very strict timeout settings, ReCon
continues to be very effective.

As a methodological innovation with respect to a previous
work on this topic (Scala, Micalizio, and Torasso 2014), re-
lying on the reconfiguration characterization, the paper pro-
posed a novel strategy for reasoning about the numeric goal
constraints to be achieved at reconfiguration level. This strat-
egy can be used for instance in a mixed initiative setting to
make the user aware about the causes of the reconfigura-
tion inconsistency, and surely it can be part of goal reason-
ing frameworks (e.g., (Roberts et al.)). The paper showed
how this strategy can be implemented by exploiting the same
CSP encoding of the reconfiguration, and how this should be
managed in order to infer minimal correcting sets (Marques-
Silva et al. 2013).

The approach has been tested on a challenging domain
such as a space exploration domain, but its applicability is
not restricted to this domain. Many other robotic tasks could
benefit of the proposed approach, since in many of them the
need of adapting the plan execution to the resources con-
strains is very relevant.

In this perspective, from an experimental point of view,
we would like to deepen the still preliminary experimental
analysis on the goal reasoning facility, and to verify the ap-
plicability of this strategy (and also of ReCon) on a larger
set of domains.

From a methodological point of view, the approach can be
improved in a number of ways. A first important enhance-
ment is the search for an optimal solution. In the current
version, in fact, ReCon just finds one possible configuration
that satisfies the global constraints. In general, one could be

PlanRob 2014 Proceedings

46

interested in finding the configuration that optimizes a given
objective function. Reasonably, the objective function could
take into account the number of changes to action modal-
ities; for instance, in some cases it is desirable to change
the configuration as little as possible to improve the stability
of the plan. Of course, the search for an optimal configura-
tion is justified when the global constraints are not strict, and
there is enough cpu time at disposal. Otherwise, sub-optimal
strategies should be investigated.

References
Barták, R., and Toropila, D. 2010. Solving sequential plan-

ning problems via constraint satisfaction. Fundam. Inf.
99(2):125–145.

Barták, R.; Ĉepek, O.; and Hejna, M. 2008. Temporal rea-
soning in nested temporal networks with alternatives.
In Fages, F.; Rossi, F.; and Soliman, S., eds., Recent Ad-
vances in Constraints, volume 5129 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg. 17–31.

Block, S. A.; Wehowsky, A. F.; and Williams, B. C. 2006.
Robust execution of contingent, temporally flexible
plans. In Proc. of National Conference on Artificial
Intelligence (AAAI-06): 802-808.

Brenner, M., and Nebel, B. 2009. Continual planning
and acting in dynamic multiagent environments. Jour-
nal of Autonomous Agents and Multiagent Systems
19(3):297–331.

Calisi, D.; Iocchi, L.; Nardi, D.; Scalzo, C.; and Ziparo,
V. A. 2008. Context-based design of robotic systems.
Robotics and Autonomous Systems (RAS) 56(11):992–
1003.

Cesta, A., and Fratini, S. 2009. The timeline representa-
tion framework as a planning and scheduling software
development environment. In Proc. of P&S Special In-
terest Group Workshop (PLANSIG-10).

Conrad, P. R., and Williams, B. C. 2011. Drake: An efficient
executive for temporal plans with choice. Journal of
Artificial Intelligence Research (JAIR) 42:607–659.

Felfernig, A.; Schubert, M.; and Reiterer, S. 2013. Personal-
ized diagnosis for over-constrained problems. In Proc.
of IJCAI-13.

Fox, M., and Long, D. 2003. Pddl2.1: An extension to pddl
for expressing temporal planning domains. Journal of
Artificial Intelligence Research (JAIR) 20:61–124.

Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying plan-
ning and scheduling as timelines in a component-based
perspective. Archives of Control Sciences 18(2):231–
271.

Garrido, A.; C., G.; and Onaindia, E. 2010. Anytime plan-
adaptation for continuous planning. In Proc. of P&S
Special Interest Group Workshop (PLANSIG-10).

Gerevini, A., and Serina, I. 2010. Efficient plan adaptation
through replanning windows and heuristic goals. Fun-
damenta Informaticae 102(3-4):287–323.

Gerevini, A.; Saetti, I.; and Serina, A. 2008. An ap-
proach to efficient planning with numerical fluents and
multi-criteria plan quality. Artificial Intelligence 172(8-
9):899–944.

Gerevini, A.; Saetti, A.; and Serina, I. 2012. Case-based
planning for problems with real-valued fluents: Kernel
functions for effective plan retrieval. In Proc. of Euro-
pean Conference on AI (ECAI-12), 348–353.

Ghallab, M.; Nau, D.; and Traverso, P. 2014. The actor’s
view of automated planning and acting: A position pa-
per. Artificial Intelligence 208(0):1 – 17.

Hoffmann, J. 2003. The metric-ff planning system: Trans-
lating ”ignoring delete lists” to numeric state vari-
ables. Journal of Artificial Intelligence Research (JAIR)
20:291–341.

Liffiton, M. H., and Sakallah, K. A. 2008. Algorithms for
computing minimal unsatisfiable subsets of constraints.
J. Autom. Reasoning 40(1):1–33.

Lopez, A., and Bacchus, F. 2003. Generalizing graphplan by
formulating planning as a csp. In Proc. of International
Conference on Artificial Intelligence (IJCAI-03), 954–
960.

Marques-Silva, J.; Heras, F.; Janota, M.; Previti, A.; and
Belov, A. 2013. On computing minimal correction
subsets. In IJCAI.

Micalizio, R.; Scala, E.; and Torasso, P. 2011. Intelli-
gent supervision for robust plan execution. In LNCS
6954 of Associazione Italiana per Intelligenza Artifi-
ciale (AIxIA-11), 151–163.

Micalizio, R. 2013. Action failure recovery via model-based
diagnosis and conformant planning. Computational In-
telligence 29(2):233–280.

Muscettola, N. 1993. Hsts: Integrating planning and
scheduling. Technical Report CMU-RI-TR-93-05,
Robotics Institute, Pittsburgh, PA.

Narendra, J.; Rochart, G.; and Lorca, X. 2008. Choco: an
open source java constraint programming library. In
Proc. of CPAIOR’08 Workshop on Open-Source Soft-
ware for Integer and Contraint Programming (OS-
SICP’08), 1–10.

Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. 2009.
Solve-and-robustify. Journal of Scheduling 12:299–
314. 10.1007/s10951-008-0091-7.

Roberts, M.; Vattam, S.; Aha, D.; Apker, T.; Auslander,
B.; and Wilson, M. Iterative goal refinement for
robotics. In Proc. of the Planning and Robotics Work-
shop (PLANROB-14) at ICAPS-14.

Scala, E.; Micalizio, R.; and Torasso, P. 2014. Robust exe-
cution of rover plans via action modalities reconfigura-
tion. In Proc. of ICAART-14, 142–152.

Scala, E. 2013a. Numeric kernel for reasoning about plans
involving numeric fluents. In Baldoni, M.; Baroglio,
C.; Boella, G.; and Micalizio, R., eds., AI*IA 2013: Ad-
vances in Artificial Intelligence, volume 8249 of Lec-
ture Notes in Computer Science. 263–275.

PlanRob 2014 Proceedings

47

Scala, E. 2013b. Reconfiguration and Replanning for ro-
bust Execution of Plans Involving Continous and Con-
sumable Resources. Ph.D. Dissertation, Department of
Computer Science - Turin.

van der Krogt, R., and de Weerdt, M. 2005. Plan repair as an
extension of planning. In Proc. International Confer-
ence on Automated Planning and Scheduling (ICAPS-
05), 161–170.

PlanRob 2014 Proceedings

48

Multi-Robot Planning and Execution for an Exploration Mission: a Case Study

Guillaume Infantes, Charles Lesire, Cédric Pralet
ONERA - The French Aerospace Lab, F-31055, Toulouse, France
{Guillaume.Infantes,Charles.Lesire,Cedric.Pralet}@onera.fr

Abstract

This paper presents the first steps of the treatment of
a real-world robotic scenario consisting in exploring
a large area using several heterogeneous autonomous
robots. Addressing this scenario requires combining
several components at the planning and execution lev-
els. First, the scenario needs to be well modeled in or-
der for a planning algorithm to come up with a realistic
solution. This implies modeling temporal and spatial
synchronization of activities between robots, as well as
computing the duration of move activities using a pre-
cise terrain model. Then, in order to obtain a robust
multi-agent executive layer, we need a robust hierarchi-
cal plan scheme that helps identifying appropriate plan
repairs when, despite the quality of the various models,
failures or delays occur. Finally, we need various algo-
rithmic tools in order to obtain flexible plans of good
quality.

Motivation

Automatic exploration of large and hazardous areas benefits
from the use of multiple robots. Indeed, the use of several
robots working in parallel allows the duration of missions to
be drastically decreased, which may be useful to deal with
crisis situations or with search and rescue missions, in which
the response time is a key criterion. The deployed team of
robots may be heterogeneous, to take advantage of the skills
of different kinds of robots: flying robots can see over build-
ings and quickly cover large distances; ground robots can
accurately map the environment; some robots may be able to
enter buildings, overcome obstacles, and even cross flooded
areas. Operators often use tools for defining the mission of
robots offline, taking into account various operational con-
straints. Robots must then act autonomously at execution
time in order to adapt their behavior to complex, dynamic
and uncertain environments, and to perform replanning tasks
if needed. Autonomy is especially useful when communica-
tions are intermittent or unreliable. In such cases, it is in-
deed impossible to permanently control each robot from a
remote mission center. However, operators often need some
feedback at regular time intervals, in order to know how the
mission is progressing and to get data collected by robots.

Operational Scenario We consider the problem of ex-
ploring an area using heterogeneous autonomous robots,
subject to the supervision of human operators . When defin-
ing the mission, human operators first define some zones to
be observed by the robots. These zones are considered as ob-
servation tasks that will be allocated to the robots depending
on their capabilities (some robots cannot see under trees, or
cannot enter buildings). In this work, robots are assumed to
be individually able to localize themselves, to plan trajecto-
ries, and to perform navigation tasks in the environment, the
latter being possibly mapped online using robot sensors.

In the mission considered, human operators need to regu-
larly monitor mission execution. Due to intermittent or unre-
liable communications between robots, and between robots
and the operators, this online monitoring is defined as a time
rate at which each robot has to report an execution status for
its plan. This execution status may for instance contain the
current robot position and the list of zones it has observed.
Due to communication and motion constraints, aerial robots,
which can move faster, are used to collect other robots data
and to communicate these data to the operators. Reporting
tasks correspond to temporal and spatial rendezvous, during
which robots share information.

Approach Followed The main contribution of this paper
lies in the integration of several components for tackling the
operational scenario described above. The integrated com-
ponents are:

• Multi-agent, temporal and hierarchical planning: we de-
fine a planning algorithm that computes plans of actions
for the whole team of robots. Built plans are hierarchical,
in the spirit of Hierarchical Task Networks (HTN (Erol,
Hendler, and Nau 1994)). Elementary actions in these
plans are move, observation and communication actions.
These plans enforce temporal constraints coming from the
environment model (time needed to move from points to
points, or to observe zones) and from the mission require-
ments (periodic reporting to the human operator). To
deal with communications, we propose an offline plan-
ning algorithm that includes communication tasks within
the initial plans. We use an offline planning approach as a
first step to coordinate vehicles which may not be perma-
nently visible from the operation center. The algorithm

PlanRob 2014 Proceedings

49

used is linked with external libraries that compute for in-
stance durations of moves performed during the explo-
ration, based on a terrain model.

• Mission execution and repair: based on embedded reac-
tive architectures, plans are executed on each robot in a
distributed way, each robot being in charge of its own
tasks. During execution, disturbances may occur, requir-
ing either an adaptation of plans (for instance when a
robot is going to be late at a rendezvous), or more global
repairs when the plan is no longer feasible. As communi-
cation may be unavailable for a global replanning, plans
can be locally repaired through communication between a
few close teammates (Gateau, Lesire, and Barbier 2013).
In this paper, we only consider hard-coded repair rules
used in case of failures. More advanced techniques using
a deliberative architecture on-board each robot could be
considered.

The paper is organized as follows. The next section
presents a modeling of the scenario, and the way it is trans-
lated into constraints. The general scheme of the execution
process (including plan adaptation and repair) is then pre-
sented. Afterwards, we present the offline planning algo-
rithm, along with the constraint-based framework the algo-
rithm is based upon. Finally, we present an evaluation of the
algorithm on some basic examples, and we show first results
on a real-world scenario involving three robots.

This work has been partially supported by the DGA
funded Action project (http://action.onera.fr) and the AN-
CHORS project (http://www.anchors-project. eu), funded
by the German Federal Ministry of Education and Research
(BMBF) and the French National Research Agency (ANR).

Modeling the Scenario
Static Data
The mission consists in observing a set of nz zones using nr
robots.

• The team of robots is R = {ri}1≤i≤nr
.

• The set of zones is Z = {zi}1≤i≤nz
.

• Each robot ri can reach a set of navigation points P (ri).

• For each robot ri, function Oi gives the navigation points
from which a zone zj can be observed by ri. We have
Oi(zj) ⊆ P (ri).

• For communications, we consider a function C that gives,
for each couple of robots (ri, rj) the set of points from
which robots ri and rj can communicate. We have:
C(ri, rj) ⊆ P (ri)× P (rj).

Dynamic State Description
At a given time, a robot ri can be at one of its navigation
points pj ∈ P (ri), which is denoted by at(ri, pj). A robot
ri can also be navigating between two locations. In normal
execution, no action is possible until the robot reaches its
destination.

Furthermore, a zone must be observed only once, so we
define function toObs : Z → {>,⊥} that expresses if a

zone zj is to be observed (toObs(zj) = >) or if zj has
already been observed (toObs(zj) = ⊥).

Task Model
Each robot ri ∈ R can perform three elementary tasks:

• goto(ri, pj , pk): navigation from point pj to point pk; the
preconditions at the beginning of the task are pj , pk ∈
P (ri), and at(ri, pj); as for effects, at(ri, pk) becomes
true at the end of the task, whereas at(ri, pj) becomes
false at the beginning of it;

• obs(ri, pj , zk): observation of zone zk from point pj ; pre-
conditions pj ∈ Oi(zk) and toObs(zk) = > must hold at
the beginning of the task; condition at(ri, pj) must also
hold at the beginning and during the task; as an immediate
effect, we have toObs(zk) = ⊥;

• com(ri, rj , pk, pl): communication between ri and rj , lo-
cated at positions pk and pl respectively; preconditions
are pk ∈ P (ri), pl ∈ P (rj), and (pk, pl) ∈ C(ri, rj);
also, at(ri, pk) and at(rj , pl) must hold at the beginning
and during the task; we do not consider explicit effects, as
they will be dealt with in a dedicated approach.

We associate with every task t a starting time point δs(t) and
a duration dur(t). We then define the end time of task t as
δe(t) = δs(t) + dur(t).

Constraints
Along with this formulation, we consider more elaborate
constraints over the actions. In order to obtain realistic
plans, we need to integrate some real-world knowledge
based on models of the environment, and to be able to pre-
cisely synchronize communications between robots.

Visibility Constraints An external library provides us
with the Oi(zj) and C(ri, rj) static data. More precisely,
visibilities for observation and communication are obtained
from terrain models and ray-tracing algorithms, taking into
account (optical) sensor ranges and occlusions.

Temporal Constraints on Motions One key point for
tackling a realistic scenario is to model the dura-
tion of moves. We thus use an external function
dur(goto(ri, pj , pk)) which provides us which an estima-
tion of the duration of motions. This function can be imple-
mented using any path planning algorithms (LaValle 2006)
based on precise terrain models. For our experiments, the
external library we use implements an A∗ algorithm on dis-
crete terrain models taking into account robots’ motion ca-
pabilities.

Temporal Constraints on Other Actions We consider a
duration for observation and communication tasks. For now,
these durations are constant, but this can be easily lifted up.

Constraints on Communications For an operational sce-
nario, one important need for the operator is to regularly
monitor the states of the robots and the progress of the mis-
sion. In our case, as communications are not always possi-
ble, we need to enforce periodical communications, in order
to detect within a given time if a robot has a problem, for

PlanRob 2014 Proceedings

50

instance if it is lost or blocked by an obstacle and unable to
reach its objective.

In order to do so, we add a set of constraints on commu-
nications, using a centralized communication scheme:
• the operator has to be given a complete update periodi-

cally (every ∆ minutes);
• communications with the operator are very limited;
• one of the robot is preferred for centralizing communica-

tions with other robots and the operator, because it has
more motion capabilities than the others; for example an
Autonomous Aerial Vehicle (AAV).

Dividing the Plan into Chunks
We solve the mission planning problem by dividing the plan
into chunks. Each chunk corresponds to a sequence of ob-
servations followed by a communication between all team-
mates and the operator. Splitting plans into such chunks al-
lows the operators to regularly receive a complete feedback
concerning the state of each robot, which can make mission
monitoring easier.

For making mission monitoring easier again, we build hi-
erarchical plans, containing actions with different levels of
abstractions. Operators may go deeper in the hierarchy of
actions in order to understand what the robots are doing. We
first define some abstract tasks.
Definition 1. (goto and obs) A goto and obs abstract task
is made of a movement task g and an observation task o:
• g = goto(r, pi, pj) and o = obs(r, pj , zk);
• r ∈ R is the robot performing the tasks;
• pj ∈ P (r) is the point from where zk ∈ Z is observed;
• δe(g) = δs(o).
This abstract task is denoted as goto and obs(r, pi, pj , zk).
Definition 2. (goto and com) A goto and com abstract
task is made of two tasks g and c such that:
• g = goto(ri, pu, pv) and c = com(ri, rj , pv, pw);
• ri ∈ R is the robot performing the tasks;
• pv ∈ P (ri) is the point from where a communication is

possible to pw ∈ P (rj);
• δe(g) = δs(c).
This abstract task is denoted as
goto and com(ri, rj , pu, pv, pw).

Now we can define a chunk as a sequence of
goto and obs for each robot, followed by synchronized
goto and com for all robots.
Definition 3 (Chunk). Let rm denote the robot in charge of
the centralization of the communications (m for “master”),
and let op denote the operator. A chunk c is composed of:
• for each ri ∈ R, a sequence of abstract tasks
goto and obs(ri, pj , pj+1, zk);
• for each ri ∈ R, i 6= m, a task
goto and com(ri, rm, pu, pv, pw) for robot ri and
a symmetric task goto and com(rm, ri, px, pw, pv)
for robot rm; communications are synchronized, i.e.
δs(com(ri, rm, pv, pw)) = δs(com(rm, ri, pw, pv))

• a task goto and com(rm, op, py, pz, pop) at the end of
the chunk, with pop the point where the operator is.

We define dur(c) as the temporal distance between the be-
ginning of the first goto and obs task of the chunk and the
end of the communication with the operator. The chunk is
said to be valid if and only if dur(c) ≤ ∆, where ∆ is the
communication period set by the human operator.

The intuition is that a chunk is a refinement method in the
HTN framework, augmented with temporal constraints. If
communication period ∆ is too small, then it will be impos-
sible to include some observations into plans. A schematic
graphical view of a chunk is given in Figure 1.
Definition 4 (Chunked Plan). A chunked plan C is a se-
quence of chunks (ci)i≥ 0 such that at the end of the exe-
cution we have ∀zk ∈ Z : toObs(zk) = ⊥.

The planning algorithm must ensure that given the chosen
observations, the duration of any chunk does not exceed the
required communication period (∆). It must also minimize
the number of chunks and, as a side effect, the total duration
of the mission.

Supervising Execution
Plan Representation
Hierarchical and Temporal Tree of Tasks (HT3) We
represent the plan as a hierarchical tree of tasks along with
their temporal execution windows. As said before, repre-
senting plans in such a way can make plans more readable
for the operators. We follow the common hierarchical model
of HTNs (Erol, Hendler, and Nau 1994) to model the plan,
and we include some temporal information (Bresina et al.
2005) as well as allocation of tasks to robots.
Definition 5 (HT3). An HT3 plan P = (R, T,M,A, I, tr)
is defined by:

• a set of robots R = {ri, 1 ≤ i ≤ nr};
• a set of tasks T = Te ∪6= Ta, where Te is a set of elemen-

tary tasks representing robots’ actions, and Ta is a set of
abstract tasks;

• a decomposition function (or set of methods) M : Ta →
2(Ta∪Te)×{→,∼} that associates with each abstract task
a set of tasks st and a relation rel between the elements
of st; rel is either a non-ordered relation (∼, tasks of st
can be executed in any order) or a sequence (→, tasks of
st must be executed in a specific order);

• an allocation function A : T → 2R that associates with
each task a set of robots; for elementary tasks, only one
robot is performing the task : ∀t ∈ Te,#A(t) = 1;

• an interval function I that associates with each task t a
time interval I(t) = [δ−, δ+] such that δ− and δ+ are the
earliest and latest times to start the execution of the task;

• a root task tr ∈ T .

A plan P is valid only if it has no cycles (e.g., abstract
tasks being child of themselves). It can then be represented
as a tree, alternating tasks and methods. Note that contrarily
to HTNs, HT3 do not allow any choice in the decomposition
of abstract tasks, which makes them directly executable.

PlanRob 2014 Proceedings

51

com_rc

com_opegoto_com_ope

goto_and_com_ope

goto_com_ri

goto_and_com_ri
goto_and_com_rj

com_ri com_rjgoto_com_rj

com_rcgoto_com_rc

goto_and_com_rc

com_rcgoto_com_rc

goto_and_com_rc

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

goto_obs obs

goto_and_obs

r_i

r_j

operator

r_m

Figure 1: General scheme of a chunk

root

seq. of chunks

chunk c_0 chunk c_1 ...

c_0 for r_c c_0 for r_i c_0 for r_j ...

goto_and_obs ... goto_and_obs goto_and_com goto_and_com ... goto_and_com

goto obs goto obs goto com(r_i) goto com(r_j) goto com(op)

Figure 2: HT3 built from a sequence of chunks. Ovals, di-
amonds, rectangles respectively represent tasks, sequential
methods, unordered methods. For clarity, allocation and in-
terval functions are not represented.

Chunked Plans as HT3 Building an HT3 plan (Def. 5)
from a chunked plan (Def. 4) is quite straightforward: we
first define a root task tr, containing a sequential method
with the sequence of chunks as children. Then each chunk
is decomposed into a non-ordered method containing the
tasks of each robot. Finally, the chunk for each robot is se-
quentially decomposed into abstract tasks goto and obs and
goto and com, themselves respectively decomposed into
goto and obs, and goto and com elementary actions. Fig-
ure 2 shows the generic hierarchical pattern of a plan.

Algorithm 1 Execution of hierarchical and temporal plans

Require: P the global team plan, r ∈ R the robot that lo-
cally executes the plan

1: procedure SCANTASK(t, r,P)
2: CHECKTIME(I(t))
3: if t ∈ Te then EXECUTE(t)
4: else . t ∈ Ta
5: st, rel←M(t)
6: Sort st according to rel
7: for all t′ ∈ st do
8: if r ∈ A(t′) then SCANTASK(t′, r,P)

Plan Execution
Each robot executes planP following the procedure detailed
in Algorithm 1. The plan is executed by each robot in a depth
first (i.e. descending from abstract tasks to elementary tasks)
and left first (i.e. enforcing the ordered relations between
tasks) manner. Procedure SCANTASK is initially called with
tr (the root task) as a parameter.

Procedure CHECKTIME used at line 2 checks that the cur-
rent execution time is in the allowed window of start times
for task t. If the task is early, we wait for the earliest start-
ing time of the task. If the task is on-time, we start it im-
mediately. If the task is late, a repair is needed (see next
paragraph).

Procedure EXECUTE used at line 3 triggers the execu-
tion of an elementary task on the robot. In practice, this
is achieved by calling a service on the robot control archi-
tecture, in order to move the robot, make observations, or
communicate with other robots.

Plan Repair
At execution, two kinds of disturbances are considered: late-
ness of tasks and execution failures of elementary actions.

PlanRob 2014 Proceedings

52

Lateness During Execution In the CHECKTIME proce-
dure (line 2), the task to execute may be detected as late, i.e.
the latest time at which it should have started has passed.
Then, the execution is inconsistent regarding the plan.

As communication is unreliable and not persistent, we
cannot count on a global repair. Therefore, the repair pro-
cess is driven by the key feature which ensures the suc-
cess of the mission: the communication constraint between
robots. We therefore try to secure communication tasks. For
this purpose, the repair process is a simple hard-coded rule
that removes goto and obs tasks from the plan of the late
robot until the current chunk becomes temporally consistent
again. The new plan is executed until the end of the chunk,
where a communication between all robots is possible (by
using master robot rm). At the end of the chunk, the oper-
ator knows the set of observations removed during repairs.
He/she can then reallocate these observations and transmit
the new plans to all robots through master robot rm.

Failures of Execution Execution disturbances may also
come from issues in the execution of tasks by the control ar-
chitecture of the robot. For instance a mobile ground robot
may face some obstacles during its movements. If it reaches
the aimed point, the next task may be late due to the time
needed to overcome the obstacle (previous lateness case).
But the robot may even not reach the point, for instance be-
cause no path exists (at least in the robot map) to join this
point. In these situations, which are considered as failures,
we use some precomputed parametered local hierarchical
plans that are adapted for repairing a set of predefined fail-
ures. When a failure occurs, depending on the task that has
failed and of the cause of the failure, we replace the failing
task with the appropriate local plan. More advanced plan
repair techniques could be considered. In our experiments,
three kinds of parametered local plans are considered:

• parametered backup trajectories to find communication
opportunities with the master robot (to ask for help);

• map sharing between robots (to update the map of the lost
robot);

• relative localization between robots (to update the posi-
tion of the lost robot).

As these parametered local plans are represented as “local”
HT3, they can be directly inserted within the current plan
and executed without any hack in the execution procedure.

Note that this paper does not provide repair rules for all
possible lateness issues and all possible failures. It just de-
scribes a first step in the definition of hard-coded repair rules
for the operational scenario we consider. Additional work on
this point is left for future work. In particular, rules should
be defined for tackling the case where master robot rm itself
fails, or cases in which removing observation tasks does not
suffice to satisfy the chunk duration constraint again.

Planning
In this section, we describe the planning model implementa-
tion and the planning algorithm used to build mission plans
offline.

Using a Generic Framework: InCELL
In order to state all temporal constraints of the problem
and to handle them efficiently, we rely on the InCELL
framework (Pralet and Verfaillie 2013). InCELL is inspired
by Constraint-based Local Search (CLS (Hentenryck and
Michel 2005)). In CLS, the user defines a model of its
problem in terms of decision variables, constraints, and opti-
mization criterion. For the multi-robot exploration mission,
(1) decision variables correspond to the sequence of tasks
to be performed by each robot, (2) constraints are either
temporal constraints (activity durations and communication
deadlines) or spatial constraints (zone observation and robot
communication from possible locations), and (3) the crite-
rion is to minimize the duration of the mission.

In CLS, the user also defines a local search procedure
over complete variable assignments (where every decision
variable is assigned). Such a local search procedure corre-
sponds to a sequence of local moves. For the multi-robot
exploration problem, examples of local moves are the ad-
dition/removal of a chunk and the addition/removal of an
observation task for a robot inside a chunk.

Because the speed of local moves is one of the keys to
local search success, CLS uses so-called invariants, which
allow expressions and constraints to be quickly evaluated af-
ter each move. Invariants correspond to one-way constraints
[x1, . . . , xn] ← f(y1, . . . , yp), where x1, . . . , xn (the out-
puts) are variables whose assignment is a function of other
variables y1, . . . , yp (the inputs). Invariant outputs are incre-
mentally (quickly) reevaluated upon small changes in the in-
puts. In particular, InCELL models temporal constraints as
invariants and uses incremental Simple Temporal Network
(STN (Dechter, Meiri, and Pearl 1991)) techniques to effi-
ciently maintain earliest/latest consistent times for activities.

Task Modeling InCELL allows tasks to be modeled based
on the notion of interval. An interval is defined by two time-
points representing the start and the end of the task, and by
one boolean variable representing the presence of the task
in the plan. Elementary tasks of the multi-robot exploration
problem (moves, observations, communications) are repre-
sented as InCELL intervals.

For the multi-robot exploration mission, goal activities
are observations and communications, whereas setup activ-
ities are motions that occur between goal activities. Tasks
goto and obs and goto and com represented in Figure 1 are
modeled as intervals composed respectively of two sub-
intervals [goto obs , obs] and [goto com, com]. Doing so,
the hierarchical structure of plans is explicitly taken into ac-
count in the model.

The duration of each goal activity is constant in our case.
The duration of a move towards a goal activity Act depends
on the goal activity Act itself and on the goal activity preAct
preceding the move. If the current and previous activities
Act and preAct are provided, the InCELL invariant evaluator
automatically calls the external terrain-aware function that
computes estimations of move durations.

Chunk Modeling Beyond intervals, the multi-robot ex-
ploration model also uses the notion of sequence of con-
tiguous intervals available in InCELL. Using this modeling

PlanRob 2014 Proceedings

53

feature, it is easy to implement chunks as nr + 1 sequences
of contiguous intervals, one for each robot plus one for the
operator. When inserting a new task in the middle of a se-
quence, one only needs to update the “previous activity” fea-
ture for the inserted task and for the task following it. The
InCELL invariant in charge of managing temporal aspects
then automatically updates earliest/latest times of all time-
points of the problem, using incremental STN techniques.
The chunk itself is a specialization of a temporal interval, so
it also has start and end time-points.

Mission Constraints as InCELL Invariants The In-
CELL invariant managing temporal aspects takes as input
all temporal constraints of the problem inside a chunk:

• equality of communication starts and communication
ends for the two robots involved in a communication task;

• start time of the chunk equal to the start time of the first
move of the chunk;

• end time of the communication with the operator equal to
the end time of the chunk;

• bounded temporal distance between the start and the end
of a chunk, in order to enforce communication period ∆.

Algorithm
On top of the InCELL model, we define an algorithm that
allocates observation tasks within chunks. This algorithm
combines: (1) a constructive greedy search phase, which
produces a first exploration and communication plan; (2) a
local search phase that improves on the plan found at the
first phase.

Greedy Search We first use a greedy search that tries to
put as many as possible observations inside a chunk, and
when constraints are violated, a new chunk is created, and
the process iterates until all zones are scheduled for obser-
vation. The pseudo-code is detailed in Algorithm 2.

In this algorithm, the main loop iterates until no more
zones are to be observed. Inside this main loop, a chunk
is first allocated at line 8, already containing goto and com
tasks, as described in the modeling section. Then a robot
is selected at line 9. Several strategies are possible, we im-
plemented a random choice giving more weight to slower
robots, in order for them to be able to choose first their ob-
jectives, because in our scenarios all robots start from a close
location, and we do not want the slower ones to go very far to
achieve their first objectives. This procedure return ∅ when
all robots are marked as full, that is when no robot can accept
a new observation in the current chunk.

We then enter a second loop for filling current chunk ci.
First, the closest observation is selected for robot rj at line
11. This is done on the basis of the navigation points P (rj)
from which a zone that has not yet been observed can be ob-
served, and of a heuristic implemented as an InCELL invari-
ant (see below). We implemented both a simple Euclidean
distance and the real distance as given by the external dura-
tion function used by the constraint checker.

The selected observation is inserted at the end of the
chunk, just before the communication tasks (line 12); then,

Algorithm 2 Greedy search for allocating observation tasks

Require:
1: Z the set of zones to observe
2: R the set of robots
3: P the function giving navigation points
4: O the function giving points for observing zones
5: C the function giving pair of points for communication

6: procedure GREEDYSEARCH(Z,R,P ,O,C)
7: while Z 6= ∅ do
8: ci = ALLOCATENEWCHUNK
9: rj ← SELECTROBOT(R)

10: while rj 6= ∅ do
11: (zk, pl)← SELECTOBS(Z,P (rj), O, pl−1)
12: INSERT(ci, (zk, pl), rj)
13: UPDATECOMLOC(ci, C, P)
14: ok = EVALUATECONSTRAINTS
15: if ¬ ok then
16: CHANGECOMORDER(ci, C, P)
17: UPDATECOMLOC(ci, C, P)
18: ok = EVALUATECONSTRAINTS
19: if ¬ ok then
20: REVERTCHANGES
21: TAGASFULL(rj , ci)
22: if ok then
23: Z ← Z \ {zk}
24: rj ← SELECTROBOT(R)

the communication locations are updated, by choosing for
the slower robot the communication point that is the closest
from the newly inserted observation task (line 13). A lo-
cation for the other robot involved in the communication is
chosen among the restricted possible ones, also based on its
last objective so far. Then the InCELL model is evaluated at
line 14.

If the insertion fails (lines 16-17), we try to swap some
communication activities for master robot rm (these activi-
ties are initially randomly ordered). We also try to change
communication locations. If insertion is still impossible, we
discard changes and mark the selected robot as full for the
current chunk, meaning that it does not accept new observa-
tions in the current chunk.

If insertion is possible, we mark the zone as observed (line
23), we select a robot and we iterate the inner loop again.
This loop ends as soon as all robots are full for the current
chunk.

Heuristics as Invariants InCELL offers various high
level invariants, including the argmin invariant used for se-
lecting items into a set based on some criterion. We thus
use a selection based on the argmin invariant to maintain
the closest observation candidates for any robot, as well as
the closest communication location candidates. These in-
variants allow a transparent heuristic computation, used in
the SELECTOBS and UPDATECOMLOC procedures (lines 11
and 13).

PlanRob 2014 Proceedings

54

Local Search While greedy search aims at minimizing the
number of chunks (and thus the total number of mandatory
communications), it has a major drawback: the last chunk
is generally very inefficient, because of the priority given to
the slower robots. It may involve only a few observations by
the slower robot, while other faster robots do not have any.
To overcome this issue, we perform a local search from the
solution produced by the greedy search.

The lower levels local search operators are to remove an
observation from any chunk (including the corresponding
goto), and to insert a zone to observe anywhere in the plan,
trying every observation location for a given zone.

Over these two basic local moves, we implemented:

• a bestInsert procedure, which tries in turn every possi-
ble insertion for a given zone to be observed (in every
chunk), and returns an updated plan with the best inser-
tion, in terms of earliest end time of the global mission;

• a moveInSequence procedure, that removes and tries to
bestInsert every observation in turn, this for a given robot.

We also implemented higher level local moves, namely:

• 2-opt (Croes 1958), which tries permutations of pairs of
observations and inverts orders in-between;

• relocate (Salvelsbergh 1992), which first removes an ob-
servation from a robot, second tries to bestInsert it in the
plan of another robot, third applies 2-opt, and fourth ap-
plies moveInSequence; it does so for every observation, as
long as there are improvements in the global earliest end
time of the mission.

Other moves based on the computation of critical paths
could also be used to compact the obtained schedules.

Evaluating Planning and Local Search
We first show some planning results on simple scenarios, to
give a first idea of the efficiency of the approach.

First Example We first consider a 100 m × 100 m area
containing 25 zones to be observed, and a temporal con-
straint on communications allowing the whole mission to
be executed in only one chunk (namely 5 minutes). Figure
3a shows the trajectories for 1 Autonomous Aerial Vehicle
(AAV) and 2 Autonomous Ground Vehicles (AGVs) after
greedy search, without any local optimization. The earliest
end time of the mission is 299.2 seconds. After local search,
we non surprisingly obtain better trajectories, shown on Fig-
ure 3b, and the earliest end time of the mission lowers to
214.7 seconds. In the first case, the greedy search gives high
priority to the two AGVs, so that they have respectively 11
and 12 objectives to observe, while the AAV, which is much
faster, only has two. After local search, the AAV has 12 ob-
jectives, and the AGVs 7 and 6, respectively, leading to a
much better distribution of tasks over time.

For this simple problem, on an Intel Core 2 Duo 3GHz-
4GBRAM, the construction and initialization of the InCELL
model took 780ms, and greedy search time is 161 ms. The
local search took 2833 ms.

Other Examples A second example considers the very
same problem but with a 3-minute constraint for chunk du-
rations, so that the mission cannot be achieved in only one
chunk (it takes 2). Before local search, the earliest end time
is 358.6 seconds. After local search, it lowers to 291.2 sec-
onds. In this case, the local search time raises to 9141 ms.

To give an idea for larger scenarios, if we consider 100
zones to observe, the greedy search takes 682 ms, while the
local search raises to approximately two minutes. We thus
have a first solution very quickly, and the local search can be
used as an anytime algorithm, giving better solution as time
passes. Figure 3c shows the evolution of the earliest end
time of the mission wrt. computation times for 100 zones to
observe.

Complete Scenario
The complete scenario demonstrated fall 2013 involved one
autonomous aerial vehicle and two autonomous ground ve-
hicles. The area to explore was 28800 square meters wide,
including 72 zones to observe. Figure 4a shows the area
used for the experiments, for which a 3D model has been
built in order to compute visibilities (for observations and
communications) as well as durations of movements. The
operator had to be given a complete update every 5 minutes
(maximum size of a chunk). As flight authorizations are re-
quired to use our experimental platforms, only a few tests
were performed in real conditions.

The InCELL model contains 31154 invariants. It is built
and initialized in about 7 seconds. The resolution based on
greedy and local search takes about 6 minutes, the best so-
lution being obtained only after 3 minutes of computations.
The huge difference with simple examples, that are about the
same size, is mainly due to the calls to the precise computa-
tion of motion times, that are very slow. We implemented a
cache in order to limit this impact.

Figure 4b shows the trajectories computed for this real-
world mission. The duration of the mission plan obtained
is 472 seconds. This duration is mainly due to the fact that
the AAV has many more observations to do than the AGVs
(the AGVs fill their objectives during the first chunk, while
the AAV needs two). One can also notice that the obser-
vation tasks assigned to the two AGVs have a particular
spatial repartition. This is due to the fact that their possi-
ble positions are very constrained: they must remain on the
road since their navigation on the field can be problematic
depending on the precise state of the terrain (height of the
grass, wetness of the soil).

The execution procedure has been integrated on the three
robots, as a separate program calling each robot’s services
to realize elementary actions. The aerial autonomous robot
is a Yamaha Rmax helicopter that navigates based on a GPS
sensor, and embeds a software architecture based on Oro-
cos (Soetens and Bruyninckx 2005), in which actions are
triggered by executing supervision state machines specified
in the rFSM language (Klotzbücher and Bruyninckx 2012).
The ground robots are Segway-based robots integrating lidar
sensors for map building, cameras and inertial sensors used
for localization, and embedding a Genom-based (Mallet,

PlanRob 2014 Proceedings

55

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

AGV1

AGV2

AAV

(a) Example 1 before local search

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

AGV1

AGV2

AAV

(b) Example 1 after local search

 510

 520

 530

 540

 550

 560

 570

 580

 590

 600

 0 20000 40000 60000 80000 100000 120000

s
e

c
o

n
d

s
 t

a
k
e

n
 b

y
 m

is
s
io

n

milliseconds of computation

Earliest end time during local search

(c) Earliest end time (100 zones)

Figure 3: Plans produced on simple examples by the offline planning algorithm

Pasteur, and Herrb 2010) software architecture, in which ac-
tions are triggered by executing specific agents of the ROAR
framework (Degroote and Lacroix 2011).

In fall 2013, we demonstrated the execution of the nomi-
nal plan, along with the management of some failures (one
of the two ground robots get lost and, following hard-coded
repair rules, asked for the Rmax helicopter to map the en-
vironment around the ground robot). We also demonstrated
the replanning process including reallocation of the unex-
plored zones. We plan to do some complementary experi-
ments in the future, in order to demonstrate the management
of lateness of execution, by introducing disturbances at any
moment in the mission execution.

(a) Map of the experiments area

-120

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80 100 120 140 160 180 200 220 240

AGV1

AGV2

AAV

(b) Trajectories after greedy and local search

Figure 4: Real-world scenario

Related Work
Some works focus on allocating exploration tasks to sev-
eral robots, but either do not consider communication con-
straints (using frontier-like exploration (Hourani, Hauck,
and Jeschke 2013) or a segmentation of the environ-
ment (Wurm, Stachniss, and Burgard 2008)), or try to main-
tain communication capabilities at any time by deploying
a network infrastructure (Pei and Mutka 2012; Abichan-
dani, Benson, and Kam 2013). Some approaches use oppor-
tunistic communications to optimize the plan (Sung, Aya-
nian, and Rus 2013), but do not enforce them. These ap-
proaches do not consider time constraints between tasks,
and when synchronization is explicitly modeled, it is fo-
cused on spatial synchronization (Coltin and Veloso 2012).
Other approaches propose mechanisms to maintain the plan
consistency at execution. In (Kaminka et al. 2007), robots
regularly communicate to update temporal constraints be-
tween their tasks in order to maintain the global plan con-
sistency. In the exploration mission considered in (Korsah
et al. 2012), offline task scheduling and online plan flexibil-
ity are combined, and robots adapt their plans by exchang-
ing messages for satisfying task constraints again. However,
associated communication tasks are not explicitly included
within plans. Moreover, these tasks are considered as not
subject to failures.

In another direction, multi-robot task scheduling deals
with time constraints such as task precedence or synchro-
nization (Zhang and Parker 2013). In (Ponda et al. 2010;
Luo, Chakraborty, and Sycara 2013), tasks are scheduled
using an auction algorithm to minimize their delays. Mixed
Integer Linear Programming (MILP) is used in (Koes, Nour-
bakhsh, and Sycara 2006) to solve task allocation prob-
lems with constraints modeled using Allen’s algebra, and
in (Mathew, Smith, and Waslander 2013) to find trajecto-
ries of robots that must meet the already planned trajectories
of robots to be recharged. In these works, once tasks are
scheduled, no communication occurs to share information
and maintain plan consistency.

In probabilistic domains, (Wu, Zilberstein, and Chen
2011) proposes to broadcast history of actions and ob-
servations when an inconsistency is detected between
the current observation and the belief state of a local
POMDP. (Matignon, Jeanpierre, and Mouaddib 2012) uses

PlanRob 2014 Proceedings

56

a DecMDP model with communication uncertainty, while
(Spaan and Melo 2008) defines local interactions within a
so-called IDMG model. While these approaches generate
policies which include communication tasks, they do not in-
tegrate temporal constraints between tasks.

Conclusion and Future Work
We presented in this paper the high-level aspects of a com-
plete multi-robot exploration mission, from mission model-
ing to execution and repair, including planning algorithms
taking into account various constraints. We rely on the ro-
bust generic framework InCELL for planning algorithms, as
well as a HTN-like paradigm (augmented with temporal as-
pects) for solution scheme, distributed execution and repair.

This work will continue in several directions. First, at
model level, we want to take into account resources like en-
ergy, but also to do time-dependent scheduling. A typical
case is that for optical sensors, it might be useful to be able
to select observations locations with respect to the precise
time of the action, in order not to have sun on sight for in-
stance. Tasks should also be possibly done in parallel. For
instance an observation should not be simply to take a pic-
ture of a location from a given position, but grab a whole
video flow for a given time, this while moving. Similarly,
communication and observation could be performed in par-
allel. We also would like to use a good criterion for plans, in-
cluding much more information than only the earliest global
end time. This includes a trade-off with the flexibility, but
also variable costs of motions, variable values of interest for
zones. Finally, we would like to stop discretizing the mis-
sion over predefined observation zones.

At planning level, we are also working on a very differ-
ent approach for planning with temporal HTNs, that should
be more generic and allow a user (maybe directly the opera-
tor) to specify the chunk-like decomposition, instead of the
current fixed one.

At execution and especially at repair level, we plan to
make the planning model “alive” on the different robots and
feed it with real execution times in order to detect temporal
inconsistencies much earlier, and replan as soon as possi-
ble. While deferring observation tasks for a given robot is
an easy solution, ensuring global consistency and quality of
the plan is quite a challenge. As previously mentioned, we
plan to extend the set of failure cases which can be handled
by the repair process. Last, we would also like to integrate
the hand-written repair methods into the main planning loop,
instead of leaving them only at the supervision level.

References
Abichandani, P.; Benson, H.; and Kam, M. 2013. Robust
Communication Connectivity for Multi-Robot Path Coordi-
nation using Mixed Integer Nonlinear Programming: For-
mulation and Feasibility Analysis. In International Confer-
ence on Robotics and Automation (ICRA).
Bresina, J. L.; Jónsson, A. K.; Morris, P. H.; and Rajan,
K. 2005. Activity planning for the mars exploration rovers.
In International Conference on Automated Planning and
Scheduling (ICAPS), 40–49.

Coltin, B., and Veloso, M. 2012. Optimizing for Transfers
in a Multi-Vehicle Collection and Delivery Problem. In In-
ternational Symposium on Distributed Autonomous Robotic
Systems (DARS).
Croes, G. A. 1958. A method for solving traveling salesman
problems. Operations Research 6:791–812.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Networks. Artificial Intelligence 49:61–95.
Degroote, A., and Lacroix, S. 2011. ROAR: Resource ori-
ented agent architecture for the autonomy of robots. In Inter-
national Conference on Robotics and Automation (ICRA).
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN Planning:
Complexity and Expressivity. In AAAI Conference on Arti-
ficial Intelligence (AAAI).
Gateau, T.; Lesire, C.; and Barbier, M. 2013. HiDDeN:
Cooperative Plan Execution and Repair for Heterogeneous
Robots in Dynamic Environments. In International Confer-
ence on Intelligent Robots and Systems (IROS).
Hentenryck, P. V., and Michel, L. 2005. Constraint-based
Local Search. MIT Press.
Hourani, H.; Hauck, E.; and Jeschke, S. 2013. Serendip-
ity Rendezvous as a Mitigation of Explorations Interrupt-
ibility for a Team of Robots. In International Conference on
Robotics and Automation (ICRA).
Kaminka, G.; Yakir, A.; Erusalimchik, D.; and Cohen-Nov,
N. 2007. Towards collaborative task and team mainte-
nance. In International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS).
Klotzbücher, M., and Bruyninckx, H. 2012. Coordinating
Robotic Tasks and Systems with rFSM Statecharts. Journal
of Software Engineering for Robotics (JOSER) 3(1):28–56.
Koes, M.; Nourbakhsh, I.; and Sycara, K. 2006. Constraint
optimization coordination architecture for search and rescue
robotics. In International Conference on Robotics and Au-
tomation (ICRA).
Korsah, A.; Kannan, B.; Browning, B.; Stentz, A.; and Dias,
B. 2012. xBots: An approach to generating and execut-
ing optimal multi-robot plans with cross-schedule depen-
dencies. In International Conference on Robotics and Au-
tomation (ICRA).
LaValle, S. 2006. Planning Algorithms. Cambridge Univer-
sity Press.
Luo, L.; Chakraborty, N.; and Sycara, K. 2013. Dis-
tributed Algorithm Design for Multi-Robot Task Assign-
ment with Deadlines for Tasks. In International Conference
on Robotics and Automation (ICRA).
Mallet, A.; Pasteur, C.; and Herrb, M. 2010. GenoM3:
Building middleware-independent robotic components. In
International Conference on Robotics and Automation
(ICRA).
Mathew, N.; Smith, S. L.; and Waslander, S. L. 2013.
A Graph-Based Approach to Multi-Robot Rendezvous for
Recharging in Persistent Tasks. In International Conference
on Robotics and Automation (ICRA).

PlanRob 2014 Proceedings

57

Matignon, L.; Jeanpierre, L.; and Mouaddib, A.-I. 2012.
Coordinated Multi-Robot Exploration Under Communica-
tion Constraints Using Decentralized Markov Decision Pro-
cesses. In AAAI Conference on Artificial Intelligence
(AAAI).
Pei, Y., and Mutka, M. 2012. Steiner traveler: Relay de-
ployment for remote sensing in heterogeneous multi-robot
exploration. In International Conference on Robotics and
Automation (ICRA).
Ponda, S.; Redding, J.; Choi, H.-L.; How, J.; Vavrina, M.;
and Vian, J. 2010. Decentralized Planning for Complex Mis-
sions with Dynamic Communication Constraints. In Ameri-
can Control Conference (ACC).
Pralet, C., and Verfaillie, G. 2013. Dynamic online plan-
ning and scheduling using a static invariant-based evaluation
model. In International Conference on Automated Planning
and Scheduling (ICAPS).
Salvelsbergh, M. W. P. 1992. The vehicle routing problem
with time windows: Minimizing route duration. Journal on
Computing 4:146–154.
Soetens, P., and Bruyninckx, H. 2005. Realtime hybrid task-
based control for robots and machine tools. In International
Conference on Robotics and Automation (ICRA).
Spaan, M., and Melo, F. 2008. Interaction-driven Markov
games for decentralized multiagent planning under uncer-
tainty. In International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS).
Sung, C.; Ayanian, N.; and Rus, D. 2013. Improving the
Performance of Multi-Robot Systems by Task Switching.
In International Conference on Robotics and Automation
(ICRA).
Wu, F.; Zilberstein, S.; and Chen, X. 2011. Online plan-
ning for multi-agent systems with bounded communication.
Artificial Intelligence 175:487–511.
Wurm, K.; Stachniss, C.; and Burgard, W. 2008. Co-
ordinated multi-robot exploration using a segmentation of
the environment. In International Conference on Intelligent
Robots and Systems (IROS).
Zhang, Y., and Parker, L. 2013. Multi-Robot Task Schedul-
ing. In International Conference on Robotics and Automa-
tion (ICRA).

PlanRob 2014 Proceedings

58

Planning and Scheduling Single and Multi-Person Activities in

Retirement Home Settings for a Group of Robots

Tiago Vaquero and Goldie Nejat and J. Christopher Beck

Department of Mechanical and Industrial Engineering, University of Toronto,
5 King’s College Road, Toronto, Ontario, Canada M5S 3G8

{tvaquero, nejat, jcb}@mie.utoronto.ca

Abstract

Automated planning and scheduling (P&S) technology has
been increasingly investigated and applied to various
robotics applications. We introduce a challenging P&S
problem in which multiple social robots must autonomously
organize and facilitate human-robot interactions for one-on-
one telepresence sessions and multi-user Bingo games.
These activities need to take place throughout the day based
on the individual availabilities of the residents living in a
retirement home. We utilize a domain-independent P&S
approach for this problem, studying different variations of a
PDDL model and the performance of state-of-the-art
temporal planners in five different scenarios. We
demonstrate the modeling challenges and technological gap
in domain-independent P&S technology for such real-world
robot problems. In particular, modeling a combination of
metric quantities, resources, temporal availability of
residents and time constraints on cascading actions is non-
trivial. Moreover, we show that the available temporal
planners perform poorly on the problem and struggle with
the optimization aspects of such real-world scenarios.

Introduction

Due to the rapid aging of the world’s population and the

shortage in healthcare professionals, robotic technologies

are being increasingly developed to engage the elderly in

cognitively and socially stimulating activities in eldercare

environments (Pineau et al. 2003; Kidd, Taggart, and

Turkle 2006; Fasola and Mataric 2012; McColl, Louie,

and Nejat 2013). While some of this work has incorporated

automated planning and scheduling (P&S) (Pineau et al.

2003; Pollack 2005; Cesta et al. 2011), the majority of the

existing research in robotics and P&S in eldercare

environments has focused on the human-robot interaction

(HRI) activities of a single robot in one-on-one activities

with a single user. Only a handful of works have

considered robots interacting with multiple people at the

same time, e.g., (Montemerlo et al. 2002). However, these

robots have not actively distinguished between users to

provide personalized interactions during multi-user

activities. Given the variety of users’ abilities and

availabilities, multi-user assistance activities require robots

to plan, schedule, and customize their HRI interactions to

the needs, time constraints, availability and preferences of

each individual during the day. An environment with

multiple users, multiple robots, and single- and multi-

person HRI activities has not been addressed in the P&S

literature.

 In this paper, we introduce such an environment and the

associated P&S problem. A set of robots has to search for

and interact with multiple residents living in a retirement

home to perform a set of telepresence sessions (single-

person activity), Bingo games (multi-person activity), and

reminder deliveries. In addition, such activities deplete a

robot’s batteries and so a recharging activity may also be

necessary.

 The proposed problem provides a complex combination

of reasoning about actions, resources (e.g., the robots),

time windows (e.g., user availability), temporal constraints

(e.g., activity deadlines), metric quantities (e.g., battery

level), and optimization (e.g., maximizing the number of

residents taking part in a Bingo game). Since the 1980s

there has been a recurring discussion in the literature

regarding the challenges of combining these elements,

which have often been investigated independently (Fox

1999; Smith, Frank, and Jonsson 2000). However,

developing solvers for P&S applications that include these

features is still an open challenge.

 The novelty of this work lies in: 1) presenting a new

P&S problem for assistive robotics in retirement homes

that considers multiple robots, users and user schedules, as

well as single-user and multi-user HRI activities, and 2) an

investigation of the state-of-the-art domain-independent

temporal planners to solve the proposed problem.

PlanRob 2014 Proceedings

59

Background

Our long-term project is the deployment of intelligent

human-like mobile robots in retirement homes to engage

residents daily in stimulating recreational activities (Louie,

Han, and Nejat 2013; Louie et al. 2014). We use the

robotic platform H20 from Dr Robot (Dr Robot 2014) and

have designed the robot to: 1) navigate using a laser range

finder and 3D depth sensors, 2) detect users with 2D

cameras, and 3) interact with users through speech,

gestures, and a touch screen. While the implementation of

the robot behaviors addresses real robotics challenges (e.g.,

sensing, HRI, person recognition), herein we focus on the

planning and scheduling of the daily activities of the social

robots. Details of robot implementation can be found in

(Louie et al. 2014).

 We focus on two representative activities: telepresence

and Bingo. In the former, the robot autonomously

navigates to the user in his/her private room, prompts the

user for the video call, starts the call and tracks the user

during the session. For the Bingo game, the robot

autonomously finds and reminds participants about the

game prior to its start and then navigates to a specified

location to conduct the game. During Bingo, the robot acts

as the game facilitator, calling out numbers, verifying

Bingo cards, prompting players to mark missed numbers

and celebrating with winners. Currently, a centralized

server is being designed to plan, schedule and monitor the

daily activities of the robots. Specific behaviors are

planned and performed locally by each individual robot

platform.

 The integration of planning and scheduling techniques

has been investigated over the past several years in such

robotic applications as container transportation robots

(Alami et al. 1998), office assistant robots (Beetz and

Bennewitz 1998), planetary rovers (Estlin et al. 2007),

hospital assistant robots (Pecora and Cesta 2002), and

eldercare robots (Pineau et al. 2003; Cesta et al. 2011). In

these applications, single robot approaches are more

commonly studied. With respect to HRI activities, existing

work has mainly focused on automated reasoning about the

schedule of a single user. For example, the Pearl robot

(Pineau et al. 2003) uses the Autominder system (Pollack

2005) to reason about an elderly person’s current and

planned activities to determine if and when reminders

should be provided. The Autominder system has not been

extended to consider multiple users. The Cobot robots

(Coltin, Veloso, and Ventura 2011) plan and schedule HRI

activities, including semi-autonomous telepresence, and

office tasks based on requests from several users.

However, the planning and scheduling are managed

independently and the user schedules are not considered as

constraints for the robots’ activities. Although multiple

user schedules have been considered in other non-robotic

scheduling and optimization applications (e.g., building

energy conservation (Kwak et al. 2012)), in this work we

focus on problems in which an integration of both planning

and scheduling is required to reason about the schedules of

multiple users, limited resources and metric quantities, and

both single- and multi-user HRI activities.

The Problem

We define the main elements of the proposed problem: the

environment in which the residents (users) and robots

interact, the constraints, the goal and preferences. The

constraints for the telepresence and Bingo activities were

obtained from meetings with directors, healthcare

professionals and residents from Toronto area retirement

homes.

The Retirement Home Environment

We consider a floor in a retirement home. The environment

consists of rooms, corridors and hallways that are

discretized as a set of locations, L (l1 … ln), within which

the users and robots will interact. The set of locations and

the distance between any two locations (di,j) are known a

priori.

Users

The users are the residents of the retirement home. We

consider a set of users, U (u1 … un), for which each user uk

has his/her own profile. The profile consists of the user’s

private room location; a minimum, att_minuk, and

maximum, att_maxuk, number of Bingo games to play in a

day; and his/her own distinct schedule for the day,

representing the user availability (in time and space) for

interaction with a robot.

 A day for users starts at 7am and ends at 7pm. Within

this time frame, users in different locations can be either

available or unavailable for interaction with a robot. All

users are considered unavailable during breakfast (8am-

9am), lunch (12pm-1pm), and dinner (5pm-6pm) and can

have other unavailabilities already scheduled.

The Assistive Robots

We consider a set of assistive robots, R (r1 … rn), in which

each robot rl is able to execute the following activities: 1)

move from one discrete location to another at a constant

speed vrl, 2) perform a telepresence session with a user, 3)

perform a Bingo session with a group of users, 4) provide a

reminder to each user prior to a Bingo game, and 5)

recharge its battery at a charging station. Since battery

consumption depends on the activity, whenever the robot,

rl, executes an activity, its battery level, blrl, must remain

within bounds (i.e., bl_minrl <= blrl <= bl_maxrl). A

constant rate cr_moverl is used to specify the power

consumed for the moving activity (e.g., V/m). Each HRI

activity has a different constant consumption rate (e.g.,

V/min): cr_teleprl, cr_remindrl and cr_bingorl for the

PlanRob 2014 Proceedings

60

corresponding activities. Battery power is regained through

a charging station. A constant recharging rate rrrl (e.g.,

V/min) is used to estimate the duration of a recharging

process of a robot rl. The battery of the robot can be

recharged up to bl_maxrl.

Charging Stations

A set of charging stations, CS (cs1 … csn), exists for

recharging. Each station is at a fixed location and can

accommodate at most one robot at a time.

Telepresence Sessions

A set of telepresence sessions, S (s1 … sn), must be

scheduled during the day. Each session sy is characterized

by: 1) the user uk; 2) the duration, dursy, (e,g, 30 min); and

3) the time window(s) it can occur in. The session should

always take place in the user’s room (luk).

Bingo Games

A set of Bingo games, G (g1 … gn), should be scheduled

during the day, if possible. For each game gz, the robots

will assign, find, and remind participants prior to the game

and, then, play Bingo at a specific location, the games

room (lgame), at the scheduled time. Only one game can

occur at any given time. Only one robot can conduct the

game, but the robots can collaborate to deliver the

reminders. Each game gz is characterized by: 1) the

duration of the game, durgz, (e.g., 60 min) and of the

reminder, dur_remindgz; 2) the minimum and maximum

number of participants, p_mingz and p_maxgz; and 3) the

time window(s) in which it can occur.

 The group of participating users of a game gz is not

known a priori nor is the time of each game. Users are

assigned to each game based on their schedules and

attendance preferences and games are scheduled to fit the

users’ availabilities. Reminders must be delivered to all

assigned users between 15-120 minutes before the game

starts. It is assumed that the users will go to the games

room at the time specified.

Robot Activities

We describe below the conditions and constraints of the

available robot activities.

Navigate to a target location: the robot has to have enough

battery power to reach the target location lj from its current

location li. The power consumption and the duration of the

moving activity are di,j cr_moverl and di,j / vrl, respectively.

Recharge battery: the robot has to be in a location with an

idle charging station and the battery level has to be less

than the battery capacity, blrl < bl_maxrl. The duration of

the activity is (bl_maxrl blrl)/rrrl.

Perform Telepresence Session: the robot has to be in the

private room of the specified user, who must be available

during the entire duration (dursy) of the activity. The power

consumption of the activity is dursy cr_teleprl .

Play Bingo Game: the robot has to be in the games room,

no other game can be ongoing, and all users must be

available during the entire duration (durgz) of the game. All

assigned users must have been reminded 15-120 minutes

before the game starts. The power consumption of the

Bingo activity is durgz cr_bingorl.

Remind User: the robot has to be at the same location as

the user, who cannot be interacting with another robot and

must be available during the entire duration (dur_remindgz)

of the activity. The power consumption of the reminder

activity is dur_remindgz cr_remindrl.

 In all the activities (except recharging), the robot has to

have enough power to reach a location that has a charging

station after the activity is completed.

Input, Goal, and Preferences

The input of the problem is the sets of locations L, users U

(including their corresponding profiles), charging stations

CS, available robots R (with their initial location and

corresponding velocity, battery levels and limits, and

consumption rates), and the requested telepresence sessions

S and Bingo games G with their corresponding properties.

The goal is to have a plan of robot activities in which: 1)

all the requested telepresence sessions are scheduled, and

2) the requested Bingo games and reminders are scheduled,

if possible, given that user attendance preferences have to

be satisfied. All robots must be at a recharging location at

the end of the day. As a multi-objective optimization

problem, we want to: 1) perform as many Bingo games as

possible, 2) have as many users playing Bingo as possible,

3) provide reminders as close as possible to the game

times, and 4) expend as little battery power as possible.

An Automated P&S Approach

We address the proposed problem using a P&S approach.

Herein, we use the itSIMPLE Knowledge Engineering

(KE) (Vaquero et al. 2009; 2013) tool that follows an

object-oriented modeling approach using the Unified

Modeling Language (UML) (OMG 2005) and generates a

PDDL model of the target problem.

Domain Modeling

A visualization of the modeled object types (classes),

fluents and operators is provided in the UML class diagram

in Figure 1. The most important classes are: Location,

GamesRoom, ChargingStation, Robot, User,

TelepresenceSession, BingoGame and Global. The

Location and GamesRoom (a specialization of Location)

represent the topology of the retirement home. The

distance between locations, and the distance between each

available charging station and these locations are

represented in the class Global. A games room is said to be

free when no game is taking place at the location. A

ChargingStation is said to be idle when no robot is docked

for charging. Moreover, Robots and Users can only be at

one location at a time.

PlanRob 2014 Proceedings

61

Figure 1. The UML Class diagram of the proposed problem model.

The class User has a set of properties to represent the

user’s profile. The predicate room specifies the user’s

private room while the predicate available is used to

represent the availability of the user during the day. This

availability is translated into PDDL in the form of timed

initial literals (TILs) (Edelkamp and Hoffman, 2004) by

assigning the available predicate to true or false in specific

time intervals. We also represent the known locations of

the user during the day with TILs. We represent the user

preference on attending games (att_min, att_max), the

variable for the number of games attended (att_num), and

the predicate not_assigned_game to list all the games to

which a user has not yet been assigned. When a user is

interacting with a robot, the predicate not_interacting is set

to false to prevent other robots from interacting.

 The classes TelepresenceSession and BingoGame

represent the HRI activities. Both have the properties: dur

to represent duration; not_done and done to represent if the

activity has been performed; and must_be_done, TILs to

represent the time windows in which the activity can be

performed. In addition to the properties of the sessions and

games introduced in the problem description, we have

added the properties p_num and p_cur to control the

number of users reminded by the robots and the number of

users playing the game, as well as delivery_time to control

the time each user is reminded about the game. The

difference between the reminder delivery time and the start

of the game must be within 15-120 minutes.

 Modeling the reminder delivery constraint is not

possible without using features that have not been

officially incorporated into PDDL. The planner would have

to explicitly reason about continuous time during the

planning process itself to determine that two actions

(reminder and playbingo) are a certain time apart. This can

be done by using PDDL+ which includes processes (Fox

and Long 2006). Herein, a process (called clock_ticker in

the class Global) models an exogenous activity that is

triggered for as long as a condition holds (in this case

can_start_clock), regardless of the action selection process.

This mechanism allows us to increment the variable

current_time in every step of the search, simulating the

passage of time. If current_time is used in an action’s

precondition it will hold the exact start time of the action.

We use this variable to record the time each user is

reminded (delivery_time) and also to check if the start time

of a game is within the time constraints of the reminders.

 The class Global also holds global variables including

the maximum and minimum time for delivering reminders

prior to the games, the total time generated by adding all

the lengths of the time intervals between the reminders and

the game (total_delivery_time), the total amount of battery

power consumed by all robots (total_battery_usage), the

total number of games not played (game_skipped), and the

number of target users (total_number_users). These

variables are used to specify the cost function and are

manipulated in the specification of the robot actions.

 The class Robot has all the properties described in the

problem description (e.g., velocity, battery level, etc). In

addition, we have the predicates ready, act_done, and

playing. A robot is ready when it is not engaged in any

activity and it is playing when it is performing a Bingo

activity. The predicate act_done prevents a robot from

PlanRob 2014 Proceedings

62

going to a location and performing no action: a robot can

only move to another location if it has completed an

activity in its current location. As shown in Figure 1, a

robot has the following operators: move to a target

location; recharge its battery; remind users;

do_telepresence with a user; play_bingo and interact with

a player during the game; and skip_bingo which removes

the game from the request list.

 In the reminder operator, the user is set as a participant

of the game. In order to play a game after the reminders, a

robot has to first start the play_bingo action, then it has to

perform, in parallel (a required concurrency), the action

interact with each participant. The play_bingo action can

only finish when the robot has performed the interact

action with all assigned players.

 In the goal state all sessions and games must be done

(Bingo games can be either performed or skipped) and the

user preferences on game attendance must be satisfied. We

aim to minimize the following weighted cost function f:

f = 500 (games_skipped) + 1000 (total_number_users –

games_attendees) + total_battery_usage + total_delivery_time
(1)

where the weights are used to express preference on

optimizing the number of games and players. Due to space

limitations, we present the PDDL code for the proposed

model at:

https://docs.google.com/file/d/0B3t9fqfsJqrlTGpndVNxM

EdSSlU/edit?pli=1.

Model Variations

The resulting PDDL model includes features that are

challenging for most existing planners: metric quantities,

optimization, temporal actions, timed initial literals,

concurrent actions, and processes. In particular, few

planners can properly handle the required concurrency (R)

and processes (P). Therefore, we decided to define model

variations to investigate the performance of existing

temporal planners. Model RP is our full model as described

above. Model RN does not consider the reminder time

constraint and therefore, does not use processes. Model NP

is our full model without the required concurrency in the

Bingo activity. We replace both operators play_bingo and

interact with operators play_bingo3 and play_bingo4, each

representing a game activity with a specific number of

participants. Representing an operator for each possible

number of participants, in this case from 3 to 10, is

impractical due to the large number of parameters and,

consequently, an exponentially increasing number of

action instantiations during the planning procedure.

Therefore, the maximum number of Bingo game

participants is 4 when using the operators play_bingo3 and

play_bingo4. Model NN is the full model with both

required concurrency and processes removed.

Experiments

We chose five planners to investigate: COLIN (Coles et al.

2012), LPG-td (Gerevini, Saetti, and Serina 2004), OPTIC

(Benton, Coles, and Coles 2012), POPF (Coles et al. 2010)

and SGPlan (Hsu and Wah 2008). All these planners can

potentially handle metric quantities, optimization, temporal

actions, and timed initial literals. However, only OPTIC,

COLIN and POPF handle the required concurrency and

processes.

 We consider a realistic retirement home environment in

which residents have several activities in different

locations (e.g., TV room, private room, garden, dining hall)

during a day. We assume that each user has a number of 1-

hour activities (e.g., physiotherapy, doctor’s appointment,

family visit, nap), in addition to the meal times, during

which the robots cannot disturb him/her (herein called non-

interruptible activities). Other activities (e.g., walk in the

garden, reading in a common area) allow robot interactions

(interruptible activities); at least one interruptible activity

is assumed for each user. We analyze the selected planners

for five full-day scenarios in this environment (7am-7pm)

– see Table 1. For each full-day scenario, we analyze

different numbers of non-interruptible activities for the

users. We investigate non-interruptible activity density,

defined as Density k, (k = 0,1,2,3,4), where k is the number

of non-interruptible activities, in addition to the meals, that

each user has per day. The different densities in particular

are aimed to study the impact of the user availability

constraints on the performance for the selected planners.

Table 1. The number of objects in the five scenarios.
Scenario Users Robots Telepresence Bingo

1 5 2 2 1

2 10 2 4 3

3 15 3 6 5

4 20 3 8 6

5 25 4 10 8

 In all scenarios, the telepresence sessions and Bingo

games are 30 and 60 minutes long, respectively with time

windows from 7am-7pm. Reminders are 2 minutes long.

Each game has a minimum of three participants and a

maximum of ten participants (in models NP and NN the

maximum is four as previously noted). Every user is

willing to attend at most one Bingo game during the day

(i.e., att_min = 0, att_max = 1). Each scenario was

designed so that it is feasible to schedule at least one game

with five participants. All robots have the following

property values, estimated based on the H20 robot

platform: bl_min = 0, bl = bl_max = 20, v = 20m/min, rr =

0.5, cr_move = 0.04 and cr_telep = cr_remind = cr_bingo

= 0.1.

 We run the planners for each model variation with each

of the five scenarios and each density on a 64-bit Ubuntu

Linux machine with 32 GB of memory. A 1-hour timeout

PlanRob 2014 Proceedings

63

was used for each planner in each scenario. We measure

the solvability of the planners, the runtime, the number of

states evaluated, and the number of users attending a game.

Table 2 shows the number of scenarios (out of 5) for which

each planner was able to generate at least one solution.

Table 2. Number of scenarios solved by each planner. The

‘-’ indicates that the planner could not represent the model,

while the ‘
(inv)

’ indicates that the planner generates invalid

solutions for some scenarios. Such solutions are not

included in the number of scenarios solved.

Planners

Models

RP RN NP NN

Density 0

COLIN 0(inv) 0(inv) 0(inv) 0(inv)

LPG-td - - - 0

OPTIC 5 5 2 2

POPF 0 1(inv) 0 1(inv)

SGPlan - - - 0

Density 1

COLIN 3 3 2 2

LPG-td - - - 0

OPTIC 5 5 2 2

POPF 0 5 0 2

SGPlan - - - 0

Density 2

COLIN 4 4 2 2

LPG-td - - - 0

OPTIC 5 5 2 2

POPF 0 5 0 2

SGPlan - - - 0

Density 3

COLIN 4 4 2 2

LPG-td - - - 0

OPTIC 5 5 2 2

POPF 0 5 0 2

SGPlan - - - 0

Density 4

COLIN 4 4 2 2

LPG-td - - - 0

OPTIC 5 5 2 2

POPF 0 5 0 2

SGPlan - - - 0

 As shown in Table 2, the majority of scenarios were

solved by some of the planners with models RP and RN

while few scenarios were solved with models NP and NN.

The OPTIC planner was the only P&S system able to solve

scenarios with all models and in all investigated densities.

Across all investigated models and densities, the solutions

generated by the planners for a given scenario varied with

respect to the number of robots used, total battery usage,

and makespan. For example, COLIN generated plans with

only one robot more often than POPF and OPTIC did for

Scenarios 1 and 2. Having less robots resulted in a lower

cost, however, using multiple robots had lower makespan.

The number of Bingo games scheduled also varied. The

majority of the solutions did not schedule a game at all and

had the following common structure for the plan: skip the

Bingo games and schedule the assigned robots to

implement the requested telepresence sessions, while

recharging the robots when necessary; and at the end of the

day, the robots assigned in the plan return to the charging

station. The solutions with scheduled Bingo games had a

similar structure as those with no games, however in these

cases the robots assigned in the plan also scheduled

reminders to users prior to the start of a Bingo game as

well as the game playing session.

 LPG-td and SGPlan were not able to solve any of the

problem instances with model NN, the only model that

these planners could represent. We suspect that this is due

to the large number of TILs used to represent the user

schedules. The COLIN planner was able to generate

solutions for the four proposed models and POPF was able

to generate solutions only for models RN and NN.

However, none of the solutions from COLIN and POPF for

the five scenarios had any Bingo games: all the games

were skipped. Furthermore, these two planners generated

invalid solutions in problem instances with Density 0, for

example, scheduling telepresence activities during the

breakfast period. Interestingly, neither planner generated

invalid solutions at higher densities. This issue occurs

when there is no non-interruptible activity in beginning of

the day (7am), i.e. all users start with the variable available

set to true in the initial state and this variable does not

change until the beginning of breakfast, when it is set to

false. In the problem instances with density greater than

zero, some users have non-interruptible activities starting

at 7am, so their corresponding variable available is false in

the initial state. In such cases no invalid solutions were

generated. With COLIN we observed that the issue seems

to be related to the compression-safe action detection

mechanism (Coles et al. 2012). When this mechanism is

disabled, the issue no longer occurs. POPF has a similar

mechanism; however, disabling it does not eliminate the

issue. Given that the compression-safe action detection is a

default mechanism in both planners, we decided to keep it

enabled in our experiments. Further experimentation and

analysis is needed.

 Table 3 shows the runtime and number of states

evaluated for COLIN and POPF to find a solution with the

four models. In most cases, the planners stopped before the

timeout. The density of non-interruptible user activities

seems to have some impact on the performance of both

planners. Different trends are observed in Table 3. For

example, the runtime decreases as the density increases in

Scenario 3 for COLIN with models RP and RN. Moreover,

the runtime increases in Scenario 5 for POPF with model

RN as the density increases.

 As OPTIC had the best performance, we ran it to search

for better solutions until the timeout. OPTIC was the only

planner that was able to find solutions that included Bingo

games. Table 4 shows the runtime, number of states

evaluated and the number of users playing Bingo games in

the plans found by the OPTIC planner. This table focuses

PlanRob 2014 Proceedings

64

on the first and last solutions found to illustrate how fast

the planner can find a solution and the quality of the best

solution found. For problems for which the planner

generated no solution or only one solution, we show the

time the planner stopped instead.

 As shown in Table 4, plans with Bingo games were only

found in Scenario 1. Most of these plans were found with

models RN and NN, i.e., the models without the reminder

time constraint. Problem instances from Scenario 1 with

Density 0 are the only instances in which OPTIC generated

plans with Bingo games with all models. OPTIC generated

solutions for Scenarios 3, 4 and 5 across all non-

interruptible user activity densities only with models RP

and RN (models with required concurrency). Most of the

solutions with the highest number of Bingo participants

were generated with model NN, the simplest PDDL model.

During the optimization process of all the scenarios, most

improvements to the plan resulted in lower battery

consumption. OPTIC stopped running before the timeout

in most cases. While the reason is unclear but we suspect

that it reached its internal memory limits.

 With respect to the impact of the different non-

interruptible user activity densities, Table 4 shows that

both the runtime and the number of evaluated states

increased as the density was increased with model RP and

RN in Scenarios 4 and 5. An increase in runtime can also

be observed with modes NP and NN in Scenario 2. In order

to investigate whether the different non-interruptible user

activity densities affected the performance of the planner

on finding a solution with a Bingo game, we further

investigated the very first solutions found by OPTIC in

which a Bingo game was scheduled. Table 5 shows the

runtime and number of evaluated states for those cases in

Scenario 1 across the four models and the five densities.

The density increment tends to decrease the runtime to find

a solution with a Bingo game as well as the number of

evaluated states with models RN and NP. We suspect that

this pattern is due to the decreasing number of time

windows in which a game can be scheduled leading to a

reduction in the alternatives during the search.

Discussion

The experimental results show that existing domain-

independent temporal planners are not able to solve the

proposed multi-robot, multi-user, single and multi-user

HRI activities problem for realistic scenarios. Although

some of the planners provide feasible solutions, optimal

solutions do not appear to be achievable. In particular, the

expected optimization of the number of Bingo players is

observed in very few small-scale cases, most of the time in

models that do not consider the full requirements of the

problem.

 The advancement of P&S technology in representing

and solving problems with temporal constraints, time-

windows and numeric quantities is noticeable since the

1980s (Boddy, Cesta, and Smith 2004). However, the

challenges in modeling and solving problems that require

integrated P&S with such a combination of complex

features are evident from our experiment. From the

modeling perspective, not all temporal requirements can be

represented in standard PDDL. While few planners can

handle the aforementioned features together, even fewer

represent the PDDL+ features our problem requires. Due to

the few temporal planners available for these challenging

problems, the modeling process becomes driven by the

planner at hand. Namely, we found ourselves faced with

tailoring the model to the solver’s abilities at the expense

of accurately representing our problem.

 From the perspective of a user of AI planning

technology (e.g., a roboticist who wants to focus on the

challenges of sensing, navigation, and HRI), current

domain-independent AI planning technology is not up to

the task. We hope that the application we have introduced

can form a challenge to spur advances in this direction.

 We intend to extend this work to investigate timeline-

based planning (Muscettola 1994) and scheduling

approaches such as constraint programming and mixed-

integer programming. Our preliminary indication is that

none of these technologies will be able to reliably solve

these problems. If that is the case, we intend to identify the

most promising technology and investigate its extension to

be able to solve our real-world problem.

Conclusion

We have introduced a new planning and scheduling

problem in which multiple robots have to interact with

residents in a retirement home environment to perform

single- and multi-user activities while considering the

users’ schedules. We have investigated an AI P&S

approach by: 1) designing variations of a PDDL model and

realistic problem instances using the itSIMPLE KE tool,

and 2) studying the performance of five state-of-the-art

domain-independent temporal planners. Experimental

results demonstrate that current temporal planners can

sometimes provide valid solutions even with a complex

combination of model features. However, in most of the

cases they failed to provide solutions in which both single-

and multi-user activities are present, even when using

simplified models. The results reinforce the existing

technology gap in the AI P&S approach for both modeling

and solving real problems that combine temporal, numeric

and optimization requirements.

PlanRob 2014 Proceedings

65

Acknowledgments

This research has been funded by a Natural Sciences and

Engineering Research Council of Canada (NSERC)

Collaborative Research and Development Grant and by Dr

Robot Inc.

References

Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand, F.
1998. An Architecture for Autonomy. International Journal of
Robotics Research, 17: 315-337.

Beetz, M., and Bennewitz, M. 1998. Planning, Scheduling, and
Plan Execution for Autonomous Robot Office Couriers,
Integrating Planning, Scheduling and Execution in Dynamic and
Uncertain Environments, Workshop Notes, 1998.

Benton, J.; Coles, A. J.; and Coles, A. I. 2012. Temporal Planning
with Preferences and Time-Dependent Continuous Costs. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS-12), pp. 2-10.

Boddy, M.; Cesta, A.; and Smith, S. ICAPS-04 Workshop on
Integrating Planning into Scheduling. Workshop proceeding:
http://pst.istc.cnr.it/wipis-at-icaps-04/WIPIS-ICAPS04-Notes.pdf

Cesta, A.; Cortellessa, G.; Rasconi, R.; Pecora, F.; Scopelliti, M.;
and Tiberio, L. 2011. Monitoring Older People with the
RoboCare Domestic Environment: Interaction Synthesis and User
Evaluation. Computational Intelligence, 27(1): 60–82.

Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In Proceedings of the
International Conference on Automated Planning and Scheduling
(ICAPS-10), pp. 1-8.

Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012. COLIN:
Planning with Continuous Linear Numeric Change. Journal of
Artificial Intelligence Research. 44: 1-96.

Coltin, B.; Veloso, M.; and Ventura, R. 2011. Dynamic User
Task Scheduling for Mobile Robots. In Proceedings of the AAAI
Workshop on Automated Action Planning for Autonomous Mobile
Robots, pp. 1-6.

Dr Robot. 2014. H20 Wireless Networked Autonomous
Humanoid Mobile Robot. Dr Robot Inc.
http://www.drrobot.com/products_h20.asp.

Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The language
for the classical part of the 4th International Planning
Competition. Tech. rep. 195, Albert-Ludwigs-Universität
Freiburg, Institut für Informatik.

Estlin, T.; Gaines, D.; Chouinard, C.; Castano, R.; Bornstein, B.;
Judd, M.; Nesnas, I.; and Anderson, R. 2007. Increased Mars
Rover Autonomy using AI Planning, Scheduling and Execution.
In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pp. 4911-4918.

Fasola, J., and Mataric, M. 2012. Using Socially Assistive
Human-Robot Interaction to Motivate Physical Exercise for Older
Adults. IEEE, Special Issue on Quality of Life Technology, T.
Kanade, ed., 100(8): 2512-2526.

Fox, M. 1994. ISIS: A Retrospective. In Zweben, M., and Fox,
M. 1994. Intelligent Scheduling. Morgan Kaufmann, pp. 3–28.

Smith, D. E.; Frank, J.; and Jonsson, A. K. 2000. Bridging the
Gap Between Planning and Scheduling. Knowledge Engineering
Review, 15(1): 1-34.

Fox, M., and Long, D. 2006. Modelling Mixed Discrete
Continuous Domains for Planning. Journal of Artificial
Intelligence Research 27:235–297.

Gerevini, A.; Saetti, A.; and Serina, I. 2004. LPG-TD: a Fully
Automated Planner for PDDL2.2 Domains. In Proceedings of the
International Conference on Automated Planning and Scheduling
(ICAPS-04), booklet of the system demo section..

Hsu, C., and Wah, B. W. 2008. The SGPlan Planning System in
IPC-6. In the booklet of the International Planning Competition
(IPC), International Conference on Planning and Scheduling.

Kidd, C. D.; Taggart, W.; and Turkle, S. 2006. A Sociable Robot
to Encourage Social Interaction among the Elderly, In
Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pp. 3972-3976.

Kwak, J.; Varakantham, P.; Maheswaran, R.; Tambe, M.;
Jazizadeh, F.; Kavulya, G.; Klein, L.; Becerik-Gerber, B.; Hayes,
T.; and Wood, W. 2012. SAVES: a sustainable multiagent
application to conserve building energy considering occupants. In
Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems, v.1, pp. 21-28.

Louie, W. G.; Han, R.; and Nejat, G. 2013. A Socially Assistive
Robot to Promote Stimulating Recreational Activities at Long-
term Care Facilities, Journal of Medical Devices-Transactions of
the ASME, 7, 030944-1.

Louie, W. G.; Vaquero, T.; Nejat, G.; and Beck, J. C. 2014 An
Autonomous Assistive Robot for Planning, Scheduling and
Facilitating Multi-User Activities, In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA).

McColl, D.; Louie, W. G.; and Nejat, G. 2013. Brian 2.1: A
Socially Assistive Robot for the Elderly and Cognitively
Impaired. IEEE Robotics & Automation Magazine, 20(1): 74-83.

Montemerlo, M.; Prieau, J.; Thrun, S.; and Varma, V. 2002.
Experiences with a mobile robotics guide for the elderly. In
Proceedings of the AAAI National Conference on Artificial
Intelligence, pp. 587–592.

Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. Intelligent Scheduling, ed., Zweben, M. and Fox,
M.S., M. Kauffmann.

OMG. 2005. OMG Unified Modeling Language Specification,
Version 2.0.

Pecora, F., and Cesta, A. 2002. Planning and Scheduling
Ingredients for a Multi-Agent System. In Proceedings for the of
UK PLANSIG’02 Workshop, pp. 135-148.

Pineau, J.; Montemerlo, M.; Pollack, M.; Roy, N.; and Thrun, S.
2003. Towards Robotic Assistants in Nursing Homes: Challenges
and Results. Robotics and Autonomous Systems, 42(3-4): 271-
281.

Pollack, M. 2005. Intelligent technology for an aging population:
The use of AI to assist elders with cognitive impairment. AI
Magazine, 26(2): 9–24.

Vaquero, T.; Silva, J. R.; Ferreira, M.; Tonidandel, F.; and Beck,
J. C. 2009. From requirements and analysis to PDDL in
itSIMPLE3.0. In Proceedings of the International Competition
on Knowledge Engineering for Planning and Scheduling
(ICKEPS), at ICAPS 2009, Thessaloniki, Greece, pp. 1-8.

Vaquero, T.; Silva, J. R.; Tonidandel, F.; and Beck, J. C. 2013.
itSIMPLE: Towards an Integrated Design System for Real
Planning Applications. The Knowledge Engineering Review
Journal, 28(2): 215–230.

PlanRob 2014 Proceedings

66

Table 3. Runtime (s) and number of evaluated states for the planners COLIN and POPF. The ‘-’ indicates that no solution
was found and the ‘

(inv)
’ indicates the invalid solutions.

Scenarios

POPF COLIN

RP RN NP NN RP RN NP NN

runtime

(s)

states runtime

(s)

states runtime

(s)

states runtime

(s)

states runtime

(s)

states runtime

(s)

states runtime

(s)

states runtime

(s)

states

Density 0

1 0.04 - 0.04 11 0. 06 - 0.10 11 0.04(inv) 8 0.06(inv) 8 0.16(inv) 8 0.10(inv) 8

2 0.07 - 0.18(inv) 30 3.12 - 312.7(inv) 30 0.14(inv) 16 0.14(inv) 16 1806.6(inv) 16 179.0(inv) 16

3 0.17 - 1.00(inv) 65 46.9 - timeout - 0.70(inv) 30 0.64(inv) 30 timeout - timeout -

4 0.32 - 2.56(inv) 107 97.6 - 96.5 - 1.70(inv) 56 1.52(inv) 56 121.4 - 120.8 -

5 0.74 - 10.0(inv) 188 308.3 - 282.8 - 5.82(inv) 59 4.92(inv) 59 432.6 - 414.5 -

Density 1

1 0.04 - 0.12 127 0.12 - 0.24 127 0.08 127 0.08 127 0.20 127 0.14 127

2 0.08 - 0.66 336 3.20 - 318.6 336 1.88 2326 1.74 2326 1890.0 2326 194.1 2326

3 0.18 - 4.60 933 46.8 - timeout - 906.2 199559 628.3 199559 timeout - timeout -

4 0.32 - 15.2 1676 98.1 - 96.3 - 2838.7 - 2118.1 - 121.7 - 120.7 -

5 0.74 - 66.4 3164 307.9 - 284.7 - timeout - timeout - 433.2 - 416.5 -

Density 2

1 0.05 - 0.14 139 0.14 - 0.24 139 0.08 139 0.08 139 0.22 139 0.16 139

2 0.08 - 0.72 359 3.22 - 344.4 359 0.94 1052 0.86 1052 1905.8 1052 203.9 1052

3 0.18 - 6.08 1264 46.9 - timeout - 111.5 27155 76.9 27155 timeout - timeout -

4 0.32 - 14.1 1615 98.4 - 95.9 - 2362.9 255989 1493.7 255989 122.1 - 120.5 -

5 0.75 - 85.7 4060 307.2 - 285.0 - timeout - timeout - 432.0 - 414.0 -

Density 3

1 0.05 - 0.14 139 0.14 - 0.28 139 0.08 139 0.08 139 0.22 139 0.16 139

2 0.08 - 0.70 359 3.26 - 324.2 359 0.96 1052 0.88 1052 2000.7 1052 158.5 1052

3 0.18 - 5.96 1228 46.9 - timeout - 57.2 13911 39.0 13911 timeout - timeout -

4 0.32 - 13.5 1570 97.7 - 96.0 - 2405.8 256743 1548.6 256743 120.8 - 120.7 -

5 0.76 - 126.9 5375 310.9 - 283.8 - timeout - timeout - 431.9 - 414.9 -

Density 4

1 0.06 - 0.14 139 0.14 - 0.24 139 0.08 139 0.08 139 0.22 139 0.16 139

2 0.09 - 0.72 359 3.24 - 327.2 359 0.96 1052 0.86 1052 2043.0 1052 173.6 1052

3 0.20 - 6.00 1228 47.0 - timeout - 55.5 13911 39.4 13911 timeout - timeout -

4 0.34 - 19.9 2080 98.1 - 95.9 - 1711.9 191594 1119.9 191594 121.0 - 120.3 -

5 0.76 - 313.4 11352 308.2 - 284.6 - timeout - timeout - 432.6 - 413.0 -

PlanRob 2014 Proceedings

67

Table 4. OPTIC planner performance in all models and scenarios: runtime (s), number of states evaluated and the number of

Bingo game participants (part.) for the first and the last solutions found by the planner. The ‘*’ indicates that the planner

stopped at the specified time and ‘-’ that no solution was found.

Scen-

arios

RP RN NP NN

first last first last first last first last

runtime
(s)

states part. runtime
(s)

states part. runtime
(s)

states part. runtime
(s)

states part. runtime
(s)

states part. runtime
(s)

states part. runtime
(s)

states part. runtime
(s)

states part.

Density 0

1 0.06 11 0 389.1 67419 3 0.06 11 0 730.6 92553 3 0.18 11 0 3197.0 94794 4 0.14 11 0 2179.6 188659 4

2 0.34 40 0 821.5 89927 0 0.32 40 0 745.2 89927 0 273.5 40 0 1772.5 6585 0 127.8 40 0 1612.9 6585 0

3 27.9 2268 0 260.0 14516 0 22.6 2268 0 224.8 14516 0 timeout - - - - - timeout - - - - -

4 48.5 2508 0 1271.0 41283 0 35.2 2508 0 1062.0 41283 0 141.2* - - - - - 140.1* - - - - -

5 345.1 7692 0 2561.5* - - 264.7 7692 0 2987.5* - - 485.3* - - - - - 458.5* - - - - -

Density 1

1 0.06 8 0 2002.2 90623 3 0.06 8 0 1775.7 183257 3 0.20 8 0 2936.0* - - 0.14 8 0 1478.0 167930 4

2 0.24 26 0 190.0 22792 0 0.24 26 0 179.3 22792 0 254.3 26 0 2761.1 11713 0 128.5 26 0 2505.7 11713 0

3 26.7 2115 0 1163.6 59770 0 21.8 2115 0 1040.1 59770 0 timeout - - - - - timeout - - - - -

4 34.4 1882 0 2027.2* - - 24.5 1882 0 2358.0* - - 140.5* - - - - - 140.1* - - - - -

5 158.8 4062 0 2593.4* - - 118.2 4062 0 2995.6* - - 487.3* - - - - - 463.2* - - - - -

Density 2

1 0.06 8 0 timeout - - 0.06 8 0 1269.6 154476 3 0.18 8 0 3529.2* - - 0.14 8 0 1250.8 139669 4

2 0.24 26 0 1209.9 151592 0 0.22 26 0 1115.7 151592 0 256.1 26 0 2879.9 11713 0 136.8 26 0 2657.7 11713 0

3 26.2 2129 0 1604.2 86052 0 21.3 2129 0 1403.1 86052 0 timeout - - - - - timeout - - - - -

4 58.7 2797 0 1981.9* - - 44.0 2797 0 2287.8* - - 141.8* - - - - - 139.7* - - - - -

5 316.6 6977 0 2587.9* - - 234.8 6977 0 2955.9* - - 487.4* - - - - - 464.2* - - - - -

Density 3

1 0.06 8 0 timeout - - 0.06 8 0 1945.2 202444 4 0.20 8 0 timeout - - 0.14 8 0 2764.9 281129 4

2 0.26 26 0 1272.9 151592 0 0.22 26 0 1133.7 151592 0 354.0 26 0 2993.6 11713 0 207.3 26 0 2811.5 11713 0

3 26.8 2075 0 965.9 50272 0 20.7 2075 0 1609.5 100868 0 timeout - - - - - timeout - - - - -

4 63.5 2959 0 1990.5* - - 48.5 2959 0 2292.8* - - 140.7* - - - - - 140.3* - - - - -

5 331.7 7338 0 2541.6* - - 253.8 7338 0 2967.7* - - 485.3* - - - - - 468.1* - - - - -

Density 4

1 0.06 8 0 timeout - - 0.06 8 0 1974.3 222945 3 0.22 8 0 1037.5 90968 3 0.12 8 0 1315.0 172596 4

2 0.24 26 0 1115.1 143131 0 0.22 26 0 1031.5 143131 0 807.0 26 0 2707.3 11360 0 581.6 26 0 timeout - -

3 24.6 2075 0 898.7 50272 0 20.1 2075 0 1559.2 100868 0 timeout - - - - - timeout - - - - -

4 66.4 3047 0 1537.6 50611 0 51.9 3047 0 1311.3 50611 0 141.2* - - - - - 139.8* - - - - -

5 461.8 9850 0 1776.2 32746 0 346.8 9850 0 1377.4 32746 0 486.0* - - - - - 461.5* - - - - -

Table 5. Runtime (s) and number of evaluated states for the planner OPTIC to find a solution with a Bingo game in the

Scenario 1. The ‘-’ indicates that the planner could not find a solution with a Bingo game.

Density

Models

RP RN NP NN

runtime (s) states runtime (s) states runtime (s) states runtime (s) states

0 389.1 67419 305.3 67547 1430.5 84353 338.9 56550

1 562.7 73856 271.7 67234 - - 314.2 56316

2 - - 269.7 66577 - - 310.8 55659

3 - - 263.5 64858 - - 304.7 54286

4 - - 296.2 71191 1037.5 90968 284.1 54212

PlanRob 2014 Proceedings

68

Planning for Decentralized Control of Multiple Robots Under Uncertainty
Christopher Amato1, George D. Konidaris1, Gabriel Cruz1

Christopher A. Maynor2, Jonathan P. How2 and Leslie P. Kaelbling1

1CSAIL, 2LIDS
MIT

Cambridge, MA 02139

Abstract

We describe a probabilistic framework for synthesizing con-
trol policies for general multi-robot systems, given environ-
ment and sensor models and a cost function. Decentral-
ized, partially observable Markov decision processes (Dec-
POMDPs) are a general model of decision processes where
a team of agents must cooperate to optimize some objective
(specified by a shared reward or cost function) in the presence
of uncertainty, but where communication limitations mean
that the agents cannot share their state, so execution must
proceed in a decentralized fashion. While Dec-POMDPs are
typically intractable to solve for real-world problems, recent
research on the use of macro-actions in Dec-POMDPs has
significantly increased the size of problem that can be prac-
tically solved as a Dec-POMDP. We describe this general
model, and show how, in contrast to most existing methods
that are specialized to a particular problem class, it can syn-
thesize control policies that use whatever opportunities for
coordination are present in the problem, while balancing off
uncertainty in outcomes, sensor information, and information
about other agents. We use three variations on a warehouse
task to show that a single planner of this type can generate
cooperative behavior using task allocation, direct communi-
cation, and signaling, as appropriate.

Introduction
The decreasing cost and increasing sophistication of recently
available robot hardware has the potential to create many
new opportunities for applications where teams of relatively
cheap robots can be deployed to solve real-world problems.
Practical methods for coordinating such multi-robot teams
are therefore becoming critical. A wide range of approaches
have been developed for solving specific classes of multi-
robot problems, such as task allocation [15], navigation in a
formation [5], cooperative transport of an object [20], coor-
dination with signaling [6] or communication under various
limitations [33]. Broadly speaking, the current state of the
art in multi-robot research is to hand-design special-purpose
controllers that are explicitly designed to exploit some prop-
erty of the environment or produce a specific desirable be-
havior. Just as in the single-robot case, it would be much
more desirable to instead specify a world model and a cost
metric, and then have a general-purpose planner automati-
cally derive a controller that minimizes cost, while remain-
ing robust to the uncertainty that is fundamental to real robot

systems [37].
The decentralized partially observable Markov decision

process (Dec-POMDP) is a general framework for repre-
senting multiagent coordination problems. Dec-POMDPs
have been studied in fields such as control [1, 23], opera-
tions research [8] and artificial intelligence [29]. Like the
MDP [31] and POMDP [17] models that it extends, the Dec-
POMDP model is very general, considering uncertainty in
outcomes, sensors and information about the other agents,
and aims to optimize policies against a a general cost func-
tion. Dec-POMDP problems are often characterized by in-
complete or partial information about the environment and
the state of other agents due to limited, costly or unavailable
communication. Any problem where multiple agents share
a single overall reward or cost function can be formalized as
a Dec-POMDP, which means a good Dec-POMDP solver
would allow us to automatically generate control policies
(including policies over when and what to communicate) for
very rich decentralized control problems, in the presence of
uncertainty. Unfortunately, this generality comes at a cost:
Dec-POMDPs are typically infeasible to solve except for
very small problems [3].

One reason for the intractability of solving large Dec-
POMDPs is that current approaches model problems at a low
level of granularity, where each agent’s actions are primitive
operations lasting exactly one time step. Recent research has
addressed the more realistic MacDec-POMDP case where
each agent has macro-actions: temporally extended actions
which may require different amounts of time to execute [3].
MacDec-POMDPs cannot be reduced to Dec-POMDPs due
to the asynchronous nature of decision-making in this con-
text — some agents may be choosing new macro-actions
while others are still executing theirs. This enables sys-
tems to be modeled so that coordination decisions only oc-
cur at the level of deciding which macro-actions to execute.
MacDec-POMDPs retain the ability to coordinate agents
while allowing near-optimal solutions to be generated for
significantly larger problems than would be possible using
other Dec-POMDP-based methods.

Macro-actions are a natural model for the modular con-
trollers often sequenced to obtain robot behavior. The
macro-action approach leverages expert-designed or learned
controllers for solving subproblems (e.g., navigating to a
waypoint or grasping an object), bridging the gap between

PlanRob 2014 Proceedings

69

traditional robotics research and work on Dec-POMDPs.
This approach has the potential to produce high-quality gen-
eral solutions for real-world heterogeneous multi-robot co-
ordination problems by automatically generating control and
communication policies, given a model.

The goal of this paper is to present this general frame-
work for solving decentralized cooperative partially observ-
able robotics problems and provide the first demonstration
of such a method running on real robots. We begin by
formally describing the Dec-POMDP model, its solution
and relevant properties, and describe MacDec-POMDPs and
a memory-bounded algorithm for solving them. We then
describe a process for converting a robot domain into a
MacDec-POMDP model, solving it, and using the solu-
tion to produce a SMACH [9] finite-state machine task con-
troller. Finally, we use three variants of a warehouse task to
show that a MacDec-POMDP planner allows coordination
behaviors to emerge automatically by optimizing the avail-
able macro-actions (allocating tasks, using direct commu-
nication, and employing signaling, as appropriate). We be-
lieve the MacDec-POMDP represents a foundational algo-
rithmic framework for generating solutions for a wide range
of multi-robot systems.

Decentralized, Partially Observable Markov
Decision Processes

Dec-POMDPs [8] generalize partially observable Markov
decision processes to the multiagent, decentralized setting.
Multiple agents operate under uncertainty based on (possi-
bly different) partial views of the world, with execution un-
folding over a bounded or unbounded sequence of steps. At
each step, every agent chooses an action (in parallel) based
purely on locally observable information, resulting in an im-
mediate reward and an observation being obtained by each
individual agent. The agents share a single reward or cost
function, so they should cooperate to solve the task, but their
local views mean that operation is decentralized during exe-
cution.

As depicted in Fig. 1, a Dec-POMDP [8] involves mul-
tiple agents that operate under uncertainty based on differ-
ent streams of observations. We focus on solving sequen-
tial decision-making problems with discrete time steps and
stochastic models with finite states, actions, and observa-
tions, though the model can be extended to continuous prob-
lems. A key assumption is that state transitions are Marko-
vian, meaning that the state at time t depends only on the
state and events at time t − 1. The reward is typically only
used as a way to specify the objective of the problem and is
not observed during execution.

More formally, a Dec-POMDP is described by a tuple
〈I, S, {Ai}, T,R, {Ωi}, O, h〉, where

• I is a finite set of agents.

• S is a finite set of states with designated initial state dis-
tribution b0.

• Ai is a finite set of actions for each agent iwithA = ×iAi
the set of joint actions, where × is the Cartesian product
operator.

Environment

a1

o1
an

on

r

Figure 1: Representation of n agents in a Dec-POMDP set-
ting with actions ai and observations oi for each agent i
along with a single reward r.

• T is a state transition probability function, T : S × A ×
S → [0, 1], that specifies the probability of transitioning
from state s ∈ S to s′ ∈ S when the actions ~a ∈ A are
taken by the agents. Hence, T (s,~a, s′) = Pr(s′|~a, s).

• R is a reward function: R : S × A → R, the immediate
reward for being in state s ∈ S and taking the actions
~a ∈ A.

• Ωi is a finite set of observations for each agent, i, with
Ω = ×iΩi the set of joint observations.

• O is an observation probability function: O : Ω×A×S →
[0, 1], the probability of seeing observations ~o ∈ Ω given
actions ~a ∈ A were taken which results in state s′ ∈ S.
Hence O(~o,~a, s′) = Pr(~o|~a, s′).

• h is the number of steps until the problem terminates,
called the horizon.

Note that while the actions and observation are factored,
the state need not be. This flat state representation allows
more general state spaces with arbitrary state information
outside of an agent (such as target information or environ-
mental conditions). Because the full state is not directly ob-
served, it may be beneficial for each agent to remember a
history of its observations. Specifically, we can consider an
action-observation history for agent i as

HA
i = (s0i , a

1
i , . . . , s

l−1
i , ali).

Unlike in POMDPs, it is not typically possible to calculate a
centralized estimate of the system state from the observation
history of a single agent, because the system state depends
on the behavior of all of the agents.

Solutions
A solution to a Dec-POMDP is a joint policy—a set of poli-
cies, one for each agent in the problem. Since each policy is
a function of history, rather than of a directly observed state,
it is typically represented as either a policy tree, where the
vertices indicate actions to execute and the edges indicate
transitions conditioned on an observation, or as a finite state
controller which executes in a similar manner. An example
of each is given in Figure 2.

As in the POMDP case, the goal is to maximize the to-
tal cumulative reward, beginning at some initial distribution

PlanRob 2014 Proceedings

70

a1

a2

a2 a1 a1

o1 o2

o1 o1 o2o2

a3

a3

(a)
o1

o1 o2

o2

a2a1

(b)

Figure 2: A single agent’s policy represented as (a) a policy
tree and (b) a finite-state controller with initial state shown
with a double circle.

over states b0. In general, the agents do not observe the ac-
tions or observations of the other agents, but the rewards,
transitions, and observations depend on the decisions of all
agents. The work discussed in this paper (and the vast ma-
jority of work in the Dec-POMDP community) considers the
case where the model is assumed to be known to all agents.

The value of a joint policy, π, from state s is

V π(s) = E

[
h−1∑
t=0

γtR(~at, st)|s, π

]
,

which represents the expected value of the immediate reward
for the set of agents summed for each step of the problem
given the action prescribed by the policy until the horizon is
reached. In the finite-horizon case, the discount factor, γ, is
typically set to 1. In the infinite-horizon case, as the number
of steps is infinite, the discount factor γ ∈ [0, 1) is included
to maintain a finite sum and h = ∞. An optimal policy
beginning at state s is π∗(s) = arg maxπ V

π(s).
Unfortunately, large problem instances remain in-

tractable: some advances have been made in optimal algo-
rithms [1, 2, 4, 10, 12, 27], but optimally solving a Dec-
POMDP is NEXP-complete, so most approaches that scale
well make very strong assumptions about the domain (e.g.,
assuming a large amount of independence between agents)
[13, 24, 26] and/or have no guarantees about solution quality
[28, 34, 38].

Macro-Actions for Dec-POMDPs
Dec-POMDPs typically require synchronous decision-
making: every agent repeatedly determines which action to
execute, and then executes it within a single time step. This
restriction is problematic for robot domains for two reasons.
First, robot systems are typically endowed with a set of con-
trollers, and planning consists of sequencing the execution
of those controllers. However, due to both environmental
and controller complexity, the controllers will almost always
execute for an extended period, and take differing amounts
of time to run. Synchronous decision-making would thus
require us to wait until all robots have completed their con-
troller execution before we perform the next action selec-
tion, which is suboptimal and may not even always be pos-
sible (since the robots do not know the system state and stay-
ing in place may be difficult in some domains). Second, the

planning complexity of a Dec-POMDP is doubly exponen-
tial in the horizon. A planner that must try to reason about all
of the robots’ possible policies at every time step will only
ever be able to make very short plans.

Recent research has extended the Dec-POMDP model to
plan using options, or temporally extended actions [3]. This
MacDec-POMDP formulation models a group of robots that
must plan by sequencing an existing set of controllers, en-
abling planning at the appropriate level to compute near-
optimal solutions for problems with significantly longer
horizons and larger state-spaces.

We can gain additional benefits by exploiting known
structure in the multi-robot problem. For instance, most con-
trollers only depend on locally observable information and
do not require coordination. For example, consider a con-
troller that navigates a robot to a waypoint. Only local in-
formation is required for navigation—the robot may detect
other robots but their presence does not change its objective,
and it simply moves around them—but choosing the target
waypoint likely requires the planner to consider the loca-
tions and actions of all robots. Macro-actions with indepen-
dent execution allow coordination decisions to be made only
when necessary (i.e., when choosing macro-actions) rather
than at every time step. Because we build on top of Dec-
POMDPs, macro-action choice may depend on history, but
during execution macro-actions may depend only on a sin-
gle observation, depend on any number of steps of history, or
even represent the actions of a set of robots. That is, macro-
actions are very general and can be defined in such a way
to take advantage of the knowledge available to the robots
during execution.

Model
We first consider macro-actions that only depend on a sin-
gle robot’s information. This is an extension the options
framework [36] to multi-agent domains while dealing with
the lack of synchronization between agents. The options
framework is a formal model of a macro-actions [36] that
has been very successful in aiding representation and solu-
tions in single robot domains [19]. A MacDec-POMDP with
local options is defined as a Dec-POMDP where we also as-
sume Mi represents a finite set of options for each agent, i,
with M = ×iMi the set of joint options [3]. A local option
is defined by the tuple:

Mi = (βmi
, Imi

, πmi
),

consisting of stochastic termination condition βmi
: HA

i →
[0, 1], initiation set Imi

⊂ HA
i and option policy πmi

:
HA
i ×Ai → [0, 1]. Note that this representation uses action-

observation histories of an agent in the terminal and initia-
tion conditions as well as the option policy. Simpler cases
can consider reactive policies that map single observations
to actions as well as termination and initiation sets that de-
pend only on single observations. This is especially appro-
priate when the agent has knowledge about aspects of the
state necessary for option execution (e.g., its own location
when navigating to a waypoint causing observations to be
location estimates). As we later discuss, initiation and termi-

PlanRob 2014 Proceedings

71

nal conditions can depend on global states (e.g., also ending
execution based on unobserved events).

Because it may be beneficial for agents to remember their
histories when choosing which option to execute, we con-
sider policies that remember option histories (as opposed to
action-observation histories). We define an option history as

HM
i = (h0i ,m

1
i , . . . , h

l−1
i ,ml

i),

which includes both the action-observation histories where
an option was chosen and the selected options themselves.
The option history also provides an intuitive representation
for using histories within options. It is more natural for op-
tion policies and termination conditions to depend on his-
tories that begin when the option is first executed (action-
observation histories) while the initiation conditions would
depend on the histories of options already taken and their
results (option histories). While a history over primitive ac-
tions also provides the number of steps that have been ex-
ecuted in the problem (because it includes actions and ob-
servations at each step), an option history may require many
more steps to execute than the number of options listed. We
can also define a (stochastic) local policy, µi : HM

i ×Mi →
[0, 1] that depends on option histories. We then define a joint
policy for all agents as µ.

Because option policies are built out of primitive actions,
we can evaluate policies in a similar way to other Dec-
POMDP-based approaches. Given a joint policy, the primi-
tive action at each step is determined by the high level pol-
icy which chooses the option and the option policy which
chooses the action. The joint policy and option policies can
then be evaluated as:

V µ(s) = E

[
h−1∑
t=0

γtR(~at, st)|s, π, µ

]
.

For evaluation in the case where we define a set of options
which use observations (rather than histories) for initiation,
termination and option policies (while still using option his-
tories to choose options) see Amato, Konidaris and Kael-
bling [3].

Algorithms
Because Dec-POMDP algorithms produce policies mapping
agent histories to actions, they can be extended to consider
options instead of primitive actions. Two such algorithms
have been extended [3], but other extensions are possible.

In these approaches, deterministic polices are generated
which are represented as policy trees (as shown in Figure
2). A policy tree for each agent defines a policy that can
be executed based on local information. The root node de-
fines the option to choose in the known initial state, and an-
other option is assigned to each of the legal terminal states
of that option; this continues for the depth of the tree. Such a
tree can be evaluated up to a desired (low-level) horizon us-
ing the policy evaluation given above, which may not reach
some nodes of the tree due to the differing execution times
of some options.

A simple exhaustive search method can be used to gen-
erate hierarchically optimal deterministic policies. This al-
gorithm is similar in concept to the dynamic programming

m1 m2

(a) Step 1

m1

m1 m1

βs1 βs2

m1

m1 m2

βs1 βs2

m2

m1 m1

βs1

βs2

m1

βs3

m2

m1 m2

βs1

βs2

m1

βs3

(b) Step 2 of DP

Figure 3: Policies for a single agent after (a) one step and
(b) two steps of dynamic programming using options m1

and m2 and (deterministic) terminal states as βs.

algorithm used in Dec-POMDPs [16], but full evaluation and
pruning (removing dominated policies) are not used. Instead
the structure of options is exploited to reduce the space of
policies considered. That is, to generate deterministic poli-
cies, trees are built up as in Figure 3. Trees of increasing
depth are constructed until all of the policies are guaran-
teed to terminate before the desired horizon. When all poli-
cies are sufficiently long, all combinations of these policies
can be evaluated as above (by flattening out the polices into
primitive action Dec-POMDP policies, starting from some
initial state and proceeding until h). The combination with
the highest value at the initial belief state, b0, is a hierarchi-
cally optimal policy. Note that the benefit of this approach
is that only legal policies are generated using the initiation
and terminal conditions for options.

Memory-bounded dynamic programming (MBDP) [34]
has also been extended to use options as shown in Algo-
rithm 1. This approach bounds the number of trees that are
generated by the method above as only a finite number of
policy trees are retained (given by parameter MaxTrees) at
each tree depth. To increase the tree depth to t + 1, all pos-
sible trees are considered that choose some option and then
have the trees retained from depth t as children. Trees are
chosen by evaluating them at states that are reachable using
a heuristic policy that is executed for the first h− t− 1 steps
of the problem. A set of MaxTrees states is generated and
the highest-valued trees for each state are kept. This process
continues, using shorter heuristic policies until all combina-
tions of the retained trees reach horizon h. Again, the set
of trees with the highest value at the initial belief state is
returned.

The MBDP-based approach is potentially suboptimal be-
cause a fixed number of trees are retained, and trees op-
timized at the states provided by the heuristic policy may
be suboptimal (because the heuristic policy may be subop-
timal and the algorithm assumes the states generated by the
heuristic policy are known initial states for the remaining
policy tree). Nevertheless, since the number of policies at
each step is bounded by MaxTrees, MBDP has time and
space complexity linear in the horizon. As a result, this ap-
proach has been shown to work well in many large MacDec-
POMDPs [3].

Solving Multi-Robot Problems with
MacDec-POMDPs

The MacDec-POMDPs framework is a natural way to rep-
resent and generate behavior for general multi-robot sys-
tems. A high-level description of this process is given in

PlanRob 2014 Proceedings

72

Algorithm 1 Option-based memory bounded dynamic pro-
gramming

1: function OPTIONMBDP(MaxTrees,h,Hpol)
2: t← 0
3: someTooShort← true
4: µt ← ∅
5: repeat
6: µt+1 ←GeneateNextStepTrees(µt)
7: Compute V µt+1

8: µ̂t+1 ← ∅
9: for all k ∈MaxTrees do

10: sk ← GenerateState(Hpol,h− t− 1)
11: µ̂t+1 ← µ̂t+1 ∪ arg maxµt+1 V

µt+1(sk)
12: end for
13: t← t+ 1
14: µt ← µ̂t+1

15: someTooShort←testLength(µt)
16: until someTooShort = false
17: return µt
18: end function

Figure 4. We assume an abstract model of the system is
given in the form of macro-action representations, which in-
clude the associated policies as well as initiation and termi-
nal conditions. These macro-actions are controllers oper-
ating in (possibly) continuous time with continuous actions
and feedback, but their operation is discretized for use with
the planner. This discretization represents an underlying dis-
crete Dec-POMDP which consists of the primitive actions,
states of the system and the associated rewards. The Dec-
POMDP methods discussed above typically assume a full
model is given, but in this work, we make the more realis-
tic assumption that we can simulate the macro-actions in an
environment that is similar to the real-world domain. As a
result, we do not need a full representation of the underly-
ing Dec-POMDP and use the simulator to test macro-action
completion and evaluate policies. In the future, we plan
to remove this underlying Dec-POMDP modeling and in-
stead represent the macro-action initiation, termination and
policies using features directly in the continuous robot state-
space. In practice, models of each macro-action’s behavior
can be generated by executing the corresponding controller
from a variety of initial conditions (which is how our model
and simulator was constructed in the experiment section).
Given the macro-actions and simulator, the planner then au-
tomatically generates a solution which optimizes the value
function with respect to the uncertainty over outcomes, sen-
sor information and other agents. This solution comes in
the form of SMACH controllers [9] which are hierarchical
state machines for use in a ROS [32] environment. Each
node in the SMACH controller represents a macro-action
which is executed on the robot and each edge corresponds
to a terminal condition. In this way, the trees in Figure 3
can be directly translated into SMACH controllers, one for
each robot. Our system is thus able to automatically gen-
erate SMACH controllers, which are typically designed by
hand, for complex, general multi-robot systems.

Op#mized	 controllers	 for	 each	 robot	
(in	 SMACH	 format)	

System	 descrip#on	
(macro-‐ac#ons,	 dynamics,	 sensor	 uncertainty,	 rewards/costs)	

Planner	
(solving	 the	 MacDec-‐POMDP)	

Figure 4: A high level system diagram.

It is also worth noting that our approach can incorporate
existing solutions for more restricted scenarios as macro-
actions. For example, our approach can build on the large
amount of research in single and multi-robot systems that
has gone into solving difficult problems such as navigation
in a formation [5] or cooperative transport of an object [20].
The solutions to these problems could be represented as
macro-actions in our framework, building on existing re-
search to solve even more complex multi-robot problems.

Planning using MacDec-POMDPs in the
Warehouse Domain

We test our methods in a warehousing scenario using a set
of iRobot Creates (Figure 5), and demonstrate how the same
general model and solution methods can be applied in ver-
sions of this domain with different communication capabil-
ities. This is the first time that Dec-POMDP-based meth-
ods have been used to solve large multi-robot domains. We
do not compare with other methods because other Dec-
POMDP cannot solve problems of this size and current
multi-robot methods cannot automatically derive solutions
for these multifaceted problems. The results demonstrate
that our methods can automatically generate the appropri-
ate motion and communication behavior while considering
uncertainty over outcomes, sensor information and other
robots.

The Warehouse Domain
We consider three robots in a warehouse that are tasked with
finding and retrieving boxes of two different sizes: large
and small. Robots can navigate to known depot locations
(rooms) to retrieve boxes and bring them back to a desig-
nated drop-off area. The larger boxes can only be moved
effectively by two robots (if a robot tries to pick up the large
box by itself, it will move to the box, but fail to pick it up).
While the locations of the depots are known, the contents
(the number and type of boxes) are unknown. Our planner
generates a SMACH controller for each of the robots offline
which are then executed online in a decentralized manner.

In each scenario, we assumed that each robot could ob-
serve its own location, see other robots if they were within
(approximately) one meter, observe the nearest box when

PlanRob 2014 Proceedings

73

Figure 5: The warehouse domain with three robots.

in a depot and observe the size of the box if it is holding
one. These observations were implemented within a Vicon
setup to allow for system flexibility, but the solutions would
work in any setting in which these observations are gener-
ated. In the simulator that is used by the planner to generate
and evaluate solutions, the resulting state space of the prob-
lem includes the location of each robot (discretized into nine
possible locations) and the location of each of the boxes (in
a particular depot, with a particular robot or at the goal). The
primitive actions are to move in four different directions as
well as pickup, drop and communication actions. Note that
this primitive state and action representation is used for eval-
uation purposes and not actually implemented on the robots
(which just utilize the SMACH controllers). Higher fidelity
simulators could also be used. The three-robot version of
this scenario has 1,259,712,000 states, which is several or-
ders of magnitude larger than problems typically solvable by
Dec-POMDP solvers. These problems are solved using the
option-based MBDP algorithm initialized with a hand coded
heuristic policy. Experiments were run on a single core of
a 2.5 GHz machine with 8GB of memory. Exact solution
times were not calculated, but average solution times for the
policies presented below were approximately one hour.

In our Dec-POMDP model, navigation has a small
amount of noise in the amount of time required to move to
locations (reflecting the real-world dynamics): this noise in-
creases when the robots are pushing the large box (reflecting
the need for slower movements and turns in this case). We
defined macro-actions that depend only on the observations
above, but option selection depends on the history of op-
tions executed and observations seen as a result (the option
history).

Scenario 1: No Communication
In the first scenario, we consider the case where robots could
not communicate with each other. Therefore, all cooperation
is based on the controllers that are generated by the planner
(which knows the controllers generated for all robots when
planning offline) and observations of the other robots (when
executing online). The macro-actions were as follows:
• Go to depot 1.
• Go to depot 2.

d2

m ps

d1

d1 m

d1 m

d1 m

goal

g m

, D2

m dr

m pl

goal

g m

, D1

m dr

, D2

, goal

, , D1

, goal

m pl

 goal

g m

, D1

m dr

, , D1

, goal

, D1

, D1

d1

[repeat for 6 more steps]

Macro-actions
d1=depot 1
d2=depot 2

g=goal (drop-off area)
ps=pick up small box
pl=pick up large box

dr=drop box

Figure 7: Path executed in policy trees. Only macro-actions
executed (nodes) and observations seen (edges, with boxes
and robots given pictorially) are shown.

• Go to the drop-off area.

• Pick up the small box.

• Pick up the large box.

• Drop off a box.

The depot macro-actions are applicable anywhere and ter-
minate when the robot is within the walls of the appropriate
depot. The drop-off and drop macro-actions are only appli-
cable if the robot is holding a box, and the pickup macro-
actions are only applicable when the robot observes a box of
the particular type. Navigation is stochastic in the amount of
time that will be required to succeed (as mentioned above).
Picking up the small box was assumed to succeed determin-
istically, but this easily be changed if the pickup mechanism
is less robust. These macro-actions correspond to natural
choices for robot controllers.

This case1 (seen in Figure 6 along with a depiction of the
executed policy in Figure 7) uses only two robots to more
clearly show the optimized behavior in the absence of com-
munication. The policy generated by the planner assigns one
robot to go to each of the depots (Figure 6(a)). The robots
then observe the contents of the depots they are in (Figure
6(b)). If there are two robots in the same room as a large
box, they will push it back to the goal. If there is only one
robot in a depot and there is a small box to push, the robot

1Videos for all scenarios can be seen at
http://youtu.be/istb8TIp_jw

PlanRob 2014 Proceedings

74

(a) Two robots set out for differ-
ent depots.

(b) The robots observe the boxes
in their depots (large on left,
small on right).

(c) White robot moves to the
large box and green robot moves
to the small one.

(d) White robot waits while
green robot pushes the small box.

(e) Green robot drops the box off
at the goal.

(f) Green robot goes to the de-
pot 1 and sees the other robot and
large box.

(g) Green robot moves to help
the white robot.

(h) The two robots push the large
box back to the goal.

Figure 6: Video captures from the no communication version of the warehouse problem.

will push the small box (Figure 6(c)). If the robot is in a
depot with a large box and no other robots, it will stay in the
depot, waiting for another robot to come and help push the
box (Figure 6(d)). In this case, once the the other robot is
finished pushing the small box (Figure 6(e)), it goes back to
the depots to check for other boxes or robots that need help
(Figure 6(f)). When it sees another robot and the large box
in the depot on the left (depot 1), it attempts to help push
the large box (Figure 6(g)) and the two robots are successful
pushing the large box to the goal (Figure 6(h)). In this case,
the planner has generated a policy in a similar fashion to task
allocation—two robots go to each room, and then search for
help needed after pushing any available boxes. However,
in our case this behavior was generated by an optimization
process that considered the different costs of actions, the un-
certainty involved and the results of those actions into the
future.

Scenario 2: Local Communication
In scenario 2, robots can communicate when they are within
one meter of each other. The macro-actions are the same
as above, but we added ones to communicate and wait for
communication. The resulting macro-action set is:

• Go to depot 1.

• Go to depot 2.

• Go to the drop-off area.

• Pick up the small box.

• Pick up the large box.

• Drop off a box.

• Go to an area between the depots (the “waiting room”).

• Wait in the waiting room for another robot.

• Send signal #1.

• Send signal #2.

Here, we allow the robots to choose to go to a “waiting
room” which is between the two depots. This permits the
robots to possibly communicate or receive communications
before committing to one of the depots. The waiting-room
macro-action is applicable in any situation and terminates
when the robot is between the waiting room walls. The de-
pot macro-actions are now only applicable in the waiting
room, while the drop-off, pick up and drop macro-actions
remain the same. The wait macro-action is applicable in
the waiting room and terminates when the robot observes
another robot in the waiting room. The signaling macro-
actions are applicable in the waiting room and are observ-
able by other robots that are within approximately a meter
of the signaling robot. Note that we do not specify what
sending each communication signal means.

The results for this domain are shown in Figure 8. We
see that the robots go to the waiting room (Figure 8(a)) (be-
cause we required the robots to be in the waiting room before
choosing to move to a depot) and then two of the robots go
to depot 2 (the one on the right) and one robot goes to de-
pot 1 (the one on the left) (Figure 8(b)). Note that because
there are three robots, the choice for the third robot is ran-
dom while one robot will always be assigned to each of the
depots. Because there is only a large box to push in depot 1,
the robot in this depot goes back to the waiting room to try
to find another robot to help it push the box (Figure 8(c)).
The robots in depot 2 see two small boxes and they choose
to push these back to the goal (Figure 8(d)). Once the small
boxes are dropped off (Figure 8(e)), one of the robots returns
to the waiting room (Figure 8(f)) and then is recruited by the
other robot to push the large box back to the goal (Figure
8(g)). The robots then successfully push the large box back
to the goal (Figure 8(h)). Note that in this case the plan-
ning process determines how the signals should be used to

PlanRob 2014 Proceedings

75

(a) The three robots begin mov-
ing to the waiting room.

(b) One robot goes to depot 1 and
two robots go to depot 2. The de-
pot 1 robot sees a large box.

(c) The depot 1 robot saw a large
box, so it moved to the wait-
ing room while the other robots
pushed the small boxes.

(d) The depot 1 robot waits with
the other robots push the small
boxes.

(e) The two robots drop off the
small boxes at the goal while the
other robot waits.

(f) The green robot goes to the
waiting room to try to receive any
signals.

(g) The white robot sent signal
#1 when it saw the green robot
and this signal is interpreted as a
need for help in depot 1.

(h) The two robots in depot 1
push the large box back to the
goal.

Figure 8: Video captures from the limited communication version of the warehouse problem.

perform communication.

Scenario 3: Global Communication
In the last scenario, the robots can use signaling (rather than
direct communication). In this case, there is a switch in each
of the depots that can turn on a blue or red light. This light
can be seen in the waiting room and there is another light
switch in the waiting room that can turn off the light. (The
light and switch were simulated in software and not incorpo-
rated in the physical domain.) As a result, the macro-actions
in this scenario were as follows:

• Go to depot 1.

• Go to depot 2.

• Go to the drop-off area.

• Pick up the small box.

• Pick up the large box.

• Drop off a box.

• Go to an area between the depots (the “waiting room”).

• Turn on a blue light.

• Turn on a red light.

• Turn off the light.

The first seven macro-actions are the same as for the com-
munication case except we relaxed the assumption that the
robots had to go to the waiting room before going to the
depots (making both the depot and waiting room macro-
actions applicable anywhere). The macro-actions for turn-
ing the lights on are applicable in the depots and the macro-
actions for turning the lights off are applicable in the waiting
room. While the lights were intended to signal requests for
help in each of the depots, we did not assign a particular

color to a particular depot. In fact, we did not assign them
any specific meaning, allowing the planner to set them in
any way that improves performance.

The results are shown in Figure 9. Because one robot
started ahead of the others, it was able to go to depot 1 to
sense the size of the boxes while the other robots go to the
waiting room (Figure 9(a)). The robot in depot 1 turned on
the light (red in this case, but not shown in the images) to
signify that there is a large box and assistance is needed
(Figure 9(b)). The green robot (the first other robot to the
waiting room) sees this light, interprets it as a need for help
in depot 1, and turns off the light (Figure 9(c)). The other
robot arrives in the waiting room, does not observe a light
on and moves to depot 2 (also Figure 9(c)). The robot in
depot 2 chooses to push a small box back to the goal and the
green robot moves to depot 1 to help the other robot (Fig-
ure 9(d)). One robot then pushes the small box back to the
goal while the two robots in depot 1 begin pushing the large
box (Figure 9(e)). Finally, the two robots in depot 1 push
the large box back to the goal (Figure 9(f)). This behavior
is optimized based on the information given to the planner.
The semantics of all these signals as well as the movement
and signaling decisions were decided on by the planning al-
gorithm to maximize value.

Related Work
There are several frameworks that have been developed for
multi-robot decision making in complex domains. For in-
stance, behavioral methods have been studied for perform-
ing task allocation over time in loosely-coupled [30] or
tightly-coupled [35] tasks. These are heuristic in nature and
make strong assumptions about the type of tasks that will be
completed.

One important related class of methods is based on using

PlanRob 2014 Proceedings

76

(a) One robot starts first and
goes to depot 1 while the other
robots go to the waiting room.

(b) The robot in depot 1 sees a
large box, so it turns on the red
light (the light is not shown).

(c) The green robot sees the light
first, so it turns it off and goes
to depot 1 while the white robot
goes to depot 2.

(d) The robots in depot 1 move
to the large box, while the robot
in depot 2 begins pushing the
small box.

(e) The robots in depot 1 begin
pushing the large box and the
robot in depot 2 pushes a small
box to the goal.

(f) The robots from depot 1 suc-
cessfully push the large box to
the goal.

Figure 9: Video captures from the signaling version of the
warehouse problem.

linear temporal logic (LTL) [7, 21] to specify behavior for
a robot; from this specification, reactive controllers that are
guaranteed to satisfy the specification can be derived. These
methods are appropriate when the world dynamics can be
effectively described non-probabilistically and when there
is a useful discrete characterization of the robot’s desired
behavior in terms of a set of discrete constraints. When ap-
plied to multiple robots, it is necessary to give each robot
its own behavior specification. Other logic-based represen-
tations for multi-robot systems have similar drawbacks and
typically assume centralized planning and control [22].

Market-based approaches use traded value to establish an
optimization framework for task allocation [11, 15]. These
approaches have been used to solve real multi-robot prob-
lems [18], but are largely aimed to tightly-coupled tasks,
where the robots can communicate through a bidding mech-
anism.

Emery-Montemerlo et al. [14] introduced a (coopera-
tive) game-theoretic formalization of multi-robot systems
which resulted in solving a Dec-POMDP. An approximate
forward search algorithm was used to generate solutions,
but scalability was limited because a (relatively) low-level
Dec-POMDP was used. Also, Messias et al. [25] introduce

an MDP-based model where a set of robots with controllers
that can execute for varying amount of time must cooper-
ate to solve a problem. However, decision-making in their
system is centralized.

Conclusion
We have demonstrated—for the first time—that complex
multi-robot domains can be solved with Dec-POMDP-based
methods. The MacDec-POMDP model is expressive enough
to capture multi-robot systems of interest, but also simple
enough to be feasible to solve in practice. Our results show
that a general purpose MacDec-POMDP planner can gener-
ate cooperative behavior for complex multi-robot domains
with task allocation, direct communication, and signaling
behavior emerging automatically as properties of the solu-
tion for the given problem model. Because all coopera-
tive multi-robot problems can be modeled as Dec-POMDPs,
MacDec-POMDPs represent a powerful tool for automati-
cally trading-off various costs, such as time, resource us-
age and communication while considering uncertainty in the
dynamics, sensors and other robot information. These ap-
proaches have great potential to lead to automated solution
methods for general multi-robot coordination problems with
large numbers of heterogeneous robots in complex, uncer-
tain domains.

In the future, we plan to explore incorporating these state-
of-the-art macro-actions into our MacDec-POMDP frame-
work as well as examine other types of structure that can be
exploited. Other topics we plan to explore include increas-
ing scalability by making solution complexity depend on the
number of agent interactions rather than the domain size,
and having robots learn models of their sensors, dynamics
and other robots. These approaches have great potential to
lead to automated solution methods for general multi-robot
coordination problems with large numbers of heterogeneous
robots in complex, uncertain domains.

References
[1] Amato, C.; Chowdhary, G.; Geramifard, A.; Ure, N. K.;

and Kochenderfer, M. J. 2013. Decentralized control of
partially observable Markov decision processes. In Pro-
ceedings of the Fifty-Second IEEE Conference on Deci-
sion and Control, 2398–2405.

[2] Amato, C.; Dibangoye, J. S.; and Zilberstein, S. 2009.
Incremental policy generation for finite-horizon DEC-
POMDPs. In Proceedings of the Nineteenth International
Conference on Automated Planning and Scheduling, 2–9.

[3] Amato, C.; Konidaris, G.; and Kaelbling, L. P. 2014.
Planning with macro-actions in decentralized POMDPs.
In Proceedings of the Thirteenth International Confer-
ence on Autonomous Agents and Multiagent Systems.

[4] Aras, R.; Dutech, A.; and Charpillet, F. 2007. Mixed
integer linear programming for exact finite-horizon plan-
ning in decentralized POMDPs. In Proceedings of
the Seventeenth International Conference on Automated
Planning and Scheduling, 18–25.

PlanRob 2014 Proceedings

77

[5] Balch, T., and Arkin, R. C. 1998. Behavior-based for-
mation control for multi-robot teams. IEEE Transactions
on Robotics and Automation 14(6):926–939.

[6] Beckers, R.; Holland, O.; and Deneubourg, J.-L. 1994.
From local actions to global tasks: Stigmergy and collec-
tive robotics. In Artificial life IV, volume 181, 189.

[7] Belta, C.; Bicchi, A.; Egerstedt, M.; Frazzoli, E.;
Klavins, E.; and Pappas, G. J. 2007. Symbolic plan-
ning and control of robot motion [grand challenges of
robotics]. Robotics & Automation Magazine, IEEE
14(1):61–70.

[8] Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilber-
stein, S. 2002. The complexity of decentralized control of
Markov decision processes. Mathematics of Operations
Research 27(4):819–840.

[9] Bohren, J. 2010. SMACH. http://wiki.ros.
org/smach/.

[10] Boularias, A., and Chaib-draa, B. 2008. Exact
dynamic programming for decentralized POMDPs with
lossless policy compression. In Proceedings of the Eigh-
teenth International Conference on Automated Planning
and Scheduling.

[11] Dias, M. B., and Stentz, A. T. 2003. A comparative
study between centralized, market-based, and behavioral
multirobot coordination approaches. In Proceedings of
the 2003 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS ’03), volume 3, 2279 –
2284.

[12] Dibangoye, J. S.; Amato, C.; Buffet, O.; and Charpil-
let, F. 2013a. Optimally solving Dec-POMDPs as
continuous-state MDPs. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intel-
ligence.

[13] Dibangoye, J. S.; Amato, C.; Doniec, A.; and Charpil-
let, F. 2013b. Producing efficient error-bounded solu-
tions for transition independent decentralized MDPs. In
Proceedings of the Twelfth International Conference on
Autonomous Agents and Multiagent Systems.

[14] Emery-Montemerlo, R.; Gordon, G.; Schneider, J.; and
Thrun, S. 2005. Game theoretic control for robot teams.
In Proceedings of the 2005 IEEE International Confer-
ence on Robotics and Automation, 1163–1169.

[15] Gerkey, B., and Matarić, M. 2004. A formal analysis
and taxonomy of task allocation in multi-robot systems.
International Journal of Robotics Research 23(9):939–
954.

[16] Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S.
2004. Dynamic programming for partially observable
stochastic games. In Proceedings of the Nineteenth Na-
tional Conference on Artificial Intelligence, 709–715.

[17] Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R.
1998. Planning and acting in partially observable stochas-
tic domains. Artificial Intelligence 101:1–45.

[18] Kalra, N.; Ferguson, D.; and Stentz, A. T. 2005. Ho-
plites: A market-based framework for planned tight coor-
dination in multirobot teams. In Proceedings of the Inter-
national Conference on Robotics and Automation, 1170
– 1177.

[19] Kober, J.; Bagnell, J. A.; and Peters, J. 2013. Rein-
forcement learning in robotics: A survey. The Interna-
tional Journal of Robotics Research 32(11):1238 – 1274.

[20] Kube, C., and Bonabeau, E. 2000. Cooperative trans-
port by ants and robots. Robotics and Autonomous Sys-
tems 30(1-2):85–101.

[21] Loizou, S. G., and Kyriakopoulos, K. J. 2004. Auto-
matic synthesis of multi-agent motion tasks based on ltl
specifications. In Decision and Control, 2004. CDC. 43rd
IEEE Conference on, volume 1, 153–158. IEEE.

[22] Lundh, R.; Karlsson, L.; and Saffiotti, A. 2008. Au-
tonomous functional configuration of a network robot
system. Robotics and Autonomous Systems 56(10):819–
830.

[23] Mahajan, A. 2013. Optimal decentralized control of
coupled subsystems with control sharing. IEEE Transac-
tions on Automatic Control 58:2377–2382.

[24] Melo, F. S., and Veloso, M. 2011. Decentralized MDPs
with sparse interactions. Artificial Intelligence.

[25] Messias, J. V.; Spaan, M. T.; and Lima, P. U. 2013.
GSMDPs for multi-robot sequential decision-making. In
Proceedings of the Twenty-Seventh AAAI Conference on
Artificial Intelligence.

[26] Nair, R.; Varakantham, P.; Tambe, M.; and Yokoo, M.
2005. Networked distributed POMDPs: a synthesis of
distributed constraint optimization and POMDPs. In Pro-
ceedings of the Twentieth National Conference on Artifi-
cial Intelligence.

[27] Oliehoek, F. A.; Spaan, M. T. J.; Amato, C.; and
Whiteson, S. 2013. Incremental clustering and expansion
for faster optimal planning in Dec-POMDPs. Journal of
Artificial Intelligence Research 46:449–509.

[28] Oliehoek, F. A.; Whiteson, S.; and Spaan, M. T. J.
2013. Approximate solutions for factored Dec-POMDPs
with many agents. In Proceedings of the Twelfth Interna-
tional Conference on Autonomous Agents and Multiagent
Systems.

[29] Oliehoek, F. A. 2012. Decentralized POMDPs. In
Wiering, M., and van Otterlo, M., eds., Reinforcement
Learning: State of the Art, volume 12 of Adaptation,
Learning, and Optimization. Springer. 471–503.

[30] Parker, L. E. 1998. ALLIANCE: An architecture for
fault tolerant multirobot cooperation. IEEE Transactions
on Robotics and Automation 14(2):220–240.

[31] Puterman, M. L. 1994. Markov Decision Processes:
Discrete Stochastic Dynamic Programming. Wiley-
Interscience.

[32] Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote,
T.; Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an

PlanRob 2014 Proceedings

78

http://wiki.ros.org/smach/
http://wiki.ros.org/smach/

open-source robot operating system. In ICRA workshop
on open source software, volume 3.

[33] Rekleitis, I.; Lee-Shue, V.; New, A. P.; and Choset, H.
2004. Limited communication, multi-robot team based
coverage. In Robotics and Automation, 2004. Proceed-
ings. ICRA’04. 2004 IEEE International Conference on,
volume 4, 3462–3468. IEEE.

[34] Seuken, S., and Zilberstein, S. 2007. Memory-
bounded dynamic programming for DEC-POMDPs. In
Proceedings of the Twentieth International Joint Confer-
ence on Artificial Intelligence, 2009–2015.

[35] Stroupe, A. W.; Ravichandran, R.; and Balch, T. 2004.
Value-based action selection for exploration and dynamic
target observation with robot teams. In Proceedings of
the International Conference on Robotics and Automa-
tion, volume 4, 4190–4197. IEEE.

[36] Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal ab-
straction in reinforcement learning. Artificial Intelligence
112(1):181–211.

[37] Thrun, S.; Burgard, W.; and Fox, D. 2005. Prob-
abilistic Robotics (Intelligent Robotics and Autonomous
Agents). The MIT Press.

[38] Velagapudi, P.; Varakantham, P. R.; Sycara, K.; and
Scerri, P. 2011. Distributed model shaping for scaling
to decentralized POMDPs with hundreds of agents. In
Proceedings of the Tenth International Conference on Au-
tonomous Agents and Multiagent Systems.

PlanRob 2014 Proceedings

79

Selecting Paths to Minimize Conflicts in Crowded Scenes using Minimal
Information

Andrew Kimmel and Kostas Bekris
Department of Computer Science, Rutgers University

Piscataway, New Jersey 08854

Abstract

Consider multiple robots moving towards individual
goals in a cluttered environment. While contacts be-
tween robots in these situations can be averted by reac-
tive collision avoidance methods, deadlocks may arise
in tight spaces if robots move along precomputed, con-
flicting paths. To resolve these issues, methods have
been proposed which consider robots that employ com-
munication, or centralized planning, or follow prede-
fined rules. This work considers only decentralized
planning solutions that employ minimum information,
i.e., each robot has access only to the current position of
its neighbors, without using any form of prediction, in-
tent recognition or agent modeling. This leads to a study
of several methods for minimum-conflict path selec-
tion among dynamic obstacles. The evaluation of these
methods in varying simulated benchmarks, provides
the following insights: (a) considering the minimum-
conflict path given the other agents current positions
is critical for deadlock avoidance, (b) reasoning over
a diverse set of paths that cover the workspace im-
proves path quality, and (c) accumulating cost over
these paths by finding the agent’s true optimal path in
hindsight allows robots to optimize and learn effective
high-level strategies in a computationally efficient way
that is adaptive to the other agents behavior, reducing
task completion time and average path lengths.

Introduction
The proliferation of robotic technology allows for consid-
eration of applications where multiple autonomous systems
effortlessly interact in the same cluttered environment, while
solving individual tasks. For example, consider ground ve-
hicles that operate in a mine or a construction facility and
which need to move efficiently to solve their assigned task
while avoiding collisions. In many interesting challenges, it
is also highly likely that people or animals are navigating
in the same space and need to be considered. Explicit co-
ordination with the other agents in the environment, espe-
cially when humans or animals are involved, may not feasi-
ble nor desirable. Similarly, it may be difficult to model or
predict the actions of moving obstacles. This necessitates the
consideration of decentralized methods that allow a robot to
make progress towards its goal in a safe manner with min-
imal information and without strong assumptions about the

Figure 1: The base case for this study: if both robotsA andB
insist on following the same corridor, then given the environ-
ment characteristics and their geometry, a reactive collision
avoidance method may not allow them to make progress to-
wards their goals, GA and GB , which are on opposite sides.

intentions of its moving neighbors. It is also desirable for the
solution to minimize certain parameters, such as executed
path length or task completion time, and for the motions to
look natural to people that operate in the same space.

In environments without obstacles, reactive methods are
able to perform well even for large numbers of agents. How-
ever, if the environment also contains a complex set of ob-
stacles, it becomes necessary to utilize a planner to com-
pute the solution path. Solving problems that combines these
properties, complex environments with dense distributions
of agents, thus necessitates the use of both a high-level plan-
ner, operating in a replanning framework with a reasonably
small planning cycle (so as to adapt to the frequent changes
in such scenarios), as well as a low-level reactive collision
avoidance technique to account for the planning cycle time.
This work was originally submitted to IROS 2014.

Challenges, Foundations and Objectives
Avoiding collisions with unexpected obstacles or unpre-
dictable, self-interested mobile agents, can be effectively ad-
dressed by reactive collision avoidance methods, such as
those based on the popular Velocity Obstacle framework
[Fiorini and Shiller1998, van den Berg et al.2011] or tra-
jectory deformation methods [Fraichard and Delsart2009,
Karamouzas, Geraerts, and Overmars2009]. These methods
generally provide smooth, natural-looking paths, but they
are primarily local techniques and do not reason about the
robot’s global path. If the agents select conflicting paths in a
decentralized manner, reactive collision avoidance can still

PlanRob 2014 Proceedings

80

give rise to deadlocks and poor performance. For instance,
consider the situation in Figure 1, where two robots on op-
posing sides of two corridors need to exchange positions. If
both robots decide to move along the lower corridor, e.g.,
because it corresponds to their individual shortest paths, the
space is narrow enough to prevent the robots from swapping
positions.

Robots in such situations that replan [Petti and
Fraichard2005] and change their path to a different ho-
motopic class [Bhattacharya, Kumar, and Likhachev2010,
Bhattacharya, Likhachev, and Kumar2011, Jaillet and
Siméon2006] can potentially resolve such conflicts. This
type of coordination can be achieved by assuming that
the robots share information [Bekris et al.2012], or fol-
low a form of centralized planning [Qutub, Alami, and In-
grand1997], or by respecting a set of pre-specified “social”
rules [Knepper and Rus2012, Trautman and Krause2010],
or performing sophisticated prediction [Large et al.2004,
Thompson, Horiuchi, and Kagami2009, Ziebart et al.2009],
agent modeling [Shi et al.2008, Sisbot et al.2007] or learn-
ing [Bennewitz et al.2005,Henry et al.2010]. The type of in-
formation required in order to be able to use such solutions
may correspond a)to the actions selected by neighbors, b)
the utilities of different motions, c)the goals of neighbors, or
d) extensive prior experience interacting with other agents.
Such information is difficult to attain quickly and reliably,
especially when a robot interacts with a human, since the
robot has little knowledge about the human’s future actions
without explicit communication. This work employs strictly
decentralized methods while utilizing minimal information
to solve this problem. Each robot has access only to the cur-
rent position of its neighbors from sensor data. A further ob-
jective is to identify what can be achieved without any pre-
diction, intent recognition or modeling of the moving agents.
This method employs learning, corresponding primarily to
online learning of appropriate strategies in response to envi-
ronmental conditions.

This planning-based work is complementary to reactive
collision avoidance methods and shares the desire of requir-
ing minimal information and assumptions about the other
agents. The Velocity Obstacles framework requires knowl-
edge of the velocity of neighboring agents, which is not
utilized by the methods proposed here. Reciprocity be-
tween the agents utilizing the same method is desirable,
as illustrated with Reciprocal Velocity Obstacles [Snape et
al.2011,van den Berg et al.2011], so that in situations as the
one depicted in Figure 1, one of the agents will reliably de-
cide to switch corridor even if both agents originally selected
to move along the same one.

Considered Methodology
The above objectives lead to the consideration of var-
ious methods for computing decentralized, minimum-
information, minimum-conflict path selection strategies.
These methods are evaluated in terms of their effectiveness
in various simulated benchmarks. The basic framework as-
sumes that the robots follow a replanning approach to com-
pute paths frequently [Petti and Fraichard2005] and then
they employ reciprocal velocity obstacles [van den Berg,

Lin, and Manocha2008, Snape et al.2011] so as to follow
these paths while avoiding collisions. If agents make greedy
choices to use the shortest path to their goal and ignore the
presence of other agents, this approach leads to deadlocks in
the considered environments.

One idea is to compute a family of diverse paths instead of
only the shortest one. The notion of path diversity has been
shown to be helpful in different challenges, but frequently
corresponds to a local concept [Green and Kelly2007,Knep-
per and Mason2009]. If a roadmap for the scene is available,
then an effective way to compute this set of paths is to com-
pute trajectories belonging to different homotopic classes,
using search-based primitives [Bhattacharya, Kumar, and
Likhachev2010,Bhattacharya, Likhachev, and Kumar2011].
This work provides a method for selecting a minimally con-
flicting path out of this set given the other agents’ current po-
sitions. This process is designed so as to effectively and reli-
ably address the issue in the prototypical example provided
in Figure 1. If the replanning cycle of the robot is short, this
process yields a high-level of reactivity and deconfliction.

While this is an improvement over considering only the
shortest path, it also causes computational issues in scenes
with many homotopic classes. If only a small set of short
in length, homotopically-distinct paths are generated each
planning cycle, deadlocks still arise. For instance, this oc-
curs if none of the paths permit the robot to backtrack so
as to allow other agents to make progress. Nevertheless,
there is a way to address this issue according to simulated
results. If the “minimum-conflict” homotopy is always in-
cluded in the set of considered actions, deadlocks are not
observed. The notion of minimum conflict considered here
is related to the “minimum constraint displacement” prob-
lem, which has attracted attention recently in motion plan-
ning [Hauser2013]. For the current work, constraints on the
minimum-conflict homotopy correspond to the observed lo-
cations of other agents. This homotopy can be discovered
in a computationally effective manner. Using an underlying
roadmap, the method computes the shortest path that also
minimizes the number of collisions with other agents.

While minimum conflict paths achieve deadlock avoid-
ance, they are also conservative, and may take a long time
to reach the robots’ goals. Considering both the minimum-
conflict path and a set of shortest, homotopically-distinct
paths towards the goal that ignore the other agents typi-
cally results in better performance. Under the “garage” as-
sumption, where agents essentially “disappear” from the
workspace when they reach their goals, and assuming that
the workspace is unbounded, by strictly navigating using
only minimum conflict paths, results seem to indicate that
liveness can be guaranteed. This work considers both a de-
terministic approach for choosing between these paths, as
well as a learning-based, probabilistic approach. Both so-
lutions always find a solution and avoid deadlocks in sim-
ulations. The probabilistic approach is also able to provide
adaptivity to various behaviors of neighbors.

The probabilistic solution is based on the Polynomial
Weights PW algorithm [Littlestone and Warmuth1994,Nisan
et al.2007], which is a learning-based approach for achiev-
ing regret minimization. Given an individual agent’s action

PlanRob 2014 Proceedings

81

set, PW accumulates a weight on each action which directly
corresponds to the action’s probability of being selected. At
each step of the framework, an agent evaluates its most re-
cently executed action and computes the regret for the ac-
tion, which is evaluated by considering the current state of
the world compared to the previous state. Essentially, the
agent thinks “What would have happened if I selected a
different action, given the current observed positions of the
other agents?”, and in doing so, the agent can compute com-
pute its best action in hindsight. The difference in action cost
between this best action in hindsight and the actual selected
action, is represented by the agent’s regret value, which will
directly reduce the action’s weight and thus its probability
of selection.

Regret minimization is advantageous in this context, as
it results in high expected utilities against unpredictable
agents, without knowledge of the other agents’ goals, util-
ities, intents, or beliefs. The application of the PW algorithm
here accumulates regret for the “minimum-conflict” strategy
and the “greedy” choice strategy at each replanning cycle
by observing the choices of the other agents in the same
workspace and assigning a loss to each strategy. A proba-
bility is then assigned for selecting each strategy based on
the accumulated losses.

Such learning-based approaches to coordination and
game theoretic challenges have been considered by others
in the robotics literature, where a reinforcement learning
method has been used to create adaptive, loosely coupled,
agents [Kaminka, Erusalimchik, and Kraus2010]. Some ap-
proaches qualitatively measure the effectiveness of coordi-
nation between agents offline to provide action selection on-
line [Excelente-Toledo and Jennings2004]. There has been
work in coordinating with agents that are not necessarily ra-
tional [Stone, Kaminka, and Rosenschein2010]. All of these
approaches require knowledge of the agents’ actions, which
is not assumed here. Although there are models for pre-
dicting the actions of an agent, such as in an adversarial
setting [Wunder et al.2011], by utilizing regret minimiza-
tion [Filiot, Le Gall, and Raskin2010], it is possible to solve
certain games without knowing the other agent’s actions.

Contribution and Overview of Results
The key observations from this work are the following:

a) Computing minimum-conflict paths is critical for avoid-
ing deadlocks under a minimum information setup for
planning among dynamic obstacles and is interesting to
further analyze the properties of this strategy.

b) Computing paths in different homotopies is a useful prim-
itive for providing diverse alternatives to robots to im-
prove the resulting path quality and execution time.

c) Regret minimization is computationally efficient and al-
lows robots to optimize and learn over time an appropriate
strategy given the characteristics of the underlying chal-
lenge, without explicit communication.
Simulations show that the considered solutions allow

robots to avoid deadlocks, minimize completion time and
path length for solving such problems with minimal infor-
mation requirements.

Problem Setup
Path deconfliction problems can be defined in general con-
figuration spaces but this discussion will focus on holonomic
navigation as it provides an easy way to describe the frame-
work and corresponds to the accompanying simulations.

Consider a set of m planar, holonomic agents
{A1, . . . ,Am} that move with bounded velocity
v ∈ [0, vmax] in the same workspace W . The config-
uration space of an agent is Q = R2, where Qfree

represents the obstacle free subset given static obstacles.
Given a configuration qi ∈ Q, the expression A(qi)
corresponds to the collision volume of agent Ai inW .

Then a path πi = {qi|qi : [0, 1] → Qfree} for agent Ai

corresponds to a continuous curve in Qfree. Given a time
scaling function σi : R≥0 → [0, 1] it is also possible to
define the agent’s trajectory τi = πi ◦ σi, which defines the
configurations that the agent visits at each point in time.

The problem formulation assumes that all agents want to
solve a similar problem, as in each agent Ai wants to reach
a desired goal qGi ∈ Q without conflicts. The objective then
is for the agents to select trajectories {τ1, . . . , τm} in a de-
centralized manner, such that eachAi an individual τi and in
finite time T : ∀ i ∈ [1,m] : τi[T] = qGi . Collisions between
agents must be avoided, unless one of the agents has reached
its goal, i.e. ∀ t ∈ R≥0,∀ i, j ∈ [1,m] :

A(τi[t])∩A(τj [t]) = ∅ ∨ A(τi[t]) = qGi ∨ A(τj [t]) = qGj .

The above expression implies the so called “garage” as-
sumption, where agents which reach their goal are freed
from the workspace and are not considered for collisions
when other agents pass through their goal.

Agents are never aware of the goal of any other agent or
the trajectory selected by another agent. At any point in time
an agent can only observe the position of other agents as
long as their configurations are within a certain sensing ra-
dius: ||(qi, qj)|| ≤ dsense.

Furthermore, the agents are assumed to be equipped with
a collision avoidance method (e.g., Reciprocal Velocity Ob-
stacles [van den Berg, Lin, and Manocha2008]), which is
used to follow their selected trajectory while still avoiding
collisions with other agents. This means that the planned tra-
jectory may not be executed perfectly due to the influence of
neighboring agents.

Note that the above discussion can be easily extended to
include the case where one agent is the planning robot that
employs a method for achieving deconfliction while all the
other agents are unpredictable dynamic obstacles that ignore
the presence of the planning agent. In these situations, the
relative velocity of the planning agent and the dynamic ob-
stacles should be such so that the collision avoidance method
can always guarantee the safety of the planning agent.

The above fact, together with the need to adapt to the un-
predictable behavior of neighboring agents, motivates a re-
planning framework for recomputing trajectories given the
latest observed configurations of agents. This replanning ap-
proach forms the basis of the overall methodology that is
described in the following section.

PlanRob 2014 Proceedings

82

Figure 2: An illustration of the replanning framework. Here
the path computed between time t-1 and t is executed during
time t to t+1. Execution of the plan means the state at time
t deviates from the predicted state, so the framework begins
planning for t+1 to t+2 from an updated predicted state.

Methods
This section first describes a classical method for integrating
global path planning and local collision avoidance, which
can lead to deadlocks in certain environments. Then a se-
quence of alternative strategies for computing the global
path are considered so as to avoid such situations.

Replanning Framework
During the execution of a plan, a robot’s trajectory will
deviate from the planned trajectory due to the reactive
collision avoidance utilized. Naı̈vely following the orig-
inal planned trajectory is therefore not sufficient, as the
robot will most likely not be able to reach its goal as in-
tended. A straightforward replanning framework [Petti and
Fraichard2005,Hauser2011] as illustrated in Figure 2 is used
to address such issues. The framework follows related work,
where first, a roadmap is precomputed using a sampling-
based motion planning method and then integrated with a
collision-avoidance method [van Den Berg et al.2008]. The
sampling-based planner used in this work is PRM∗ [Kara-
man and Frazzoli2011].

The trajectory computed for time t-1 to t will not be ex-
ecuted perfectly, as shown in Figure 2; however, the frame-
work updates the predicted state of the robot accordingly.
From the agent’s state at time t-1, the robot created a plan
which should have brought it to the predicted state at time t,
but the collision avoidance led it instead to its true state. The
plan for time t to t+1 is then propagated from the true state
of the robot to obtain a new predicted state, and this state for
time t+1 is used to plan for time t+1 to t+2. In this way, the
robot can iteratively correct deviations from its plan, apply-
ing this continuously until it is able to reach its goal.

By using such a replanning framework, where the agent
assumes its previous selected plan will be executed perfectly
and plans for the next time step, the agent becomes robust to
perturbations in the solution path caused by these reactive
methods. When integrated with a reactive collision avoid-
ance method, the traditional framework selects the shortest
path to the goal ignoring other agents. As argued before, this

Figure 3: An example of a set of paths belonging in different
homotopic classes for the right-side agent, bringing it to the
left-side of the environment.

choice can lead to deadlocks despite the availability of the
reactive collision avoidance method.

K-best Paths from Different Homotopic Classes
Rather than simply selecting the greedy path at each plan-
ning cycle, one alternative is for each agent to consider a
diverse set of paths which bring the agent to its goal. This
work accomplishes this by restricting the set of paths gener-
ated, such that they all must belong to different homotopic
classes [Bhattacharya, Likhachev, and Kumar2011]. When
considering 2D problems, trajectories are in different homo-
topy classes when the area between them contains an obsta-
cle. A complete definition for homotopies can be found in
the related literature [Hatcher2002].

By ignoring paths that loop around obstacles, the set of
non-homotopic paths describes all of the shortest-length
paths that bring the agent from its current position to the
goal. These computations take place over an underlying
roadmap, and use a set of search-based primitives. An ex-
ample of the resulting set of computed paths in a simulated
environment is shown in Figure 3.

The “k-best” strategy therefore corresponds to the follow-
ing: at each replanning cycle, agents compute a set of k paths
belonging to k different homotopies and select a single path
from this set as the agent’s action. Considering such a set of
actions, instead of just the shortest path, provides the agent
with more choices. It is then possible to select a path, not
just greedily in terms of its length, but also in terms of its
interactions with neighbors.

Minimizing Interaction Cost
The question now arises on how agents can differentiate
among a set S of available paths from different homotopic
classes in order to select motions that will allow the agents
to make progress towards their goals. To describe the pro-
cess employed by this work, consider the situation depicted
in Figure 1, where agent A has actions a1 to move through
the lower corridor and a2 to move through the upper corridor

PlanRob 2014 Proceedings

83

Figure 4: For the base case: for both of the robots the length
to backtrack out of the current corridor and move to the other
corridor is εA and εB for robots A and B respectively, while
remaining in the current corridor reduces path length by εA
and εB respectively.

towards its goal. These actions correspond to two solutions
of the homotopic computation described in the previous sec-
tion, regardless of the current configuration of the robot qA.
Similarly, agent B has choices b1 and b2.

Then the question is how costs C(a1), C(a2), C(b1),
C(b2) can be computed appropriately, and in a decentral-
ized manner, so that in any situation the two agents will de-
cide to follow different corridors when they try to select the
action with minimum cost. The most conflicted situation oc-
curs when both robots are already following the path down
the same corridor. Without loss of generality set both agents
to be inside corridor 1, i.e. the lower corridor.

Assume that the goals for the agents are symmetrically
placed at the end of each side of the corridor. Then the short-
est path between the two goal points through the corridors is
x, as illustrated in Figure 4. If the corridors are too narrow,
then the paths will go through the current configurations of
robots A and B. Assume that the distance between the goal
GB and qA is εA and the distance between the goal GA and
qB is εB along the path that goes through corridor 1. Then
the lengths of the shortest paths for the robots to reach their
goals via the corresponding homotopic paths can be com-
puted as follows:

PA
1 = x− εA, PA

2 = x+ εA

PB
1 = x− εB , PB

2 = x+ εB

Where PX
i corresponds to the length of the shortest path for

robotX from its current configuration qX to its goalGX via
corridor i.

The proposed approach also considers an interaction cost
along each action for every agent. The interaction cost of
an action is 0 if there is no other agent occupying the cor-
responding path given the latest observation. If there is an
agent occupying the path, then the interaction cost is com-
puted as follows:

IAi = 1− distance between A and B along πi
length of πi

(1)

The reasoning behind this definition is that agents closer to
the current position of an agent should incur a higher inter-
action cost. Then for the above scenario the interaction costs
are:

IA1 =
εB

x− εA
, IA2 = 0

IB1 =
εA

x− εB
, IB2 = 0

Then the proposed cost function for actions is the following:

CX
i = PX

i (1 + 2 · IXi) (2)

which translates to the following cost in the above scenario:

CA
1 = x− εA + 2 · εB , CA

2 = x+ εA

CB
1 = x− εB + 2 · εA, CB

2 = x+ εB

Then, note that in order for A to select action 1 it has to be
the case that:

CA
1 = x− εA + 2 · εB < x+ εA = CA

2 ⇒

A selects corridor 1 iff: εB < εA (3)
Similarly for robot B to select action 1 it has to be the case
that:

CB
1 = x− εB + 2 · εA < x+ εB = CA

2 ⇒

B selects corridor 1 iff: εA < εB (4)
From Eqs. 3 and 4 it becomes apparent that the agents are
not able to simultaneously pick the same corridor given the
above definitions for the interaction cost and the overall cost
functions. The agent who is farther away from its goal will
have to pick the other homotopic class.

It is easy to check that if the agents had picked differ-
ent corridors to enter then they would have stuck with their
original choices as they would have incurred no interaction
cost along the corridors that they would be moving. Similar
reasoning can take place for the case that the environment
has multiple corridors or the environment is the same and
there are three agents A, B and C that are competing for
the same corridor. Without loss of generality, if one assumes
that in this case B is in the middle of the other two agents
and C wants to move towards the same direction as B, there
are two possible outcomes given the above definitions for
the interaction cost and depending on the exact distances the
three agents have traveled down the corridor:
• either A and C will be forced to change homotopic class

and B continues down the same corridor,
• or A will continue moving along the same corridor and

both B and C are forced to move to another corridor.
This means that C, which has the maximum number of con-
flicting agents along its path, will never decide to continue
moving along the same corridor and the choice ofA andB is
forced to be different as in the case of two agents competing
for the same corridor.

The entire above discussion was based on the assumption
that the goal locations of the two agents were symmetrical
relative to the corridors, i.e., the length of the path connect-
ing the agents that goes through corridor 1 is the same as
the length of the path through corridor 2. If the goals are
not symmetrical, then instead of a common path length of
x, the initial path costs PX

i should include different lengths
x1 and x2 for the connections of the goals via corridor 1
and 2 respectively. Then, the cost of actions should be de-
fined in a general manner: CX

i = PX
i (1 + α · IXi) for

PlanRob 2014 Proceedings

84

Figure 5: An example of a “minimum-conflict” path com-
puted for the right-most agent for a goal on the left side of
the image. In this situation the shortest path that does not
conflict with any of the other agents is returned. In simula-
tions with a larger number of agents, e.g., 32 in the above
scene, it is typically the case that the “minimum-conflict”
path still intersects with neighboring agents.

a constant α, which will depend on the relative difference
∆x = |x1 − x2|. This is information, however, that is not
available to the robots, since it requires knowledge of the
goals for the other agents.

In practice, using the value α = 2 as was defined origi-
nally in this section, results in good performance in the clas-
sification of different homotopic paths in terms of their inter-
action cost. So, in the context of the replanning framework
in order to replace the greedy choice, a “k-best” choice is the
following:
• Use a homotopy computation algorithm to extract the
k-shortest paths that belong to k different homotopic
classes.

• For each one of these paths, compute their costs according
to Eq. 2, where the interaction cost is computed according
to Eq. 1.

• Return the action with minimum cost.
The action with minimum cost both minimizes distance
from the goal as well as interaction with other agents. The
above “k-best” strategy is superior to the “greedy” strategy
of always selecting the shortest path, since it allows multi-
ple alternative choices to the robot and considers interactions
with neighbors given the reasoning that was presented here
for the basic “corridor” challenge under the assumption that
the goals of the two agents are symmetric.

Minimum Conflict (MC) Path
The “k-best” strategy does not result in deadlocks in simu-
lations as long as the number of simple homotopic classes
does not significantly exceed k, where simple homotopic

classes correspond to those that do not include loops. When
this property is true, then the consideration of interaction
costs with other agents, as described in the previous section,
results in the selection of homotopy classes which allow the
team to make progress overall. Even in relatively simplistic
scenes, however, the number of homotopic classes required
to satisfy this condition can quickly become large. This in-
troduces a computational challenge, since the k + 1 homo-
topy class corresponds to a longer path, which translates to a
longer search time on the underlying roadmap. To keep the
proposed method effective, however, it is important to keep
a small planning cycle and perform each path computation
as fast as possible.

In order to address this issue, the value of k is kept rela-
tively small, and to accommodate the potential lack of a de-
sirable path, the current work proposes that the “minimum-
conflict path” should always be included as an available ac-
tion to the agents. To compute such a path, each agent Ai

considers the current set of configurations for the agents
it can observe: {q1, . . . , qi−1, qi+1, . . . , qm}. For each one
of those configurations qj , agent Ai marks edges in the
roadmap that intersect qj . Edges that are marked then have
their weights inflated by a very large amount, effectively re-
moving it from consideration during the heuristic search to
find the shortest path on the roadmap from qi to qGi . This
means that the heuristic search process will first return the
shortest path that does not collide with any agents. If no such
path exists, then one which collides only with one agent will
be returned and so on.

The inclusion of such paths in the set of available strate-
gies results in methodologies that always solve challenges
where the “greedy” or the “k-best” method failed. Interest-
ingly, a strategy which only considers the “minimum con-
flict” action, constructed at each replanning cycle using the
process described above, is also able to always solve all the
challenges considered.

Even so, the resulting paths may not be as desirable when
all the agents follow their minimum conflict action. As
shown in Figure 5, this action may be significantly longer
than the shortest path to the goal. Thus, it is interesting to
consider the combination of the “k-best” strategy with the
“minimum conflict” one. In this case, the process works as
follows:

• Use a homotopy computation algorithm to extract the
k-shortest paths that belong to k different homotopic
classes.

• Compute the “minimum-conflict” action.

• For each one of the above paths, compute their costs ac-
cording to Eq. 2, where the interaction cost is computed
according to Eq. 1.

• Return the action with minimum cost.

This “deterministic” approach for combining the agent’s
greedy choices, i.e., k-shortest paths, and the safe choice,
i.e., minimum conflict, takes again advantage of the process
described in the previous section for evaluating a weighted
cost of path length and interaction cost. It allows the agent
to sometimes make the greedy choice and select one of the

PlanRob 2014 Proceedings

85

shortest paths, even if they conflict with other agents, as long
as these paths are significantly shorter than the minimum
conflict path and do not overlap with other agents in a short
time period.

A Probabilistic Selection Strategy
To allow some adaptability to varying conditions, this work
considers an online learning method to compute a non-
deterministic policy for selecting the appropriate strategy
out of the following: (a) the “minimum conflict”, i.e., the
one that returns a path with the minimum number of colli-
sions with other agents given their current configuration and
among these paths, the one with the smallest length, and (b)
a greedy strategy, where we have considered two versions:
• Always return the shortest path ignoring other agents

and
• Return the action selected by the “k-best” strategy.

The idea is that the probabilistic selection strategy will learn
during the execution of a path whether it is better to play
the “minimum conflict” strategy or the greedy alternative,
given the cost that it experiences for the outcomes of these
strategies over time.

The learning algorithm used is the Polynomial Weights
method, which is following the principle of regret minimiza-
tion [Littlestone and Warmuth1994, Nisan et al.2007]. It be-
gins by assigning uniform weights on the two strategies:
wmin conflict = wgreedy = 1. Then, when the agent must
choose an action, one of the strategies is chosen at random
proportionally to their weights, i.e.,

Pr(“minimum-conflict”) =
wmin conflict

wmin conflict + wgreedy

During each planning cycle, the method updates these
weights by calculating a loss value for each one of them:
lmin conflict, lgreedy, in hindsight, i.e., assuming that all the
other agents would have acted the same way, the method
computes a value that corresponds to the regret of choos-
ing that value. Given the other agents’ motion, one of the
two pure strategies would have performed better. This action
causes low regret and its weight is not reduced, while the
worse performing strategy incurs regret, and thus receives
a lowered weight. The implementation of the Polynomial
Weights algorithm in the context of this challenge computes
loss as follows:

li =
Ci −mini(Ci)

maxi(Ci)−mini(Ci)

Where again the term Ci corresponds to the weighted cost
computed according to Eq. 2. The weights are then updated
according to the following rule and the computed loss value:

wi = wi · (1− η · li)
This means that the action with the highest weighted cost
in hindsight gets its weight reduced by η, while the other
action is not penalized. A value of η = 0.2 was used for the
simulations presented here.

The Polynomial Weights method has several advantages.
First, it does not require knowledge of the other agent’s util-
ities and requires no information to be passed from the other

agents. Furthermore, as the weights are learned, the expected
utility is guaranteed to be within a bound of the best pure
strategy [Littlestone and Warmuth1994, Nisan et al.2007].
Lastly, it allows a high degree of adaptability to changing
conditions, as large regret costs will be quickly accumulated
for choosing a sub-optimal strategy.

Simulations
Each of the strategies presented in the previous sec-
tions,Greedy (Greedy), k-best (KBest), minimum-
conflict (Min Conf), deterministic (Determ) (i.e., com-
bination of “minimum-conflict” with “k-best”), Polynomial-
Weights Greedy (PWGreedy), and Polynomial-Weights
Best (PWBest), was evaluated experimentally in simula-
tion.

The experiments were run in a computing cluster, where
each agent was allowed access to a single computing core on
an Intel Xeon E5-4650 2.70GHz, and given 1 GB of mem-
ory. This was done to simulate the fact that each agent rep-
resented a separate robot, so there was no competition be-
tween agents for computing resources. Each experiment had
a homogeneous setup of agents, i.e. every robot ran the same
strategy, within a variety of scenes, such as a grid and a ran-
dom obstacle environment as shown in Fig. 6.

The following metrics were used to evaluate each strat-
egy’s performance:
• average completion time in seconds for all agents,
• average length of the solution path for all agents

Evaluating the average experimental solution time pro-
vides a good measure of the performance of the method,
as it directly indicates how much progress agents are mak-
ing towards their goals. The purpose of examining the aver-
age path length is to have some measurement of how much
“effort” an agent must spend to achieve its desired solution
time.

Figure 6: The environments used to evaluate the proposed
methods. The blue disks are the agent’s initial positions,
when they are not randomized.

Corridor Experiments: Evaluating Validity
The experiments begin with a simple corridor setup, with
only two agents attempting to reach opposite sides of the
corridor. The purpose of such a simple setup is to find
whether the proposed methods, including the Greedy ap-
proach, are able to solve simple congestion problems. The

PlanRob 2014 Proceedings

86

results are averaged over 5 runs, with the average path
lengths and solution times shown in Figure 7.

Figure 7: Results for testing the validity of the approaches in
the corridor environment as shown in Figure 6.

Although Greedy always had the lowest averages, it
failed to solve even a simple deconfliction problem such as
this 50% of the time. This is again due to the fact that no
other paths are considered by the agent. All of the other
strategies were able to solve the corridor problem without
a single failure.

Evaluating Performance
The performance of the four methods is evaluated using two
environments, the grid environment and a forest-like envi-
ronment as shown in Fig. 6. Since the Greedy strategy
failed to consistently solve the corridor problem, it is omitted
from the rest of the experiments. An important observation
of the KBest strategy is for small values of k, and for large
numbers of homotopy classes, it is possible for the strat-
egy to become deadlocked/livelocked. Such was the case in
the grid and forest environments, so accordingly the KBest
strategy is no longer considered in further experiments.

Agents are given a pseudo-random start location, and a
fixed goal location, with the intention of having agents swap
locations with one another, which promotes conflicts and
congestion in the environment. The results are averaged over
5 runs and presented in Fig. 8 (for the grid environment) and
Fig. 9 (forest).

The deterministic approach, Determ, which considers

Figure 8: Results for randomly selected starting positions in
the grid environment. Data is shown for increasing number
of agents in the same environment, where error bars signify
the variance over all simulations.

both the “minimum-conflict” and the “k-best” strategies, al-
ways selects the action that minimizes the proposed interac-
tion cost. In the Grid environment, Determ outperformed
the other approaches. In the random obstacle forest scene,
however, the methods seem to be competitive. The explana-
tion for this is that the random placement of obstacles, com-
bined with a larger workspace, does not cause a constrained
enough environment, hence there are not frequent conflicts
between agents. This allows agents to consider a larger set of
possible actions that are conflict-free, so each of the strate-
gies presented can provide an equivalent solution quality.

Grid Experiments: Evaluating Scalability

In these experiments the start location of the agents were
set to be symmetrical, so as to promote conflicts and con-
gestion quickly. The results are averaged over 15 different
runs and are shown in Figure 10. The purpose of this set of
experiments was to evaluate the scalability of the adaptive-
strategies, PWGreedy and PWBest, as both of these ap-
proaches utilize the other deconfliction methods, and are
consequently the most computationally complex.

The results show that for increasingly larger number
of agents, the average solution time and the average path
lengths for the methods scales sublinearly.

PlanRob 2014 Proceedings

87

Figure 9: Results for randomly selected starting positions in
the random obstacle, forest environment.

Heterogeneous Setups
A set of experiments was conducted among heterogeneous
agents in the grid environment, where 7 agents were as-
signed the “minimum-conflict” strategy and 1 agent was as-
signed the PWBest strategy. The idea here was to exam-
ine the probabilistic learning algorithm, PWBest, and see if
it was able to adapt its weights according to the strategies
the other agents were playing. Interestingly, over a course
of 5 separate runs, PWBest selected the “k-best” strategy
65% of the time on average. Since the ‘minimum-conflict”
agents were actively attempting to avoid interaction with
other agents, it makes sense that the PWBest agent is able
to be more “greedy” in its selection of paths.

Carrying on with this line of thought, another set of ex-
periments was run where 4 agents were given the pure
“greedy” strategy, and the other 4 agents ran PWBest. In
this case, the PWBest agents adapted and chose to select the
“k-best” strategy only 41% of the time. Since the 4 purely
greedy agents caused a deadlock in the center of the envi-
ronment, the PWBest agents had to adapt and select the safer
“minimum-conflict” strategy more often. Together these re-
sults seem to show promise for the adaptability of the learn-
ing strategy, as well as motivating its use over the “determin-
istic” strategy.

A video of the experiments can be found at:
http://www.cs.rutgers.edu/˜kb572/
videos/icaps_PlanRobWorkshop_2014.mp4

Figure 10: The average path length and average time to fin-
ish for simulations using the polynomial weight with greedy
(PWGreedy) and with k-best selection (PWBest).

Discussion
The proposed framework brings together path planning
primitives, such as search-based methods for comput-
ing paths in different homotopic classes [Bhattacharya,
Likhachev, and Kumar2011] and sampling-based motion
planners for computing roadmaps [Karaman and Fraz-
zoli2011], reactive obstacle avoidance methods [van den
Berg, Lin, and Manocha2008, Snape et al.2011] as well as
game theoretic and learning tools [Nisan et al.2007] to pro-
vide an algorithmic framework capable of computing ac-
ceptable solutions to motion coordination challenges in a
decentralized, communication-less way.

Some interesting directions for this work include: re-
moving the “garage” assumption from the framework - this
would require agents to continue reasoning about their ob-
served states, potentially adapting a “passive” mode to more
easily allow other agents through their goal positions; exten-
sively evaluate the adaptive methods in a larger set of hetero-
geneous setups, as well as imposing a stricter sensing range
on the agents; and analyzing the conditions under which the
current framework is able to guarantee that the robots are
free of deadlocks and livelocks, using tools that have been
developed towards this direction [Knepper and Rus2013].
Currently, the work is in the process of being evaluated on
real systems in a construction challenge, with the eventual
hope of running experiments including humans.

PlanRob 2014 Proceedings

88

References
Bekris, K. E.; Grady, D. K.; Moll, M.; and Kavraki, L. E. 2012.
Safe Distributed Motion Coordination For Second-Order Systems
With Different Planning Cycles. International Journal of Robotics
Research (IJRR) 31(2).
Bennewitz, M.; Burgard, W.; Cielniak, G.; and Thrun, S. 2005.
Learning Motion Patters of People for Compliant Robot Motion.
International Journal of Robotics Research (IJRR) 24(1):31–48.
Bhattacharya, S.; Kumar, V.; and Likhachev, M. 2010. Search-
based Path Planning with Homotopy Class Constraints. In Third
Annual Symposium on Combinatorial Search.
Bhattacharya, S.; Likhachev, M.; and Kumar, V. 2011. Identifica-
tion and Representation of Homotopy Classes of Trajectories for
Search-based Path Planning in 3D. In Proc. of Robotics: Science
and Systems.
Excelente-Toledo, C. B., and Jennings, N. R. 2004. The dynamic
selection of coordination mechanisms. Autonomous Agents and
Multi-Agent Systems 9(1-2):55–85.
Filiot, E.; Le Gall, T.; and Raskin, J.-F. 2010. Iterated regret min-
imization in game graphs. In Mathematical Foundations of Com-
puter Science 2010. Springer. 342–354.
Fiorini, P., and Shiller, Z. 1998. Motion planning in dynamic en-
vironments using velocity obstacles. Int. Journal of Robotics Re-
search 17(7).
Fraichard, T., and Delsart, V. 2009. Navigating Dynamic Envi-
ronments with Trajectory Deformation. Journal of Computing and
Information Technology 17(1).
Green, C., and Kelly, A. 2007. Toward Optimal Sampling In the
Space of Paths. In International Symposium on Robotics Research
(ISRR).
Hatcher, A. 2002. Algebraic Topology. Cambridge University
Press.
Hauser, K. 2011. Adaptive time stepping in real-time motion plan-
ning. In Algorithmic Foundations of Robotics IX. Springer. 139–
155.
Hauser, K. 2013. Minimum Constraint Displacement Motion Plan-
ning. In Proc. of Robotics: Science and Systems.
Henry, P.; Vollmer, C.; Ferris, B.; and Fox, D. 2010. Learning to
Navigate Through Crowded Environments. In Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA).
Jaillet, L., and Siméon, T. 2006. Path Deformation Roadmaps. In
Workhop on the Algorithmic Foundations of Robotics (WAFR).
Kaminka, G. A.; Erusalimchik, D.; and Kraus, S. 2010. Adap-
tive multi-robot coordination: A game-theoretic perspective. In
Robotics and Automation (ICRA), 2010 IEEE International Con-
ference on, 328–334. IEEE.
Karaman, S., and Frazzoli, E. 2011. Sampling-based Algorithms
for Optimal Motion Planning. In IJRR.
Karamouzas, I.; Geraerts, R.; and Overmars, M. 2009. Indicative
Routes for Path Planning and Crowd Simulation. In The 4th Intern.
Conference on the Foundations of Digital Games (FDG), number
113-120.
Knepper, R. A., and Mason, M. T. 2009. Path Diversity is Only
Part of the Problem. In Proc. of the IEEE Intern. Conf. on Robotics
and Automation (ICRA).
Knepper, R. A., and Rus, D. 2012. Pedestrian-Inspired Sampling-
based Multi-Robot Collision Avoidance. In Proc. of the Interna-
tional Symposium on Robot and Human Interactive Communica-
tion (RO-MAN), 94–100. Paris, France: IEEE.

Knepper, R. A., and Rus, D. 2013. On the Completeness of En-
sembles of Motion Planners for Decentralized Planning. In Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA).
Large, F.; Vasquez, D.; Fraichard, T.; and Laugier, C. 2004. Avoid-
ing Cars and Pedestrians Using Velocity Obstacles and Motion Pre-
diction. In IEEE Intelligent Vehicles Symposium.
Littlestone, N., and Warmuth, M. K. 1994. The Weighted Majority
Algorithm. Information and Computation 108:212–261.
Nisan, N.; Roughgarden, T.; Tardos, E.; and Vazirani, V. V. 2007.
Algorithmic game theory. Cambridge University Press.
Petti, S., and Fraichard, T. 2005. Partial Motion Planning Frame-
work for Reactive Planning within Dynamic Environments. In
ICINCO, 199–204.
Qutub, S.; Alami, R.; and Ingrand, F. 1997. How to Solve Dead-
lock Situations within the Plan-Merging paradigm for Multi-Robot
Cooperation. In Proc. of the Inter. Conf. on Intelligent Robots and
Systems (IROS), volume 3, 1610–1615.
Shi, D.; Collins, E. G.; Donate, A.; Liu, X.; Goldiez, B.; and Dun-
lap, D. 2008. Human-aware Robot Motion Planning with Velocity
Constraints. In IEEE International Symposium on Collaborative
Technologies and Systems, 490–497.
Sisbot, E. A.; Marin-Urias, L. F.; Alami, R.; and Siméon, T. 2007.
A Human-aware Mobile Robot Motion Planner. IEEE Transactions
on Robotics 23(5):874–883.
Snape, J.; van Den Berg, J.; Guy, S.; and Manocha, D. 2011.
The Hybrid Reciprocal Velocity Obstacle. IEEE Transactions on
Robotics 27(4):696–706.
Stone, P.; Kaminka, G. A.; and Rosenschein, J. S. 2010. Leading
a best-response teammate in an ad hoc team. In Agent-Mediated
Electronic Commerce. Designing Trading Strategies and Mecha-
nisms for Electronic Markets. Springer. 132–146.
Thompson, S.; Horiuchi, T.; and Kagami, S. 2009. A Probabilistic
model of Human Motion and Navigation Intent for Mobile Robot
Path Planning. In Proc. of the 4th International Conference on
Autonomous Robots and Agents.
Trautman, P., and Krause, A. 2010. Unfreezing the Robot: Navi-
gation in Dense, Interacting Crowds. In Proc. of the IEEE Intern.
Conf. on Intelligent Robots and Systems (IROS).
van Den Berg, J.; Patil, S.; Sewall, J.; Manocha, D.; and Lin, M.
2008. Interactive Navigation of Individual Agents in Crowded En-
vironments. In Proc. of the ACM SIGGRAPH Symposium on Inter-
active 3D Graphics and Games (I3D).
van den Berg, J.; Snape, J.; Guy, S.; and Manocha, D. 2011. Recip-
rocal Collision Avoidance with Acceleration-Velocity Obstacles.
In IEEE Int. Conf. on Robotics and Automation (ICRA).
van den Berg, J.; Lin, M.; and Manocha, D. 2008. Reciprocal
velocity obstacles for real-time multi-agent navigation. In Proc. of
the IEEE Int. Conf. on Robotics and Automation (ICRA).
Wunder, M.; Kaisers, M.; Yaros, J. R.; and Littman, M. 2011.
Using iterated reasoning to predict opponent strategies. In The
10th International Conference on Autonomous Agents and Multi-
agent Systems-Volume 2, 593–600. International Foundation for
Autonomous Agents and Multiagent Systems.
Ziebart, B. D.; Ratliff, N.; Gallagher, G.; Mertz, C.; Peterson,
K.; Bagnell, J. A.; Hebert, M.; Dey, A.; and Srinivasa, S. 2009.
Planning-based Prediction for Pedestrians. In Proc. of the IEEE
Intern. Conf. on Intelligent Robots and Systems (IROS).

PlanRob 2014 Proceedings

89

Efficient and Smooth RRT Motion Planning Using a
Novel Extend Function for Wheeled Mobile Robots

Luigi Palmieri and Kai O. Arras
Social Robotics Laboratory
Dept. of Computer Science

University of Freiburg
Germany

Abstract

In this paper we introduce a novel RRT extend
function for wheeled mobile robots. The approach
computes closed-loop forward simulations based
on the kinematic model of the robot and enables
the planner to efficiently generate smooth and fea-
sible paths that connect any pairs of states. We
extend the control law of an existing discontinu-
ous state feedback controller to make it usable as
an RRT extend function and prove that all rel-
evant stability properties are retained. We study
the properties of the new approach as extender for
RRT and RRT* and compare it systematically to
a spline-based approach and a large and small set
of motion primitives. The results show that our
approach generally produces smoother paths to
the goal in less time with smaller trees. For RRT*,
the approach produces also the shortest paths and
achieves the lowest cost solutions when given more
planning time.

1 Introduction

Planning with rapidly-exploring random trees (RRT)
(LaValle and Kuffner 1999) has become a popular ap-
proach to robot motion planning. RRT planners are
single-query sampling-based planners that grow a tree
of configurations to eventually cover the entire state
space. A probabilistically optimal RRT variant named
RRT* has been introduced by Karaman and Frazzoli
(Karaman and Frazzoli 2010). RRT* trees grow based
on the notion of a cost: under the assumptions given
in (Karaman and Frazzoli 2011) the solution converges
to the optimum as the number of samples approaches
infinity.

For robots with kinematic or kinodynamic con-
straints, the extend function, the function that grows
the tree by finding collision-free trajectories to new sam-
pled configurations, becomes a key component. Its task
is to connect any pair of states under differential con-
straints which represents by itself a local planning prob-
lem also referred to as the two-point boundary value
problem.

Here, we consider the motion planning problem for
non-holonomic wheeled robots in 2D with the goal of

Figure 1: A smooth motion planning solution computed
by our new extender.

particularly smooth and natural real-time motion gen-
eration for robots in human environments. To this end,
we propose a new extend function for RRT and RRT*
which shall enable the planner to efficiently generate
smooth paths. Previously used extend functions include
motion primitives (LaValle and Kuffner 1999), (Fraz-
zoli, Dahleh, and Feron 2005), (Kalisiak and van de
Panne 2006), (Kalisiak and van de Panne 2007), optimal
controllers (Perez et al. 2012) (Webb and van den Berg
2013), shooting methods (Hwan Jeon, Karaman, and
Frazzoli 2011), splines (Yang et al. 2014), and closed-
loop controllers (Kuwata et al. 2009).

Motion primitives have originally been proposed
for RRT-based planning under differential constraints.
LaValle and Kuffner (LaValle and Kuffner 1999) imple-
ment the extend function as a forward simulation of a
set of predefined discretized controls, so called motion
primitives. The approach satisfies the constraints, is ef-
ficient to compute and easy to implement: the tree is ex-
tended with the primitive that is found to come closest
to the new sampled configuration xnew. However, the
method has several shortcomings: it does not fully solve
the two-point boundary value problem as the orienta-
tion of xnew is ignored, the extension of the tree even
by the closest motion primitive may still be far-off from

PlanRob 2014 Proceedings

90

xnew, and the concatenation of primitives may lead to
sequences of discontinuous inputs and non-smooth tra-
jectories. The last point was addressed by Frazzoli et al.
(Frazzoli, Dahleh, and Feron 2005) who propose a finite-
state machine called a Maneuver Automaton to allow
correct (and thereby smooth) concatenation of motion
primitives to complex motion trajectories. However, its
use in RRT-based planning has not been studied.

Recently, Perez et al. (Perez et al. 2012) use an op-
timal infinite-horizon LQR controller to connect pairs
of states. The method linearizes the domain dynam-
ics locally, which is interesting from an efficiency point
of view, but will in general not reach the target state
exactly. Webb and van den Berg (Webb and van den
Berg 2013) use a finite-horizon optimal controller as
local planner. They can optimize a certain class of
cost functions to trade off between time and control
effort. Goretkin et al. (Goretkin et al. 2013) use a
finite-horizon LQR controller extended to affine sys-
tems. They can generically extend the algorithm to non-
linear systems by linearizing the dynamics at vertices
in the tree: the obtained approximations are in general
affine. Although optimal control techniques may pro-
duce high-quality solutions to the two-point boundary
value problem, they typically suffer from high compu-
tational costs and numerical issues that can make them
unsuitable for motion planning in real-time.

Hwan Jeon et al. (Hwan Jeon, Karaman, and Frazzoli
2011) use the shooting method to numerically solve the
two-point boundary value problem to obtain an extend
function for RRT*. The method allows for time-optimal
maneuvers of a high-speed off-road vehicle. As with op-
timal control techniques, shooting methods may have
issues with numerical stability and computational costs
for our application.

In a recent work, Yang et al. (Yang et al. 2014) use
splines as RRT extend function. The authors take cu-
bic Bézier splines that guarantee curvature continuity of
paths and are able to satisfy upper-bounded curvature
constraints. With our goal of smooth and natural mo-
tion generation, we consider splines to be a potentially
interesting approach and include a spline-based extend
function into our experimental comparison. However,
instead of cubic Bézier splines which are limited to
curves with continuous curvature, we will use η3 splines,
introduced by Piazzi et al. (Piazzi, Bianco, and Romano
2007) that produce curves with a continuous derivative
of the curvature, therefore generating even smoother
paths than cubic Bézier splines.

Kuwata et al. (Kuwata et al. 2009) introduce closed-
loop RRT (CL-RRT), a modified RRT for real-time lo-
cal lane following with a car using an extend function
based on a closed-loop model. Given a sampled con-
trol input, the method runs a forward simulation using
the vehicle and controller models to predict and then
evaluate extend trajectories.

The contribution of our work is as follows:

• We propose an extender based on closed-loop predic-
tions for a non-holonomic wheeled mobile robot. It

efficiently solves the two-point boundary value prob-
lem by exponentially converging to the goal state
from any start state. We extend the control law of
the original approach by Astolfi (Astolfi 1999) with
a term that leads to quasi-constant path velocities
along local path concatenations – a key ability for
RRT extend functions. We also prove the relevant
stability properties under our modification.

• We systematically compare our approach to two al-
ternative extenders, namely motion primitives (two
sets of different size) and splines. The experiments
demonstrate that our approach outperforms both
methods in many relevant metrics: smoother paths
and shorter planning time (with RRT), shorter paths
(with RRT*), and significantly smaller trees (both).
We also find that our method can benefit most from
the incremental path improvement ability of RRT*
resulting in the lowest cost solutions when given more
planning time.

• To the best of our knowledge, this paper presents the
first systematic study of the impact of different ex-
tend functions on RRT and RRT* performance and
path quality. Its necessity is corroborated by the sig-
nificant variations of key metrics only caused by the
use of different extend functions.

The paper is structured as follows: the next Section
reviews the RRT algorithm and typical extend func-
tions. In Section 3 we describe our approach which is
then experimentally evaluated in Section 4. We discuss
the results in Section 5, and Section 6 concludes the
paper.

2 Rapidly Exploring Random Trees
We briefly review the RRT algorithm for planning un-
der differential constraints. Let X ⊂ Rd be the config-
uration space and U ⊂ Rm the control space. A non-
holonomic wheeled mobile robot can be described by a
differential equation as

ẋ(t) = f(x(t),u(t)) x(0) = x0 (1)

where x(t) ∈ X , u(t) ∈ U , for all t, x0 ∈ X and f is a
function describing the kinematics of the system. The
RRT algorithm solves a feasible kinematic motion plan-
ning problem p: given an obstacle space Xobs ⊂ X , a free
space Xfree = X \ Xobs, an initial state xinit ∈ Xfree
and a goal region Xgoal ⊂ Xfree, find a control u(t) ∈ U
with domain [0, T], T > 0, such that the unique tra-
jectory x(t) satisfies equation (1), is in the free space
Xfree ⊆ X and goes from xinit to a goal xgoal ∈ Xgoal.
The RRT procedure is outlined in Algorithm 1.

2.1 Extend Function

The purpose of the extend function is to connect new
states to the tree: it grows a branch from xnear to-
ward xrand. The terminal state of the new branch, xnew,
may differ (largely) from xrand depending on the extend
function used. xnew is then added to the tree τ together

PlanRob 2014 Proceedings

91

Algorithm 1 Rapidly-exploring Random Tree

function RRT(xinit , xgoal)
τ.add vertex (xinit)
while k ≤ K do
xrand ⇐ random state(X)
xnear ⇐ nearest neighbor(τ,xrand)
xnew,ubest ⇐ extend(xnear,xrand)
τ.add vertex (xnew)
τ.add edge(xnear,xnew,ubest)
if xnew ∈ Xgoal then
return extract traj (xnew)

end if
end while
return failure

with the intermediate points of the new local path and
the selected u. The expansion fails if a collision along
the path occurs.

We briefly review motion primitives, the originally
proposed extenders as part of RRT. The approach is
based on the forward propagation of a control input
into a system simulator. Given an initial state x0, an
integration time ∆t, an integration time step ts and a
input ui from a discrete set of controls U = {u1, ..,um},
a trajectory xi(t) is generated by numerically integrat-
ing Eq. (1)

xi(t) =

∫ ∆t

0

f(xi(t),ui(t)) dt+ x0, i = 1, ...,m. (2)

All the controls in U are checked, and the one that
brings the expansion closest to xrand (according to a
distance metric) is stored together with the associated
local trajectory that will be added to the tree τ . To
minimize the time needed to extend the tree, the mo-
tion primitives can be precomputed off-line.

An alternative approach to extending the tree is to
employ a full-fetched local planner that generates tra-
jectories x(t) ∈ Xfree and the corresponding continuous
controls u(t).

2.2 RRT* Extend Function

The extension procedure in RRT* is more complex. It
is based on the concept of near neighbors, the neigh-
bors within a specified radius of a node. The first step
of the extension is to connect a newly added vertex to
its neighbor vertex with minimal cost. The next step is
to rewire the tree: if the path from the newly created
vertex to a near neighbor node has a lower cost than
the near neighbor, then the parent of the near vertex is
changed to the new vertex. Each time the algorithm at-
tempts to connect two vertices a steer function is called
for which RRT extend functions can be used.

3 The Approach: POSQ
The proposed extend function computes closed-loop for-
ward simulations based on the kinematic model of a
non-holonomic wheeled mobile robot. It generates the

trajectory x(t) and controls u(t), t ∈ [0, T], T > 0,
that connect any given pair of poses. Thus, it solves the
two-point boundary value problem for such kinematic
systems, see Fig. 2. The tree is grown in the configura-
tion space R2 × S1 where each configuration x consists
of the Cartesian position of the wheeled mobile robot
and its orientation, i.e. (x, y, θ).

The approach, originally proposed by Astolfi (Astolfi
1999), solves the problem of exponential stabilization
of the kinematic and dynamic model of the wheeled
mobile robot. It is not an optimal controller but has
provable local and global stability, a light-weight im-
plementation, and generates smooth trajectories. We
believe that for extend functions, optimality is less rele-
vant than efficiency, smoothness and the ability to fully
solve the two-point boundary value problem. This is
particularly true for RRT* for non-holonomic dynam-
ical systems (Karaman and Frazzoli 2013), where the
steering function must fulfil the topological property
(Laumond, Sekhavat, and Lamiraux 1998).

We briefly summarize the original approach (Astolfi
1999) and describe our extension in the next subsec-
tion. Let ρ be the Euclidean distance between the ini-

Figure 2: Trajectories of the controller when steering
the robot from the center to the poses on the circle

tial pose and the goal pose (xnear and xrand in an RRT
notation), φ the angle between the x-axis of the robot
reference frame {XR} and the x-axis of the goal pose
frame {XG}, α the angle between the y-axis of the robot
reference frame and the vector Z connecting the robot
with the goal position, v the translational and ω the an-
gular robot velocity (Fig. 3). Then, the method makes
a Cartesian-to-polar coordinates transform to describe
the kinematics using the open loop model

ρ̇ = − cosα v,

α̇ =
sinα

ρ
v − ω,

φ̇ = −ω,

(3)

PlanRob 2014 Proceedings

92

Z
Yg

Xg

XR

YR

α

θ

φ
xnear

xrand

ρω v

Figure 3: Notation and robot to goal relations

and the feedback law

v = Kρρ,

ω = Kαα+Kφφ.
(4)

As shown in (Astolfi 1999), this feedback law guarantees
smooth trajectories without cusps.

3.1 Our control law
The original approach, however, generates trajectories
of decaying forward velocity bringing the robot to a
stop at each goal. The concatenation of such local paths
would result in final paths of unnatural and slow move-
ments.

Thus, we modify the feedback law so as to have quasi
constant forward velocity at a desired maximum value
across multiple expansions. We will prove that this
modification retains local stability and that the robot’s
heading converges asymptotically to the desired equi-
librium point.

Considering the open loop model in Eq. (3) obtained
by the polar coordinate transform, we define the non-
linear feedback law

v = Kρ tanh(Kvρ),

ω = Kαα+Kφφ .
(5)

Substituting the control law (5) into the open loop
model we obtain the following closed loop model

ρ̇ = −Kρ cosα tanh(Kvρ),

α̇ = Kρ
sinα

ρ
tanh(Kvρ)−Kαα−Kφφ,

φ̇ = −Kαα−Kφφ .

(6)

We now describe the conditions for which local stability
holds and prove heading convergence.

Local Stability We can locally approximate the
closed loop model (6) by

ρ̇ = −KρKvρ

α̇ = −(Kα −KρKv)α−Kφφ

φ̇ = −Kαα−Kφφ

which is locally exponentially stable if and only if the
eigenvalues of the matrix describing the linear approx-
imation of the model have all negative real parts. For
that, we need to have

Kv > 0, (7)

Kρ > 0,

Kφ < 0,

Kα +Kφ −KρKv > 0 .

Considering the closed loop model (6), assume α(0) ∈
]− π

2 ,
π
2], and φ(t) ∈]nπ, nπ] for all t. Then, if

Kα + 2nKφ −
2

π
KρKv > 0 (8)

holds one has α(t) ∈]− π
2 ,

π
2] for all t > 0 which means

that the robot trajectory will always stay in this region:
we have defined a trapping region. Thus, together with
the condition Kρ,Kv > 0, the robot will move mono-
tonically towards the origin.

Heading Convergence We want the robot to move
towards to goal xrand but notice in (6) that the goal
position (the origin) can not be reached because ρ is a
singularity point. Thus, we define an arbitrarily small
number to which ρ converges, ρ→ ε, with ε > 0, ρ > ε.
Let us focus on the following reduced subsystem which
describes how the orientation evolves

α̇ = −Kαα−Kφφ+Kρ sinα
tanh(Kvρ)

ρ
,

φ̇ = Kαα−Kφφ .

Given that ρ̇ is strictly negative, we want to find the
conditions for which the above vector field has a unique
equilibrium point (α = 0, φ = 0) to which all trajec-
tories converge asymptotically for all ρ > ε. This is
equivalent to minimizing the orientation error as well as
stopping the robot at xnew, ε meters away from xrand.

If we consider the candidate Lyapunov function

V (α, φ) = (−Kαα+Kφφ)2 + 2 KφKρ (cosα− 1)

tanh(Kvρ), (9)

we can show that

V̇ (α, φ) = 2 KφKρα sinα tanh(Kvρ)[
Kφ +Kα −Kρ

sinα

α
tanh(Kvρ)

]
. (10)

Given that conditions (7) and (8) hold and considering

n = 2, V is positive and V̇ is non-positive in all S2 ={
(α, φ) ∈ R2 | α ∈]− π

2 ,
π
2], φ ∈ (−2π, 2π]

}
.

It exists a positively invariant set

M =

{
(α, φ) ∈ S2| V ≤

9

4
k2
φπ

2 − 2KφKρ

}
.

which is contained in S2, and it contains S1 ={
(α, φ) ∈ R2 | α ∈]− π

2 ,
π
2], φ ∈ (−π, π]

}
. M contains

only the equilibrium point (α = 0, φ = 0). Thus, all

PlanRob 2014 Proceedings

93

xnear(k)

xrand(k)

xnew(k)

xnear(k)

xrand(k)

xnear(k)

xrand(k)

xnear(k+1)

xrand(k+1)

xnew(k+1)

Figure 4: A simple two-step expansion example. With
k being the time index of successive extensions, the
proposed controller extends the tree from xnear(k) to
xrand(k) until the local trajectory enters the disk of ra-
dius γ at xnew(k). The procedure is repeated for k+ 1.

0 2 4 6 8 10 12
0

0.5

1

1.5

V [m/s]

t [s]

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

POSQ: V [m/s]

t [s]

Figure 5: Translational robot velocity in [m/s] with the
original control law from (Astolfi 1999) (left) and our
control law (right) across the concatenation of two ex-
tensions. For the same two goal poses the new law allows
for much faster movements.

trajectories starting in S1 and contained in S2 converge
asymptotically to the origin according to the Poincare-
Bendixson Theorem.

Notice that we are not solving a stabilization prob-
lem like in the original approach (Astolfi 1999). The new
control law allows us, during expansion of the tree from
xnear towards xrand, to minimize the error in orienta-
tion and stop when the local trajectory is close enough
to the goal xrand. A γ > 0 threshold can be defined
as minimum Euclidean distance that stops the expan-
sion towards xrand. It is guaranteed that the terminal
state xnew is not further away from xrand than γ, which
thus becomes a tunable error bound.The threshold γ
can be seen as the radius of a circle centered at xrand,
see Fig. 4. In practice, γ is chosen to be a few centime-
tres.

The new control law does not remove the velocity de-
cay toward the goal but makes it significantly sharper.
So sharp, that even small values for γ cause the decay
to disappear and allow for quasi-constant forward ve-
locities along the previously explained extension proce-
dure. See Fig. 5 for a comparison. The method is named
POSQ as it acts like a pose controller.

4 Experiments

In the experiments, we evaluate the new extend func-
tion and compare it to two alternative methods, namely
motion primitives (two sets of different size) and splines.
We quantify their impact on planning performance in

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x [m]

y
 [

m
]

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x [m]

y
 [

m
]

Figure 6: The motion primitive sets, Usmall (left) with
10 motion primitives and Ularge (right) with 77 motion
primitives.

terms of time, tree size and path quality in three dif-
ferent simulated environments. We use both RRT and
RRT* as planning algorithms.

The POSQ parameters are Kρ = 1, Kφ = −1, Kα =
6, Kv = 3.8, γ = 0.15. The two sets of motion prim-
itives Usmall with 10 controls and Ularge with 77 con-
trols are shown in Fig. 6. For the spline-based extend
function we use η3 splines (Piazzi, Bianco, and Romano
2007), seventh order polynomial spline whose paths
have continuous tangent vectors, curvature and curva-
ture derivatives along the arc length.

All extenders share the same integration time step
ts and velocity limits. For each combination of exten-
der/map/planning algorithm we perform 100 runs and
compute the average and standard deviation of all met-
rics. We use uniform sampling and the Euclidean dis-
tance as distance metric.

The RRT* cost function, derived from (LaValle and
Kuffner 1999), has two terms, one for the approximated
path length and one that measures heading changes
along the path, both with equal weights (wd = wq)

C =

Ne−1∑
i=0

wd||Pi+1 −Pi||+ wq (1− |qi+1 · qi|)2
.

Ne + 1 are the intermediate points Pi of the local path
and qi the associated quaternions. The RRT* neighbor
radius is constant at a high value with respect to the
map size, we use a linear neighbor search.

Our implementation is based on the C++ SMP tem-
plate library (Karaman). All experiments were running
on an ordinary PC with 2.67 GHz Intel Core i7 and 10
GB of RAM.

4.1 Metrics

To quantify planning performance we compute the aver-
ages and standard deviations of the following metrics:
tree size as the number of vertices (Nv), time to find
a solution (RRT) or a first solution (RRT*) (Ts), and
path length in meters (lp).

Smoothness, although being an intuitive concept, is
less straightforward to measure precisely. In (Balasub-
ramanian, Melendez-Calderon, and Burdet 2012), Bal-
asubramanian et al. survey a number of metrics to

PlanRob 2014 Proceedings

94

quantify movement smoothness. We adopt the following
measures that are relevant in our context.

Let vmax be the maximum magnitude of the robot

velocity vector v, ṽ = v(t)
vmax

the normalized velocity,

and [t1, t2] the time interval over which the movement
is performed.

1. ηnmaJ , the average of the mean absolute jerk normal-
ized by vmax, for which the best value is zero:

ηnmaJ = − 1

vmax(t2 − t1)

∫ t2

t1

∣∣∣∣d2v

dt2

∣∣∣∣ dt,
2. average of the speed arc length ηspal, for which the

best value is zero

ηspal = −ln

∫ t2

t1

√(
1

t2 − t1

)2

+

(
dṽ

dt

)2

dt

 ,

3. average number of peaks ηpm

ηpm = −|Vpeaks |.

with Vpeaks = {v(t) : dvdt = 0, d
2v
dt2

< 0} being the set
of local velocity maxima.

4.2 Test Environments

Planning is carried out in three simulated environments
(Fig. 7). In the office environment, there are few alter-
native ways to the goal. It has several local minima,
the goal lies behind a U-shaped obstacle, and an asym-
metry makes that the shortest path go through a nar-
row passage. The hallway scenario contains more open
spaces and alternative paths to the goal. The random
map environment contains 100 randomly placed square
obstacles. There are many homotopy classes, some re-
quire more or less maneuvers than others. The map size
in all scenarios is 50m× 30m.

5 Results and Discussion

The RRT results are given in Table 1, the RRT* results
in Table 2. The best values in each metric are high-
lighted in bold.

With RRT as the planning algorithm, the proposed
extend function POSQ outperforms motion primitives
and splines in all metrics except path length. It pro-
duces smoother paths and finds the goal in less time
with significantly smaller trees. The low number of
tree vertices and the smaller planning times are mainly
due to the ability of our approach to better follow the
Voronoi bias and deeply enter unexplored regions of the
configuration space. This is unlike, for example, motion
primitives that require the concatenation of many small
local expansions for the same exploration effort. In fact,
all continuous extend functions that fully solve the two-
point boundary value problem possess this property as
also confirmed by the similar trends in the results of the
spline-based extender.

Figure 8: The RRT* cost C computed over 1000 seconds
for the Random Map scenario. The trends are displayed
(mean and standard deviation): in blue the POSQ re-
sults, in red the Motion Primitive ones and in green
the splines. Our approach benefits most from the in-
cremental character of RRT* and results in the lowest
cost solution. The displayed trends are not changing
with more planning time. See also Fig. 9.

The motion primitive extenders find shorter paths
which is not surprising given the much denser trees from
the multitude of small-sized extensions.

With RRT* as planner, our extender outperforms the
other methods in tree size, path length and two of three
smoothness measures. The fact that our method finds
the shortest paths, and so the lowest cost in all the
cases, suggests that it is particularly easy to rewire in
the sense of the cost function, quite in contrast to mo-
tion primitives. This is also pointed out by Webb and
van den Berg (Webb and van den Berg 2013) who state
that the RRT* rewiring procedure is well suited for con-
tinuous extension approaches where reachability of a
state is not compromised. Figure 8 is another indica-
tion in this direction. It shows an example cost trend
when given more planning time. The POSQ extender
can benefit most from the incremental path improve-
ment of RRT*: in Fig.9 is showed a comparison be-
tween the paths obtained after 1000 seconds: definitely
the POSQ generates the smoothest one.

While the proposed extender is smoothest in terms of
the ηspal and ηpm measures, it falls behind the motion
primitive approach in the jerk-related metric ηnmaJ .
This may be explained by the much denser trees with
several factors more vertices that allow solutions with
fewer maneuvers. Regarding the time to find the first
solution, Ts, the results are inconclusive. The high vari-
ance is mainly due to the large number of homotopy
classes, particularly in the random map and hallway en-
vironments. POSQ and the spline-based extender (the
two continuous approaches) grow the tree deeply into

PlanRob 2014 Proceedings

95

a) Office Scenario b) Hallway Scenario c) Random Map Scenario

RRT

RRT*

Figure 7: The three environments and example solutions found with the proposed extend function for RRT (top row)
and RRT* (bottom row, showing the first solution). The start state (green circle) is always in the bottom left, the
goal region (blue square) in the top right.

Figure 9: Typical RRT* solutions after 1000 seconds corresponding to the costs shown in Fig. 8. Left: the motion
primitive approach generates the path with the high cost. Center: the spline-based extend function allows for a
smoother path. Right: The path obtained by the POSQ extender is the smoothest one.

unexplored regions and discover many different ways
to the goal, also inefficient ones at times. However, as
discussed before, such first solutions can be improved
when given more planning time, particularly well by
the POSQ extender.

6 Conclusions
In this paper we have presented a novel RRT extend
function for nonholonomic wheeled mobile robots. We
have evaluated its impact on planning performance and
path quality and found that it outperforms motion
primitives and a spline-based approach in many rele-
vant metrics. It enables RRT to find smoother paths in
less time with smaller trees, and it enables RRT* to find
shorter paths with smaller trees while being on par in
planning time and smoothness. We also found that our
method can benefit most from the cost-guided rewiring
procedure of RRT* resulting in the lowest cost solutions
when given more planning time.

In future work we will consider the extension of our
method to kinodynamic models and the incorporation
of recent RRT improvements such as regression avoid-

ance and viability filtering. We also plan to develop spe-
cific heuristics for nonholonomic systems that help to
select states in the tree for further expansion.

Acknowledgments
The authors thank Christoph Sprunk for valuable dis-
cussions and feedback. This work has partly been sup-
ported by the European Commission under contract
number FP7-ICT-600877 (SPENCER)

References
Astolfi, A. 1999. Exponential stabilization of a wheeled mo-
bile robot via discontinuous control. In Journal of dynamic
systems, measurement, and control, volume 121.

Balasubramanian, S.; Melendez-Calderon, A.; and Burdet,
E. 2012. A robust and sensitive metric for quantifying move-
ment smoothness. IEEE Transactions on Biomedical Engi-
neering 59(8).

Frazzoli, E.; Dahleh, M.; and Feron, E. 2005. Maneuver-
based motion planning for nonlinear systems with symme-
tries. IEEE Transactions on Robotics 21(6).

PlanRob 2014 Proceedings

96

Office scenario
Extenders Nv Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 1667 ± 713 0.197 ± 0.09 150.739±18.446 −0.051 ± 0.006 −4.464 ± 0.166 0 ± 0
MP Usmall 13335± 3283.4 2.235 ± 0.597 134.108 ± 8.687 −0.062 ± 0.0006 −5.8648 ± 0.064 37.8 ± 6.7
MP Ularge 14090± 3523.1 2.583 ± 0.720 133.504 ± 8.85 −0.062 ± 0.0007 −5.8901 ± 0.066 21.09 ± 6.1
η3 splines 2369 ± 939.9 0.274 ± 0.108 159.78 ± 14.88 −0.55 ± 0.06 −6.88 ± 0.16 0 ± 0

Hallway scenario
Extenders Nv Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 520.4 ± 379.2 0.050 ± 0.021 85.857 ± 16.740 −0.039 ± 0.007 −3.602 ± 0.282 0 ± 0
MP Usmall 2458.3±868.09 0.388 ± 0.124 72.918 ± 10.072 −0.0631 ± 0.001 −5.237 ± 0.138 22.32 ± 5.7
MP Ularge 2358.6 ± 922.2 0.367 ± 0.127 71.734 ± 9.254 −0.0632 ± 0.001 −5.2528 ± 0.13 11.12 ± 4.4
η3 splines 548.3 ± 514.5 0.0526± 0.026 86.659 ± 18.49 −0.382 ± 0.089 −5.93 ± 0.359 0 ± 0

Random map scenario
Extenders Nv Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 277.2 ± 351.5 0.031 ± 0.022 62.465 ± 9.003 −0.027 ± 0.007 −2.881 ± 0.345 0 ± 0
MP Usmall 1095.1 ± 664.2 0.176 ± 0.104 56.448 ± 5.242 −0.0638 ± 0.001 −4.977 ± 0.099 18.51 ± 4.8
MP Ularge 1124.6 ± 646.4 0.168 ± 0.09 57.27 ± 5.3 −0.0637 ± 0.001 −5.029 ± 0.098 9.48 ± 4.10
η3 splines 519.6 ± 718.6 0.044 ± 0.035 66.686 ± 9.514 −0.3013 ± 0.082 −5.4851 ± 0.337 0 ± 0

Table 1: RRT Results

Office scenario
Extenders Nv Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 1825 ± 785.7 315.1 ± 187.3 105.33 ± 4.96 −0.3261 ± 0.135 −5.128 ± 0.29 23.1 ± 11.1
MP Usmall 13571± 3601.8 731.3± 301.93 131.88 ± 8.35 −0.0622 ± 0.001 −5.865 ± 0.06 38.59 ± 8.1
MP Ularge 14146± 2562.3 933.5± 258.50 134.257 ± 8.849 −0.0623 ± 0.001 −5.897 ± 0.07 30.65 ± 5.6
η3 splines 3438 ± 4254.9 646.5± 483.62 116.4909±6.337 −22.3 ± 6.81 −8.49 ± 0.09 47.30 ± 27

Hallway scenario
Extenders Nv Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 697.9 ± 704 66.9 ± 109.8 54.16 ± 3.26 −0.1430 ± 0.126 −3.6479±0.56 3.1 ± 4.26
MP Usmall 2385.3 ± 987 51.3 ± 31.8 71.0350±9.5819 −0.0631 ± 0.0007 −5.212 ± 0.129 16.2 ± 5.2
MP Ularge 2529.7±1020.4 68.4711± 4.12 71.3390±8.4327 −0.0630±0.0002 −5.2485 ± 0.12 11.3 ± 3.99
η3 splines 3787.2± 14583 637 ± 2921 57.302 ± 4.2401 −9.365 ± 11.91 −7.08 ± 0.59 12.9 ± 13.9

Random map scenario
Extenders Nv Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 400.8 ± 551.2 43.16 ± 90.54 46.11 ± 2.4 −0.0896 ± 0.103 −2.95 ± 0.697 1.3 ± 2.71
MP Usmall 1028.1 ± 597 13.11 ± 12.48 56.66 ± 5.08 −0.0636±0.0007 −4.98 ± 0.10 18.7 ± 4.95
MP Ularge 998.7 ± 535.8 15.4411 ± 14 56.9105±4.7867 −0.0637 ± 0.0005 −5.02 ± 0.08 10.09 ± 4.2
η3 splines 815.7 ± 2421.1 157.8 ± 715.8 48.5212±2.7370 −7.67 ± 11.87 −6.46 ± 0.97 5.0 ± 7.54

Table 2: RRT* Results

Goretkin, G.; Perez, A.; Platt, R.; and Konidaris, G. 2013.
Optimal sampling-based planning for linear-quadratic kino-
dynamic systems. In Int. Conf. on Robotics and Automation
(ICRA), 2429–2436.

Hwan Jeon, J.; Karaman, S.; and Frazzoli, E. 2011. Anytime
computation of time-optimal off-road vehicle maneuvers us-
ing the RRT*. In Decision and Control and European Con-
trol Conference (CDC-ECC).

Kalisiak, M., and van de Panne, M. 2006. RRT-blossom:
RRT with a local flood-fill behavior. In Int. Conf. on
Robotics and Automation (ICRA).

Kalisiak, M., and van de Panne, M. 2007. Faster mo-
tion planning using learned local viability models. In
Int. Conf. on Robotics and Automation (ICRA).

Karaman, S., and Frazzoli, E. 2010. Incremental sampling-
based algorithms for optimal motion planning. In Proc. of
Robotics: Science and Systems (RSS).

Karaman, S., and Frazzoli, E. 2011. Sampling-based al-

gorithms for optimal motion planning. In Int. Journal of
Robotics Research (IJRR), volume 30.

Karaman, S., and Frazzoli, E. 2013. Sampling-based optimal
motion planning for non-holonomic dynamical systems. In
Robotics and Automation (ICRA), 2013 IEEE International
Conference on, 5041–5047. IEEE.

Karaman, S. Sampling-based Motion Planning (SMP) Tem-
plate Library. http://www.mit.edu/~sertac/smp_doc.

Kuwata, Y.; Karaman, S.; Teo, J.; Frazzoli, E.; How, J.;
and Fiore, G. 2009. Real-time motion planning with appli-
cations to autonomous urban driving. IEEE Transactions
on Control Systems Technology 17(5).

Laumond, J.-P.; Sekhavat, S.; and Lamiraux, F. 1998.
Guidelines in nonholonomic motion planning for mobile
robots. Springer.

LaValle, S., and Kuffner, J. 1999. Randomized kinody-
namic planning. In Int. Conf. on Robotics and Automation
(ICRA).

Perez, A.; Platt, R.; Konidaris, G.; Kaelbling, L.; and

PlanRob 2014 Proceedings

97

Lozano-Perez, T. 2012. LQR-RRT*: Optimal sampling-
based motion planning with automatically derived exten-
sion heuristics. In Int. Conf. on Robotics and Automation
(ICRA).

Piazzi, A.; Bianco, C.; and Romano, M. 2007. η3-splines
for the smooth path generation of wheeled mobile robots.
IEEE Transactions on Robotics 23(5).

Webb, D., and van den Berg, J. 2013. Kinodynamic RRT*:

Asymptotically optimal motion planning for robots with lin-
ear dynamics. In Int. Conf. on Robotics and Automation
(ICRA).

Yang, K.; Moon, S.; Yoo, S.; Kang, J.; Doh, N.; Kim, H.;
and Joo, S. 2014. Spline-based rrt path planner for non-
holonomic robots. Journal of Intelligent and Robotic Sys-
tems 73(1-4).

PlanRob 2014 Proceedings

98

Performance Level Profiles

Ronen I. Brafman
Computer Science Department

Ben-Gurion University
brafman@cs.bgu.ac.il

Guy Shani
Information Systems Engineering Department

Ben-Gurion University
shanigu@bgu.ac.il

Solomon Eyal Shimony
Computer Science Department

Ben-Gurion University
shimony@bgu.ac.il

Abstract

We define performance-level profiles (PLPs) which can serve
as a basis for performance level agreements (PLAs) between
robot or robotic-module designers and their customers/users.
PLPs provide a formal description of the commitments of a
module. They describe the conditions under which the mod-
ule should be operated (i.e., what conditions must hold in
the environment and the system, what other modules may
or may not operate concurrently, and what resources are re-
quired), and the expected result of its operation under these
conditions. PLPs are motivated and are closely related to ac-
tion specification languages, such as PDDL 2.1. Yet, they
differ from these languages, introducing concepts that more
naturally fit robotic modules. PLPs have a number of pos-
sible roles: First, as a formal specification language that is
much more precise than less formal specification documents,
such as SSS. Second, as a language for providing guaran-
tees to module users/customers, in the form of a PLP-based
performance-level agreement (PLA). Third, as input to au-
tomated reasoning tools providing support for module mon-
itoring online, for validating proposed execution plans, for
selecting among alternative execution plans, and, eventually,
to automatically generate execution plans. We describe PLPs
and explain the type of infrastructure support we provide for
them in ROS.

Introduction

Web service and network infrastructure providers often sign
service-level agreements (SLAs) with their users. These
agreements describe minimal commitments regarding the
functionality of these services that the user can rely upon,
providing the latter with some confidence and guidelines
regarding what it can expect from the service. SLAs are
not precise specifications of the service, but provide a good-
enough abstraction for most users. We would like to suggest
that a similar concept is useful and appropriate in the context
of robotics, and especially autonomous robots.

Indeed, if robotic infrastructure is to reach a plug-and-
play state, as in personal computing, we must be able to
combine diverse robotic modules and components easily.
Yet, as noted by Abdellatif et al. (2012): ”Systems built
by assembling together independently developed and deliv-
ered components often exhibit pathological behavior. Part of
the problem is that developers of these systems do not have

a precise way of expressing the behavior of components at
their interfaces, where inconsistencies may occur.”

Although it is likely to be very difficult to provide a
precise specification of the behavior of a module given an
open-ended world, we believe that it is reasonable to pro-
vide a specification that circumscribes the conditions un-
der which the module is likely to execute as expected, and
some minimal probability of successful execution given that
these conditions hold. Such a specification, which we call a
performance-level profile (PLP) can form the basis of per-
formance level commitments by module designers, form-
ing what can be called performance-level agreement (PLA).
That is, a PLA is an agreement/commitment/contract in the
form of a PLP.

PLPs, introduced and described in this paper, are moti-
vated by the above considerations, that closely resonate with
issues we encountered during a joint project with industrial
(Israel Air Industries and Cogniteam) and academic part-
ners. First, our industrial partners complained about the lack
of ability to provide customers with some reasonable perfor-
mance guarantees. Second, it was evident that in a collab-
orative project, with different modules supplied by differ-
ent partners, it will be difficult to validate various sequences
of operations, or to generate them automatically, without
a suitable, formal specification of the functional modules.
Third, although formal methods for development of mod-
ules with guarantees and clean specifications are available
(e.g.,BIP (Basu, Bozga, and Sifakis, 2006)), it was unreal-
istic to expect these practitioners to change their software
development practices and software development tools for
this project. PLPs were introduced to address these issues.

PLPs provide a formal (possibly partial) description of
functional modules. They are agnostic to the method using
which the module was built, and borrow many ideas from ac-
tion description languages such as PDDL 2.1 (Fox and Long,
2003), probabilistic PDDL (Younes and Littman, 2004), and
RDDL (Sanner, 2010). They also integrate the well known
ideas of achievement and maintenance goals (Kaminka et
al., 2007), as well as a new repeat construct which allows
us to make explicit the frequency by which input parameters
are read or provided and output parameters are published,
which are often quite important in the design of robotic mod-
ules and influence various error parameters.

PLAs/PLPs have a number of potentially important roles.

PlanRob 2014 Proceedings

99

First, they provide a more formal methodology that can re-
place the much used SSS (systems/subsystem requirements
specification). SSS are often used by system engineers to
describe requirements from a software module. SSS have a
rigid structure, but the content of their fields is textual. PLPs
can provide for a more formal language with better support
in code – as we shall see later. Second, as noted above, they
can be used as a basis for agreements/commitments made by
module designers to module users. Third, as formal com-
mitments, they can be used as input to automated reason-
ing tools that can use them for monitoring, validation, and
ultimately, automated planning. In particular, we are work-
ing on simple tools that will make it very easy to use them
as input to a third-party monitoring tool available for ROS.
These tools make it easy to specify, initially, PLPs with ab-
stract conditions, and to eventually turn them into conditions
grounded in code.

PLPs: An Overview
The main objective of a PLP is to clarify the end-effect of ex-
ecuting the module. As a simple example, imagine a module
designed to grasp an object. The expected outcome is that
the object is held by the arm. However, this effect is not
guaranteed (in most realistic settings). There is some prob-
ability of failure, and failure can come with some side ef-
fects, such as the object falling, or being broken. Moreover,
the probability of success and failure may depend on various
properties, such as the shape and size of the object. Further-
more, it may be unrealistic to specify the success probability
in general, as there are too many external things that could
impact it. For example, if another arm is attempting to catch
the object at the same time, it is difficult to predict which
one will succeed.

PLPs have two abstract components. The first circum-
scribes the conditions under which the profile is provided
– conditions that must hold for it to be valid. Such condi-
tions include things that must hold when it is performed and
the resources it requires. The second specifies the effect of
the action – what success means, what are possible failure
modes, and what is the probability of each.

There are four types of PLP, corresponding to four types
of modules. Achieve modules attempt to achieve a new
state of the world. For example, changing the orientation
of the robot to some goal orientation. Maintain modules at-
tempt to maintain some property. For example, a module
that maintains some orientation; or, a module that ensures
that the robot remains within some confined area. We al-
low for maintain modules that maintain a property that is
not necessarily true initially. For example, ”maintain speed
of 10km/hr”. Thus, essentially, these modules need to make
the condition true and maintain it. In principle, one could
separate this into two phases: achieve, then maintain; but
this separation is not natural in many cases, especially when
the module is essentially a closed-loop controller that con-
tinuously attempts to reduce the difference between the cur-
rent condition and the target condition. The third module
type is an Observe module – a module that attempts to rec-
ognize some property of the current state of the world. For
example, the robot’s location, or whether there is a cup on

the table. Finally, the fourth type is Detect which can be
viewed as the maintain version of observe.

Many robotic modules operate by repeatedly updating or
modifying some data-structure or signal based on informa-
tion that is constantly being updated. Here, important issues
are the frequency by which input and output are updated. To
model such constructs we introduce the novel repeat wrap-
per for the achieve and observe modules. For example, a
mapping module constantly updates a map of the environ-
ment as it obtains information from relevant sensors. Con-
currently, a path-planning module may be updating the path
as it obtains new maps. Each such module can be viewed as
performing an achieve task repeatedly.

One may argue that with the introduction of repeat wrap-
per, maintain and detect is redundant, as maintain can be
implemented as repeat-achieve, while detect can be imple-
mented as repeat-observe. Nevertheless, we decided to keep
these constructs around for user convenience.

PLPs: Technical Specification

Variables and Resources

The formal definition of PLPs rests on the specification of
properties of states of the world. These are defined by spec-
ifying properties of various state variables. It is desirable
to have a coherent specification of such variables, so that
the relationship between modules is clear. The meaning of
these variables – their relationship to the real world, i.e., the
correspondence between the model and the real world must
be clear for the specification to be meaningful. Some state
variables can refer to local system parameters, of course.

In addition, each module may need access to certain re-
sources. These resources could be energy or memory, or
they could be some actuator, or some region of space. These
must be specified, much like state variables, and coherent
and consistent use of these names is required. In fact, re-
sources can be viewed as a special class of state variables,
whose state indicates the status of the resource (e.g., avail-
able, > 100 gallons, etc.). However, because we believe
that they carry special significance to programmers and op-
erators, we distinguish them from other variables.

Software support for consistent use and maintenance of
the list of variables and resources is advisable and is part of
the set of tools supporting PLPs that we are constructing.

Common Elements

All modules specify the following elements:

Parameters: Variables supplied to the module as input or
provided by the module as its output. Some input param-
eters can also be output parameters (i.e., after undergoing
some processing). We point out that one class of param-
eters could be error parameters. That is, parameters that
specify the accuracy of outer parameters. For example, lo-
calization is often performed by using a filter, from which
an error estimate can be obtained (e.g., the covariance ma-
trix in a Kalman Filter).

Set of variables: Local variables and their range.

PlanRob 2014 Proceedings

100

Application Context: A set of conditions, described below,
specifying the context under which the PLP is valid.

The application context contains the following elements.

Required resources: List of resources required. If the
resource is quantifiable, a required quantity is men-
tioned. If the resource is needed for operation and then
freed (e.g., memory, some tool, some actuator), the
requirement status must be mentioned. Possible val-
ues are ”exclusive” or some frequency of use (although
frequency is more naturally captured using the repeat
wrapper.

(optional) Maximal rate of change: Maximal change
in resource level per time unit.

Preconditions: conditions on the world at the start of ex-
ecution time under which the PLP is defined. These
conditions can refer only to parameters.

Concurrency conditions: conditions on the world dur-
ing execution under which the PLP is defined. These
can be on parameters as well as local variables.

Concurrent modules: conditions on modules that must
or must-not be executed concurrently. These fields
specify the conditions under which the PLP is defined.
That is, a PLA based on this PLP makes no guarantees
if these conditions are violated.

(optional) Parameter Frequency: The frequency by
which each parameter must be read. For example,
localization information may be required throughout
the execution of various navigation tasks. The fre-
quency by which a parameter is updated together with
its accuracy (which is available if an error parameter
exists) can affect the accuracy of output. For example,
a navigation module that aims to reach a specified
position may need to obtain position information with
certain rate and certain accuracy to ensure success.

Semantically, required resources as well as maximal rate
of change are special types of concurrency conditions that
apply to availability and usage of resources. They do not
describe resource consumption, though, which one should
specify in the side-effects field.

Side-effects: Each module has an intended effect – module
types differ in the nature of this intended effect. How-
ever, each module may also have side-effects that are a
result of executing this module, but are not a measure of
its success or failure. For example, if the module con-
sumes some resource, a natural side effect is that the level
of this resource has declined. Side effects are described by
a conditional assignment to a parameter, which could de-
pend on a local variable (such as running time, or distance
traveled). Intuitively, side-effects are changes caused by
the module that could potentially impact other modules.

Achieve Modules

Achievement modules attempt to change the state of the
world so that some desirable property will hold. For ex-
ample, fuel tank is full, robot is standing, plane has landed,
etc. In addition to the common elements, their PLP contains
the following:

Achievement goal: A condition defined on the parameters
that is achieved by the action.

(optional) Failure modes: Possible ways in which the
module could fail to achieve the goal. That is, these are
conditions that are inconsistent with the achievement goal
that could be the outcome of the action.

Probability of success. It may be conditional on properties
of the world, and expressed via parameters.

Failure probability: For each failure mode, its probability,
possibly conditional on some parameter values).

Running time distribution given success. Possibly condi-
tional on various parameters, e.g., Rayleigh(f(path-
length)]

Running time distribution given failure. Possibly condi-
tional on various parameters, e.g., Rayleigh(g(path-
length)]

Example: achieve ”holding(cup)”

• Set of parameters: arm-empty, wet(cup), clear-path(cup)

• Achievement goal: holding(cup)

• Requires resources: robot-arm (exclusive)

• Preconditions: arm-empty, clear-path(cup), cup-ok

• Concurrency conditions: none

• Concurrent modules: none

• Side effects: ¬arm-empty

• Failure modes: (1) ¬holding(cup) (2) ¬holding(cup) and
broken(cup)

• Probability of success: 0.9 if ¬wet(cup), 0.3 if wet(cup)

• Failure probability: (1) 0.08 if ¬wet(cup), 0.4 if wet(cup)
(2) 0.02 if ¬wet(cup), 0.3 if wet(cup)

• Running time given success: Normal(60,20).

• Running time given failure: Normal(80,40).

Maintain Modules

Maintain modules attempt to maintain the value of some
variable or the truth value of some more complex condition,
such as maintain heading, maintain speed, maintain perime-
ter clean, etc. In addition to the common elements, their PLP
contains the following:

Maintained condition Defined over parameters.

Initially true? A boolean value that indicates if the module
expects the condition to be true initially.1

Success Termination condition: Condition under which
module stops operating (could be time). This is a con-
dition that does not violate the maintenance goal.

Failure Termination conditions: Conditions under which
module stops operating (could be time). These are con-
ditions that indicates some type of failure. There may be
multiple such conditions.

1Formally, this is just another precondition. But because of its
central role, it is designated as a special field.

PlanRob 2014 Proceedings

101

(optional) failure modes: Possible ways in which the mod-
ule could fail to maintain the condition.

Probability of success. Possibly conditional on properties
of the world.

Failure probability. For each mode, probability may be
conditional on properties of the world.

Running time distribution given success, and possibly
other conditions of the world.

(optional) Running time distribution given failure, and
possibly other conditions of the world.

Sometimes, one needs to maintain some condition in or-
der to achieve a goal. For example, one may reach a tar-
get position by maintaining a pre-computed path to the goal,
either by iteratively reaching way-points, or by ensure that
the heading is always in the direction of the path. One can
model this as either an achieve module, whose goal is to
reach the target position, or as a maintain module that main-
tains heading along the path direction, with the success ter-
mination condition being ”at-the-goal”. The advantage of
the latter definition that it less abstract, specifying that the
goal is reached by following a certain path. Thus, it is eas-
ier to detect problems by monitoring the path and alerting
the operator or system whenever that actual heading is not
in the direction of the path.
Example: Maintain direction based on map until goal is
reached.

• Parameters: Map, goal location.

• Variables: none.

• Maintained condition: vehicle points in direction of path
at its current location.

• Success Termination condition: Within K meters from
goal.

• Failure Termination condition: position unknown or too
far from path

• Side effects: Gas consumption.

• (optional) failure modes: (1) vehicle off-road, undam-
aged, (2) vehicle off-road, damaged

• Probability of success: Given dry: 0.95 wet: 0.8

• Failure probability: Given dry: (1) vehicle off-road,
undamaged 0.045 (2) vehicle off-road, damaged 0.005.
Given wet: (1) vehicle off-road, undamaged 0.15 (2) ve-
hicle off-road, damaged 0.05

• Running time given success: f (path-length).

• Required resources: fuel, steering wheel (exclusive)

• Preconditions: Path tangent rate of change< c

• Concurrency conditions: no other car on path

Observe Modules

Observe modules attempt to identify the value of some vari-
able(s) in the current world state. For example, observe dis-
tance to wall, observe whether robot is standing, observe
whether object is held, etc. In addition to the common ele-
ments, their PLP contains the following:

Observation goal: the boolean condition (defined over pa-
rameters) or parameter whose value is observed.

Probability of failure to observe

(boolean) Probability that observation is correct.
Quantifies this probability under the assumption that
the observation was successfully performed. This value
can be conditional on various properties of the world
expressed via parameter values.

(continuous) One of:

• Pr(real value | observed value). This distribution is
based on the assumption that the observation was suc-
cessfully performed. It relates the real value of the pa-
rameter observed with the observed value. It can de-
pend conditionally on properties of the world.

• Confidence interval + confidence level.

Running time distribution given success. May depend on
additional parameters.

Running time distribution given failure. May depend on
additional parameters.

Example: Observe ”wall-ahead”

• Set of variables: ∅

• Parameters: laser scanner output

• Observation goal: Distance to wall ahead< c

• Requires resources: Laser scanner

• Preconditions: laser ok

• Concurrency conditions: ∅

• Concurrent modules:∅

• Side effects: ∅

• Failure modes: sensor malfunction

• Probability of failure to observe: 0.001

• Probability observation is correct: 0.95

• Running time distribution given success: 1 millisecond

• Running time distribution given failure: 1 millisecond

Detect Modules

Detect modules are related to observe modules much as
maintain modules are related to achieve modules. Their
goal is to detect some change. Thus, they are not intended
to identify the current state of the world, but rather, to ob-
serve it over time until some condition holds. Thus, they
can be implemented using a maintain module that repeat-
edly observes. For example, detect intruder, detect tempera-
ture change, detect motion, etc. In addition to the common
elements, their PLP contains the following:

Detection goal: the condition that is being detected (over
parameters).

Probability of successful detection given condition
(possibly conditional on properties of the world).

Example: Detect wall

Set of variables: none

PlanRob 2014 Proceedings

102

Parameters: Laser scanner output

Frequency: 30hz

Detection goal: Distance to wall in range [0.5,1] meters.

Side effects: none

Probability of successful detection: 0.95

Requires resources: Laser scanner

Preconditions: Distance to wall > 0.5 meter.

Concurrency conditions: none

Concurrent modules: Laser scanner

Repeat

In many robotic applications, various modules run contin-
uously, updating some data-structure, such as a map, or a
path, or monitoring the environment for some trigger, such
as detection of an intruder. Such modules are essentially
loops that execute some underlying routine many times, e.g.,
map and path update, or repeatedly analyze some input until
a condition holds. While in code terms, they offer nothing
special, in terms of their spec, they raise a number of issues
– for example, the rate in which the update occurs, the rate in
which input is expected to be received, and the termination
condition. For this purpose we provide a special boolean re-
peat field for each PLP. When its value is true, additional
information must be supplied including:

Execution Frequency – How many times per second is the
underlying module executed. We assume that if the mod-
ule has an output parameter, then the frequency it is up-
dated is the same as the execution frequency.

Input Frequency – For each input parameter, it is possible
(optional) to specify its expected update frequency. One
can consider this as a special type of concurrency condi-
tion. If some parameters are really global variables (such
as fuel-level), they may be obtained on demand (i.e., by
calls within the code).

Termination Condition – Once this condition is true, the
module stops executing the loop.

An interesting issue regarding repeat modules is the au-
tomated derivation of the parameters of the entire module
given the properties of the repeat construct (frequencies, ter-
mination condition) and the properties of the module that is
repeatedly executed (i.e., success probability, running time).
For example, suppose that one has computed a map of the
environment, with some accuracy, and has now generated a
path based on this map. At some positions along this path
the distance to the nearest obstacle is 50cm. This implies
that the localization error must be smaller. This, in turn,
likely requires more accurate localization, that can poten-
tially be obtained by increasing the rate by which images,
or scanner readings are obtained and analyzed. We believe
that automatic inference of such constraints could be valu-
able in many applications, and we pose this problem as an
important question for future work.

PLP Tools and ROS

We developed a number of tools for specifying and using
PLPs.

PLP Editor

The simplest tool is a PLP editor. The editor provides sim-
ple, GUI-based support for PLP generation by, essentially
filling in a form using a convenient GUI. Once a PLP is gen-
erated using the editor, the editor is able to generate three
types of output:

1. Text description.

2. Computer-readable PLP in XML format.

3. Code template – a piece of code, with some possibly miss-
ing definitions that a programmer can insert into her code.
Note that this code is not executable, it is simply an en-
coding of the PLP with suitable keywords that can be read
by a pre-processor, as explained next.

Code Support – ROS Integration

Programmers will be able to introduce PLP descriptions into
their code using appropriate keywords. A preprocessor will
parse this input – recognizing the key words – and will gen-
erate into an associated library a description of the PLP in
XML format. The benefit of this method is that the program-
mer can use – in fact, should use – only variables defined in
the code, and can write explicit code using the programming
language used to define PLP preconditions, etc.

As noted above, the PLP Editor will be able to gener-
ate code fragments, possibly leaving to the programmer the
specification of some conditions in code as well as provid-
ing for each parameter a link to the relevant ROS topics from
which it can be obtained. Thus, an initial spec can be pro-
vided by a system engineer using the PLP, imported into
the code, and then farther instantiated by the programmer.
This provides very convenient support for top-down gen-
eration of PLPs. First – describe the PLP abstractly using
human-readable conditions, then instantiate these conditions
in code, leaving the abstract description as an annotation.

In principle, the programmer can define PLPs for various
functions in her code – whether visible externally or not.
There are certain benefits to this, since given such defini-
tions, she is able to utilize any tool that uses PLPs to auto-
mate various tasks. Each such PLP will come with a unique
identifier that will allow the association of the PLP with the
relevant code. Ideally, we would like each service provided
by a ROS node to come with its associated PLPs.

Integrated Monitoring Support

As part of its support for decision-making algorithms
within ROS, Cogniteam www.cogniteam.com

has recently provided a monitoring module
wiki.ros.org/scriptable_monitoring. This
module runs in parallel with other modules, and monitors
their execution. The monitor is simply a piece of code that
evaluates conditions it is fed, and issues alerts when these
conditions are violated or become true, as required.

PlanRob 2014 Proceedings

103

PLPs defined in code enjoy automated integration with
this module. Specifically, the preconditions, concurrency
conditions, and effects of a module are processed into con-
ditions that are fed into the monitoring module. These con-
ditions correspond to the preconditions, concurrency condi-
tions, termination conditions, and expected outcomes of the
modules. In addition, condition that monitor execution time
are generated, and alert the operator in case the module ex-
ecutes too long. For example, if the module has not stopped
after a time that corresponds to the average running time +
two standard-deviations. These alert help operators (or au-
tomated decision making modules) make informed choices
and recover from errors.

While this is simple from an implementation perspective,
the integrated and automated handling of these condition
checks provides much convenience to the programmer as
well as important run-time information to the operator.

Play-outs and Planning

PLPs can be used for predicting the behavior of modules,
and in particular, the behavior of module combinations, such
as modules that run in sequence or in parallel, or in a loop.
This calls for a theory of PLP composition, which is the
subject of ongoing work. In difference to earlier work such
as Lesire, Doose, and Cassé (2011) which attempts to pre-
dict worst-case behavior, we are attempting to estimate dis-
tributions over running times, or their moments. The ca-
pability to play-out can be used by operators or automated
tools in order to assess the suitability of different macros for
various tasks online or offline. In addition, this could be the
input to future planning algorithms.

Related Work

PLPs for achievement goals are based on existing action lan-
guages, mixing features from a number of sources. The idea
of preconditions and effects goes back to STRIPS (Fikes and
Nilsson, 1971). The use of concurrency conditions was in-
tegrated into PDDL when it was extended to handle tempo-
ral actions (Fox and Long, 2003), which obviously included
a specification of the running time of operators, as well as
the ability to specify resources and their consumption over
time. PLPs emphasize a slightly different version of concur-
rency condition, which attempts to address the issue of ac-
tion (here, module) interaction introduced by Boutilier and
Brafman (2001). The idea of requiring exclusive use of a
resource is also a technique for preventing harmful inter-
actions, or simply interactions whose effect cannot be pre-
dicted. Thus, a module can require exclusive use of an arm,
preventing other modules from interfering with its use. This
idea goes back to the classical use of mutex in concurrent
systems (Dijkstra, 1965), and is implemented in some lan-
guages for concurrent programming. A related idea appears
in Structured Reactive Controllers (Beetz, 1999) where the
notion of embedability is defined. That notion asserts that
a certain module may be executed concurrently with a set
of other modules without their execution interfering with its
ability to reach its goal.

In addition, PLPs address uncertainty by borrowing ideas

from PPDDL (Younes and Littman, 2004) and RDDL (San-
ner, 2010). For each of these aspects (time, concurrency, un-
certainty, resources) there are languages that provide more
powerful constructs, whereas PLPs attempt to address all es-
sential aspects of the performance of a module, while pro-
viding a good tradeoff between expressivity and intuitive-
ness. Thus, while PDDL2.1 can describe temporal actions,
it does not describe actions with stochastic durations, and
while RDDL describes probabilistic effects, it does not spec-
ify temporally extended actions, etc.

Maintenance goals are a well know concept, but we have
not seen them come up in planning operator languages be-
fore. In principle, a maintenance goal could be specified
using a version of temporally extended actions. In one ver-
sion of temporally extended actions discussed by Fox and
Long (2003), one may specify effects that take effect imme-
diately at the beginning and throughout the execution of the
action. Such specification is a bit counterintuitive, though,
as maintain modules usually maintain a condition that is al-
ready true. Thus, the action would have the condition to be
maintained both as a precondition and an effect. detect and
observe modules, on the other hand, are motivated by the
ideas of observation in POMDPs and contingent planning,
whereas the ideas behind the repeat module, and in particu-
lar, the introduction of input/output frequencies appears new,
to the best of our knowledge.

Overall, with the exception of repeat, none of the con-
structs underlying PLPs is new, but their combination covers
essential aspects of robotics modules, and includes compo-
nents essential to the proper operation and use of functional
modules, while attempting to remains intuitive.

The approach taken by PLPs is minimalist in the sense
that it does not dictate (nor provide) particular architecture
or tools for module construction. There is no doubt that
tools such as BIP (Basu, Bozga, and Sifakis, 2006; Basu et
al., 2008) which provide a methodology for top-down con-
struction of modules as well as tools for validating proper-
ties of the constructed system, or techniques for automated
controller generation such as Kress-Gazit and Pappas (2010)
provide more powerful support for the synthesis and con-
struction of systems with guarantees. Nevertheless, little
code is generated today using formal specification methods,
and we expect that this state of affairs will be true in the
area of robot design. On the other hand, software engineer-
ing methods are commonly used in the design of large soft-
ware systems. PLPs and their ability to define PLAs provide
a specification method that is similar in some ways to the
commonly used SSS, yet more formal, and fits well within
a methodology in which a systems engineer provides an ab-
stract, almost textual specification, that is then implemented
in code by a programmer. They also provide a way for a
designer to explain/guarantee the functional behavior of its
module at some level.

Summary and Future Work
We described a language for specifying the properties of
software modules, motivated by perceived needs of robotics
application. Our original motivation stems from discus-
sions with our industry partners who lack a language and

PlanRob 2014 Proceedings

104

a methodology for providing their clients with reasonable
performance guarantees for their products. This has led
us to suggest an idea similar to service-level agreements,
common in telecommunications industry, and more recently
in the area of web services. Robots, and especially au-
tonomous robots operate in a much more open-ended en-
vironment, requiring more complicated notions. While our
language is derived from standard planning languages, it at-
tempts to make the specification more intuitive and appro-
priate by resorting to the well known notions of achieve-
ment and maintenance goals, adding also analogous notions
for the sensing-side of robot activity. In addition, using the
repeat wrapper, we are able to naturally give a clear role to
the notion of frequency and latency, so commonly used by
designers of robotic hardware and software.

Our current experience shows that a specification of an
initial PLP for a module is relatively easy. However, the PLP
will likely miss out on some information. However, with the
aid of the editor embedded code feature, an iterative process
is easy to support.

The value of PLP use will depend on future developments.
However, our integration of PLPs with Cogniteam’s mon-
itoring tools already provides some value even when the
specification is partial. It provides operators with useful in-
formation about unexpected or problematic conditions, such
as modules operating without the required preconditions and
concurrent conditions, information about running times, and
effects of modules used online. Together with automated
reasoning tool – both for playing out various scenarios and
for planning, we believe that PLPs can form an important
tool for a more convenient, powerful, and formal methodol-
ogy for the design and control of autonomous agents.

To realize these possible benefits, the PLP definition may
require farther enhancement to cover additional aspects of
module performance. For example, we are now considering
issues such as partial success – e.g., sometimes a module
that is unable to achieve its desired goal, e.g., because of
some condition that is violated, may still be able to achieve
an alternative one, or perhaps ensure some safe end-state.
Similarly, often modules are designed with a back-up
module that is called in the case of failure. While each such
module can be specified independently, it may be desirable
to have a special structure for module/backup pairs. Another
possible enhancement is a more refined process model.
Some modules, provide more complex services that require
modeling some notion of state. Indeed, many of the formal
tools developed for principled construction of robotic
modules supply such a model, e.g., a state-machine (Basu et
al., 2008) or a Petri-Net (Montano, Garcia, and Villarroel,
2000). We wish PLPs to remain abstract specification and
not nearly executable process models. Yet, the exact level of
abstraction that will provide sufficient functionality remains
an open question for future research.

Acknowledgements The authors would like to thank the
anonymous reviewers for their useful comments and useful
pointers. Brafman and Shani are supported in part by ISF
Grant 933/13. Brafman and Shimony are supported in part
by the Lynn and William Frankel Center for Computer Sci-

ence.

References

Abdellatif, T.; Bensalem, S.; Combaz, J.; de Silva, L.; and
Ingrand, F. 2012. Rigorous design of robot software.
Robotics and Autonomous Systems 60(12):1563–1578.

Basu, A.; Gallien, M.; Lesire, C.; Nguyen, T.-H.; Ben-
salem, S.; Ingrand, F.; and Sifakis, J. 2008. Incremen-
tal component-based construction and verification of a
robotic system. In European Conference on AI.

Basu, A.; Bozga, M.; and Sifakis, J. 2006. Modeling het-
erogeneous real-time components in bip. In International
Conference on Software Engineering and Formal Meth-
ods (SEFM-06), 3–12.

Beetz, M. 1999. Structured reactive controllers: Controlling
robots that perform everyday activity. In Agents, 228–235.

Boutilier, C., and Brafman, R. I. 2001. Planing with concur-
rent interacting actions. Journal of AI Research 14:105–
136.

Dijkstra, E. W. 1965. Solution of a problem in concur-
rent programming control. Communication of the ACM
8(9):569.

Fikes, R. E., and Nilsson, N. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Aritificial Intelligence 2:189–208.

Fox, M., and Long, D. 2003. Pddl2.1: An extension to pddl
for expressing temporal planning domains. Journal of AI
Research 20:61–124.

Kaminka, G. A.; Yakir, A.; Erusalimchik, D.; and Cohen-
Nov, N. 2007. Towards collaborative task and team main-
tenance. In Autonomous Agents and Multi-Agent Systems.

Kress-Gazit, H., and Pappas, G. J. 2010. Automatic syn-
thesis of robot controllers for tasks with locative preposi-
tions. In ICRA, 3215–3220.

Lesire, C.; Doose, D.; and Cassé, H. 2011. Validation
of real-time properties of a robotic software architecture.
In 6th National Conference on Control Architectures for
Robots.

Montano, L.; Garcia, F.; and Villarroel, J. 2000. Using the
time petri net formalism for specification, validation, and
code generation in robot-control applications. Interna-
tional Journal of Robotics Research (IJRR) 19(1):59–76.

Sanner, S. 2010. Relational dynamic influence diagram lan-
guage (rddl): Language description.

Younes, H., and Littman, M. 2004. PPDDL1.0: An ex-
tension to PDDL for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-167,
Carnegie Mellon University.

PlanRob 2014 Proceedings

105

Iterative Goal Refinement for Robotics

Mark Roberts1, Swaroop Vattam1, Ronald Alford2,

Bryan Auslander3, Justin Karneeb3, Matthew Molineaux3,

Tom Apker4, Mark Wilson5, James McMahon6, and David W. Aha5

1NRC Postdoctoral Fellow; Naval Research Laboratory, Code 5514; Washington, DC
2ASEE Postdoctoral Fellow; Naval Research Laboratory, Code 5514; Washington, DC

3Knexus Research Corporation; Springfield, VA
4Exelis Corporation; Alexandria, VA

5Navy Center for Applied Research in Artificial Intelligence; Naval Research Laboratory, Code 5514; Washington, DC
6Physical Acoustics Branch; Naval Research Laboratory, Code 7130; Washington, DC

1,2first.last.ctr@nrl.navy.mil | 3first.last@knexusresearch.com | 4thomas.apker@exelisinc.com | 5,6first.last@nrl.navy.mil

Abstract

Goal Reasoning (GR) concerns actors that assume the
responsibility for dynamically selecting the goals they
pursue. Our focus is on modelling an actor’s decision making
when they encounter notable events. We model GR as an
iterative refinement process, where constraints introduced for
each abstraction layer shape the solutions for successive
layers. Our model provides a conceptual framework for
robotics researchers and practitioners. We present a goal
lifecycle and define a formal model for GR that (1) relates
distinct disciplines concerning actors that operate on goals,
and (2) provides a way to evaluate actors. We introduce GR
using an example on waypoint navigation and outline its
application, in three projects, for controlling simulated and
real-world vehicles. We emphasize the relation of GR to
planning, and encourage PlanRob researchers to collaborate
in exploring this exciting frontier.

1. Introduction

Robotic systems often act using incomplete models in

environments that are dynamic, partially observable, and

non-deterministic. One consequence is that they will

encounter notable events. Appropriate responses to notable

events can be designed a priori or learned by the actor.

During execution, robots deliberate on their responses to

notable events and can choose to adjust their expectations or

world model, repair their current plan, replan, or regoal (i.e.,

change their current goal(s)). In each case, they take steps

toward achieving goals. We refer to this capability of

reasoning about ones goals as goal reasoning (GR), which

involves dynamically assessing the tradeoffs within the

space of goals. We argue that GR is of particular value to

robotic systems, as it supports more autonomous behavior.

We present a preliminary formal model that frames GR

as an iterative refinement process similar to planning as

refinement search (Kambhampati et al., 1995) and iterative

repair (Chien et al., 2000). Our model provides a common

language for defining GR actors and complements recent

foundational perspectives on planning and acting (Ghallab

et al., 2014) and deliberation functions (Ingrand & Ghallab,

2014). We present a motivating example (§2), provide

background (§3), detail our model and two instantiations

(§4), provide a proof of minimal agency (§5), introduce goal

memory (§6), define the GR problem (§7), and describe its

application to three robotics-related tasks (§8). We integrate

our discussion of related work throughout the paper,

although this does not constitute a thorough survey on goals

in the literature on planning, robotics, agents, and actors.

Our projects span GR actors at the coach, team, and single

system levels. Like other research on robotics, a cross-

cutting concern is eliciting robotic behavior that is

consistent, reliable, trustworthy, verifiable, explainable, and

predictable. We invite researchers and practitioners to join

our ongoing dialog on the topic of goal reasoning.

2. Waypoint Navigation Example

Figure 1 depicts a simple waypoint navigation task where

the robot’s goal is at(y). This example could apply to

controlling an underwater or micro-aerial vehicle in the

context of water currents or wind, respectively, as shown as

vectors. Dashed curves indicate the bounds of the expected

trajectory (i.e., a soft constraint) while the outer box

represents a hard constraint that the actor should avoid

violating. The actual trajectory of the robot is given by the

solid arc that starts at x and ends at y. The deviating path is

due to the difference between the expected flow (dashed

vectors) and actual flow (solid vectors).

 From the example it is evident that we assume a dynamic

environment, exogenous events, and interruptible actions.

We also assume that both the environment and the actor’s

actions have temporal extent.

 Below the plot is a representation of the vehicles timeline,

which is inspired by the work of Smith et al. (2000). The

time window of the plan indicates that the plan should start

executing no earlier than the earliest start time (i.e., the

leftmost vertical bar) and finish by the latest finish time (the

rightmost vertical bar). The large block in the middle

indicates the expected transit duration. Inside the timeline

PlanRob 2014 Proceedings

106

are dots corresponding to what we call a “notable event,”

which we define as an event (usually resulting in a state

change) that impacts the agent in some way. For this

example, the notable events correspond to soft and hard

constraint violations; the first two points indicate where the

vehicle violates the preferred trajectory while the last two

points indicate eminent and actual violation of the hard

constraint. These points express possible places and where

a decision must be made concerning vehicle behavior.

 A GR actor may resolve (i.e., respond to) these events

using various strategies (e.g., adjust its expectations, adjust

or replace its plan, adjust or change its goal). GR actors

differ in the strategies they can apply and how they apply

them. In §4, we will use this example to illustrate some of

these strategies, after providing some background.

3. Preliminaries

The models and algorithms used for planning in robotics is

staggering (e.g., (LaValle, 2006; Ghallab et al., 2014)). We

will show how GR can be viewed as a process of refining

the constraints on goals. This perspective synthesizes and

unifies planning for robotics. First, we define goals and

review planning as refinement search.

3.1 Goals

Our robotics control applications focus on achieving goals,

which we define as states an actor desires to achieve (or

maintain). To define states, we leverage some elements of

the classical planning formalism by Ghallab et al. (2004).

Let 𝐿 be the language for representing world states, 𝑆 ⊆ 2𝐿

be the set of world states, and 𝑔 ⊆ 𝐿 be a goal. Then 𝑆𝑔 =
{𝑠 ∈ 𝑆|𝑔 ⊆ 𝑠} represents the set of states that achieve 𝑔.

The world is assumed to exist externally to the actor, and a

plan is a sequence of actions for transforming an initial state

𝑆0 into 𝑆𝑔. For much of our discussion we focus on a single

goal, but the use of a goal set is appropriate for some

applications; the model easily extends to goal sets.

 We assume that a set of temporal, resource, and ordering

constraints apply to goals as well as states and actions, but

the exact nature of these constraints is a design decision.

Researchers have used a variety of ways to represent such

constraints (e.g., as a constraint satisfaction problem (Scala,

to appear), in PDDL (Vaquro, to appear), or NDDL (Rajan

et al. 2013)). We also assume that completing (or

maintaining) goals has intrinsic value for an actor; we return

to this assumption in §6 and §7.

 For GR to occur the actor must perform actions for

transitioning among both its external and internal state. To

exemplify these, a goal to achieve external state in Figure 1

might be at(y), while a goal to satisfy internal state might

be finished(at(y)). So we expand and partition the

language of the GR actor into 𝐿𝐺𝑅 = 𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ∪ 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 .

We similarly partition the set of goals into 𝑆𝑔 = 𝐸𝑔 ∪ 𝐼𝑔. In

𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 the actor selects actions to achieve 𝐸𝑔. In 𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

the actor selects actions to achieve 𝐼𝑔 and some internal

actions may be conditioned on external goals. Primitive

goals cannot be decomposed into subgoals.

3.3 Planning as Refinement Search

Our model’s theoretical foundation builds from Planning as

Refinement Search (Kambhampati, 1994; 1997;

Kambhampati et al., 1995), which models planning in a

generic way to distinguish planners by their design choices

and facilitate their comparison. Refinement planning

employs a split and prune model of search, where plans are

drawn from a candidate space 𝐾. Let a search node 𝑁 be a

constraint set that implicitly represents a candidate set

drawn from 𝐾. Refinement operators transform a node 𝑁𝑖

at layer 𝑖 into 𝑚 children 〈 𝑁𝑗1, 𝑁𝑗2,, … , 𝑁𝑗𝑚〉 at layer 𝑗 = 𝑖 +
1 by adding constraints which further restrict the candidate

sets in the next layer. If the constraints are inconsistent then

the candidate set is empty. The authors initially provided

two kinds of constraints that can be added by refinement

operators: (1) interval constraints ensure a variable (i.e., a

proposition) maintains a property (i.e., it remains true, false,

or unchanged) over an interval; and (2) truth point

constraints ensure a variable is true at a specific point in

time. Kambhampati (1994) conjectured that these

constraints could be extended to include behavioral

constraints or desires. Kambhampati and Srivastava (1995)

extend plan refinement to state-space planning with

contiguity constraints ensuring, for two actions 𝑖 and 𝑗, no

new action can intervene.

 Let 𝑁∅ represent an initial node whose candidate set

equals 𝐾 and results from only the initial constraint set

provided in the problem description (from the perspective of

the search process, the refined constraints are empty, thus

the subscript ∅). The REFINEPLAN algorithm begins with

𝑁∅ and recursively applies refinements to add constraints

until a solution is found. A desirable property of

refinements is that each layer of search results in smaller

candidates subsets as REFINEPLAN proceeds. Thus the

Figure 1: Navigating from x to y

PlanRob 2014 Proceedings

107

constraints aid search by identifying inconsistent nodes and

providing backtracking points. An optional step is to apply

forward consistency checking to further prune candidate

nodes, usually at considerable computational cost.

Instantiations of REFINEPLAN correspond to different

versions of classical planning.

The original model of refinement planning focused on

Partial Order Planning, but extensions to the kinds of

constraints allowed the refinement framework to

incorporate other forms of planning and clarify issues in the

Modal Truth Criterion (Kambhampati & Nau, 1994).

Unfortunately space limitations prevent a full exposition of

these ideas. Briefly, plan refinement allows us to equate

different kinds of goal decomposition methods in plan-space

and state-space planning. More recent formalisms such as

Angelic Hierarchical Plans (Marthi et al., 2008) and

Hierarchical Goal Networks (Shivashankar et al., 2013) can

also be viewed as leveraging this concept. The focus on

constraints in plan refinement also allows a natural

extension to the many integrated planning and scheduling

systems that use constraints for temporal and resource

reasoning.

4. Goal Reasoning as Goal Refinement

To build on plan refinement, we distinguish between a

GR process and the actor that is running it because there may

be additional processes in the actor such as meta reasoning,

learning, etc. We assume a goal is achieved through the

execution of some expansion (i.e., plan). A GR process

refines a set of goal nodes 𝐺 until they can be achieved

through execution. For a goal 𝑔 ∈ 𝐺, a goal node 𝑁𝑔 =
〈𝐶𝑔, 𝑋𝑔, 𝑥, 𝑜〉 is a tuple of constraints 𝐶𝑔, possible

expansions that could achieve the goal 𝑋𝑔, the currently

selected expansion 𝑥 ∈ 𝑋𝑔, and goal lifecycle mode 𝑜. A GR

process begins with 𝑁∅
𝑔

, which consists of the candidate

space of all possible executions achieving 𝑔, and makes

decisions that refine its goals 𝑆𝑔 or 𝐼𝑔 through a series of

refinements 𝑅 on goal nodes until it selects one expansion

𝑥 ∈ 𝑋 for execution. Similar to plan refinement, goal

refinement takes a Least Commitment (Weld, 1994)

approach. Further, planning and learning (Veloso et al.,

1995) could be incorporated in certain parts of the system,

but learning is not a requirement for goal refinement.

Defining GR as goal refinement allows us model GR in a

generic way to distinguish planners by their design choices

and facilitate their comparison

4.1 Constraints (𝑪𝒈)

We partition the constraints 𝐶𝑔 = 𝐶𝑔
𝑔𝑖𝑣𝑒𝑛

∪ 𝐶𝑔
𝑎𝑑𝑑𝑒𝑑 into (1)

those given to the GR process from the process that invoked

it (e.g., human operator, meta-reasoning process, coach) and

(2) those that it adds during refinement.

 Constraints can be temporal (finish by a certain time),

ordering (do x before y), maintenance (remain at a certain

depth), resource (consider only one goal at a time), or

computational (only use so much CPU or memory). Top-

level constraints can be pre-encoded or based on drives (e.g.,

(Coddington et al., 2005; Young & Hawes, 2012)). Hard

constraints in 𝐶𝑔 must be satisfied at all times (stay within

the box in the waypoint example), while soft constraints

should be satisfied if possible (follow a preferred trajectory).

4.2 Expansions (𝑿𝒈)

To distinguish goal refinement from planning, we define

the set of possible expansions 𝑋𝑔 as the means of achieving

𝑔. A goal 𝑆𝑔 or 𝐼𝑔 can be achieved by executing an

expansion. We call 𝑥 ∈ 𝑋𝑔 a selected expansion that is

currently slated for execution.

The term “expansion” highlights GR as any process that

performs goal refinement. Planning (in the classical sense)

is one kind of expansion, but not all possible expansions of

𝑆𝑔 are plans. Robotics systems are often integrated in layers

that operate on distinct granular models of the world. So

expansions can include, but are not limited to: a simple rule,

a richly detailed goal or task network, a (state-based) plan,

the switching of behaviors, a change in parameters for an

adjoining deliberation layer, an algorithm for learning new

or revising existing knowledge, a recipe for unlearning, or,

for a team of robots, a specially crafted algorithm.

Expansions can be provided at different times to an actor:

designed expansions are declared as part of the actor’s

specification (i.e., as part of 𝐿𝐺𝑅), while learned expansions

are new ways of problem solving derived from the actor’s

experience and investment in capturing or revising new

knowledge (i.e., 𝐿𝐺𝑅, which may grow or change to

incorporate this new knowledge). This knowledge can be

captured online during execution, during the actor’s

deliberation, or offline prior to execution.

4.3 Modes (𝒐)

The modes of a goal indicate successively smaller candidate

sets towards eventual execution. We label each set with a

mode from {Formulated, Selected, Expanded, Committed,

Dispatched, Finished}. Transitions between these modes

lead toward eventual execution (Clement et al., 2007). We

present two views of these modes. In the goal refinement

view, each mode can be a strict subset of the next in the

candidate space of goals:

Reading this from right to left (due to the subset relation):

After an actor formulates and selects a goal, planning

involves searching through candidate expansions and

PlanRob 2014 Proceedings

108

selecting one. Finally, the dispatch step dispatches a plan for

execution, monitors its trajectory (making corrections as

needed), and marks the goal as achieved if execution went

well. Each transition to a new mode reduces the candidate

set, increases the level of commitment the actor has made to

a goal, and increases its degree of refinement. Refinements

follow naturally from the view of actors that are performing

deliberation (Ingrand & Ghallab, 2014). We invest the next

section discussing a left-to-right view of the modes.

4.4 The Goal Lifecycle

The lifecycle for a goal (Figure 2) captures the possible

decision points of a GR actor and complements a plan’s

lifecycle (e.g., (Pollack & Horty, 1999; Myers, 1999).

Decisions consist of applying a strategy (denoted using an

arc in Figure 2; boldfaced in this section) that transitions a

goal among modes (denoted using large or small rounded

boxes) in the lifecycle. The g’s in the goal lifecycle

correspond to goals and x’s correspond to expansions.

Transitions are verbs and modes qualify a goal’s mode (e.g.,

select(𝑆𝑔) transitions 𝑆𝑔 from formulated to selected mode).

 Goals in an active mode are those that have been

formulated but not yet dropped. The formulate strategy is

the first decision point. In many actors, this decision is

carefully (implicitly, statically) encoded (e.g., an

observation may fire a trigger to achieve some goal).

Vattam et al., (2013) describe goal formulation strategies.

The drop strategy causes a goal to be “forgotten” and can

occur from any active mode. This decision can be

sophisticated and involve learning from the execution or

attempted expansion of a selected goal. To select a goal

indicates intent. A selection strategy depends on which

goals were formulated and effects the selection of a goal for

further refinement. The expand strategy decomposes a goal

into subgoal(s) or a primitive goal. The commit(𝒙) strategy

chooses the best expansion for execution; we assume

domain-specific quality metrics can assess expansion

quality. The dispatch(𝒙) strategy slates the best expansion

for execution and places the goal in an executing mode. In

both single- and multi-agent systems, a plan may undergo

further refinement (i.e., scheduling) prior to execution. Prior

refinements could favor a least commitment approach on

temporal/resource constraints to allow for flexible dispatch

(Conrad et al., 2009).

 Because we assume an online dynamic world, goals in an

executing mode are subject to transitions that result from

expected or unexpected external state changes during

execution. The monitor strategy can be passive (i.e., do

nothing) or proactive (i.e., monitor periodically) while a

goal is dispatched. As long as its plan’s execution does not

encounter any notable events, goal execution follows a

normal path toward achievement. If no notable events occur

and the dispatched expansion completes, then the finish

strategy marks the goal as finished, which may store the goal

to aid future deliberation. Not all goals may reach this mode

because goals can be dropped.

 When notable events occur, the evaluate strategy

determines how they impact goal execution (positively or

negatively). An evaluated mode does not imply that

execution of the current expansion is stopped. If the

evaluation does not impact the goal, it can continue with the

execution. However, if the event impacts the current goal,

the set of resolve strategies define a suite of paths toward

goal achievement. An obvious choice is to change the world

model using adjust(𝑳), but adjusting its model does not

resolve the current goal and further refinements are required.

In the waypoint example, we can imagine that the GR actor

could decide to adjust the bounds on the preferred trajectory

using the variance of the actual path. However, this is only

an “internal” adjustment, and it does not subsequently

communicate the adjusted expectations to its execution

system. The GR would simply ignore any future bounds

violations that fall within the new expectations. Rather than

adjust its expectations, the GR might apply a repair(𝒙)

strategy by repairing 𝑥 so that it meets the new context; this

is the so-called replanning approach. In the waypoint

example, this might involve communicating new bounds,

allowing more time, or selecting behaviors more appropriate

to the current conditions. This resolution repairs but does

fundamentally alter the current plan. If no repair is possible

(or desired) then the GR can apply the re-expand(𝒈)

strategy to reconsider the original plan from scratch. In the

Figure 2: A proposed goal lifecycle.

PlanRob 2014 Proceedings

109

waypoint example, this might occur if an obstacle is found

to exist en route. The defer(𝒈) strategy instead postpones

the goal for further processing. In the example, this may

happen if current conditions are deemed as unfavorable for

achieving 𝑔, but the GR decides to retain 𝑔 as worth

pursuing in the future. A final option occurs in

formulate(𝒈′), which abandons 𝑔 in favor of a newly

formed goal 𝑔′.
 We very recently discovered the work on goal lifecycles

in the Autonomous Agents literature that is closely related

to the goal lifecycle proposed in this paper. Harland et al.

(2014) extend their earlier work (Thangarajah et al., 2010)

to present a goal lifecycle for BDI agents, provide

operational semantics for their lifecycle, and demonstrate

the lifecycle on a Mars rover scenario. Work by Winicoff

et al. (2010) has also linked Linear Temporal Logic to the

expression of goals that the project we discuss in §8.3 may

be able to leverage. We plan to fully explore these

approaches in future work.

4.5 Strategies and Strategy Composition

Strategies can be simple or complex. For example, select(𝑔)

could be implemented as a simple rule (e.g., automatically

select any goal that is formulated) or it could be

implemented as a learned policy that considers knowledge

about the environment, which goals are currently executing,

and their priority. Similarly, the drop strategy could be very

simple (e.g., in Figure 1, drop any goal when hard

constraints are violated), or the drop strategy could attempt

to learn long-term knowledge from the information gathered

in the goal node as it transitioned through the life cycle (e.g.,

in Figure 1, adjust future expectations for this region to

account for greater flow).

 Strategies can be composed, of which the resolve strategy

in Figure 2 is one example. A composition representing

classical planning demonstrates goals that are formulated by

an external process to the actor. Let 𝑔2 be a goal and

FINDPLAN be a planning algorithm producing one expansion

𝑥 that equates to a plan for achieving 𝑔2. Then a classical

planning strategy is composed:

 plan(𝑔2) => formulate+select(𝑔2),

𝑥 = FINDPLAN (𝑔2).

 Another strategy composition can relate the goal lifecycle

to partial satisfaction planning (PSP) and soft goals for

planning (Benton et al., 2010). PSP is closely aligned with

GR for the project discussed in §8.2. In that framework

planning proceeds on an oversubscribed set of goals where

a penalty is assessed for not meeting goals; the planner

constructs a plan that maximizes the utility (i.e., the payoff)

while minimizing the penalty. Let 𝐺3 be an oversubscribed

goal set and PSPPLAN be a planning algorithm that selects

the subset of goals and a plan 𝑥 to achieve them given the

objective criteria. Then a PSP planning strategy is

composed:

 psp-plan(𝐺3) => formulate(𝐺3),

𝑥 = PSPPLAN (𝐺3)

It may seem psp-plan(𝐺3) is identical to plan(𝑔2), however

PSPPLAN(𝐺3) performs goal selection, expansion and plan

selection, while FINDPLAN (𝑔2) only performs expansion

and plan selection.

4.6 Instantiations of Goal Reasoning

We next demonstrate how the full GR model can instantiate

two existing GR systems. The first is a replanning system,

which is a common approach to solving online dynamic

planning (e.g., (Yoon et al., 2007)). Figure 3 (top) shows

how the GR model can instantiate such replanning systems.

As shown, formulation is presumed (designed) in this model

and we have used the “plan(𝑔)” composition of §4.5.

 Figure 3 (bottom) shows one instantiation of the GR

model for Goal-Driven Autonomy (GDA); GDA agents

perform online planning and execution (Klenk et al., 2013).

A GDA agent consists of an intelligent controller that not

only interacts with a planner and the execution environment,

but also includes components for GR, separating the

planning process from those for goal formulation and

management. The controller takes as input an initial

planning problem and sends it to the planner. The planner

returns (1) a plan, which is a sequence of actions, and (2) a

corresponding sequence of expectations consisting of the

states expected to result after executing each action in the

plan. The controller dispatches the plan’s actions to the

execution environment and then runs a sophisticated

evaluate strategy. While a plan is dispatched, the controller

evaluates new information by (1) comparing observations

with expectations to discover discrepancies. For a

discrepancy, it (2) may generate an explanation, which takes

the discrepancy plus a history of past actions and

observations to propose one or more possible causal

Figure 3: Contrasting replanning (top) with

GDA (bottom) instantiations of the GR model.

PlanRob 2014 Proceedings

110

explanations. Depending on the explanation, the controller

(3) may adjust(L) to correct its model or expectations of the

world, formulate a new goal in response to the discrepancy,

and then drop the existing goal. Finally, (4) this new goal

moves through the goal lifecycle (selected, expanded, etc.)

and is weighed against other goals for execution.

4.7 Instantiations of Strategies

We now detail two possible instantiations of the strategies

for the GDA architecture from Figure 3 (bottom). The M-

ARTUE system (Wilson et al, 2013) takes a direct approach

to the goal formulation step, in which all possible goals are

considered by the agent according to a set of domain-

independent heuristics that assess a goal's fitness in three

different dimensions: social, exploration and opportunity.

The fitness of each goal in these three dimensions is

weighted by the urgency of each of the respective needs to

come up with a single score by which all goals are

compared. A preliminary study of M-ARTUE showed that

it reached performance comparable to the use of domain-

specific knowledge for guiding goal selection in a test

domain.

 The FoolMeTwice agent (Molineaux & Aha, to appear)

employs a monitor and integrate strategies that incorporate

the environment to effect the agent's knowledge of what

events are possible. The FoolMeTwice agent is “surprised”

when it cannot explain (i.e., find a history of events

consistent with) its observations of the environment. When

surprised, FoolMeTwice hypothesizes a new model of a

previously unknown event that caused its surprise. These

models are thereafter use both monitor and integrate

strategies to improve the agent's performance at these tasks.

5. A Proof of Minimal Agency

Decision is a key element of agency. The degree to which

the actor’s decisions depend on dynamic deliberation rather

than pre-encoded knowledge determines its agency. Clearly,

if a single rule (i.e., a design) covers all contingencies for

any strategy that arises during execution, then the actor need

not make a decision. Decision points are noteworthy

because – assuming the agent acts on a single external goal

𝐸𝑔 – the actor’s goal switches from achieving 𝐸𝑔 to

achieving some internal decision goal 𝐼𝑑 ∈ 𝐼𝑔. Agency is an

increasing function of the number and kind of decision

goals. Further, we can prove:

Proposition 1: The number of primitive active goals for a

deliberative agent must be at least two, one of which must

be a decision goal, 𝐼𝑑.

Proof sketch: We can reason about any transition in the

lifecycle without loss of generality. Suppose the actor must

decide on one of two possible paths for 𝑠𝑒𝑙𝑒𝑐𝑡(𝑆𝑔) for a

primitive goal 𝑆𝑔. There are two cases to consider regarding

whether the agent deliberates on this decision. Let a rule be

a provided (or learned) sequence of steps to achieve some

goal. (1) Suppose the actor applies a rule to decide (even

non-deterministically), then the agent did not deliberate,

which contradicts our assumption of a deliberative actor. (2)

If there is no such rule, then the agent must formulate an

internal decision goal 𝐼𝑑 =is-selected-Sg (i.e., the

mode of 𝑆𝑔 is selected) and switch to the goal is-

achieved-𝐼𝑑. We can imagine many different ways the

actor might achieve this new goal (e.g., it can explore to

generate knowledge or exploit its existing knowledge). At

this point, we have already shown that at least two primitive

goals were required. Q.E.D.

Corollary 1: An actor will be unable to resolve a decision

goal if it tries to deliberate without enough designed (or

learned) knowledge.

Corollary 2: The number, kind, and frequency of primitive

decision goals defines a spectrum of deliberation and

agency for actors.

6. Goal Memory

In addition to moving goals through a lifecycle toward

achievement, a decision-making actor assesses tradeoffs

between various criteria (e.g., priority, domain-specific

quality functions, global utility, long term payoff). We use

the goal lifecycle in conjunction with a goal memory to

characterize a goal management process that simultaneously

addresses both.

 Our use of the term goal memory here is distinct from its

typical use in cognitive goal memory. In cognitive science,

goal memory is typically discussed as a mental construct

with representations and processes that are used to store and

manage goal-related requirements of the task that a

cognitive agent happened to be engaged in. While issues

such as interference level, strengthening and priming

constraints are key requirements to mimic human memory

(Altmann & Trafton 2002), we ignore any such

considerations because we are not concerned with the

cognitive plausibility of our model of the goal memory.

 Figure 4 shows the 𝑚 × 𝑛 goal memory in a table 𝑀,

where a cell 𝑀𝑖𝑗 represents the 𝑖𝑡ℎ goal 𝑔𝑖 (1 ≤ 𝑖 ≤ 𝑚), its

𝑗𝑡ℎ quality criteria 𝑞𝑖(1 ≤ 𝑗 ≤ 𝑛), and mode. We describe

these criteria in the following paragraphs.

 The priority criterion of a goal determines its importance

relative to other goals. Let 𝑓𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑔𝑖): 𝑔𝑖 → 𝕀, then 𝑀𝑖1 =

 𝑓𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑔𝑖). Priority depends on the agent’s current state,

and so may change dynamically.

PlanRob 2014 Proceedings

111

 The inertia criterion of a goal 𝑔𝑖 characterizes the

strength of bias against changing its current mode because

of prior commitments. Let 𝑓𝑖𝑛𝑡𝑒𝑟𝑡𝑖𝑎(𝑔𝑖) ∶ 𝑔𝑖 → 𝕀, and let

𝑀𝑖2 = 𝑓𝑖𝑛𝑒𝑟𝑡𝑖𝑎(𝑔𝑖). Inertia is defined as a function of 𝑔𝑖’s

mode, its number of expansions |𝑋𝑔|, its staleness (i.e., the

number of time steps since it last transitioned), the number

of transitions that have been applied to 𝑔𝑖, and the resources

committed to 𝑔𝑖.

The mode criterion of a goal 𝑔𝑖 determines its relative

importance based on how far along it is in the goal lifecycle.

For instance, if a goal is closer to execution, it has a higher

value because we want to move goals toward finished. Let

𝑓𝑚𝑜𝑑𝑒(𝑔𝑖): 𝑔𝑖 → 𝕀, then 𝑀𝑖3 = 𝑓𝑚𝑜𝑑𝑒(𝑔𝑖).

The remaining criteria express the quality (e.g., cost,

value, risk, reward) of achieving 𝑔𝑖 with the currently

selected expansion 𝑥 ∈ 𝑋𝑔. These are domain-specific

quality metrics, and we provide some examples when

discussing applications in §8. These metrics may also

include domain-independent quality metrics such as

minimizing makespan (i.e., parallel execution time) or

minimizing the plan length (i.e., number of plan steps).

In addition to the aforementioned criteria, we conjecture

that additional book-keeping columns may be necessary.

These include but are not limited to constraints, alternative

expansions, parent of goal, type of goal, etc.

7. The Goal Reasoning Problem

A GR agent examines its goal memory state 𝑀𝑡 at time 𝑡 and

chooses a strategy that maximizes its long-term rewards

using ∑ 𝛾𝑡𝑟𝑒𝑤𝑡
∞
𝑡 , where 𝛾𝑡 is a discount factor and 𝑟𝑒𝑤𝑡 is

the agent’s reward at 𝑡, which we model as 𝑟𝑒𝑤: 𝑀 × 𝑅 →
ℝ.

 For our formal model, we make some simplifying

assumptions that are too limiting for integrated robotics but

aid in explaining the model. In addition to the dynamic

environment and interruptible actions already assumed, we

assume for the exposition of the model:

 Markovian dynamics: The current choice for an actor

is based only on its last (known) state.

 Infinite horizon with discount: The actor is myopic; it

considers distant future states to be less important than

eminent future states, and may favor locally optimal

solutions that are globally suboptimal.

 Non-deterministic actions: An actor’s action may have

multiple possible outcomes.

 Under these assumptions, we can model GR as a Markov

Decision Process (MDP), given that the transition function

and the reward function are known. Given a current goal

memory state 𝑀, a GR strategy 𝑟 ∈ 𝑅 and a next goal

memory state 𝑀′, the mode transition function 𝑇(𝑀, 𝑟, 𝑀′)

is the probability of transitioning from 𝑀 to 𝑀′ using

strategy 𝑟. For MDPs, there exists an optimal deterministic

stationary policy (Kaelbling et al., 1996), implying the

existence of an optimal value function for a current goal

memory state 𝑀:

𝑉∗(𝑀) = 𝑚𝑎𝑥𝑝𝑜𝑙𝑖𝑐𝑦(𝐸(∑ 𝑦𝑡∞
𝑡=0 𝑟𝑒𝑤𝑡)) ,

where (0 ≤ 𝛾 < 1) is the discount factor. This optimal

value function is unique and reduces to ∀𝑀′ ∈ 𝑟(𝑀):

 𝑉∗(𝑀) = 𝑚𝑎𝑥𝑟(𝑟𝑒𝑤(𝑀, 𝑟) + 𝛾 ∑ 𝑇(𝑀, 𝑟, 𝑀′)𝑉∗(𝑀′)𝑀′).

Given this, we can specify the optimal policy as:

𝑝𝑜𝑙𝑖𝑐𝑦∗(𝑀) = arg 𝑚𝑎𝑥𝑟 (𝑟𝑒𝑤(𝑀, 𝑟) + 𝛾 ∑ 𝑇(𝑀, 𝑟, 𝑀′)𝑉∗(𝑀′)𝑀′).

If 𝑇 or 𝑟𝑒𝑤 are unknown, then GR can be modeled as a

reinforcement learning (Sutton & Barto, 1998) problem,

where deliberation results in a learned policy.

Reinforcement learning is a rich area of research that is out

of scope for this paper.

8. Applications of Goal Reasoning

Our group is working on two robotics and one simulated

robotics projects involving GR. We review these with a

focus on the expected value added by using GR, our

technical approach, and the GR research questions we are

addressing.

8.1 Unmanned Underwater Vehicle (UUV) Control

UUVs have been used for tasks such as inspection of

underwater structures (Antonelli et al., 2001), mine

countermeasures (LePage & Schmidt, 2002), and scientific

observation (Binney et al., 2010). These have engendered

work on motion planning (e.g., Tan et al., 2004), which can

guide vehicles to desired locations but cannot select goals.

These missions have short duration (at most eight to sixteen

hours) and operate over a small region.

 Long-duration missions, potentially lasting weeks or

months over much larger regions, present new challenges

for guidance systems, as the ocean environment is

unpredictable and partially observable. A UUV on a long-

duration mission must react competently to notable objects

and events. It may need to change its objectives or even

abort its mission due to unforeseen environmental hazards,

underwater barriers, encounters with other vehicles, or

Figure 4: A Goal memory of 𝑚 goals and 𝑛 quality metrics.

PlanRob 2014 Proceedings

112

failures of onboard systems. A common approach in the face

of a dynamic environment would be replanning. Cashmore

et al (2013) confront the need for long-duration autonomy

in UUVs and examine the problem of modeling motion for

task-level mission planning. Their architecture reacts to

notable events (observations of the environment that differ

from assumptions) by remodeling the environment and

replanning for a fixed set of goals. In the language of our

GR model, their approach applies the adjust(L) strategy

followed by the re-expand(x) strategy. This is a case where

re-expand(x) equates to replanning.

 An alternative approach could allow the UUV to regoal.

Consider a UUV taking oceanographic measurements (e.g.,

water salinity) when it detects a nearby surface vessel.

While motion planning systems will likely continue the

measurement task, minimizing risk of collision while

maximizing data quality, they cannot consider the broader

implications of the vessel’s arrival and how best to respond.

Depending on the location, nature of the mission, and the

identity of the approaching vessel, the UUV may need to

communicate with it, attempt to avoid detection, or abort the

data-collection mission and return to notify its operator of

the surface vessel’s approach. An at-sea UUV has limited

communication with human operators, and must make such

goal decisions autonomously.

 To provide a UUV with the ability to reason about and

dynamically select goals while pursuing long-term

missions, we are applying GDA to guide a Bluefin

underwater vehicle, initially in simulation but with planned

execution on a real vehicle. GDA can generate appropriate

goals in response to unplanned situations and is therefore

well-suited to the control of unmanned vehicles at sea.

 We use MOOS-IvP (Benjamin et al., 2010) to provide

reactive navigation guidance. MOOS is a message-passing

system with a centralized publish-subscribe model. IvP

Helm is a behavior-based MOOS application that chooses

desired heading, speed, and depth for the vehicle in a

reactive manner to generate collision-free trajectories. IvP

Helm uses an interval programming technique that

optimizes over an arbitrary number of objective functions to

generate desired navigation values. The GDA agent

complements the IvP Helm’s reactive behaviors by enabling

the capacity for deliberative reasoning for longer missions.

Thus, we use the GDA agent to perform GR, IvP Helm to

provide navigation guidance, and Bluefin’s Huxley control

architecture for low-level control.

8.2 Unmanned Air Vehicle (UAV) Control

UAVs have been used frequently in military operations,

controlled via teleoperation in surveillance and targeting

missions, for example. As they become more autonomous

they will also be deployed in air combat operations in areas

that are highly dynamic, uncertain, and adversarial. In such

environments, UAVs will have to coordinate with manned

aircraft, which the USA military highlights as a critical

technical challenge (DoD, 2013). Our project’s objective is

to develop and demonstrate the utility of a GR agent for

controlling simulated UAVs in manned-unmanned air

combat teams, where the teamed pilots will manage the

UAVs’ activities.

 The air combat environment is highly complex with

stochastic, dynamic, adversarial, and partially observable

elements. Highly autonomous decision making in such an

environment requires agents to respond to situations for

which they lack pre-programmed responses. The UAVs

cannot rely solely on the pilot for constant oversight in these

situations because they must pilot their own vehicle.

For this task, we are integrating a novel GR agent in a

decision-making system called the TBM (Tactical Battle

Manager), which should advance the state-of-the-art in

several respects. This high-tempo environment requires

decisions to be made within seconds as indecision could lead

to loss of human life or destruction of expensive assets. The

human pilot must specify goals and preferences. Finally,

scenarios will consist of multiple vehicles, and actions by

the actor effect the pilots and other UAVs’ agents.

 Our GR model is inspired by Young and Hawes’s (2012)

model, in which desires are satisfied via a system of drives.

At any given time the desire monitor and state monitor

inspect the world state. If an event agitates a desire, then the

GR may formulate a new goal. For example, suppose a

manned vehicle in a manned-unmanned team of vehicles

was just shot down. This event would agitate an ENSURE

HUMAN SAFETY desire in the actor controlling the UAV, and

a drive would then formulate a DEFEND CRASH SITE goal.

 To evaluate GR we will use two modern air combat

simulations, namely the Next Generation Threat System

(NGTS) (2013) and the Analytic Network for Network-

Enabled Systems (AFNES). We have integrated a simple

GR agent with NGTS; it replaces plans to control air

vehicles when notable events occur. We will apply GR to a

set of simulated scenarios (with random variations) and

measure mission success with and without goal reasoning.

We hypothesize that the integration of GR in TBM will

increase the performance of mixed teams in air combat

missions, and that GR will reduce the amount of oversight

that pilots must provide to their UAV teammates, because

they will be able to reason and respond to unexpected

situations as they occur.

8.3 Control for Collaborative Sensing

Between the time of a tragic disaster (e.g., the Philippines

Typhoon) and the arrival of support operations, emergency

response personnel need information concerning the

whereabouts of survivors, the condition of infrastructure, a

suggested ingress and evacuation routes. Current practice

PlanRob 2014 Proceedings

113

for gathering this information relies on drone operators and

human pilots of helicopters. We believe a hetealrogeneous

team of autonomous vehicles with sensor platforms can

automate many parts of the information gathering, thus

freeing humans to perform more critical tasks and

improving the response time for Humanitarian

Assistance/Disaster Relief operations.

 Planning trajectories for teams a priori to achieve a single

objective requires solving a high dimensional optimization

problem (Yilmaz et al., 2008) to compute optimal

trajectories that are tightly coupled to the initial

assumptions/goal. Bio-inspired and other reactive guidance

strategies simplify this problem by using more goal-directed

behaviors for area coverage (Liu & Hedrick, 2011) and

discrete target tracking (Haque et al., 2008; Kruecher et al.,

2007). These behaviors rely on local measurements and

instantaneous gradients to guide robots. Still, no behavior

or trajectory can handle all contingencies.

 A promising approach, inspired by animal behavior, uses

finite state automata (FSA) for mobile robot guidance

(Balch et al., 2006). Hand-coding an FSA for each execution

of a robot is tedious and error prone. Kress-Gazit et al.

(2009) instead synthesize an FSA using a Linear Temporal

Logic specification (LTL-spec) that views synthesis as

searching for a game-theoretic table in which the robot takes

actions to achieve its goals against actions taken by the

environment (i.e., the adversary). This strategy guarantees

correct behavior if the LTL-spec is never violated, but

synthesis is exponential in the number of (environmental

and sensing) goals. This is clearly intractable for large teams

of robots, and we use GR as a “coach” to select goals to

maintain tractable synthesis for individuals within the team.

Our technical approach draws on the goal refinement

process of decomposing a high-level goal into predicates

that then guide LTL-to-FSA synthesis. As the potential

number of predicates is large for a multi-vehicle, multi-goal

mission, we developed a hierarchical approach that

separates GR, planning/scheduling, and vehicle guidance

tasks into discrete processes. Our approach converts active

goals into an LTL specification for the mobile agents. If a

specification is unsatisfiable, an error report is returned to

the GR actor.

 At runtime, we monitor the agents’ progress through their

FSAs, and constantly update the GR actor’s model of the

environment. Notable events occur when the actors: achieve

a substantial sub-goal; determine they cannot achieve their

current sub-goal; or their FSA does not specify how to

respond to an unexpected change in a vehicle’s state.

Candidate goals are evaluated using an approximate

environment and team model based on the MASON (Luke

et al., 2005) multi-agent simulator, which can perform some

FSA synthesis and apply the optimal or reactive guidance

algorithms. These produce the quality metrics the GR agent

uses to select which goals to activate.

9. Summary and Future Work

We observed that goal reasoning (GR) occurs when an actor

observes notable events and that it falls along a spectrum of

design to deliberation. The extent to which an actor takes

initiative to deliberate over its goals provides a measure of

autonomy. We presented the goal lifecycle to demonstrate

how modes act as constraints in the management of goals

and discussed how this lifecycle instantiates GR models: for

replanning and Goal-Driven Autonomy (GDA). We

formalized the GR problem by introducing a goal memory

and GR operators, casting the problem of GR in terms of

choosing a composition of GR operators to maximize an

actor’s future rewards. Although our model is general

enough to be agnostic about which approach is used for this

purpose, we then related the GR problem to a Markov

Decision Process (if states and the value function are

known) and Reinforcement Learning (if states or the value

function are unknown). Finally, we discussed three ongoing

robotics-related projects in which we are using a model of

GR for decision making and control.

 There are many benefits to our proposed GR model:

a. It provides a common language for discussing

deliberation in actors, and is rich enough to frame the

conversation among researchers who study robotics,

planning, or scheduling.

b. It is instantiable; it covers existing subclasses and can

grow to future knowledge/systems.

c. Strategies make the model composable and able to

incorporate the variety of design decisions of an actor.

Strategies can be empty (i.e., no-op), static/dynamic

policies, hand-coded (or learned) rules or cases, or

domain-specific algorithms.

d. From a software design perspective, the model allows

for rapid prototyping of systems. A team can begin with

handcoded/no-op strategies to determine a platform’s

viability, which provides a baseline for assessing

autonomy. This low-bar approach also aids in focusing

knowledge modeling on only the parts of the system

where decisions will be made, and thus helps with

knowledge engineering for robotics.

e. This model spans layers of deliberation at the

individual, team, and coach levels.

 We will soon extend the formal model of GR, instantiate

it in the projects described in §8, and analyze its advantages

and limitations by evaluating those actors’ performances.

We are especially interested in linking the GR lifecycle to

recent models of replanning (Talamadupala et al., 2013) and

continual planning (Scala, to appear).

 We described goal reasoning in terms of a lifecycle that

refines an actor’s goals and expansions, and summarized its

application to robotics-related tasks. Our research is in its

early stages, and we invite feedback on this model.

PlanRob 2014 Proceedings

114

Acknowledgements

The authors for this project were funded by OSD. We also

thank the anonymous reviewers whose comments helped

improve the paper.

References

Altmann, E. M., & Trafton, J. G. (2002). Memory for goals:
An activation-based model. Cognitive Science, 26, 39-83.

Antonelli, G., Chiaverini, S., Finotello, R., & Schiavon, R.

(2001). Real-time path planning and obstacle avoidance

for RAIS: Aan autonomous underwater vehicle. IEEE

Journal of Oceanic Engineering, 26(2), 216-227.

Balch, T., Dellaert, F., Feldman, A., Guillory, A., Isbell,

C.L., Khan, Z., Pratt, S.C., Stein, A.N., & Wilde, H.

(2006). How multirobot systems research will accelerate

our understanding of social animal behavior.

Proceedings of the IEEE, 94(7), 1445-1463.

Benton, J., Do, M., & Kambhampati, S. (2009). Anytime

heuristic search for partial satisfaction planning. Artificial

Intelligence, 173(5-6), 562–592.

Benjamin, M., Schmidt, H., Newman, P., & Leonard, J.

(2010). Nested autonomy for unmanned marine vehicles

with MOOS-IvP. Journal of Field Robotics, 27(6), 834-

875.

Binney, J., Krause, A., & Sukhatme, G.S. (2010).

Informative path planning for an autonomous underwater

vehicle. In Proceedings of the 2010 IEEE International

Conference on Robotics and Automation, (pp. 4791-

4796). Anchorage, AK: IEEE Press.

Chien S., Knight R., Stechert A., Sherwood R., and

Rabideau, G. (2000) Using Iterative Repair to Improve

the Responsiveness of Planning and Scheduling.

Proceedings of the Conference on Automated Planning

and Scheduling (pp. 300-307). Menlo Park, CA: AAAI

Press.

Cashmore, M., Fox, M., Larkworthy, T., Long, D., and

Magazzeni, D. (2013). Planning Inspection Tasks for

AUVs. In Proceedings of MTS/IEEE OCEANS

2013. San Diego, CA: IEEE Press.

Clement, B.J., Durfee, E.H., & Barrett, A.C. (2007).

Abstract reasoning for planning and coordination.

Journal of Artificial Intelligence Research, 28, 453–515.

Coddington, A.M., Fox, M., Gough, J., Long., D., & Serina,

I. (2005). MADbot: A motivated and goal directed robot.

Proceedings of the Twentieth National Conference on

Artificial Intelligence (pp. 1680-1681). Pittsburgh, PA:

AAAI Press.

Conrad, P., Shah, J. & Williams, B. (2009) Flexible

execution of plans with choice. Proceedings of the

Conference on Automated Planning and Scheduling (pp.

74-81). Menlo Park, CA: AAAI Press.

DoD (2013). Unmanned systems integration roadmap:

FY2013-2038 (Reference Number 14-S-0553).

Department of Defense, Washington, DC.

Ghallab, M., Nau, D.S., & Traverso, P. (2004). Automated

planning: Theory and practice. San Mateo, CA: Morgan

Kaufmann.

Ghallab, M., Nau, D., & Traverso, P. (2014). The actor’s

view of automated planning and acting: A position paper.

Artificial Intelligence, 208, 1–17.

Harland, J., Morley, D., Thangarajah, J., & Yorke-Smith, N.

(2014). An operational semantics for the goal life-cycle

in BDI agents. Autonomous Agents and Multi-Agent

Systems, 28(4), 682–719.

Haque, M., Rahmani, A, & Egerstedt, M. (2010). Geometric

foraging strategies in multi-agent systems based on

biological models. In Proceedings of the 49th IEEE

Conference on Decision and Control. Atlanta, GA: IEEE

Press

Ingrand, F., & Ghallab, M. (2014). Robotics and artificial

intelligence: A perspective on deliberation functions. AI

Communications, 27(1), 63-80.

Kaelbling, L.P., Littman, M.L., & Moore, A.P. (1996).

Reinforcement learning: A survey. Journal of Artificial

Intelligence Research, 4, 237-285.

Kambhampati, S. (1994). Design tradeoffs in partial order

(plan space) planning. Proceedings of the Second

International Conference on Artificial Intelligence

Planning Systems (pp. 67-97). Chicago, IL: AAAI Press.

Kambhampati, S. (1997). Refinement Planning as a unifying

framework for plan synthesis. AI Magazine, 18(2), 67-97.

Kambhampati, S., Knoblock, C.A., & Yang, Q. (1995).

Planning as refinement search: A unified framework for

evaluating design tradeoffs in partial-order planning.

Artificial Intelligence, 76, 168-238.

Kambhampati, S. & Nau, D. (1994). On the nature of modal

truth criteria in planning. Proceedings of the 12th

National Conference on Artificial Intelligence (pp. 67-

97). Seattle, WA: AAAI Press.

Kambhampati, S., & Srivastava, B. (1995). Universal

classical planner: An algorithm for unifying state space

and plan space planning. New Directions in AI Planning

(pp. 261-271). IOS Press.

Klenk, M., Molineaux, M., & Aha, D.W. (2013). Goal-

driven autonomy for responding to unexpected events in

strategy simulations. Computational Intelligence, 29(2),

187-206.

Kress-Gazit, H., Fainekos, G.E., & Pappas, G.J. (2009).

Temporal logic based reactive mission and motion

planning. IEEE Transactions on Robotics, 25(6), 1370-

1831.

Kreucher, C.M., Hero, A.O., Kastella, K.D., & Morelande,

M.R. 2007. An Information-Based Approach to Sensor

Management in Large Dynamic Networks. Proceedings

of the IEEE 95(5), 978-999

PlanRob 2014 Proceedings

115

LaValle, S., M. (2006). Planning Algorithms, Cambridge

University Press.

LePage, K.D., & Schmidt, H. (2002). Bistatic synthetic

aperture imaging of proud and buried targets from an

AUV. Journal of Ocean Engineering, 27(3), 471-483.

Liu, S-Y., & Hedrick, J.K. (2011). The application of

domain of danger in autonomous agent team and its effect

on exploration efficiency. In Proceedings of the IEEE

American Control Conference. San Francisco, CA: IEEE

Press.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., &

Balan, G. (2005). Mason: A multiagent simulation

environment. Simulation, 81.7(2005), 517-527.

Marthi, B, Russell, S., & Wolfe, J. (2008). Angelic

hierarchical planning: Optimal and online algorithms.

Proceedings of the International Conference on

Automated Planning and Scheduling (pp. 222-231).

Menlo Park, CA: AAAI Press.

Molineaux, M., and Aha, D.W. (to appear). Learning

Unknown Event Models. In Proceedings of the Twenty-

Eighth AAAI Conference. Quebec City, Quebec, Canada.

Myers, K.L. (1999). CPEF: A continuous planning and

execution framework. AI Magazine, 20(4), 63-69.

NGTS (2013). Next Generation Threat System.

[www.navair.navy.mil/nawctsd/Programs/Files/NGTS-

2013.pdf]

Pollack, M.E., & Horty, J. (1999). There’s more to life than

making plans: Plan management in dynamic, multiagent

environments. AI Magazine, 20, 71-83.

Rajan, K., Py, F., & Barreiro, J. (2013). Towards

deliberative control in marine robotics. In Marine Robot

Autonomy (pp. 91–175). Springer.

Scala, E. (to appear). Continual planning via reconfiguration

and goal revision. In Working notes of the ICAPS

Workshop on Planning and Robotics.

Shivashankar, V., Alford, R., Kuter, U., & Nau, D. (2013).

The GoDeL planning system: A more perfect union of

domain-independent and hierarchical planning.

Proceedings of the 23rd International Joint Conference

on Artificial Intelligence (pp. 2380-2386). Beijing, China:

AAAI Press.

Smith, D., Frank, J., & Jonsson, A. (2000). Bridging the gap

between planning and scheduling. Knowledge

Engineering Review, 15, 61-94.

Sutton, R.S., & Barto, A.G. (1998). Introduction to

reinforcement learning. Cambridge, MA: MIT Press.

Talamadupula, K., Smith, D. E., Cushing, W., &

Kambhampati, S. (2013). A Theory of Intra-Agent

Replanning. Working notes of the ICAPS Workshop on

Distributed Multiagent Planning.

Tan, C.S., Sutton, R., & Chudley, J. (2004). An incremental

stochastic motion planning technique for autonomous

underwater vehicles. In Proceedings of IFAC Control

Applications in Marine Systems Conference (pp. 483-

488). Ancona, Italy: Elsevier.

Thangarajah, J., Harland, J., Morley, D., & Yorke-Smith, N.

(2011). Operational behaviour for executing, suspending,

and aborting goals in BDI agent systems. In Declarative

Agent Languages and Technologies VIII (pp. 1–21).

Toronto, Canada: Springer.

Tan, C.S., Sutton, R., & Chudley, J. (2004). An incremental

stochastic motion planning technique for autonomous

underwater vehicles. In Proceedings of IFAC Control

Applications in Marine Systems Conference (pp. 483-

488). Ancona, Italy: Elsevier.

Vattam, S., Klenk, M., Molineaux, M., & Aha, D. W. (2013,

December). Breadth of Approaches to Goal Reasoning: A

Research Survey. In Goal Reasoning: Papers from the

ACS Workshop (p. 111).

Vaquero, T., Nejat, G., & Beck, J.C. (to appear). Planning

and scheduling single and multi-person activities in

retirement home settings for a group of robots. In

Working notes of the ICAPS Workshop on Planning and

Robotics.

Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E.,

& Blythe, J. (1995). Integrating planning and learning:

The PRODIGY architecture. Journal of Experimental &

Theoretical Artificial Intelligence, 7(1), 81-120.

Weld, D.S. (1994). An introduction to least commitment

planning. AI Magazine, 15, 27-61.
Wilson, M., Molineaux, M., & Aha, D.W. (2013). Domain-

Independent Heuristics for Goal Formulation. In
Proceedings of the Twenty-Sixth International Florida
Artificial Intelligence Research Society Conference. St.
Pete Beach, Florida.

Yilmaz, N.K, Evangelinos, C., Lermusiaux, P., &

Patrikalakis, N.M. (2008). Path planning of autonomous

underwater vehicles for adaptive sampling using mixed

integer linear programming. IEEE Journal of Oceanic

Engineering, 33(4), 522–537.

Yoon, S.W., Fern, A., & Givan, R. (2007). FF-Replan: A

baseline for probabilistic planning. Proceedings of the

Seventeenth International Conference on Automated

Planning and Scheduling (pp. 352-359). Providence, RI:

AAAI Press.

Young, J., & Hawes, N. (2012). Evolutionary learning of

goal priorities in a real-time strategy game. In

Proceedings of the Eighth AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment.

Stanford, CA: AAAI Press.

PlanRob 2014 Proceedings

116

Challenges in Finding Ways to Get the Job Done

Iman Awaad and Gerhard K. Kraetzschmar
Bonn-Rhein-Sieg University

and B-IT Center
Grantham-Allee 20

53757 Sankt Augustin, Germany

Joachim Hertzberg
Osnabrück University

and DFKI RIC Osnabrück Branch
Albrechtstrasse 28

49076 Osnabrück, Germany

Abstract

Humans exhibit flexible and robust behavior in achieving
their goals. We make suitable substitutions for objects, ac-
tions, or tools to get the job done. When opportunities that
would allow us to reach our goals with less effort arise, we
often take advantage of them. Robots are not nearly as robust
in handling such situations. Enabling a domestic service robot
to find ways to get a job done by making substitutions is the
goal of our work. In this paper, we highlight the challenges
faced in our approach to combine Hierarchical Task Network
planning, Description Logics, and the notions of affordances
and conceptual similarity. We present open questions in mod-
eling the necessary knowledge, creating planning problems,
and enabling the system to handle cases where plan genera-
tion fails due to missing/unavailable objects.

Introduction
Generating plans that allow robots to act robustly and ef-
ficiently is complicated by the restrictions that govern the
real-world environments in which they operate. Domains are
usually finite but still very large, as they include all objects
within the environment. Actions are durative and have non-
deterministic outcomes. The environment is only partially
observable, and what the agent senses may be inaccurate due
to noise and the limitations of the sensors. The dynamic na-
ture of the world implies that exogenous events frequently
occur. Yet, researchers have enthusiastically worked on en-
abling robots to robustly plan and act (for that is the ultimate
goal) in the real world.

In the domestic service domain, there is the added suppo-
sition that the robots will carry out their tasks in a socially-
expected and -accepted manner. It is also assumed that they
will do so sufficiently well out-of-the-box, but are also able
to proactively pick up knowledge about new objects and
places in the world, how to accomplish new tasks (or the
same tasks differently), as well as preferences and social
norms. For example, a robot such as Jenny (see Figure 1)
may be expected to serve tea or water a plant out-of-the-
box, but also to learn that there is a particular teacup that is
my favorite, where it belongs in the kitchen, and that I like
my tea served in it.

Humans are able to find fixes and adjust their plans, al-
most effortlessly. In fact, humans expect each other to find
ways to get the job done, and are often less concerned with

Figure 1: Jenny, a Care-O-bot 3, getting the job done in a
domestic service environment

how others accomplish the task. This requires the ability to
apply fixes to failures both during planning and execution,
such as substituting objects. For example, we drink water in
a mug instead of a glass, or water the plants with a tea kettle
instead of a watering can. Humans find shortcuts and take
advantage of opportunities. Enabling such behavior in artifi-
cial agents is highly desirable and the focus of this work.

While planning in real-world environments is in itself a
complex process, handling failures during plan execution, or
during the plan generation process itself, is equally difficult
but just as necessary. To address the challenge of finding ap-
propriate, socially-acceptable substitutes, we argue that the
functional affordances (Hartson 2003) of objects, what ob-
jects are meant to be used for, should play a major role (see
(Awaad, Kraetzschmar, and Hertzberg 2013b)). Affordances
are “opportunities for action” (Gibson 1979). We adopt Nor-
man’s definition of perceived affordances which states that
opportunities for action are “based on the actors’s goals,
plans, values, beliefs and past experience” (Norman 2002).

Similarity plays a role in choosing object substitutes.
However, common similarity measures used in robotics may
not yield the desirable results; e.g. instead of the color of an
object the presence of a handle may be much more crucial.
For measuring the conceptual similarity between original
objects and possible substitutes, we use Conceptual Spaces
(CS) (Gärdenfors 2004). CS provide a multi-dimensional

PlanRob 2014 Proceedings

117

feature space where each axis represents a quality dimen-
sion, for example brightness, intensity, and hue. Points in a
conceptual space represent objects, while regions represent
concepts. CS can also combine quality dimensions to repre-
sent shapes, such as a ’handle’. The importance of particular
dimensions for given tasks would provide us with a more
robust measure of the suitability of a substitute.

Previous work (Awaad, Kraetzschmar, and Hertzberg
2013a) introduced our approach of identifying viable sub-
stitutes for objects by iteratively relaxing constraints in a
structured way and lifting plans to use them. This is ac-
complished through three reasoning phases: the first phase
generates a focused planning problem, the second phase ex-
pands the domain where necessary and re-plans to use the
substitute, while the third and final reasoning phase uses af-
fordances during plan execution. The domain is constrained
at first to use instances from an object’s class. It is expanded
either due to a failure to generate a plan or during execu-
tion to include objects with the same functional affordances
and high conceptual similarity. Further expansions of the do-
main would consider objects which have a high conceptual
similarity only, and then those with the same functional af-
fordances only. The approach is presented in (Awaad, Kraet-
zschmar, and Hertzberg 2014), of which this paper is an ex-
tended version.

Related work
Agents may fail to generate plans due to incomplete infor-
mation or fail to execute them in dynamic environments.
Such domains are often referred to as open-ended domains.
Further complicating matters is the fact that real world do-
mains, such as a domestic environment, are hard to model,
even with correct, seemingly complete and up-to-date infor-
mation (all of which are hard to come by when dealing with
robots) and with non-deterministic outcomes of actions. In
addition, the sheer size of these domains, can make the plan-
ning problems quite large, even for the simplest of goals.

Researchers have addressed the problem of planning in
open-ended domains by developing approaches that are ca-
pable of handling the various possibilities. Given the task of
making tea, for example, and not knowing whether the cup is
clean or dirty, a contingent plan would foresee both these sit-
uations and include a solution for each case. Such solutions
do not scale well though. Conformant planning and the use
of probabilistic approaches also address the problems aris-
ing from uncertainty.

Decision-theoretic planning (Boutilier, Dean, and Hanks
1999) is perhaps the quintessential approach in addressing
the issue of planning under uncertainty. At the heart of all
planning approaches is the choice of which action, among
alternatives, to take to achieve a goal. Preferences, or the
maximization of a utility function which adheres to them,
is the mechanism which guides the choice in the presence
of uncertainty. Unlike the decision-theoretic approach, we
can be seen as actually generating the alternative choices
(and considering the various plans which accomplish the
task with different substitutes). Our approach makes no ex-
plicit mention or use of utility functions such as that pre-
sented in (Haddawy et al. 1993), however preferences play

a major role in the decision making process. Preferences
in how flexible the system may be in making substitutions
dictates whether the agent is risk-averse (little flexibility),
risk-neutral or risk-taking. The choice of how important a
possible substitute’s proximity is to the agent is the main
mechanism that effects this behavior. If a user attaches a
high weight to proximity, then an agent given two possi-
ble substitutes, one better than the other but farther away,
would choose to use the closer one regardless of optimality.
The structured relaxation of constraints by the system can be
seen as the implementation of a policy determining how the
choice of possible substitutes is to be made.

Intuitively, by tightly interleaving the planning and exe-
cution processes to handle the dynamic nature of the envi-
ronment, a more robust outcome is achieved (as the saying
goes: “the only good action in a plan is the first one”). In
(Off and Zhang 2012), the authors develop a control system
which enables the agent to detect when it has insufficient
knowledge and plan to acquire it through sensing actions.
Our HTN domain also plans for sensing actions and then re-
plans with the new current state. For example, this is what is
done in a tidying-the-room scenario where the agent needs
to detect objects, at various locations and check if they be-
long there before returning those that don’t to their proper
locations. Flexibility is addressed by the authors in (Levihn
et al. 2013) by employing reconsideration (re-planning) and
foresight (taking advantage of opportunities).

Least-commitment planning approaches (Weld 1994) are
also extremely appealing in domains such as ours. Our work
can be seen as relying on many of the same mechanisms.
To maximize flexibility, we lift our methods and operators
as first described in (Awaad, Kraetzschmar, and Hertzberg
2013a). The variable bindings can be seen as being “refined”
to allow the plans to use the substitutes by iteratively de-
creasing constraints in a structured way. Moreover, the sub-
stitution of objects may result in the need to add or remove
operators, e.g. filling a kettle requires a lid to be opened,
whereas filling a watering can does not. This can be seen as
a refinement operation where steps are added or removed.
Not only does this allow the agent to generate plans where
it might otherwise fail to do so, it also enables more flexi-
ble execution as any instance of these objects can be used.
In our case though, the refinement operations, including lift-
ing, are accomplished outside of the planner itself through
the modification of the domain before the problem is given
to the planner.

While (Cox and Zhang 2007) focuses on improving the
performance of novice users in mixed-initiative approaches,
the authors address the case where planners fail due to in-
sufficient resources or because of changes in the environ-
ment, as we do here. Their system allows human users to
transform the goals directly via an interface, thereby steer-
ing the planning process. This is perhaps the most similar
work to ours in that they, like us, can be seen as transform-
ing goals to assign resources. Human users play a vital role
in our approach too. First by setting the importance of prox-
imity, which varies the obedience/flexibility of the system,
and second by providing feedback on whether a substitution
is acceptable or not, and possibly the reason why it is not,

PlanRob 2014 Proceedings

118

Mobile Manipulator
(Hi-level capabilities through low level control of sensors and actuators)

Hybrid Deliberative Layer

Plan Management

User & Environment

Affordance-based Control

Perception Manipulation ...DriveHuman Robot
Interaction

Planner
(JSHOP2)

Knowledge Base
(OWL-DL Ontology Model,

and Plan Library)

Inference Module
(Pellet)

Ontology to Planning Domain/
Problem Generator

Action Execution/Monitoring
(SMACH)

Plan Execution/Monitoring

Figure 2: Software architecture for Jenny, extending the
hybrid deliberative layer to use affordance-based reason-
ing in a domestic environment (Awaad, Kraetzschmar, and
Hertzberg 2013a)

although the incorporation of this sort of knowledge into the
system is still future work and beyond our current scope.
This enables the system to improve its performance over
time and according to user profiles. (Scala 2013) looked at
assigning resources to enable robust execution of plans in
real-world domains – addressing a similar problem to ours.

Others have investigated combined HTN and DL sys-
tems, e.g. (Sánchez-Ruiz, González-Calero, and Dı́az-
Agudo 2007; Sirin 2006; Gil 2005). Much work has gone
into improving the efficiency of DL reasoning approaches
for dynamic updates to the ABox (e.g. (Halashek-Wiener,
Parsia, and Sirin 2006)). This is crucial when we consider
the need to frequently change the instances in the ABoxes,
as is necessary when updating them to reflect the changing
state of the world.

Planning and acting on Jenny
An overview of our efforts to enable Jenny to accomplish
tasks within the domestic service robot domain is given in
this section. The proposed software control architecture to-
wards which we are working is depicted in Figure 2. As a
running robot system is needed at all times, stepwise devel-
opment and integration processes have been undertaken to
allow Jenny to plan and act. The planning, execution and
monitoring processes described in this section are already
integrated, have been tested in simulation, and are currently
being tested on the real robot. The modules that enable the
substitution of objects (KB, inference module, ontology to
planning domain/problem generator and control) are under
continuous development and evaluation apart from this inte-
grated system and are presented in Section Approach.

The robot platform used is a Care-O-bot 3 robot (Graf et
al. 2009), an omni-wheeled platform with a 7-degrees-of-
freedom manipulator and a three-fingered gripper, running
ROS (Quigley et al. 2009).

Procedural knowledge of how to accomplish tasks is en-
coded in Hierarchical Task Network (HTN) methods and

operators (Erol, Hendler, and Nau 1994). In large domains,
this approach allows us to compactly represent planning do-
mains by directly encoding expert knowledge about carrying
out a task. This results in high-quality plans.

The system maintains the state of the world, used for task
planning, within the JSHOP2 (Ilghami and Nau 2003) prob-
lem file. The planning domain also includes the methods and
operators necessary to decompose a number of real-world
tasks, many of which tackle the incomplete information the
system must deal with. For example, one such task is that of
tidying up a room, where the robot performs sensing actions
at various locations to identify objects which do not belong
there and which should be returned to their given place, and
then proceeds to do so. Such continual planning is often nec-
essary in the domestic service robot domain.

The individual actions of a generated plan are executed by
state machine-like execution scripts. These scripts are imple-
mented in SMACH (Field 2011). Executed actions are mon-
itored by the corresponding SMACH states (one for each op-
erator) to determine if they were successfully accomplished,
or not. The feedback from this monitoring process signals
the sequencer that the next action within a plan may be sent
if the previous action was successfully executed and verified.
Currently, actions are only executed sequentially and not in
parallel. Otherwise, depending on the particular reason for
failure and the particular actions, a number of retries may be
attempted (e.g. for grasping actions) or re-planning may be
triggered. The decision on how to proceed is encoded in the
SMACH scripts by the designer, based on experience with
such faults.

The system is able to continuously plan or re-plan, when
necessary, due to the maintenance of the planner’s prob-
lem file which constitutes the Knowledge Base (KB). Ad-
ditional components update the KB based on executed ac-
tions. Specifically, the planner was extended to provide the
grounded add and delete lists for the executed actions. This
knowledge is used to automatically update the problem file
to reflect the current state of the world during execution. In
addition, an update is triggered when planned sensing ac-
tions are executed, for example, when Jenny needs to check
how many people need to be served, or when checking for
objects which may need to be tidied up.

Additional extensions provide traces of the plan genera-
tion process. The main goal of these extensions is to provide
information about the specific causes for failing to gener-
ate a plan for a given problem. This allows a decision to be
made on whether a substitution is to be attempted or not.
The trace outputs the task network, precondition(s) which
resulted in the failed planning process and the bindings (or
lack thereof for the given variables). How this is used to find
and make substitutions is presented in the upcoming sec-
tions. The traces have had the added benefit of helping the
modeler to optimize the domain, in particular by using the
information on backtracking during the plan generation pro-
cess.

Problems and challenges
A number of hurdles need to be overcome to enable Jenny
to robustly plan and act in the real world. Many of these

PlanRob 2014 Proceedings

119

hurdles arise from the limitations of specific integrated com-
ponents and the lack of certain functionalities. We assume,
for example, that the perception capabilities of the robot al-
low it to detect objects, determine if they are clean or dirty
and, when attempting a substitution, measure the similarity
between two objects. That said, such perception tasks are in
fact not at the same level of development. Detecting whether
objects are clean or dirty, for example, is not currently pos-
sible in our system.

Other challenges are due to the perceptual anchoring
problem: “connecting, inside an artificial system, symbols
and sensor data that refer to the same physical objects in
the external world” (Coradeschi and Saffiotti 2003). Updat-
ing the KB based on sensing actions is complicated by the
uncertainty in identifying identical instances of objects. For
example, a bottle which is observed to be standing on a table
may be added to the KB before the agent proceeds to carry
out tasks elsewhere. Upon sensing the bottle again on the
table, possibly at a different position, and given that only a
part of the table may have been analyzed in the initial scene,
the decision of whether the perceived bottle is the same in-
stance of the bottle, which needs to updated with respect to
its location, or a new instance, which needs to be added to
the KB, becomes a complicated problem.

Similarly, while multiple instances of objects have
unique identifiers (labeled by the perception system),
and may be added to the KB, it is virtually impossi-
ble to identify which instance actually corresponds to
the one used in the plan unless the object was being
tracked continuously. For example, two teacups may have
been detected on a table leading four predicates to be
added to the KB: (teacup teacup7), (teacup teacup8),
(on table3 teacup7) and (on table3 teacup8). The
planner would use the first instance that satisfies all the pre-
conditions to ground the operators. When executing the ac-
tion however, as the perception system’s ability to distin-
guish one instance from another is lacking and as there is
no integrated KB which would include the global poses of
the detected objects, either teacup may end up being used.
While there has been much research on modeling knowl-
edge in robotic systems, e.g. (Elfring et al. 2013), a KB that
links the knowledge used by the various robot components
continues to be a major research focus for our group.

Such scenarios become even more complicated in a con-
tinuous planning setting. For example, during the execution
of sensing actions that have been planned to identify whether
the cups are clean or dirty, or empty or full (given that
such functionality exists), distinguishing between instances
and updating the KB accordingly becomes very problematic.
The agent can not know which of the two identical teacups
on the same table to associate the sensed property with.

Incomplete information is the status quo in domains such
as ours. The lack of information to generate a plan is a com-
mon reason for plan generation failures. For some tasks, like
that of tidying up the room, the continuous planning ap-
proach works well. However, consider the case where the
robot is in the living room and is asked to make a cup of
tea. Not knowing whether there is milk in the fridge or not
(an assertion (have milk), needed as a precondition by an

operator, may be missing from the description) may prevent
a plan from being generated. Including such details as ev-
erything within the fridge (and each cupboard and drawer in
each room) has the downside of blowing up the domain, as
well as making it more difficult to maintain a consistent and
updated KB. This is one of the motivations for constraining
the domain in our approach to include only relevant domain
information for a given problem (see next section).

A clever designer will model the domain in such a way as
to plan for the most-likely scenario and enable the system to
handle contingencies. This is precisely what we attempt to
do in our approach and is the main motivation for our work.

Robust monitoring of executed actions poses its own chal-
lenge due to the non-deterministic nature of the action out-
comes. Currently, the cheapest monitoring action is used.
This may not be as robust as necessary. For example, when
releasing a bottle on a table, the cheapest action is to check
the tactile sensors in the robot’s fingers to see if the object
is no longer being grasped. This monitoring action, however,
says nothing about whether the bottle is standing on the table
as expected, was knocked over, or if it has fallen off the table
altogether. More expensive actions would need to be taken
in order to recognize such situations. Similarly, it is not al-
ways feasible to confirm that all the preconditions of the fol-
lowing action within the plan are met. In addition, executing
monitoring actions may lead to cycles or unacceptably long
execution times. For example, in order to monitor the out-
come of an action that releases a bottle on the table through
a vision action (instead of the tactile sensors), Jenny would
need to move the arm out of view of the camera. This ad-
ditional action would itself need to be monitored. The robot
would then perform the original monitoring by detecting the
object on the table before once again having to return the
arm to its position which again would trigger a monitoring
action to confirm that it has reached its position.

Executing actions in parallel poses many additional diffi-
culties. For example, moving to a location while searching
for a given object is a behavior that is currently implemented
as a sequential plan (moving along the path and then search-
ing before moving again, and so on). Many more challenges
of this or similar kind exist.

Approach to getting the job done
In this section, we provide the details of our approach and
show how we extend the current implementation, described
above, to allow the substitution of objects to get the job done.
The work described in this section is partially reproduced
from (Awaad, Kraetzschmar, and Hertzberg 2014).

The first step involves modeling the domain such that it
supports the creation of a constrained planning problem: a
step often provided manually in robotics as the initial state of
the world is difficult to ascertain. This is also necessary due
to the large size of the complete real-world domain as there
is no way to automatically identify the relevant information
to include for a particular planning problem.

The explanations of why a plan generation process failed
are provided by the planner, through the extensions de-
scribed above, and are used by the control module (as seen
in Figure 2) to help determine if a substitution should be

PlanRob 2014 Proceedings

120

attempted. This also enables the module to expand the do-
main to include substitutable objects which should allow
the robot to get the job done – i.e. to include instances of
the same class, those with the same functional affordances
and/or those which are conceptually similar. Two illustrative
examples are also presented to exemplify the approach from
modeling to execution.

We model the domain, including functional affordances
and parts of objects, in Description Logics (DL). This al-
lows us to leverage the power of existing tools, such as the
Pellet reasoner (Sirin et al. 2007), to infer implicit informa-
tion from the explicitly modeled knowledge. It also enables
us to identify situations where we don’t have the necessary
information (as it operates under the open world assump-
tion). The value of integrating HTN planning and DL has
been shown (empirically) in (Hartanto 2011). The methods
and operators are transformed into the OWL-DL syntax as
proposed in (Hartanto 2011) to allow us to use more domain
knowledge to assert a focused planning problem.

In cases where planning fails due to a missing object, the
algorithm reasons about possible substitutes and expands the
domain to include them. Such a choice may be the most
appropriate substitution, or the cheapest one due to its spa-
tial proximity, or some weighted combination of both. The
agent, like humans in most situations, displays bounded ra-
tionality: proposing a satisfactory solution, given the limited
resources (within the environment as opposed to cognitive
resources), as opposed to the optimum one specified in the
task networks. We believe that this approach is key to our
own flexibility.

Modeling the domain
Two tasks are used to demonstrate how the domain is mod-
eled. The first task involves the robot making a cup of tea
and the second involves it watering a plant. The knowledge
base (KB) holds all models for the domains. The methods
and operators that decompose the tasks are transformed into
the OWL 2 DL format (cf. (Hartanto 2011)) and are included
in the TBox. The conceptual knowledge of the world is also
saved there. The ABox holds the knowledge specifying the
state of the world as it changes as well as the constrained
planning domain. When a new task is assigned, this infor-
mation is stored in the KB. When new objects are perceived,
or when actions change the state of the world, this too is
reflected in the KB.

The KB provides a common knowledge source for agents
and their components. The concepts of objects and locations
which are used by the motion and grasp planners originate
within this KB, although these planners also use additional
KBs (e.g. OCL in the case of the grasp planner). Providing
task-relevant information to the motion and grasp planners
is also part of the domain model.

In addition to the KB, a blackboard is used to commu-
nicate lower-level information, in particular, it is where af-
fordance cues (Fritz et al. 2006), in the form of CS quality
dimensions, are posted as the agent moves through its envi-
ronment while executing a plan. These CS might be of vary-
ing complexity (from simple color hues which would cost
very little in terms of perceptual processing to more complex

Figure 3: Sample decomposition of the tea-making task
(Awaad, Kraetzschmar, and Hertzberg 2014)

concepts such as shape which might have been picked up as
part of the plan’s execution) and would be kept in the system
for a given duration. Upon plan failure, the cues which are in
close proximity can be used to identify viable candidates for
substitutions. The same cues allow the agent to take advan-
tage of opportunities as it carries out tasks during execution.
This is what (Levihn et al. 2013) call “serendipity” in a nav-
igation domain. Exploiting this in our system is currently
future work, but it is another motivating factor for a distinct
affordance-based approach. In situations where little is truly
within the agent’s control, it makes sense to consider what
opportunities for action the environment affords, rather than
considering those which it may or may not provide. For ex-
ample, a cupboard full of glasses would guide the agent to
grasp any of them.

The tea-making task
A sample decomposition specified by methods and opera-
tors in the domain for the tea-making task is given in Figure
3. It calls for a clean teacup to be used. Substituting objects,
in the case a clean teacup cannot be found, is in essence al-
lowing other object types to bind with the ?teacup variable.
The variable types used in the planning domain are modeled
as classes in the ontology. The ontology itself builds on the
upper ontology of (Tenorth and Beetz 2009) and as such in-
cludes concepts such as SpatialThing, TemporalThing,
AgentGeneric and so on. Another part of the ontology
models those concepts necessary when converting between
OWL and JSHOP syntaxes. The rest of the ontology is mod-
eled based on the dictionary definition of objects. No ad hoc
categories are created as is often the case in other work de-
scribed in the literature.

Dictionary definitions aim to be concise and unambigu-
ous, providing information that can help perception compo-
nents to ‘search’ for the relevant cues and allow them to
trigger afforded behaviors when sensed. In addition, they
also tend to provide the functional affordances of objects.
For example, a teacup, is defined as “a cup from which
tea is drunk” (McKean 2005), and a cup is “a small, bowl-
shaped container for drinking from, typically having a han-

PlanRob 2014 Proceedings

121

dle” (McKean 2005). Therefore, dictionaries make good
sources to guide the modeling of the ontology.

The models for a cup and a teacup, for example, are given
here in Manchester OWL Syntax:

Class : Cup
SubClassOf : Container
AND (hasObjectToActOn some Liquid)
AND (hasShape some BowlShaped)
AND (isUsedFor some DrinkingFrom)
AND (hasSize only Small)
AND (canHavePart some ObjectPart)

Class : Teacup
EquivalentTo : Cup
AND (hasObjectToActOn some Tea)
AND (isUsedFor some DrinkingFrom)

Functional affordances are modeled by the isUsedFor
property. As a defined class, any instance that is a mem-
ber of the Cup class and that is used to drink tea
from will be inferred by the reasoner to be a Teacup.
These are necessary and sufficient conditions that enable
the KB to be used for inference and not simply as a
database. In addition to these properties, the Teacup con-
cept also inherits various other properties from the su-
perclass concepts (including additional isUsedFor prop-
erties). In this case, it inherits everything from the Cup
and Container superclasses and so inherits everything
described above for Cup, and two more properties inher-
ited from Container: isUsedFor some : Holding and
isUsedFor : some : Transporting.
Holding, Transporting, and DrinkingFrom are all ex-

amples of the ActionOnObject concept. This is the super-
class of all the functional affordances of objects and parts of
objects.

The isAlsoUsedFor property enables new functional af-
fordances to be learned through experience, for example, by
having been successfully substituted for a task. A bottle is
defined as “a container, typically made of glass or plastic
and with a narrow neck, used for storing drinks or other liq-
uids” (McKean 2005). Should a user drink from the bottle,
the property isAlsoUsedFor some DrinkingFrom would
be added to the Bottle concept. This would also provide a
quick way to look up which objects have previously been ap-
proved as substitutes and thus, allows the transfer and re-use
of this knowledge.

We extend the functional view of objects to our ac-
tions by modeling the reason why the action is be-
ing performed so that the motion and grasp planners
can, for example, provide suitable poses. The operator
goTo(?kettle, ForGrasping) shown in Figure 3, for ex-
ample, communicates the reason why the agent needs to go
to the kettle. This information is used by the motion planner
to take into consideration the necessary constraints in iden-
tifying the final pose to reach. These constraints may also be
influenced by the perception components (it needs to be in a
position that would allow it to localize the kettle in order to
proceed with the grasping action). In addition, a constraint-

Figure 4: Sample decomposition of the plant-watering task
(Awaad, Kraetzschmar, and Hertzberg 2014)

based system for grasping (Schneider 2013) uses the infor-
mation to verify that the action can indeed be performed us-
ing the specified object and with the specified hardware. For
example, the action grasp(?cleanerBottle,ToSpray) would
trigger the system to validate that such a task is possible.
This is important as faults can occur at any time and it is
therefore not sufficient to specify capabilities once. More-
over, these capabilities depend on the agent, the object and
the intended use, hence the use of affordances to link them.

The plant-watering domain
This scenario serves to highlight the limitation of using func-
tional affordances to make substitutions. When objects have
very specific uses, it may no longer be possible to find other
objects that share the same affordance. The opposite is also
true: When many objects share the same functional affor-
dance, they would all be equally likely to be used as sub-
stitutes for each other, although there may be some which
would make better substitutes. For example, a glass, teacup,
cup, mug, and bottle may all share the DrinkingFrom con-
cept. However, the best substitute object is very often the one
most similar to the original. In both these cases, a means to
measure the conceptual similarity between objects would al-
low the better choice to be made. This example also demon-
strates the fact that, in some situations, the plans themselves
may need to be adapted, and why goal transformation and
replanning alone are insufficient.

The domain specification for the plant-watering task
is straightforward. Figure 4 shows a sample task de-
composition specifying that a watering can should be
fetched, filled, and used to water a plant. For this sce-
nario, let us assume that a watering can is not available
and so, to avoid failing to accomplish the task, a sub-
stitution is attempted. Querying for another object which
isUsedFor Watering Plants yields no instances, and
neither does a query for isUsedFor Watering alone.

As mentioned above, the similarity measures which are
often used may not yield the results we have in mind. Hence
our use of CS. Learning the relation between these quality
dimensions and given tasks would allow the agent to choose
the most appropriate object within the KB. For example, for
watering plants, the capacity to hold water is perhaps the
most important concept, followed by the presence of a han-
dle and a spout, and in this case, the relevant query may
return the tea kettle. Such relations could then be used as

PlanRob 2014 Proceedings

122

weighting factors to determine how well an object would
substitute for another in achieving a given task (similarity is
measured as the weighted Euclidean distance). The model-
ing of the objects in CS and learning these weights is actively
being investigated.

The need to transform the plans as well can be seen in
the case a tea kettle is substituted for the watering can. Two
additional actions are necessary to remove the kettle’s lid,
and replace it during filling (as seen in Figure 3). These are
absent from the fill method for the watering can seen in
Figure 4. Once again, the solution lies in the modeling of
the methods and operators in DL.

Generating the planning problem
Having shown how we model the domain, we now look into
how to generate a constrained planning problem. By match-
ing a user’s goal to a task, we are able to query our KB for
all methods and operators which could decompose the given
task. This is one of the benefits gained from using a hierar-
chical approach.

The approach used in (Hartanto 2011) explicitly specifies,
for each method and operator, a useState variable which
contains a list of states to be included within the initial state.
For example, a navigation domain would include only rooms
with open doors in the initial state. This additional domain
knowledge is what enables the generation of a constrained
planning problem.

The planner then attempts to generate a plan and, in the
best-case scenario, succeeds. Unfortunately, things can, and
often do, go wrong. The most likely scenario is that a method
or operator requires that a precondition be met and the KB
lacks the information to determine if it is or isn’t. For exam-
ple, it contains no information on whether or not there exists
an instance of a clean cup, even if it knows that all known
instances are dirty.

Humans faced with the same situation would still attempt
to proceed with their plan and assume that they will adapt
as need be. As long as there are instances of the object,
we attempt to generate a plan. If the locations of the in-
stances are unknown, this flexibility is achieved by querying
a semantic map and creating dummy instances as needed at
the most probable location. For example, a dummy instance
of clean(cup) may be instantiated in(cupboard4) in the
ABox. This allows the planning process to proceed and in-
creases the chances of successfully getting the job done.

Assuming we have sufficient information within our KB
to determine if preconditions are met or not, and even with
the help of these dummy instances, the planner may still fail
to generate a plan due to a failed precondition. For example,
all cups may in fact be dirty. In such a case, humans would
consider either washing a cup or making a substitution that
would allow them to get the job done. They may use a mug,
for instance. Here, we assume that, if a method allowing the
robot to wash a cup while making tea was desirable to the
user, it would have been included in the tea-making method
decomposition and dirty(teacup) would be the filter con-
dition that would allow that branch to be taken. However,
in our domain, washing the cup is undesirable (because our
robot simply can’t wash the cup and the dishwasher would

take too long) and so the agent has no choice but to attempt
a substitution.

If we recall how our planning problem was generated,
the initial state is constrained and only contains Teacup in-
stances, as that is what the methods and operators specify.
The domain needs to be expanded to include the next best
possible substitute for a teacup. Then, a means to enable the
new object to bind to the variables in the existing methods
and operators needs to be found. This is necessary to handle
cases such as the one described above where filling a kettle
to water plants involves additional actions which are missing
from the original plant-watering domain.

Expanding the domain
The expansion process can be seen as climbing a “flexibility
ladder” (Awaad, Kraetzschmar, and Hertzberg 2013a) where
constraints are iteratively decreased in a structured way to
provide the flexibility with which to choose substitute ob-
jects. Substitutions are attempted when the plan generation
process has failed. The planner outputs explanations which
include a reason for the failure, such as the failed precon-
ditions, the bindings which have been made, as well as the
task network up to the point of failure.

The control module is responsible for providing the
guidelines to expand the domain. To do this, it combines
functional affordances and conceptual similarity to create
the appropriate queries for possible substitutes. If the goal
specified the use of a unique instance (e.g. my teacup), the
domain is expanded to include other instances of the class
which the given object belongs to, for example, instances
of a teacup would be included in the new problem’s initial
state. The methods and operators are adapted to use the new
object type.

If it fails to find such instances and the creation of a
dummy instance is not supported by the semantic map (due
to low probabilities), then the domain is expanded to include
instances of objects which satisfy the next set of constraints:
objects with the same functional affordance as the original
object and high conceptual similarity, for example a mug.
This seems to be in line with our own preferences.

The next higher level would remove the constraint that
the substitute should be conceptually similar, relying only
on a shared functional affordance, for example, a vacuum
flask. Should the agent not find such objects and given the
old adage that “form follows function” (the form of objects
is based on their function), conceptual similarity is then used
to identify those objects which do not share the same func-
tional affordance and yet are conceptually similar, for exam-
ple a measuring cup; or in the case of the watering can, a tea
kettle.

As previously mentioned, a direct substitution of ob-
jects may not produce a sound plan. Therefore, in addi-
tion to the objects being included in the newly expanded
domain, the methods and operators which use them are
also included. For example, the m fillFromTap(?kettle)
method with its additional steps replaces the original
m fillFromTap(?wateringCan) method.

To accomplish this, a successful decomposition of the
original task is needed. The domain expansion process there-

PlanRob 2014 Proceedings

123

fore involves two stages. In the first stage, the failed precon-
ditions/bindings are ‘corrected’ (e.g. by using a placeholder
instance of a clean teacup) and sent back to the planner so
that it may successfully generate a plan. This process may
be repeated until a plan is generated. Once a decomposition
is available, method and operators that have the substitute
object type as a variable are included in the newly expanded
domain description along with instances of the substitute ob-
ject. The preconditions (and variables) that referred to the
original object, e.g. have(?teacup), are replaced with the
substitute, e.g. have(?mug), and the planning process is trig-
gered once more to enable the substituted object to be used
in the new plan.

Challenges in getting the job done
Plan-space planning was considered, as an alternative to
HTN planning, since the plan refinement process lends it-
self to the refinement of partial plans to use the substituted
objects. Unfortunately, the system would lose the benefits
of using the hierarchical approach; not least of which is
the ability to identify and include in the problem descrip-
tion only those methods and operators which are relevant
to achieving a given task and the relevant states specified
within them in order to create the focused problem.

We have so far argued that objects (and actions) may be
substituted to allow agents to get the job done. Yet, the fact
remains that not all objects may be substituted. For exam-
ple, the key to the house may not be substituted by other
instances of a key. The same holds for locations – if the task
is to clean the dining room, and it is inaccessible, another
room should not be substituted. Identifying such cases au-
tomatically is a challenge. To help overcome this, and for
safety reasons, we rely on the user to confirm or oppose the
choice of the recommended substitute, and possibly make
his/her own recommendation.

Modeling the domain poses numerous challenges. There
is little in the way of documentation or best practices on do-
main modeling. One issue is how to model transient proper-
ties of objects. For example, a common teacup may become
“Fred’s teacup” for the duration he is using it and then revert
once more to its original status. Similarly, representing that a
cold cup of coffee no longer has the functional affordance of
drinking is tricky to model in a solid and general way. This
is not to be confused with situations where the functional
affordances do not enable an action. For example, while a
cup is for drinking from, a dirty cup or one that is currently
being used, may not offer this affordance. The same goes for
a closed door. Such situations are handled in the filter pre-
conditions of the method or operator that makes use of the
affordance.

Modeling unique objects, such as my favorite teacup – of
which only one could exist, is also slightly problematic as it
needs to be handled as a class with only one instance. For the
planner, typing the object would be the only way to specify
that the unique instance should be used, however, this typ-
ing would need to be reflected in the methods and operators
associated with making a cup of tea for a given user. Ways
to specify such constraints in a more elegant manner are be-
ing investigated. One possibility would be to add a new de-

composition as a branch to the method with a precondition
specifying the user.

As mentioned above, constraining the domain to include
relevant information for a given problem helps to maintain
tractability, but the problems associated with maintaining a
consistent and updated KB remain.

Highly-expressive query languages (QL), such as
SPARQL-DL (Sirin and Parsia 2007), allow mixed
TBox/RBox/ABox queries to be made. This is important as
querying the ABox alone is not always sufficient. Differen-
tiating between inherited properties and non-inherited prop-
erties might only be possible through mixed queries. For
example, querying for objects with the property usedFor
Holding Liquids returns instances of Container as well
as all of its descendants. It may be desirable however to have
such a query return only containers and not cups and teacups
too. We are currently investigating whether such a QL would
resolve this particular issue.

In (Hartanto 2011), an additional variable, useState, is
specified for each method and operator in OWL-DL. It con-
tains a list of states to be included within the initial state
as part of the planning problem description. For example,
a navigation domain would include only rooms with open
doors in the initial state. This additional domain knowledge
is what enables the generation of a constrained planning
problem and provides the intensional representation of the
world. It would be desirable to include this information di-
rectly within the preconditions and to simply query the KB
for all preconditions in order to create the planning problem.
This would keep to the existing JSHOP syntax and remove
the need to specify additional information. Unfortunately, it
would also lead to a tight coupling of the ontology to the
domain, making the domain less general. In addition, not all
preconditions can be queried (or queried with the expected
answer) at the start of the planning process. For example,
querying the KB to check if there are any objects at another
location that don’t belong during a tidying up task, is im-
possible without first driving there and performing the sens-
ing actions. Checking whether an object is within the dex-
trous workspace of the robot before it has even approached
it makes little sense, and would invariably return a useless
answer at that stage. Therefore, this ‘extension’ makes little
sense due to the complications arising from such fluents and
the continual planning approach.

We assume the soundness provided by the planning ap-
proach, the planner and the consistency of the planning do-
main. Therefore, one possible complication is that the con-
sistency of the planning domain may be compromised with
the transformations made to the methods and operators to
use a substituted object. We rely on user feedback to avert
problems that arise due to this issue.

To the best of our knowledge, no existing system ad-
dresses the problem we do and a comparative study is there-
fore not possible. Flexibility and robustness are rather diffi-
cult to measure empirically. While our approach would pro-
vide a way to get the job done where other approaches sim-
ply do not, the design of a meaningful and thorough evalua-
tion of the system remains a challenge.

PlanRob 2014 Proceedings

124

Conclusions and future work
The goal of our work is to identify and use a substitute for
an object which is needed to generate or execute a plan,
but is either unknown during planning or cannot be found
during execution, and thereby leads to a failure. This paper
presented the approach, demonstrated how it addresses the
problem, and motivated and explained the various design de-
cisions. The mechanisms described also allow the agent to
behave opportunistically.

The OWL-DL ontology includes the objects, parts and
functional affordances which allow us to evaluate the sys-
tem. The investigation of the possibility to autonomously,
or semi-autonomously, acquire these objects and functional
affordances from online sources would be useful, but is out-
side the scope of this work.

In addition to our work on substituting objects, we
have also investigated action substitution in the form of
affordance-based action abstraction (Höller 2013) where the
agent learns which actions (as opposed to objects, as dis-
cussed in this paper) may be substituted and executed suc-
cessfully in a given case. The preconditions and effects are
learned and represented in a (CS) framework. Behaviors
with similar effects on an object are clustered together to
form abstract operators which are used during the planning
process. During execution, the context (i.e. the state be-
fore an action is executed) is compared to previous execu-
tion runs (previous contexts) and the behavior which is pre-
dicted to have the highest success rate is instantiated and
performed. In the case of failures at execution time, the
actions are substituted by instances from the same cluster
(those with the next-highest success prediction). This work
was evaluated in the OpenRAVE (Diankov 2010) simula-
tor. While we have based our formalization of conceptual
spaces as vector spaces to measure the similarity of actions,
contexts, and outcomes on that of (Raubal 2004), we have
not yet addressed the measuring of similarity between two
objects.

We continue to extend our domestic service planning do-
main to include more tasks. We are in the process of migrat-
ing from using SMACH to ROS Decision Making for a more
robust execution and monitoring framework.

We are deriving metamodels of JSHOP2 in OWL-DL and
in Ecore (The Eclipse Foundation 2013) which allow us to
perform model-to-model transformations between these two
representations. Model-to-model transformations would al-
low us to either model the planning domain in the JSHOP2
representation (i.e. JSHOP2 grammar) and then automati-
cally generate the corresponding OWL-DL representation
or vice versa. Additionally, the model-driven approach al-
lows us to cleanly separate the JSHOP2 domain models and
the model-to-model transformations from their implemen-
tation in a general-purpose programming language such as
Java or C++. This implementation would be automatically
generated.

In our ongoing research, we are continuing to investigate
the representation of objects in CS and the specification,
then learning, of the objects’ quality dimensions’ weights
for a given task. We are also looking into the means to man-
age profiles and preferences.

Acknowledgments.
Iman Awaad gratefully acknowledges financial support pro-
vided by a PhD scholarship from the Graduate Institute of
Bonn-Rhein-Sieg University. The authors thank Elizaveta
Shpieva, Daniel Höller, Christian Tiefenau and Sven Schnei-
der for their help in implementing some of the ideas pre-
sented here. The authors thank Sven Schneider and the re-
viewers for their valuable feedback.

References
Awaad, I.; Kraetzschmar, G. K.; and Hertzberg, J. 2013a.
Affordance-based reasoning in robot task planning. In Plan-
ning and Robotics (PlanRob) Workshop at 23rd Intlerna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Awaad, I.; Kraetzschmar, G. K.; and Hertzberg, J. 2013b.
Socializing robots: The role of functional affordances. In
International Workshop on Developmental Social Robotics
(DevSoR): Reasoning about Human, Perspective, Affor-
dances and Effort for Socially Situated Robots at the
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS).
Awaad, I.; Kraetzschmar, G. K.; and Hertzberg, J. 2014.
Finding ways to get the job done: An affordance-based ap-
proach. In Proccedings of the 24th International Conference
on Planning and Scheduling (ICAPS).
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. Journal of Artificial Intelligence Research
11:1–94.
Coradeschi, S., and Saffiotti, A. 2003. An introduction to
the anchoring problem. Robotics and Autonomous Systems
43:85–96.
Cox, M. T., and Zhang, C. 2007. Mixed-initiative goal ma-
nipulation. AI Magazine 28(2):62–74.
Diankov, R. 2010. Automated Construction of Robotic Ma-
nipulation Programs. Ph.D. Dissertation, Carnegie Mellon
University, Robotics Institute.
Elfring, J.; van den Dries, S.; van de Molengraft, M.; and
Steinbuch, M. 2013. Semantic world modeling using prob-
abilistic multiple hypothesis anchoring. Robotics and Au-
tonomous Systems 61(2):95–105.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN plan-
ning: Complexity and expressivity. In In Proceedings of
the Twelfth National Conference on Artificial Intelligence
(AAAI-94), 1123–1128. AAAI Press.
Field, T. 2011. SMACH documentation. Online at
http://www.ros.org/wiki/smach/Documentation.
Fritz, G.; Paletta, L.; Dorffner, G.; Breithaupt, R.; and Rome,
E. 2006. Learning predictive features in affordance based
robotic perception systems. In Intelligent Robots and Sys-
tems, 2006 IEEE/RSJ International Conference on, 3642–
3647.
Gärdenfors, P. 2004. How to Make the Semantic Web More
Semantic. In Proceedings of the Third International Confer-
ence (FOIS 2004), 17–34.

PlanRob 2014 Proceedings

125

Gibson, J. J. 1979. The ecological approach to visual per-
ception. Houghton Mifflin (Boston).
Gil, Y. 2005. Description logics and planning. AI Magazine
26(2):73–84.
Graf, B.; Reiser, U.; Hägele, M.; Mauz, K.; and Klein, P.
2009. Robotic Home Assistant Care-O-bot R© 3 - Product
Vision and Innovation Platform. In Advanced Robotics and
its Social Impacts (ARSO), 2009 IEEE Workshop on, 139–
144.
Haddawy, P.; Haddawy, P.; Hanks, S.; and Hanks, S. 1993.
Utility models for goal-directed decision-theoretic planners.
Computational Intelligence 14.
Halashek-Wiener, C.; Parsia, B.; and Sirin, E. 2006. De-
scription logic reasoning with syntactic updates. In Meers-
man, R., and Tari, Z., eds., On the Move to Meaningful Inter-
net Systems 2006: CoopIS, DOA, GADA, and ODBASE, vol-
ume 4275 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg. 722–737.
Hartanto, R., ed. 2011. A Hybrid Deliberative Layer for
Robotic Agents: Fusing DL Reasoning with HTN Planning
in Autonomous Robots. Berlin, Heidelberg: Springer-Verlag.
Hartson, H. R. 2003. Cognitive, physical, sensory, and func-
tional affordances in interaction design. Behaviour & IT
22(5):315–338.
Höller, D. 2013. Affordance-based action abstraction in
robot planning. Master’s thesis, Bonn-Rhein-Sieg Univer-
sity of Applied Sciences.
Ilghami, O., and Nau, D. S. 2003. A General Approach
to Synthesize Problem-Specific Planners. Technical Report
CS-TR-4597, UMIACS-TR-2004-40, University of Mary-
land.
Levihn, M.; Kaelbling, L. P.; Lozano-Perez, T.; and Stilman,
M. 2013. Foresight and reconsideration in hierarchical plan-
ning and execution. In IEEE/RSJ - International Confer-
ence on Intelligent Robots and Systems (IROS): Workshop
on Cognitive Assistive Systems.
McKean, E., ed. 2005. The New Oxford American Dictio-
nary. Oxford University Press.
Norman, D. 2002. The psychology of everyday things. Basic
Books (New York).
Off, D., and Zhang, J. 2012. Continual HTN planning and
acting in open-ended domains - considering knowledge ac-
quisition opportunities. In ICAART, 16–25.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T. B.;
Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an open-
source robot operating system. In ICRA Workshop on Open
Source Software.
Raubal, M. 2004. Formalizing conceptual spaces. In
Varzi, A., and Vieu, L., eds., Proceedings of the 3rd Interna-
tional Conference on Formal Ontology in Information Sys-
tems (FOIS 2004), 153–164.
Sánchez-Ruiz, A. A.; González-Calero, P. A.; and Dı́az-
Agudo, B. 2007. Planning with description logics and syn-
tactic updates. In Salido, M. A., and Fdez-Olivares, J., eds.,
Planning, Scheduling and Constraint Satisfaction (CAEPIA
2007 Workshop), 140–150. Universidad de Salamanca.

Scala, E. 2013. Reconfiguration and Replanning for Ro-
bust Execution of Plans Involving Continuous and Consum-
able Resources. Ph.D. Dissertation, Universita’ degli Studi
di Torino.
Schneider, S. 2013. Design of a declarative language for
task-oriented grasping and tool-use with dextrous robotic
hands. Master’s thesis, Bonn-Rhein-Sieg University of Ap-
plied Sciences, St. Augustin, Germany.
Sirin, E., and Parsia, B. 2007. SPARQL-DL: SPARQL
Query for OWL-DL. In Proceedings of the Third Inter-
national Workshop on OWL: Experiences and Directions
(OWLED ’07).
Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; and Katz,
Y. 2007. Pellet: A practical owl-dl reasoner. Web Semant.
5(2):51–53.
Sirin, E. 2006. Combining Description Logic Reasoning
with AI Planning for Composition of Web Services. Ph.D.
Dissertation, University of Maryland, College Park, Mary-
land.
Tenorth, M., and Beetz, M. 2009. KnowRob - knowledge
processing for autonomous personal robots. In Intelligent
Robots and Systems (IROS), 2009 IEEE/RSJ International
Conference on, 4261–4266.
The Eclipse Foundation. 2013. Eclipse Mod-
eling Framework Project Core. Online at
http://www.eclipse.org/modeling/emf/?project=emf.
Weld, D. S. 1994. An introduction to least commitment
planning. AI Magazine.

PlanRob 2014 Proceedings

126

Integrating Probabilistic Graphical Models and Declarative Programming for
Knowledge Representation and Reasoning in Robotics

Shiqi Zhang
Department of Computer Science

Texas Tech University, USA
shiqi.zhang6@gmail.com

Mohan Sridharan
Department of Computer Science

Texas Tech University, USA
mohan.sridharan@ttu.edu

Michael Gelfond
Department of Computer Science

Texas Tech University, USA
michael.gelfond@ttu.edu

Jeremy Wyatt
School of Computer Science

University of Birmingham, UK
jlw@cs.bham.ac.uk

Abstract

This paper describes an architecture that combines the com-
plementary strengths of declarative programming and proba-
bilistic graphical models to enable robots to represent, reason
with, and learn from, qualitative and quantitative descriptions
of uncertainty and knowledge. An action language is used
for the low-level (LL) and high-level (HL) system descrip-
tions in the architecture, and the definition of recorded histo-
ries in the HL is expanded to allow prioritized defaults. For
any given goal, tentative plans created in the HL using default
knowledge and commonsense reasoning are implemented in
the LL using probabilistic algorithms, with the corresponding
observations used to update the HL history. Tight coupling
between the two levels enables automatic selection of rele-
vant variables and generation of suitable action policies in
the LL for each HL action, and supports reasoning with vio-
lation of defaults, noisy observations and unreliable actions in
large and complex domains. The architecture is evaluated in
simulation and on physical robots moving objects to specific
places in indoor domains; the benefit on robots is a reduc-
tion in task execution time of 39% compared with a purely
probabilistic, but still hierarchical, approach.

1 Introduction
Mobile robots deployed in complex domains frequently
have incomplete domain knowledge, and receive far more
raw data from sensors than is possible to process in real-
time. The descriptions of knowledge and uncertainty ob-
tained from different sources may complement or contra-
dict each other, and may have different degrees of relevance
to current or future tasks. Widespread use of robots thus
poses fundamental knowledge representation and reasoning
challenges—robots need to represent, learn from, and reason
with, qualitative and quantitative descriptions of knowledge
and uncertainty. Towards this objective, our architecture
combines the knowledge representation and non-monotonic
logical reasoning capabilities of declarative programming
with the uncertainty modeling capabilities of probabilistic
graphical models. The architecture consists of two tightly
coupled levels and has the following key features:

1. An action language is used for the HL and LL sys-
tem descriptions and the definition of recorded history
is expanded in the HL to allow prioritized defaults.
2. For any assigned objective, tentative plans are cre-

ated in the HL using default knowledge and common-
sense reasoning, and implemented in the LL using prob-
abilistic algorithms, with the corresponding observa-
tions adding suitable statements to the HL history.
3. For each HL action, abstraction and tight coupling

between the LL and HL system descriptions enables au-
tomatic selection of relevant variables and generation of
a suitable action policy in the LL.

In this paper, the HL domain representation is translated into
an Answer Set Prolog (ASP) program, while the LL domain
representation is translated into partially observable Markov
decision processes (POMDPs). The novel contributions of
the architecture, e.g., allowing histories with prioritized de-
faults, tight coupling between the two levels, and the resul-
tant automatic selection of the relevant variables in the LL,
support reasoning with violation of defaults, noisy observa-
tions and unreliable actions in large and complex domains.
The architecture is grounded and evaluated in simulation and
on physical robots moving desired objects to specific places
in indoor domains.

2 Related Work
Probabilistic graphical models such as POMDPs have been
used to represent knowledge and plan sensor input process-
ing, navigation and interaction for robots (Hoey et al. 2010;
Rosenthal and Veloso 2012). However, these formulations
(by themselves) make it difficult to perform commonsense
reasoning, e.g., default reasoning and non-monotonic logi-
cal reasoning, especially with information not directly rele-
vant to tasks at hand. In parallel, research in classical plan-
ning has provided many algorithms for knowledge repre-
sentation and logical reasoning (Ghallab, Nau, and Traverso
2004), but these algorithms require substantial prior knowl-
edge about the domain, task and the set of actions. Many
of these algorithms also do not support merging of new, un-

PlanRob 2014 Proceedings

127

reliable information from sensors and humans with the cur-
rent beliefs in a knowledge base. Answer Set Programming
(ASP), a non-monotonic logic programming paradigm, is
well-suited for representing and reasoning with common-
sense knowledge (Baral 2003; Gelfond 2008). An interna-
tional research community has been built around ASP, with
applications such as reasoning in simulated robot house-
keepers and for representing knowledge extracted from nat-
ural language human-robot interaction (Chen et al. 2012;
Erdem, Aker, and Patoglu 2012). However, ASP does not
support probabilistic analysis, whereas a lot of information
available to robots is represented probabilistically to quanti-
tatively model the uncertainty in sensor input processing and
actuation in the real world.

Researchers have designed cognitive architectures (Laird,
Newell, and Rosenbloom 1987; Langley and Choi 2006;
Talamadupula et al. 2010), and developed algorithms that
combine deterministic and probabilistic algorithms for task
and motion planning on robots (Hanheide et al. 2011;
Kaelbling and Lozano-Perez 2013). Recent work has also
integrated ASP and POMDPs for non-monotonic logical in-
ference and probabilistic planning on robots (Zhang, Srid-
haran, and Bao 2012). Some examples of principled algo-
rithms developed to combine logical and probabilistic rea-
soning include probabilistic first-order logic (Halpern 2003),
first-order relational POMDPs (Sanner and Kersting 2010),
Markov logic network (Richardson and Domingos 2006),
Bayesian logic (Milch et al. 2006), and a probabilistic ex-
tension to ASP (Baral, Gelfond, and Rushton 2009). How-
ever, algorithms based on first-order logic for probabilisti-
cally modeling uncertainty do not provide the desired ex-
pressiveness for capabilities such as default reasoning, e.g.,
it is not always possible to express uncertainty and degrees
of belief quantitatively, and assigning high probability val-
ues to default knowledge may not make best use of such
knowledge (see experimental results in Section 4.2). Other
algorithms based on logic programming that support prob-
abilistic reasoning do not support one or more of the de-
sired capabilities: reasoning as in causal Bayesian networks;
incremental addition of probabilistic information; reason-
ing with large probabilistic components; and dynamic ad-
dition of variables with different ranges; see (Baral, Gel-
fond, and Rushton 2009). The architecture described in this
paper is a step towards achieving these capabilities. It ex-
ploits the complementary strengths of declarative program-
ming and probabilistic graphical models to represent, reason
with, and learn from qualitative and quantitative descriptions
of knowledge and uncertainty, enabling robots to automati-
cally plan sensing and actuation in larger domains than was
possible before.

3 KRR Architecture
This section describes our architecture’s HL and LL domain
representations. The syntax, semantics and representation
of the corresponding transition diagrams are described in an
action language AL (Gelfond and Kahl 2014). Action lan-
guages are formal models of parts of natural language used
for describing transition diagrams. AL has a sorted signa-
ture containing three sorts: statics, fluents and actions.

Statics are domain properties whose truth values cannot be
changed by actions, while fluents are properties whose truth
values are changed by actions. Actions are defined as a set
of elementary actions that can be executed in parallel. A do-
main property p or its negation ¬p is a domain literal. AL
allows three types of statements:

a causes lin if p0, . . . , pm (Causal law)
l if p0, . . . , pm (State constraint)
impossible a0, . . . ,ak if p0, . . . , pm

(Executability condition)

where a is an action, l is a literal, lin is a inertial fluent literal,
and p0, . . . , pm are domain literals. The causal law states, for
instance, that action a causes inertial fluent literal lin if the
literals p0, . . . , pm hold true. A collection of statements of
AL forms a system/domain description.

As an illustrative example used throughout this paper, we
will consider a robot that has to move objects to specific
places in an indoor domain. The domain contains four spe-
cific places: office, main library, aux library, and kitchen,
and a number of specific objects of the sorts: textbook,
printer and kitchenware.

3.1 HL domain representation
The HL domain representation consists of a system descrip-
tion DH and histories with defaults H . DH consists of a
sorted signature and axioms used to describe the HL tran-
sition diagram τH . The sorted signature: ΣH = 〈O,F ,P〉
is a tuple that defines the names of objects, functions, and
predicates available for use in the HL. The sorts in our ex-
ample are: place, thing, robot, and object; object and
robot are subsorts of thing. Robots can move on their own,
but objects cannot move on their own. The sort object has
subsorts such as textbook, printer and kitchenware. The
fluents of the domain are defined in terms of their arguments:

loc(thing, place) (1)
in hand(robot,ob ject)

The first predicate states the location of a thing; and the sec-
ond predicate states that a robot has an object.These two
predicates are inertial fluents subject to the law of inertia,
which can be changed by an action. The actions in this do-
main include:

move(robot, place) (2)
grasp(robot,ob ject)
putdown(robot,ob ject)

The dynamics of the domain are defined using the following
causal laws:

move(robot,Pl) causes loc(robot,Pl) (3)
grasp(robot,Ob) causes in hand(robot,Ob)
putdown(robot,Ob) causes ¬in hand(robot,Ob)

state constraints:

loc(Ob,Pl) if loc(robot,Pl), in hand(robot,Ob) (4)
¬loc(T h,Pl1) if loc(T h,Pl2), Pl1 6= Pl2

PlanRob 2014 Proceedings

128

and executability conditions:

impossible move(robot,Pl) if loc(robot,Pl) (5)
impossible A1, A2, if A1 6= A2.

impossible grasp(robot,Ob) if loc(robot,Pl1),
loc(Ob,Pl2),Pl1 6= Pl2

impossible grasp(robot,Ob) if in hand(robot,Ob)
impossible putdown(robot,Ob) if ¬in hand(robot,Ob)

The top part of Figure 1 shows some state transitions in the
HL; nodes include a subset of fluents (robot’s position) and
actions are the arcs between nodes. Although DH does not
include the costs of executing actions, these are included in
the LL (see Section 3.2).

Histories with defaults A recorded history of a dynamic
domain is usually defined as a collection of records of the
form obs(f luent,boolean,step) and hpd(action,step). The
former states that a specific fluent was observed to be true or
false at a given step of the domain’s trajectory, and the latter
states that a specific action happened (or was executed by the
robot) at that step. In this paper, we expand on this view by
allowing histories to contain (possibly prioritized) defaults
describing the values of fluents in their initial states. A de-
fault d(X) stating that in the typical initial state elements of
class c satisfying property b also have property p is repre-
sented as:

d(X) =

de f ault(d(X))
head(d(X), p(X))
body(d(X),c(X))
body(d(X),b(X))

(6)

where the literal in the “head” of the default, e.g., p(X)
is true if all the literals in the “body” of the default, e.g.,
b(X) and c(X), hold true; see (Gelfond and Kahl 2014)
for formal semantics of defaults. In this paper, we abbre-
viate obs(f , true,0) and obs(f , f alse,0) as init(f , true) and
init(f , f alse) respectively.

Example 1 [Example of defaults]
Consider the following statements about the locations of
textbooks in the initial state in our illustrative example. Text-
books are typically in the main library. If a textbook is not
there, it is in the auxiliary library. If a textbook is checked
out, it can be found in the office. These defaults can be rep-
resented as:

de f ault(d1(X))
head(d1(X), loc(X ,main library))
body(d1(X), textbook(X))

(7)

de f ault(d2(X))
head(d2(X), loc(X ,aux library))
body(d2(X), textbook(X))
body(d2(X),¬loc(X ,main library))

(8)

de f ault(d3(X))
head(d3(X), loc(X ,o f f ice))
body(d3(X), textbook(X))
body(d3(X),¬loc(X ,main library))
body(d3(X),¬loc(X ,aux library))

(9)

A default such as “kitchenware are usually in the kitchen”
may be represented in a similar manner. We first present
multiple informal examples to illustrate reasoning with
these defaults; Definition 3 (below) will formalize this rea-
soning. For textbook tb1, history H1 containing the above
statements should entail: holds(loc(tb1,main library),0).
A history H2 obtained from H1 by adding an ob-
servation: init(loc(tb1,main library), f alse) ren-
ders the first default inapplicable; hence H2 should
entail: holds(loc(tb1,aux library),0). A his-
tory H3 obtained from H2 by adding an obser-
vation: init(loc(tb1,aux library), f alse) entails:
holds(loc(tb1,o f f ice),0).

Consider history H4 obtained by adding observation:
obs(loc(tb1,main library), f alse,1) to H1. This observa-
tion should defeat the default d1 in Equation 7 because if
this default’s conclusion were true in the initial state, it
would also be true at step 1 (by inertia), which contradicts
our observation. The book tb1 is thus not in the main li-
brary initially. The second default will conclude that this
book is initially in the auxiliary library—the inertia ax-
iom will propagate this information and H4 will entail:
holds(loc(tb1,aux library),1).

The definition of entailment relation can now be given with
respect to a fixed system description DH . We start with the
notion of a state of transition diagram τH of DH compati-
ble with a description I of the initial state of history H .
We use the following terminology. We say that a set S of
literals is closed under a default d if S contains the head of
d whenever it contains all literals from the body of d and
does not contain the literal contrary to d’s head. S is closed
under a constraint of DH if S contains the constraint’s head
whenever it contains all literals from the constraint’s body.
Finally, we say that a set U of literals is the closure of S if
S ⊆U , U is closed under constraints of DH and defaults of
H , and no proper subset of U satisfies these properties.

Definition 1 [Compatible initial states]
A state σ of τH is compatible with a description I of the
initial state of history H if:

1. σ satisfies all observations of I ,
2. σ contains the closure of the union of statics

of DH and the set { f : init(f , true) ∈ I } ∪ {¬ f :
init(f , f alse) ∈I }.

Let Ik be the description of the initial state of history Hk.
States in Example 1 compatible with I1, I2, I3 must then
contain {loc(tb1,main library)}, {loc(tb1,aux library)},
and {loc(tb1,o f f ice)} respectively. There are multiple such
states, which differ by the location of robot. Since I1 = I4
they have the same compatible states. Next, we define mod-
els of history H , i.e., paths of the transition diagram τH of
DH compatible with H .

Definition 2 [Models]
A path P of τH is a model of history H with description I
of its initial state if there is a collection E of init statements
such that:

1. If init(f , true) ∈ E then ¬ f is the head of one of
the defaults of I . Similarly, for init(f , f alse).

PlanRob 2014 Proceedings

129

2. The initial state of P is compatible with the de-
scription: IE = I ∪E.

3. Path P satisfies all observations in H .
4. There is no collection E0 of init statements which

has less elements than E and satisfies the conditions
above.

We will refer to E as an explanation of H . Models of
H1, H2, and H3 are paths consisting of initial states com-
patible with I1, I2, and I3—the corresponding explana-
tions are empty. However, in the case of H4, the situation
is different—the predicted location of tb1 will be different
from the observed one. The only explanation of this discrep-
ancy is that tb1 is an exception to the first default. Adding
E = {init(loc(tb1,main library), f alse)} to I4 will resolve
the problem.

Definition 3 [Entailment and consistency]
• Let H n be a history of length n, f be a fluent, and
0≤ i≤ n be a step of H n. We say that H n entails a state-
ment Q = holds(f , i) (¬holds(f , i)) if for every model P
of H n, fluent literal f (¬ f) belongs to the ith state of P.
We denote the entailment as H n |= Q.
• A history which has a model is said to be consistent.

It can be shown that histories from Example 1 are consistent
and that our entailment captures the corresponding intuition.

Reasoning with HL domain representation The HL do-
main representation (DH and H) is translated into a pro-
gram in CR-Prolog, which incorporates consistency restor-
ing rules in ASP (Balduccini and Gelfond 2003; Gelfond
and Kahl 2014); specifically, we use the knowledge rep-
resentation language SPARC that expands CR-Prolog and
provides explicit constructs to specify objects, relations, and
their sorts (Balai, Gelfond, and Zhang 2013). ASP is a
declarative language that can represent recursive definitions,
defaults, causal relations, special forms of self-reference,
and other language constructs that occur frequently in non-
mathematical domains, and are difficult to express in clas-
sical logic formalisms (Baral 2003). ASP is based on the
stable model semantics of logic programs, and builds on
research in non-monotonic logics (Gelfond 2008). A CR-
Prolog program is thus a collection of statements describing
domain objects and relations between them. The ground lit-
erals in an answer set obtained by solving the program rep-
resent beliefs of an agent associated with the program1; pro-
gram consequences are statements that are true in all such
belief sets. Algorithms for computing the entailment rela-
tion of AL and related tasks such as planning and diagnos-
tics are thus based on reducing these tasks to computing an-
swer sets of programs in CR-Prolog. First, DH and H are
translated into an ASP program Π(DH ,H) consisting of di-
rect translation of causal laws of DH , inertia axioms, closed
world assumption for defined fluents, reality checks, records
of observations, actions and defaults from H , and special
axioms for init:

holds(F,0)← init(F, true) (10)
¬holds(F,0)← init(F, f alse)

1SPARC uses DLV (Leone et al. 2006) to generate answer sets.

In addition, every default of I is turned into an ASP rule:

holds(p(X),0)← c(X),holds(b(X),0), not ¬holds(p(X),0)
(11)

and a consistency-restoring rule:

¬holds(p(X),0) +←c(X),holds(b(X),0) (12)

which states that to restore consistency of the program one
may assume that the conclusion of the default is false. For
more details about the translation, CR-rules and CR-Prolog,
please see (Gelfond and Kahl 2014).

Proposition 1 [Models and Answer Sets]
A path P = 〈σ0,a0,σ1, . . . ,σn−1,an〉 of τH is a model of his-
tory H n iff there is an answer set S of a program Π(DH ,H)
such that:

1. A fluent f ∈ σi iff holds(f , i) ∈ S,
2. A fluent literal ¬ f ∈ σi iff ¬holds(f , i) ∈ S,
3. An action e ∈ ai iff occurs(e, i) ∈ S.

The proposition reduces computation of models of H to
computing answer sets of a CR-Prolog program. This propo-
sition allows us to reduce the task of planning to comput-
ing answer sets of a program obtained from Π(DH ,H) by
adding the definition of a goal, a constraint stating that the
goal must be achieved, and a rule generating possible future
actions of the robot.

3.2 LL domain representation
The LL system description DL consists of a sorted signa-
ture and axioms that describe a transition diagram τL. The
sorted signature ΣL of action theory describing τL includes
the sorts from signature ΣH of HL with two additional sorts
room and cell, which are subsorts of sort place. Their ele-
ments satisfy the static relation part of(cell, room). We also
introduce the static neighbor(cell, cell) to describe neigh-
borhood relation between cells. Fluents of ΣL include those
of ΣH , an additional inertial fluent: searched(cell, object)—
robot searched a cell for an object—and two defined fluents:
found(object, place)—an object was found in a place—and
continue search(room, object)—the search for an object is
continued in a room.

The actions of ΣL include the HL actions that are viewed
as being represented at a higher resolution, e.g., movement
is possible to specific cells. The causal law describing the
effect of move may be stated as:

move(robot,Y) causes {loc(robot,Y) : neighbor(Y,X)}
if loc(robot,X) (13)

where X ,Y are cells. This causal law states that moving from
a cell can cause the robot to be in one of the neighboring
cells2. The LL includes an additional action search that en-
ables robots to search for objects in cells; the corresponding

2This is a special case of a non-deterministic causal law defined
in extensions of AL with non-boolean fluents, i.e., functions whose
values can be elements of arbitrary finite domains.

PlanRob 2014 Proceedings

130

loc(rob1, office)

HL

LL

move(rob1, kitchen)

move(rob1, office)

loc(rob1, c3)

loc(rob1, c4)

move(rob1, c2) move(rob1, c1) move(rob1, c4) move(rob1, c3)

loc(rob1, c1)

loc(rob1, c2)

move(rob1, c4)

move(rob1, c2)

r1 (office) r2 (kitchen)

loc(rob1, kitchen)

Figure 1: Illustrative example of state transitions in the HL
and LL.

causal laws and constraints may be written as:

search(cell,ob ject) causes searched(cell,ob ject) (14)
f ound(ob ject,cell) if searched(cell,ob ject),

loc(ob ject,cell)
f ound(ob ject,room) if part o f (cell,room),

f ound(ob ject,cell)
continue search(room,ob ject) if ¬ f ound(ob ject,room),

part o f (cell,room),¬searched(cell,ob ject)

We also introduce a defined fluent failure that holds iff the
object under consideration is not in the room that the robot
is searching—this fluent is defined as:

f ailure(ob ject,room) if loc(robot,room), (15)
¬continue search(room,ob ject),¬ f ound(ob ject,room)

This completes the action theory that describes τL. The
states of τL can be viewed as extensions of states of τH
by physically possible fluents and statics defined in the lan-
guage of LL. Moreover, for every HL state-action-state tran-
sition 〈σ ,a,σ ′〉 and every LL state s compatible with σ (i.e.,
σ ⊂ s), there is a path in the LL from s to some state com-
patible with σ ′.

Unlike the HL system description in which effects of ac-
tions and results of observations are always accurate, the
action effects and observations in the LL are only known
with some degree of probability. The state transition func-
tion T : S×A× S′→ [0,1] defines the probabilities of state
transitions in the LL. Due to perceptual limitations of the
robot, only a subset of the fluents are observable in the LL;
we denote this set of fluents by Z. Observations are elements
of Z associated with a probability, and are obtained by pro-
cessing sensor inputs using probabilistic algorithms. The
observation function O : S×Z→ [0,1] defines the probabil-
ity of observing specific observable fluents in specific states.
Functions T and O are computed using prior knowledge, or
by observing the effects of specific actions in specific states
(see Section 4.1).

States are partially observable in the LL, and we introduce
(and reason with) belief states, probability distributions over
the set of states. Functions T and O describe a probabilis-
tic transition diagram defined over belief states. The initial
belief state is represented by B0, and is updated iteratively
using Bayesian inference:

Bt+1(st+1) ∝ O(st+1,ot+1)∑
s

T (s,at+1,st+1) ·Bt(s) (16)

The LL system description includes a reward specification
R : S×A×S′→ℜ that encodes the relative cost or value of
taking specific actions in specific states. Planning in the LL
then involves computing a policy that maximizes the reward
over a planning horizon. This policy maps belief states to
actions: π : Bt 7→ at+1. We use a point-based approximate
algorithm to compute this policy (Ong et al. 2010). In our
illustrative example, an LL policy computed for HL action
move is guaranteed to succeed, and that the LL policy com-
puted for HL action grasp considers three LL actions: move,
search, and grasp. Plan execution in the LL corresponds to
using the computed policy to repeatedly choose an action
in the current belief state, and updating the belief state af-
ter executing that action and receiving an observation. We
henceforth refer to this algorithm as “POMDP-1”.

Unlike the HL, history in the LL representation consists
of observations and actions over one time step; the current
belief state is assumed to be the result of all information
obtained in previous time steps (first-order Markov assump-
tion). In this paper, the LL domain representation is trans-
lated automatically into POMDP models, i.e., specific data
structures for representing the components of DL (described
above) such that existing solvers can be used to obtain action
policies.

We observe that the coupling between the LL and the HL
has some key consequences. First, for any HL action, the
relevant LL variables are identified automatically, improv-
ing the computational efficiency of computing the LL poli-
cies. Second, if LL actions cause different fluents, these flu-
ents are independent. Finally, although defined fluents are
crucial in determining what needs to be communicated be-
tween the levels of the architecture, they themselves need
not be communicated.

3.3 Control loop
Algorithm 1 describes the architecture’s control loop3. First,
the LL observations obtained in the current location add
statements to the HL history, and the HL initial state (sH

init)
is communicated to the LL (line 1). The assigned task deter-
mines the HL goal state (sH

goal) for planning (line 2). Plan-
ning in the HL provides a sequence of actions with deter-
ministic effects (line 3).

In some situations, planning in the HL may provide multi-
ple plans, e.g., when the object that is to be grasped can be in
one of multiple locations, tentative plans may be generated
for the different hypotheses regarding the object’s location.
In such situations, all the HL plans are communicated to the

3We leave the proof of the correctness of this algorithm as fu-
ture work.

PlanRob 2014 Proceedings

131

Algorithm 1: Control loop of architecture
Input: The HL and LL domain representations, and the

specific task for robot to perform.

LL observations reported to the HL history; HL initial1

state (sH
init) communicated to LL.

Assign goal state sH
goal based on task.2

Generate HL plan(s).3
if multiple HL plans exist then4

Send plans to the LL, select plan with lowest5
(expected) action cost and communicate to the
HL.

end6
if HL plan exists then7

for aH
i ∈ HL plan: i ∈ [1,n] do8

Pass aH
i and relevant fluents to the LL.9

Determine initial belief state over the relevant10
LL state space.
Generate the LL action policy.11

while aH
i not completed and aH

i achievable do12
Execute an action based on the LL action13
policy.
Make an LL observation and update belief14
state.

end15
LL observations and action outcomes add16
statements to the HL history.
if results unexpected then17

Perform diagnostics in the HL.18
end19
if HL plan invalid then20

Replan in the HL (line 3).21
end22

end23

end24

LL and compared based on their costs, e.g., the expected
time to execute the plans. The plan with the least expected
cost is communicated to the HL (lines 4-6).

If an HL plan exists, actions are communicated one at a
time to the LL along with the relevant fluents (line 9). For
HL action aH

i , the communicated fluents are used to auto-
matically identify the relevant LL variables and set the ini-
tial belief state, e.g., a uniform distribution (line 10). An
LL action policy is computed (line 11) and used to execute
actions and update the belief state until aH

i is achieved or
inferred to be unachievable (lines 12-15). The outcome of
executing the LL policy, and the LL observations, add to
the HL history (line 16). For instance, if defined fluent fail-
ure is true for object ob1 and room rm1, the robot reports:
obs(loc(ob1,rm1), f alse) to the HL history. If the results
are unexpected, diagnosis is performed in the HL (lines 17-
19); we assume that the robot is capable of identifying these
unexpected outcomes. If the HL plan is invalid, a new plan
is generated (lines 20-22); else, the next action in the HL
plan is executed.

4 Experimental setup and results

This section describes the experimental setup and results of
evaluating the proposed architecture in indoor domains.

4.1 Experimental setup

The architecture was evaluated in simulation and on phys-
ical robots. To provide realistic observations in the simu-
lator, we included object models that characterize objects
using probabilistic functions of features extracted from im-
ages captured by a camera on physical robots (Li and Srid-
haran 2013). The simulator also uses action models that re-
flect the motion of the robot. Specific instances of objects
of different classes were simulated in a set of rooms. The
experimental setup also included an initial training phase in
which the robot repeatedly executed the different movement
actions and applied the visual input processing algorithms
on images with known objects. A human participant pro-
vided some of the ground truth data, e.g., labels of objects
in images. A comparison of the expected and actual out-
comes was used to define the functions that describe the
probabilistic transition diagram (T , O) in the LL, while the
reward specification is defined by also considering the com-
putational time required by different visual processing and
navigation algorithms.

In each trial of the experimental results summarized be-
low, the robot’s goal is to move specific objects to specific
places; the robot’s location, target object, and locations of
objects are chosen randomly in each trial. A sequence of ac-
tions extracted from an answer set obtained by solving the
SPARC program of the HL domain representation provides
an HL plan. If a robot (robot1) that is in the office is asked
to fetch a textbook (tb1) from the main library, the HL plan
has the following sequence of actions:

move(robot1,main library)
grasp(robot1, tb1)
move(robot1,o f f ice)
putdown(robot1, tb1)

The LL action policies for each HL action are generated
by solving the appropriate POMDP models using the APPL
solver (Ong et al. 2010; Somani et al. 2013). In the LL, the
location of an object is considered to be known with cer-
tainty if the belief (of the object’s occurrence) in a grid cell
exceeds a threshold (0.85).

We experimentally compared our architecture, with the
control loop described in Algorithm 1, henceforth referred
to as “PA”, with two alternatives: (1) POMDP-1 (see Sec-
tion 3.2); and (2) POMDP-2, which revises POMDP-1 by
assigning high probability values to defaults to bias the ini-
tial belief states. These comparisons evaluate two hypothe-
ses: (H1) PA enables a robot to achieve the assigned goals
more reliably and efficiently than using POMDP-1; (H2) our
representation of defaults improves reliability and efficiency
in comparison with not using default knowledge or assign-
ing high probability values to defaults.

PlanRob 2014 Proceedings

132

10
0

10
1

10
2

10
3

20

40

60

80

100

Number of cells

S
u

c
c
e
ss

 (
%

)

 PA

 POMDP−1

Figure 2: Ability to successfully achieve the assigned goal,
as a function of the number of cells in the domain; with a
limit on the time to compute policies PA significantly in-
creases accuracy in comparison with just POMDP-1 as the
number of cells in the domain increases.

4.2 Experimental Results
To evaluate H1, we first compared PA with POMDP-1 in
a set of trials in which the robot’s initial position is known
but the position of the object to be moved is unknown. The
solver used in POMDP-1 is given a fixed amount of time
to compute action policies. Figure 2 summarizes the abil-
ity to successfully achieve the assigned goal, as a function
of the number of cells in the domain. Each point in Fig-
ure 2 is the average of 1000 trials, and we set (for ease of
interpretation) each room to have four cells. PA significantly
improves the robot’s ability to achieve the assigned goal in
comparison with POMDP-1. As the number of cells (i.e.,
size of the domain) increases, it becomes computationally
difficult to generate good POMDP action policies which,
in conjunction with incorrect observations (e.g., false pos-
itive sightings of objects) significantly impacts the ability to
successfully complete the trials. PA, on the other hand, fo-
cuses the robot’s attention on relevant regions of the domain
(e.g., specific rooms and cells). As the size of the domain
increases, a large number of plans of similar cost may still
be generated which, in conjunction with incorrect observa-
tions, may affect the robot’s ability to successfully complete
the trials—the impact is, however, much less pronounced.

Next, we computed the time taken by PA to generate a
plan as the size of the domain increases. Domain size is
characterized based on the number of rooms and the num-
ber of objects in the domain. We conducted three sets of
experiments in which the robot reasons with: (1) all avail-
able knowledge of domain objects and rooms; (2) only
knowledge relevant to the assigned goal—e.g., if the robot
knows an object’s default location, it need not reason about
other objects and rooms in the domain to locate this ob-
ject; and (3) relevant knowledge and knowledge of an addi-
tional 20% of randomly selected domain objects and rooms.
Figure 3 summarizes these results. We observe that PA
supports the generation of appropriate plans for domains
with a large number of rooms and objects. We also ob-
serve that using only the knowledge relevant to the goal sig-
nificantly reduces the planning time—such knowledge can

0 50 100
0

2

4

6

8

10

P
la

n
n

in
g

 t
im

e

Rooms: 10

0 50 100
0

5

10

15

20

Number of objects

Rooms: 20

0 50 100
0

10

20

30

40

50

60
Rooms: 40

0 50 100
0

50

100

150

200

250

300
Rooms: 80

 All knowledge

 20% knowledge

 Relevant knowledge

Figure 3: Planning time as a function of the number of
rooms and the number of objects in the domain—PA scales
to larger number of rooms and objects.

10 20 30 40 50 60 70 80 90
0

50

100

150

Number of rooms

A
v

e
ra

g
e
 n

o
.

o
f

a
c
ti

o
n

s

 PA*

 PA

Figure 4: Effect of using default knowledge—principled
representation of defaults significantly reduces the number
of actions (and thus time) for achieving assigned goal.

be automatically selected using the relationships included
in the HL system description. Furthermore, if we only
use a probabilistic approach (POMDP-1), it soon becomes
computationally intractable to generate a plan for domains
with many objects and rooms; these results are not shown
in Figure 3—see (Sridharan, Wyatt, and Dearden 2010;
Zhang, Sridharan, and Washington 2013).

To evaluate H2, we first conducted multiple trials in which
PA was compared with PA∗, a version that does not include
any default knowledge. Figure 4 summarizes the average
number of actions executed per trial as a function of the
number of rooms in the domain—each sample point is the
average of 10000 trials. The goal in each trial is (as before)
to move a specific object to a specific place. We observe that
the principled use of default knowledge significantly reduces
the number of actions (and thus time) required to achieve
the assigned goal. Next PA was compared with POMDP-2,
which assigns high probability values to default information
and suitably revises the initial belief state. We observe that
the effect of assigning a probability value to defaults is arbi-
trary depending on multiple factors: (a) the numerical value
chosen; and (b) whether the ground truth matches the default

PlanRob 2014 Proceedings

133

main_office

kitchen
robotics_labd_lab

study_corner

main_libraryaux_library

(a) Domain map (b) Robot platform

Figure 5: Subset of the map of the second floor of our department; specific places are labeled as shown, and used during
planning to achieve the assigned goals. The robot platform used in the experimental trials is also shown.

information. For instance, if a large probability is assigned
to the default knowledge that books are typically in the li-
brary, but the book the robot has to move is an exception to
the default (e.g., a cookbook), it takes a significantly large
amount of time for POMDP-2 to revise (and recover from)
the initial belief. PA, on the other hand, enables the robot to
revise initial defaults and encode exceptions to defaults.

Robot Experiments: In addition to the trials in simulated
domains, we compared PA with POMDP-1 on a wheeled
robot over 50 trials conducted on two floors of our depart-
ment building. This domain includes places in addition to
those included in our illustrative example, e.g., Figure 5(a)
shows a subset of the domain map of the third floor of our
department, and Figure 5(b) shows the wheeled robot plat-
form. Such domain maps are learned by the robot using laser
range finder data, and revised incrementally over time. Ma-
nipulation by physical robots is not a focus of this work.
Therefore, once the robot is next to the desired object, it
currently asks for the object to be placed in the extended
gripper; future work will include existing probabilistic algo-
rithms for manipulation in the LL.

For experimental trials on the third floor, we considered
15 rooms, which includes faculty offices, research labs,
common areas and a corridor. To make it feasible to use
POMDP-1 in such large domains, we used our prior work
on a hierarchical decomposition of POMDPs for visual sens-
ing and information processing that supports automatic be-
lief propagation across the levels of the hierarchy and model
generation in each level of the hierarchy (Sridharan, Wy-
att, and Dearden 2010; Zhang, Sridharan, and Washington
2013). The experiments included paired trials, e.g., over
15 trials (each), POMDP-1 takes 1.64 as much time as PA
(on average) to move specific objects to specific places. For
these paired trials, this 39% reduction in execution time pro-
vided by PA is statistically significant: p-value = 0.0023 at
the 95% significance level.

Consider a trial in which the robot’s objective is to bring
a specific textbook to the place named study corner. The

robot uses default knowledge to create an HL plan that
causes the robot to move to and search for the textbook in
the main library. When the robot does not find this text-
book in the main library after searching using a suitable LL
policy, replanning in the HL causes the robot to investigate
the aux library. The robot finds the desired textbook in the
aux library and moves it to the target location. A video of
such an experimental trial can be viewed online:
http://youtu.be/8zL4R8te6wg

5 Conclusions
This paper described a knowledge representation and rea-
soning architecture for robots that integrates the comple-
mentary strengths of declarative programming and proba-
bilistic graphical models. The system descriptions of the
tightly coupled high-level (HL) and low-level (LL) domain
representations are provided using an action language, and
the HL definition of recorded history is expanded to allow
prioritized defaults. Tentative plans created in the HL us-
ing defaults and commonsense reasoning are implemented
in the LL using probabilistic algorithms, generating obser-
vations that add suitable statements to the HL history. In
the context of robots moving objects to specific places in
indoor domains, experimental results indicate that the archi-
tecture supports knowledge representation, non-monotonic
logical inference and probabilistic planning with qualitative
and quantitative descriptions of knowledge and uncertainty,
and scales well as the domain becomes more complex. Fu-
ture work will further explore the relationship between the
HL and LL transition diagrams, and investigate a tighter
coupling of declarative logic programming and probabilis-
tic reasoning for robots.

Acknowledgments
The authors thank Evgenii Balai for making modifications to
SPARC to support some of the experiments reported in this
paper. This research was supported in part by the U.S. Of-
fice of Naval Research (ONR) Science of Autonomy Award

PlanRob 2014 Proceedings

134

N00014-13-1-0766. Opinions, findings, and conclusions are
those of the authors and do not necessarily reflect the views
of the ONR.

References
Balai, E.; Gelfond, M.; and Zhang, Y. 2013. Towards Answer Set
Programming with Sorts. In International Conference on Logic
Programming and Nonmonotonic Reasoning.
Balduccini, M., and Gelfond, M. 2003. Logic Programs with
Consistency-Restoring Rules. In Logical Formalization of Com-
monsense Reasoning, AAAI Spring Symposium Series, 9–18.
Baral, C.; Gelfond, M.; and Rushton, N. 2009. Probabilistic Rea-
soning with Answer Sets. Theory and Practice of Logic Program-
ming 9(1):57–144.
Baral, C. 2003. Knowledge Representation, Reasoning and Declar-
ative Problem Solving. Cambridge University Press.
Chen, X.; Xie, J.; Ji, J.; and Sui, Z. 2012. Toward Open Knowledge
Enabling for Human-Robot Interaction. Journal of Human-Robot
Interaction 1(2):100–117.
Erdem, E.; Aker, E.; and Patoglu, V. 2012. Answer Set Program-
ming for Collaborative Housekeeping Robotics: Representation,
Reasoning, and Execution. Intelligent Service Robotics 5(4).
Gelfond, M., and Kahl, Y. 2014. Knowledge Representation, Rea-
soning and the Design of Intelligent Agents. Cambridge University
Press.
Gelfond, M. 2008. Answer Sets. In Frank van Harmelen and
Vladimir Lifschitz and Bruce Porter., ed., Handbook of Knowledge
Representation. Elsevier Science. 285–316.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Planning:
Theory and Practice. San Francisco, USA: Morgan Kaufmann.
Halpern, J. 2003. Reasoning about Uncertainty. MIT Press.
Hanheide, M.; Gretton, C.; Dearden, R.; Hawes, N.; Wyatt, J.;
Pronobis, A.; Aydemir, A.; Gobelbecker, M.; and Zender, H. 2011.
Exploiting Probabilistic Knowledge under Uncertain Sensing for
Efficient Robot Behaviour. In International Joint Conference on
Artificial Intelligence.
Hoey, J.; Poupart, P.; Bertoldi, A.; Craig, T.; Boutilier, C.; and
Mihailidis, A. 2010. Automated Handwashing Assistance for
Persons with Dementia using Video and a Partially Observable
Markov Decision Process. Computer Vision and Image Under-
standing 114(5):503–519.
Kaelbling, L., and Lozano-Perez, T. 2013. Integrated Task and
Motion Planning in Belief Space. International Journal of Robotics
Research 32(9-10).
Laird, J. E.; Newell, A.; and Rosenbloom, P. 1987. SOAR: An
Architecture for General Intelligence. Artificial Intelligence 33(3).
Langley, P., and Choi, D. 2006. An Unified Cognitive Architecture
for Physical Agents. In The Twenty-first National Conference on
Artificial Intelligence (AAAI).
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri, S.;
and Scarcello, F. 2006. The DLV System for Knowledge Represen-
tation and Reasoning. ACM Transactions on Computational Logic
7(3):499–562.
Li, X., and Sridharan, M. 2013. Move and the Robot will Learn:
Vision-based Autonomous Learning of Object Models. In Interna-
tional Conference on Advanced Robotics.
Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D. L.; and
Kolobov, A. 2006. BLOG: Probabilistic Models with Unknown
Objects. In Statistical Relational Learning. MIT Press.

Ong, S. C.; Png, S. W.; Hsu, D.; and Lee, W. S. 2010. Planning
under Uncertainty for Robotic Tasks with Mixed Observability. In-
ternational Journal of Robotics Research 29(8):1053–1068.
Richardson, M., and Domingos, P. 2006. Markov Logic Networks.
Machine learning 62(1).
Rosenthal, S., and Veloso, M. 2012. Mobile Robot Planning to
Seek Help with Spatially Situated Tasks. In National Conference
on Artificial Intelligence.
Sanner, S., and Kersting, K. 2010. Symbolic Dynamic Program-
ming for First-order POMDPs. In National Conference on Artifi-
cial Intelligence (AAAI).
Somani, A.; Ye, N.; Hsu, D.; and Lee, W. S. 2013. DESPOT: On-
line POMDP Planning with Regularization. In Advances in Neural
Information Processing Systems (NIPS).
Sridharan, M.; Wyatt, J.; and Dearden, R. 2010. Planning to See:
A Hierarchical Aprroach to Planning Visual Actions on a Robot
using POMDPs. Artificial Intelligence 174:704–725.
Talamadupula, K.; Benton, J.; Kambhampati, S.; Schermerhorn,
P.; and Scheutz, M. 2010. Planning for Human-Robot Teaming
in Open Worlds. ACM Transactions on Intelligent Systems and
Technology 1(2):14:1–14:24.
Zhang, S.; Sridharan, M.; and Bao, F. S. 2012. ASP+POMDP: Inte-
grating Non-monotonic Logical Reasoning and Probabilistic Plan-
ning on Robots. In International Joint Conference on Development
and Learning and on Epigenetic Robotics.
Zhang, S.; Sridharan, M.; and Washington, C. 2013. Active Visual
Planning for Mobile Robot Teams using Hierarchical POMDPs.
IEEE Transactions on Robotics 29(4).

PlanRob 2014 Proceedings

135

Planning a Robot’s Search for Multiple Residents
in a Retirement Home Environment

Markus Schwenk1,2 and Tiago Vaquero1 and Goldie Nejat1 and Kai O. Arras2
1Autonomous Systems and Biomechatronics Laboratory

Department of Mechanical and Industrial Engineering, University of Toronto, Canada
2Social Robotics Laboratory

Department of Computer Science, University of Freiburg, Germany
markus.schwenk@mail.utoronto.ca, {tvaquero, nejat}@mie.utoronto.ca, arras@informatik.uni-freiburg.de

Abstract

In this paper we address the planning problem of a robot
searching for multiple residents in a retirement home
in order to remind them of an upcoming multi-person
recreational activity before a given deadline. We in-
troduce a novel Multi-User Schedule Based (M-USB)
Search approach which generates a high-level plan to
maximize the number of residents that are found within
the given time frame. From the schedules of the resi-
dents, the layout of the retirement home environment
as well as direct observations by the robot, we obtain
spatio-temporal likelihood functions for the individual
residents. The main contribution of our work is the de-
velopment of a novel approach to compute a reward
to find a search plan for the robot using: 1) the like-
lihood functions, 2) the availabilities of the residents,
and 3) the order in which the residents should be found.
Simulations were conducted on a floor of a real retire-
ment home to compare our proposed M-USB Search
approach to a Weighted Informed Walk and a Ran-
dom Walk. Our results show that the proposed M-USB
Search finds residents in a shorter amount of time by
visiting fewer rooms when compared to the other ap-
proaches.

1 Introduction
The health and quality of life of older adults living in long-
term care facilities can be improved by these individuals en-
gaging in stimulating recreational activities such as playing
games, playing musical instruments, doing crossword puz-
zles, or reading (Menec 2003). These types of activities can
delay age-related health decline (Bath and Deeg 2005) and
prevent social isolation (Findlay 2003), which could poten-
tially decrease the risk of dementia in elder adults (Wilson
et al. 2007). However, the lack of these activities in elder-
care facilities (PriceWaterCoopers LLP 2001) exists due to a
shortage of healthcare workers (Sharkey 2008), which could
be aggravated in the near future due to the rapid growth of
the elderly population (Centre for Health Workforce Stud-
ies 2006). Socially assistive robots have been shown to be
a promising technology to assist the elderly and to sup-
port caregivers in eldercare facilities (Oida et al. 2011;
McColl, Louie, and Nejat 2013).

This is an extended version of our paper in AAAI 2014

Our research focuses on the development of socially as-
sistive robots that can autonomously organize and facilitate
group-based recreational activities for the elderly. In this
paper, we address the planning problem of a robot search-
ing for multiple residents in a retirement home environment
in order to invite and remind them of an upcoming multi-
person recreational activity. The robot’s objective is to max-
imize the number of residents it finds in a given time frame
before the activity starts. During the search, the robot has to
consider that the residents have their own schedules which
contain appointments in different rooms of the environment,
during which the residents are not always available for in-
teraction with the robot. Based on these schedules, the robot
also considers the order in which the residents have to be
found to avoid searching for unavailable people. We intro-
duce a novel Multi-User Schedule Based (M-USB) Search
method which plans the robot’s search for a set of non-static
residents in a structured environment within a given time
frame based on the residents’ daily schedules.

Robotic search for people in structured environments has
been investigated in the literature for different scenarios.
For example, in (Elinas, Hoey, and Little 2003), the robot
HOMER was designed to deliver messages one at a time to
a particular person in a workspace environment. The robot
stored a likelihood function for each person’s location and
performed a best-first search. The search consisted of visit-
ing the nearest location to the robot based on the likelihood
function for a particular person. If the person was not found,
the robot iteratively visited other rooms until either the per-
son was found or all regions had been visited. For these sce-
narios, a person was assumed to be at a static location in the
environment. The search for multiple static targets in an in-
door environment has been addressed in (Lau, Huang, and
Dissanayake 2005). A dynamic programming approach was
used to plan the search on a topological ordered graph, us-
ing a probability distribution which models the probability
of meeting one of the targets in a given room at a given time.
In (Tipaldi and Arras 2011), a robot’s ability to blend itself
into the workflows of people within human office environ-
ments was addressed. The authors developed a spatial Pois-
son process which was learned from observations of people
to represent spatio-temporal patterns of human activities. A
Markov Decision Process (MDP) Model was used to gener-
ate a robot’s path through the environment to maximize the

PlanRob 2014 Proceedings

136

probability of encountering a person. In (Lau, Huang, and
Dissanayake 2006), the problem of a robot searching for a
moving target within an indoor environment has been ad-
dressed. The Optimal Searcher Path (OSP) Problem, which
models the search for static targets as sequentially search-
ing in adjacent equal-sized parts of an environment, was ex-
tended to: 1) handle different room sizes, and 2) to search
for a single moving target whose movements were modelled
as a Markov Process. A probability distribution over the dif-
ferent regions was used to express the knowledge about the
target’s location. A branch and bound method was proposed
in order to plan a sequence of regions the robot had to visit
in order to maximize the robot’s chances of finding the target
in a given amount of time.

Uniquely our work addresses the robotic search problem
of finding a specific set of multiple moving residents in a
retirement home setting considering their individual daily
schedules. Such schedule-based multi-user search for non-
static people has not yet been addressed in the literature.
To address this problem, we obtain spatio-temporal likeli-
hood functions for every resident of the retirement home.
We propose an approach to generate these resident likeli-
hood functions as a composition of: 1) the residents’ sched-
ules, 2) direct observations by the robot in the environment,
and 3) the layout of the environment. To do this, a weighting
is applied to the above sources of information based on their
time-dependent certainties of predicting a person’s location.
The main contribution of our work is the development of
an MDP planner that uses a novel approach to compute the
reward to determine the robot’s search plan for finding mul-
tiple residents using: 1) the resident likelihood functions, 2)
the availabilities of the individual residents, and 3) the order
in which the residents should be found.

The paper is organized as follows. In section 2 we intro-
duce and formalize the M-USB Search approach. We de-
scribe the resident likelihood functions and define an MDP
Model and an algorithm which generates the robot’s search
plan. In section 3 we describe the simulated experiments as
well as the experiment results and discussion. Concluding
remarks are presented in section 4.

Environment. We model the environment as a set of re-
gions R ∈ RE (e.g. rooms, corridors, common areas) in
which the search takes place. For each person p ∈ P, where
P is the set of all residents who are living in the environment,
we assign one region of the environment as solely that per-
son’s: his/her private room. For each region, a room-class
C = class(R) ∈ CE is assigned, e.g. “Common Room”,
“Bedroom”, “Corridor”, or “Dining Hall”. The room-classes
depend on the activities the residents engage in when they
are in these regions. The room-class Cprivate ∈ CE in par-
ticular is the room-class which contains all private rooms.
We define regions(C) to contain all regions R with C =
class(R).

2 M-USB Search
The Multi-User Schedule Based Search presented in this
work is a planning procedure that provides a plan P∗ for a
robot to find as many people as possible from a given set of

Figure 1: The map of the simulated retirement home with the
rooms: dining hall (A), games room (B), TV-room (C), gar-
den (D), nurse station (E), family visit room (F) and shower
rooms (G). All other rooms are private rooms and corridors.
The color of the regions indicates the current reward for
each region (red: high, white: low) of an example scenario.
The current generated plan has the robot (R) driving to the
TV-room (blue trajectory) where it starts a local search. (H)
shows the crossable edges (doors) in the scaled portion of
the environment.

target people in a given order within a defined time frame.
The retirement home environment is defined to consist of
several different regions which represent the topology of the
building (e.g., rooms and corridors). The plan P∗ will in-
clude a sequence of actions which model the whole search
process. The possible actions are: drive which lets the robot
travel from one region to another; rest which lets the robot
rest for a short period of time; and search in which the robot
executes a low-level search procedure in a specific region
(e.g., frontier exploration, random walk). We use backwards
induction to compute P∗ based on a Markov Decision Pro-
cess which models the search using the aforementioned ac-
tions. To obtain a reward for this MDP, we setup a likeli-
hood function for each person which models the probability
that the person is in a specific region at a given time of the
day. The likelihood functions of the individual residents are
combined to generate a reward which respects the target res-
idents’ availability constraints (obtained from their sched-
ules) and the order in which the residents should be found.

This paper will present the computation of the plan P∗.
This plan is to be executed by a mobile socially assistive
robot that can navigate the environment as well as detect
and recognize individual residents. Once a specific person
is found, the robot greets the person and verbally provides
a reminder to him/her. We assume a local-search routine al-
ready exists on the robot which allows the robot to search for
people in a given region. Once a person has been detected,

PlanRob 2014 Proceedings

137

the robot has to compute a new plan (replanning).

Problem Setup
Each region can be represented as a polygon. The edges of
this polygon can be marked as “crossable” if there is no
physical border at an edge (e.g., if the edge represents a
doorway). We define neighbours(R) to be all regions which
share a crossable edge with R, i.e., a person or a robot can
move from R to any region Rn ∈ neighbours(R) without
entering a third region. Figure 1 shows an example environ-
ment.

Schedules and Availability of Residents. For each person
p ∈ P, we consider a schedule which defines all of his/her
appointments on a given day. An appointment has a start
time and an end time, and is assigned to a region R in which
it takes place. We model the availability of each person p ∈
P as function βp(t) such that βp(t) = 1 if p is available at
time t and βp(t) = 0 otherwise.

Motion Model. We assume a simple motion model for the
residents. We model the probability pm(R1,R2, p,∆t) that
person p has moved from region R1 to region R2 in the time
frame ∆t. This probability can be obtained from the per-
son’s speed vp and the distance d(R1,R2) between the two
regions. We define the set Rr(R, p,∆t) which contains all
regions which the person could have entered:

Rr(R, p,∆t) = {R′ | d(R,R′) ≤ vp ·∆t} . (1)

The value of pm(R1,R2, p,∆t) can then be obtained as:

pm(R1,R2, p,∆t) =

{
µ, if R2 ∈ Rr(R1, p,∆t)
0, otherwise

(2)
with µ = |Rr(R1, p,∆t)|−1. This motion model considers
all possible movements of the resident within the environ-
ment.

Search Query. When the robot receives a query q, it is to
find a set of residents p ∈ Pq ⊆ P within a given deadline
tmax. Query q also specifies the order in which the residents
should be found.

Setting up Resident Likelihood Functions
For each resident p ∈ P, we can set up a likelihood function
L(p,R, t) which represents the probability that p is in region
R at time t. This individual likelihood function is composed
of four different weighted likelihood functions Lk(p,R, t),
with k ∈ {s, lkrl, l, env}. These likelihood functions are:
Ls which is obtained by analyzing the resident’s schedule;
Llkrl which is based on the last known location of the res-
ident; Ll which describes the resident’s behaviour that the
robot has learned; and Lenv which can be obtained from
the structure of the environment. We will discuss these like-
lihood functions in the following sections. As convention,
we define 0 ≤ Lk ≤ 1 and

∑
R
Lk(p,R, t) = 1 for each

person p ∈ P and each likelihood function Lk. A value
Lk(p,R, t) = 1 means that the person is in R at time t while
Lk(p,R, t) = 0 indicates that the person cannot be in the
region at this time.

Schedule Analyzer. We model Ls(p,R, t) using the
schedule of resident p. Assuming that with a probability of
0 ≤ pa ≤ 1 the person participates in an appointment de-
fined in his/her schedule, we set Ls(p,R, t) = pa for the
time frame of the appointment for the region assigned to
this particular appointment, and Ls(p,R, t) = (1−pa)

|RE |−1 for
all other regions. For any time tk between two appointments
where the last appointment ends at time tk−1 and the next
appointment starts at tk+1, we define αk−1 = tk+1−tk

tk+1−tk−1

and αk+1 = tk−tk−1

tk+1−tk−1
. If there is no next appointment, we

set αk+1 = 0 and αk−1 = 1. If there is no previous ap-
pointment, αk+1 = 1 and αk−1 = 0. We can then define the
likelihood function to be:

Ls(p,R, tk) =

αk−1 ·
∑

R′∈RE

Ls(p,R′, tk−1) · pm(R′,R, p, tk − tk−1)+

αk+1 ·
∑

R′∈RE

Ls(p,R′, tk+1) · pm(R,R′, p, tk+1 − tk)

(3)

Last Known Resident Location. To be able to take into
account when the robot last detected a person earlier that
day who it is currently searching for, we set up a database
which stores the time tpd and region Rpd of the last detection
of person p. Using the motion model of the resident, this
information can be used to generate Llkrl(p,R, t):

Llkrl(p,R, t) = pm(Rpd,R, p, t− t
p
d). (4)

If the person has not been previously detected, we assign a
uniform distribution Llkrl(p,R, t) = 1

|RE | .

Learned Behaviour. A person’s behaviour, which is not
defined in the schedule (e.g., a person often takes a walk in
the garden after lunch) but which has been learned by the
robot based on its observations is also stored by the robot
as Ll(p,R, tk), where tk indicates a time step. If no data
from the previous days exist, we assign a uniform distribu-
tion Ll(p,R, tk) = 1

|RE | . During the day the robot remem-
bers whether it detected person p in time step tk in region R.
It saves this information in g(p,R, tk) which is either 1 when
the person has been detected or 0 otherwise. We define:

f(p, tk) =
∑
R∈RE

g(p,R, tk) (5)

to be the number of regions in which person p has been de-
tected in time step tk. At the end of the day the updated
likelihood function evolves to:

L′l(p,R, tk) = α · g(p,R, tk)

f(p, tk)
+ (1− α) · Ll(p,R, tk) (6)

with 0 ≤ α ≤ 1 if f(p, tk) ≥ 1 and L′l(p,R, tk) =
Ll(p,R, tk) otherwise.

Environment. The topology of the environment can be
used to generate Lenv(p,R, t). We obtain Cpprivate by re-
moving the private room of p from Cprivate and define a

PlanRob 2014 Proceedings

138

0

0.2

0.4

0.6

0.8

1

10:30 am 11:30 am 12:30 pm

w
ei

g
h
t

time

Last Known Resident Location
Schedule

Learned Behaviour
Environment

(a) Weights for one Person

0

0.2

0.4

0.6

0.8

1

10:30 am 11:30 am 12:30 pm

p
ri

o
ri

ty

time

A B C D

(b) Priority Function.

Figure 2: (a) Weights for one person during the time frame of 10:30 am to 12:30 pm. At 12:00 pm the person has a one-hour
appointment which gives the schedule a higher weight at this time. (b) Priority function for four residents who are all available
in the considered time frame.

new room-class Cp
′

private for the resident p, containing only
his/her private room. We define Cp to be:

Cp = CE \ {Cprivate}
⋃{

Cpprivate,C
p′

private

}
. (7)

For each room-class C ∈ Cp, we define a probability pC(p)
to be the probability that person p is in one of the rooms
in regions(C). Assuming that a person will spend most of
her/his spare time either in her/his private room or in the
common rooms, we assign higher values for Cp

′

private and
the room-class containing the common rooms. We apply the
constraint: ∑

C∈Cp

pC(p) = 1. (8)

We define Lenv(p,R, t) to be:

Lenv(p,R, t) =
pclass(R)(p)

|regions(class(R))|
(9)

with class(R) ∈ Cp. Lenv(p,R, t) is constant over the day.

Pre-computation. Since the schedules, the topology of
the environment, and the learned behaviour remain the same
once they are provided to the robot at the beginning of a day,
Ls(p,R, t), Ll(p,R, t), and Lenv(p,R, t) can be computed
before a search query is received. Llkrl(p,R, t) is computed
dynamically when the query is received.

Combining the Likelihood Functions for one Person.
The four likelihood functions Lk(p,R, t) can be combined
to generate L(p,R, t). As the certainties with which the four
likelihood functions can predict a resident’s location differ
(e.g., the Last Known Resident Location will have high un-
certainty when the person has not been detected for several

hours, and the Schedule Analyzer will have high certainty
when the person has an appointment), a weighting func-
tion can be used. The certainty of one likelihood function
Lk(p,R, t) can be represented by its variance:

Var(Lk(p,R, t)) =
1

|RE |
·
∑
R∈RE

[
Lk(p,R, t)− 1

|RE |

]2
.

(10)
For each likelihood functionLk, we introduce the weightwk
at time t:

wk(t) =
Var(Lk(p,R, t))∑
k

Var(Lk(p,R, t))
(11)

where
∑
k

wk(t) = 1. The final combined likelihood function

is defined to be:

L(p,R, t) =
∑
k

wk(t) · Lk(p,R, t). (12)

Figure 2(a) shows an example of four weights used for one
resident. Figure 3 shows examples for the different likeli-
hood functions as well as the combined likelihood function
for one resident.

Modelling the Transition System
The objective is to find a sequence of actions the robot
should execute in order to find as many persons as possible
in Pq within the given deadline tmax. We model the search
as a Markov Decision Process. We discretize time using time
steps of duration ∆t which is the execution time for each
individual action. The M-USB Search is modelled to consist
of three possible action sequences that the robot can perform

PlanRob 2014 Proceedings

139

(a) 10:30 am (b) 10:31 am (c) 7:00 am - 7:00 pm (d) 11:58 am

(e) 12:00 pm (f) 11:56 am (g) 11:58 am (h) 12:00 pm

Figure 3: Different likelihood functions for one resident (dark red: high likelihood, white: low likelihood). (a, b) Llkrl(p,R, t)
three and four minutes after the person has been detected in the Games Room (A) at 10:27 am, (c) Lenv(p,R, t) for the resident
living in D. B and C are common rooms. (d, e) Ls(p,R, t) when the resident has an appointment in the Dining Hall (A) at
12 pm, and (f-h) the combined resident likelihood function L(p,R, t) before and during the appointment.

in each region: 1) rest in which the robot rests for one time
step, 2) search in which the robot performs a local search
within the region, and 3) drive in which the robot drives
to one of the neighbouring regions. Since the time it takes to
perform a local search within a region depends on the geom-
etry of the region, we introduce Tsk to represent the number
of time steps ∆t a search within region Rk takes. For region
Rl ∈ neighbours(Rk), we define Tdk,l as being the number
of time steps the transition between Rk and Rl takes.

The states s ∈ S of the MDP represent the states of the
robot, which depend on the region the robot is in and the
current action sequence it is performing. We define the fol-
lowing sets of states Ssk and Sdk to contain all states during
the search and drive sequences for each region Rk ∈ RE :

1. Ssk = {searchtk} with 0 ≤ t < Tsk − 1, and

2. Sdk =
⋃

Rl

{
drivetk,l

}
with 0 ≤ t < Tdk,l − 1, Rl ∈

neighbours(Rk).

In addition to the aforementioned states within the search
and drive sequences, we define the state s′k for each region
Rk as the robot’s state: 1) after a region has been entered
by any drive sequence, 2) after the rest action has been ex-
ecuted, 3) after the full search sequence of Rk has been ex-
ecuted, or 4) when the robot is creating a new plan when
being in Rk. The set of all possible states for region Rk is
defined to be:

Sk = {s′k} ∪ Ssk ∪ Sdk. (13)

We define the following robot actions α for each region
Rk ∈ RE :

1. Ark = {restk},
2. Ask = {searchtk} with 0 ≤ t < Tsk, and

3. Adk =
⋃

Rl

{
drivetk,l

}
with 0 ≤ t < Tdk,l, Rl ∈

neighbours(Rk).

For each region Rk, the set of all possible actions is:

Ak = Ark ∪ Ask ∪ Adk. (14)

Transitions between the states describe how a robot state
changes when it performs a particular action. In particular,
the successor succ(α) of action α is defined as the state
which follows α. The overall transition system is shown in
Figure 4.

For each action a time-dependent reward R(α, t) is as-
signed. This reward is evaluated to compute the plan P∗
and depends on the region in which the action is per-
formed. Therefore, we define a region to each action: R =
region(α). For each action α in Ark and Ask, we define
region(α) = Rk. For each pair of neighbouring regions
Rk and Rl, we define Td,crossk,l to be the number of time
steps after which the region Rl is entered during a drive se-
quence from Rk to Rl. We then define region(α) = Rk if
t < Td,crossk,l and region(α) = Rl if t ≥ Td,crossk,l for each
drive action α.

Resident Detection Probability of Actions. Assuming
that during a search the probability that a person who is
in the searched region is detected is different from the
probability that a person is detected while the robot is

PlanRob 2014 Proceedings

140

drive
[Td

l1,k−2]
l1,k

. . .

drive
[Td

ln,k−2]
ln,k

s′k

search0k . . . search
[Ts

k−2]
k

drive0k,l1
. . . s′l1

. . .

drive0k,ln
. . . s′ln

drive
[Td

l1,k−1]
l1,k

drive
[Td

ln,k−1]
ln,k

restk

search0k

search1k search
[Ts

k−2]
k

search
[Ts

k−1]
k

drive0k,l1

drive0k,ln

drive1k,l1

drive1k,ln

drive
[Td

k,l1
−1]

k,l1

drive
[Td

k,ln
−1]

k,ln

Figure 4: The transition system for an arbitrary region k with neighbours l1, . . . , ln. Being in state s′k, the robot can either rest
one time step, start a full search sequence or a drive sequence to one of the neighbouring regions li with i = 1, . . . , n which
leads to state s′li . Search sequences and the rest action in region k lead to s′k.

just driving between two regions or resting in one region,
we define an attractivity δ(α) with 0 ≤ δ(α) ≤ 1 for
each action α. This attractivity depends on the geometry
of the region R = region(α). We define the attractivity
δ(αs) = A(region(αs))

−1 for each search action αs with
A(region(αs)) being the area of region(αs). We define
δ(αr) = a · δ(αs) with 0 < a ≤ 1 for each rest action
and δ(αd) = b · δ(αs) with 0 ≤ b ≤ 1 for each drive action.
If the robot detects residents with higher probability while
driving then b > a holds; a > b holds otherwise.

Modelling the Order and Availability of Residents
The order in which the residents should be found is given
and has been obtained from the persons’ schedules to avoid
searching for unavailable residents. The robot should try to
keep this order if possible. However, if the robot can max-
imize the number of people found by changing the order,
it can also do so. To search for the residents p ∈ Pq in
the given order, we introduce a priority function πp(t) with
0 ≤ πp(t) ≤ 1 for each person p ∈ Pq and apply the follow-
ing constraints: ∑

p∈Pq

πp(t) · βp(t) = 1 ∀t (15)

and
tmax∫
t0

πp(t) · βp(t) dt =
tmax − t0
|Pq|

∀p (16)

which are used to ensure that the same search effort is ap-
plied to all residents during the search process. We model
πp(t) to provide a high priority to the time interval assigned
to the resident p based on the given order. However, to allow
the robot to search for other residents p′ ∈ Pq during this
time interval, we allow πp′(t) 6= 0 when βp′(t) = 1. Figure
2(b) shows such a priority function for four people A, B, C,
and D to be searched in this order.

Finding P∗

In order to find the set of residents within the given deadline,
we define a reward for each action of the MDP model of
the search. The reward is based on the resident likelihood
functions and the availabilities of the residents in Pq , the
aforementioned priority functions and the attractivities:

R(α, t) = δ(α)·
∑
p∈Pq

πp(t)·βp(t)·L(p, region(α), t). (17)

Since a deadline tmax is given, the search evolves to be
a finite horizon MDP which can be solved using backwards
induction (Tipaldi and Arras 2011). In particular, the utility
Ut(s) is evaluated for each possible state s at time t using
the Bellman equation:

Ut(s) = max
α

[R(α, t) + γ · Ut+1(succ(α))] (18)

where α is any action that can be taken from s and γ is a
factor with 0 ≤ γ ≤ 1 which provides a weighting for the
relationship between the importance of rewards which are
earned in the near and in the far future.

The policy Πt(s) defines the action α the robot should
take when in state s at time t in order to maximize the re-
ward:

Πt(s) = arg max
α

[R(α, t) + γ · Ut+1(succ(α))]. (19)

We also define the aforementioned finite horizonH = tmax ·
∆t−1, which is the number of time steps ∆t from the start
of the planning process to tmax. The initial state s0 is the
state the robot is in when the plan is determined. Since the
planning procedure will be called at the beginning of the
search and whenever a person has been found, we can define
s0 = s′k with Rk being the region the robot is in.

Given the computed policy Πt...H−1, we can generate the
plan P∗t,s = {P∗(t),P∗(t+ 1), . . . ,P∗(H − 1)}. This plan
is a sequence of actions as shown in Algorithm 1.

PlanRob 2014 Proceedings

141

Algorithm 1 P∗t,s(Πt...H−1)

P∗(t) = Πt(s);
for k ← t+ 1 to H − 1 do
P∗(k) = Πk(succ(P∗(k − 1)));

end for
return P∗;

From the backwards induction approach, we know the
plan P∗t+1,α = P∗t+1,succ(α)(Πt+1...H−1) when choosing
an action Πt(s) = α at time step t. Since we want to de-
crease the reward of a rest or search action when the region
has already been searched in this plan in order to avoid end-
less search loops, we introduce a factor h(P∗t+1,α, α) which
reduces the reward when region(α) has been searched in
P∗t+1,α. We define the resulting reward as:

R′(α, t) = h(P∗t+1,α, α) ·R(α, t). (20)

The value 0 ≤ h(P∗t+1,α, α) ≤ 1 depends on when and
how often region(α) has been searched in this plan. This
greedy approach is shown in Algorithm 2 which can be used
to compute the entire plan P∗.

Algorithm 2 M-USB Planning
Input: R(α, t), tmax, S, s0 ∈ S, γ;
Output: Reward maximizing plan P∗;
H ← tmax/∆t;
UH(s)← 0 ∀s ∈ S;
for t← H − 1 to 0 do
Ut(s) = max

α
[R′(α, t) + γ · Ut+1(succ(α))];

Πt(s) = arg max
α

[R′(α, t) + γ · Ut+1(succ(α))];

end for
return P∗0,s0(Π0...H−1);

3 Simulated Experiments
Simulation Setup
To test the performance of the M-USB Search, we use a sim-
ulator we have developed to simulate a robot in a realistic
retirement home environment. The simulation was executed
on a Ubuntu machine with an AMD A10-5700 Processor
and 12GB RAM.

Simulation Environment. We created a map of a floor in
a retirement home with 25 residents. The map consists of
the residents’ private rooms, two common rooms (TV-Room
and Games Room), one Dining Hall, two Shower rooms, one
Nurse Station, one Room for Family visits, and an outdoor
Garden. All residents have their own unique schedules for
the day. These schedules contain three meal times, breakfast
(8 am-9 am), lunch (12 pm-1 pm), and dinner (6 pm-7 pm)
during which the residents are available for the robot to in-
teract with them. In addition, each schedule includes one 1-
hour activity during which the residents are also available for
interaction (e.g., walk and reading) and 2 to 4 appointments

during which they must not be disturbed (e.g., doctor’s visit).
In his/her spare time, each resident visits random rooms at
random times. A probability of pmiss = 0.1 is given for the
residents not participating in their scheduled activities and
behaving as if they have spare time. The simulated residents
move with a speed of vp = 0.15 m/s. The map used for
these experiments is shown in Figure 1.

Performance Comparison. We compare the performance
of our M-USB Search to both a Weighted Informed Walk
and a Random Walk approach for the problem of a robot
finding a group of residents within a deadline in the retire-
ment home setting in order to remind them of an upcoming
group-based recreational activity. The robot uses a speed of
v = 0.6 m/s and can detect people within a sensing range
of r = 1.8 m with respect to itself. If one of the searched
residents is found, the robot stops for 1 minute in order to
interact with the found person. The investigated search al-
gorithms are:

1. Random Walk. The robot chooses a random room in the
map, drives to this room and starts a local search in the
room. This is repeated until all target residents are found
or until the deadline is reached.

2. Weighted Informed Walk. Similar to the Random Walk,
the Weighted Informed Walk algorithm picks a random
room, drives there and starts a search in this room. How-
ever, a higher weighting is given to a resident’s private
room and common rooms. Namely, a weighting technique
is applied to identify the importance of the regions accord-
ingly to their room-classes. The weights for the different
room-classes are: 0.5 for the room-class containing the
private rooms of all searched residents; 0.25 for the room-
class containing the common rooms; and 0.25 for a third
room-class containing all other rooms. We assign an indi-
vidual weight to each room in the environment. Namely,
this individual weight is defined to be the corresponding
weight for the room-class the room of interest is in di-
vided by the number of rooms in this room-class. The
robot applies a universal stochastic sampling technique
based on the individual weights of the rooms to choose
a room to search. The algorithm also considers the last 4
regions it has searched and does not search them again
before 4 other regions have also been searched.

3. M-USB-Search. The proposed M-USB Search is used
with a time discretization of ∆t = 10 s. The schedule an-
alyzer uses ∆t = 30 s and the database in which the robot
saves the learned behaviour operates with ∆t = 300 s.
The attractivities for the actions are δ(αd) = 0.9 · δ(αs)

Table 1: The pC values used in the experiments.

Room Class pC
Common Rooms 0.35

Corridors 0.05
Resident’s private room (Cp

′

private) 0.4
Rooms in other room-classes 0.2

PlanRob 2014 Proceedings

142

40

50

60

70

80

90

100

0 20 40 60 80 100 120

S
u

cc
es

s
R

at
e

in
 %

Deadline (Minutes)

M-USB Search
Informed Walk
Random Walk

(a) N=5

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

S
u

cc
es

s
R

at
e

in
 %

Deadline (Minutes)

M-USB Search
Informed Walk
Random Walk

(b) N=10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

S
u

cc
es

s
R

at
e

in
 %

Deadline (Minutes)

M-USB Search
Informed Walk
Random Walk

(c) N=15

Figure 5: Comparison Results: success rates for the different N.

Table 2: Comparison Results: mean search time per person, and number of visited regions within the environment for the
different N.

Mean Search Time (Min.) Visited Regions (mean)
Approach N = 5 N = 10 N=15 N = 5 N = 10 N=15

M-USB Search 10.3 12.1 16.5 48 55 68
Weighted Informed Walk 15.5 18.1 23.2 176 194 202

Random Walk 14.6 15.9 24.0 119 137 214

and δ(αr) = 0.7 · δ(αs). For Eqs. (18) and (19), γ = 0.99
is used. For the learned behaviour we use α = 0.1 in
Eq. (6). In Eq. (9) the probabilities in Table 1 are applied
to determine Lenv(p,R, t). To avoid endless search loops
the robot needs to search 4 other rooms before searching
the same room again. In particular, the value of h(P∗t+1,α)
for action α is set to zero when the room region(α) is
contained in the next 4 searched regions in P∗t+1,α.

Local Search in a Region. As our focus in this paper
is on the high-level search to regions, for this comparison
all aforementioned search approaches use the same random
walk local search approach when they are searching within
the region. The search time in the individual rooms is set to
one second per squared meter.

The Search Queries. Each search approach was tested
with different search queries q, which consisted of a robot
finding N = |Pq| residents within different deadlines d.
We used N = 5, 10, 15 and d = 10, 20, 30, 45, 60, 90, 120
minutes. For all combinations of N and d, we conducted
20 experiments. The robot started in the Games Room at
1:30 pm and searched for residents in Pq in order to invite
them to a Bingo game that started at 4:00 pm. The start times
were chosen such that the robot searched for residents in
a time frame encompassing cases where residents had ap-
pointments, activities and spare time. The time t0 indicates
the time when the query was received.

Search Performance and Runtime
The performance metrics for the comparison are the suc-
cess rate, the mean search time per person and the number
of visited regions during the search procedure. We measure

the pre-computation time needed at software start-up to cre-
ate the MDP model and load the learned behaviour, and set
up the three likelihood functions Ls, Ll, and Lenv . We also
measure the computation times for the single plans (includ-
ing the computation of Llkrl, the rewards, and the policies)
which are computed when a query is received and whenever
a new plan is generated due to replanning when a person has
been found. The metrics are measured for: 1) different val-
ues of K, which represents the number of persons for which
the plan is generated, and 2) for the different plan execution
times, namely the time the robot plans into the future.

Results and Discussion
The comparison results are presented in Figure 5 and Table
2. Figure 5 shows that the proposed M-USB search finds
more persons within a given deadline when compared to
the other two approaches. All search algorithms have higher
success rates for larger d since more residents can be found
when more time is allocated to the search. It is interesting to
note that the Weighted Informed Walk had comparable suc-
cess rates to the Random Walk. We suspect that this is due
to the time of the day in which the search took place. During
portions of the search, some residents had activities in the
garden. For the Weighted Informed Walk approach, the gar-
den (which was not considered to be a common room) had
a lower weight compared to the common rooms (TV-Room
and Games Room) and private rooms. Therefore, these res-
idents were not found in the majority of the searches with
d = 30, 45, 60, 90 when using the Weighted Informed Walk
approach due to the low weight given to the garden, which
prevented the robot to visit this region often. However, these
residents were found using the M-USB Search approach be-

PlanRob 2014 Proceedings

143

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120

C
o
m

p
u
ta

ti
o
n
 T

im
e

(S
ec

o
n
d
s)

Plan Execution Time (Minutes)

K=3
K=6
K=9

K=12
K=15

Figure 6: The M-USB Search computation time needed to
compute a plan for K residents and a plan execution time.

cause the Schedule Analyzer increased the reward for the
garden when one or more searched residents had an activity
in this region.

The measured mean search times per person in Table 2
show that our M-USB Search is the fastest search approach.
Furthermore, our M-USB Search approach finds a person
by visiting the least amount of regions in the environment as
also shown in Table 2. The overall results show that the use
of the persons’ schedules, learned behaviours, the topology
of the environment, and the attempt to keep the search order
in the proposed approach lowers the mean search times and
the number of visited regions, and improves success rate.

The measured mean pre-computation time during system
start-up for our approach was 40.51 s. The computation time
needed when a query was received can be seen in Figure 6.
It is linear for the number of residents (K) for whom the
plan has to be generated since Llkrl and the reward have to
be computed K times. The computation time also increases
with the plan execution time since the reward and the policy
have to be computed for every time step during backwards
induction. In general, the computation times are very short
(e.g., we measure a mean of 4.8 s for K = 15 and a plan
execution time of 120 minutes).

4 Conclusion
In this paper we address the problem where a robot needs
to search for multiple non-static residents within a retire-
ment home environment. We have developed the M-USB
Search planning procedure which generates a high-level-
plan to maximize the number of residents that are found
within a given time frame. We obtain spatio-temporal likeli-
hood functions for the individual residents using the sched-
ules of the residents, the layout of the retirement home envi-
ronment as well as direct observations by the robot. The M-
USB search method uses a novel approach to compute the
reward to determine the robot’s search plan for finding mul-
tiple persons. We have compared our M-USB search method
to a Weighted Informed Walk search and a Random Walk
search for the proposed problem. Our results showed that the

M-USB Search can find the residents in a shorter amount of
time by visiting a fewer number of rooms.

Acknowledgments
This research has been funded by a Natural Sciences and
Engineering Research Council of Canada (NSERC) Collab-
orative Research and Development Grant and by Dr Robot
Inc. The first author has been funded by the German Aca-
demic Exchange Service (DAAD) PROMOS program.

References
Bath, P. A., and Deeg, D. 2005. Social engagement and
health outcomes among older people: introduction to a spe-
cial section. European Journal of Ageing 2(1):24–30.
Centre for Health Workforce Studies. 2006. The Impact of
the Aging Population on the Health Workforce in the United
States: Summary of Key Findings.
Elinas, P.; Hoey, J.; and Little, J. J. 2003. HOMER: Hu-
man Oriented MEssenger Robot. AAAI Spring Symposium
on Human Interaction with Autonomous Systems in Complex
Environments, Stanford CA.
Findlay, R. A. 2003. Interventions to reduce social isolation
amongst older people: where is the evidence? Ageing and
Society 23(5):647–658.
Lau, H.; Huang, S.; and Dissanayake, G. 2005. Optimal
search for multiple targets in a built environment. In IROS,
3740–3745. IEEE.
Lau, H.; Huang, S.; and Dissanayake, G. 2006. Probabilistic
Search for a Moving Target in an Indoor Environment. In
IROS, 3393–3398. IEEE.
McColl, D.; Louie, W.-Y. G.; and Nejat, G. 2013. Brian 2.1:
A Socially Assistive Robot for the Elderly and Cognitively
Impaired. IEEE Robot. Automat. Mag. 20(1):7483.
Menec, V. H. 2003. The relation between everyday activi-
ties and successful aging: A 6-year longitudinal study. The
Journals of Gerontology Series B: Psychological Sciences
and Social Sciences 58(2):S74–S82.
Oida, Y.; Kanoh, M.; Inagaki, M.; Konagaya, Y.; and
Kimura, K. 2011. Development of a robot-assisted activity
program for elderly people incorporating reading aloud and
arithmetic calculation. In Asian Perspectives and Evidence
on Health Promotion and Education. Springer. 67–77.
PriceWaterCoopers LLP. 2001. Report of a Study to Review
Levels of Service and Responses to Need in a Sample of On-
tario Long Term Care Facilities and Selected Comparators.
Sharkey, S. 2008. People caring for people impacting the
quality of life and care of residents of long-term care homes:
a report of the independent review of staffing and care stan-
dards for long-term care homes in ontario.
Tipaldi, G. D., and Arras, K. O. 2011. I want my coffee hot!
Learning to find people under spatio-temporal constraints.
In ICRA, 1217–1222. IEEE.
Wilson, R. S.; Krueger, K. R.; Arnold, S. E.; Schneider,
J. A.; Kelly, J. F.; Barnes, L. L.; Tang, Y.; and Bennett, D. A.
2007. Loneliness and Risk of Alzheimer Disease. Arch Gen
Psychiatry 64(2):234–240.

PlanRob 2014 Proceedings

144

Position Paper: Synthesis of Plans for Robots from Plan Outlines

Srinivas Nedunuri and Sailesh Prabhu and Mark Moll and Swarat Chaudhuri and Lydia E. Kavraki
Dept. of Computer Science, Rice University, Houston, TX 77251
{nedunuri|snp3|mmoll|swarat|kavraki}@rice.edu

Abstract

Planning the actions of a robot requires a combination of task
planning and motion planning. Much of the programming to-
day for doing this requires great attention to detail and care-
ful coding in languages like C++ or Python. This is labori-
ous, error-prone, and time consuming. We propose an alter-
native approach in which integrated task and motion plans
are synthesized from a combination of programmer written
statements, constraints on the solution, logical requirements,
preferences, and pre-computed partial robot motions.

Motivation. For a long time most robots were confined to
steel cages on factory floors with carefully controlled oper-
ating environments. Recently though, a new breed of robots
is moving out of the confines of the cells in which they were
formerly trapped to interact with their broader environment.
Examples include the Kiva robots (Kiv) and hospital robots
such as the RP-VITA (RPV). This implicitly requires the
robot to have certain capabilities such as the ability to main-
tain global invariants, meet goals, and accept constraints on
the resulting plans.

Unfortunately, the required tool support to be able to
program such capabilities has not kept pace with the de-
mands. For example, despite the abstraction provided by
ROS (Quigley et al. 2009) and frameworks such as MoveIt!
(Chitta, Şucan, and Cousins 2012), programming still in-
volves non-trivial coding in languages such as C++. Not
only is writing and modifying such programs error-prone
but it also requires a lot of details to be supplied by the pro-
grammer. Considering the requirements on a tool to support
the above capabilities, it is difficult to see how current ap-
proaches will scale.

Our Proposal. Integrated Task and Motion Planning (see
e.g., (Nedunuri et al. 2014)) is a challenging class of plan-
ning problems involving a complex combination of high-
level task planning and low-level motion planning. Task
planning level is discrete and requires combinatorial search
of the space of possible integrated plans, while motion plan-
ning is responsible for finding paths in continuous spaces.
We propose to synthesize a correct integrated task and
motion plan from a combination of programmer written
statements, constraints on the solution, requirements, prefer-
ences, and pre-computed partial robot motions. The general
goal of program synthesis is to semi-automatically construct

a program that satisfies a given specification. Additionally,
in template-based synthesis (Solar-Lezama et al. 2006), the
programmer provides a template, or what we call a plan
outline. The plan outline allows the programmer to sup-
ply known ordering and control information (these consti-
tute the programmer written statements mentioned above).
At the same time, it frees the programmer from having to
specify information which the tool can infer, such as the spe-
cific paths to take, the exact location of objects, or the order
in which to move them, conditions on branch statements,
etc.

Although our approach is not specific to any problem do-
main, to convey the scope of the problem we are targeting,
consider a warehouse where packed order boxes are brought
to shipping and stacked on a table. Now consider a robot
whose job it is to remove boxes from the table, load them
onto dollies or pods, take the dollies out to the appropriate
delivery vans, and return to the table with the empty dollies.
The goal of the robot is to transport all boxes to the delivery
vans while respecting any restrictions on the motion plan-
ning level, such as path lengths, clearances, areas to avoid,
etc. Programming the robot for such a scenario requires in-
tegrated task and motion planning and determining the re-
quired conditions on the robot to ensure smooth operation.

Our Approach. To be able to synthesize an integrated
plan, the following additional information will be needed in
addition to a plan outline:

• a scene description that specifies the physical workspace
in which the robot operates;

• a robot model, which specifies what actions the robot is
capable of;

• a set of logical requirements that the generated plan must
satisfy along with preferences on those requirements.

In the case of the warehouse example, the scene descrip-
tion supplies the layout of the warehouse, such as the loca-
tion of floors, doors, wings, walls, etc. as well as demar-
cating certain non-permanent regions of interest, such as
loading, maintenance, break areas, etc. The requirements al-
low the programmer to control the solution produced by the
tool, e.g., that particular sections of the warehouse should
be avoided, or certain types of deliveries such as perishables
have priority and must be stocked within a given timeframe.

PlanRob 2014 Proceedings

145

In our recent work (Nedunuri et al. 2014) we have de-
veloped a simple version of a tool which can handle small
benchmark problems. The plan outline and requirements are
written as a C-like “program” where the objects that the
robot moves around (for example, boxes) are declared as
symbolic variables, and actions that the robot performs (for
example, moving or picking up an object) appear as func-
tion calls. From the scene description, the existing tool first
constructs a finite graph, we call a placement graph, with
nodes that represent appropriately chosen configurations of
the robot base (base nodes) and nodes representing possible
robot poses in which the robot can potentially grasp an ob-
ject in a stable location (location nodes). Edges in the graph
between base nodes represent motions that do not require
the robot to move its arms, edges between base nodes and
location nodes represent pick-and-place actions that are fea-
sible without moving the base, and (directed) edges between
location nodes indicate that an object in the location repre-
sented by the source node would block access to a location
represented by the target node.

Next, using program analysis techniques, the tool auto-
matically computes a logical formula that represents the
set of all integrated plans that satisfy the structure of the
plan outline and the requirements, and are also consistent
with edges in the placement graph. The problem of finding
a plan that meets all the criteria now resolves to comput-
ing a satisfying solution of this formula. This is done using
Z3 (De Moura and Bjørner 2008), a state-of-the-art SMT
solver. In a nutshell, SMT solvers are fully automatic, highly
engineered programs that check the truth value of a logical
formula containing symbols with a fixed interpretation, for
example ≤ or +. The ability to express constraints such as
length(path1)+ length(path2) < 100 is the reason we use
SMT solvers over plain Boolean satisfiability (SAT) solvers.

There are a number of very fundamental extensions to
the existing tool which we propose to tackle, such as on-
going or recurring requirements (maintenance goals), reac-
tivity, non-deterministic outcomes, goal preferences, enrich-
ing the constraint language, and dynamically constructing
the placement graph. Our position is that the approach we
outline, namely one of taking programmer supplied partial
plans and constructing logical formulas which can be auto-
matically solved to provide the missing information, is one
that will scale to handle these sophisticated extensions.

Related Work. Our proposal is influenced by prior work
in the programming language community on template-based
program synthesis (Solar-Lezama et al. 2006; Srivastava,
Gulwani, and Foster 2010). One key difference is that we
are targeting robot plans that must be physically realizable.

Our approach differs from fully automated classical plan-
ning (Nau, Ghallab, and Traverso 2004) in that we accept
a richer variety of inputs that influence the final solution.
The idea of providing programmer input or domain specific
knowledge in planning is of course not new. HTN (Hierar-
chical Task Network) planners (Nau, Ghallab, and Traverso
2004) share with our approach the input of domain knowl-
edge. However, HTN require a level of domain expertise
in order to correctly, completely, and efficiently codify the

space of possible plans. In contrast, we believe it is impor-
tant to accept partial user knowledge in a form that is famil-
iar to programmers, and be able to provide a degree of flex-
ibility in how much knowledge the programmer must pro-
vide: In general, the more the programmer provides, the bet-
ter a solution that will be found (within the limits of the tool
of course). Our proposal also extends to incorporate global
constraints, which are difficult to handle in conventional au-
tomated (STRIPS-style) planners (Nareyek et al. 2005) .

A different form of hierarchy from that of HTN is used
in Hierarchical Planning in the Now (HPN) (Kaelbling and
Lozano-Pérez 2011b). In HPN, actions are abstracted by
postponing of their preconditions, and the planning problem
is solved using the abstract actions. The abstract solution is
then refined into a concrete one. While HPN is very powerful
(and has been extended to belief space planning (Kaelbling
and Lozano-Pérez 2011a)), it rests on the assumption that
planning problems can be decomposed into sub-problems
that can be independently solved. While this is generally
true, there are situations in which it can lead to dead-ends
(e.g., if the robot exceeds the time limit for achieving some
goal). Although HPN can always re-plan, there may be situ-
ations in which this can prove expensive (e.g., loading boxes
onto a truck only to discover there is insufficient space for
the last box).

Another major research effort has been the automatic
synthesis of both reactive (Kress-Gazit, Fainekos, and Pap-
pas 2009; Wongpiromsarn, Topcu, and Murray 2010) and
non-reactive controllers (Guo, Johansson, and Dimarogonas
2013) and plans (Bhatia et al. 2011) for robots from tem-
poral logic specifications. Tools such as LTLMOP (Kress-
Gazit, Fainekos, and Pappas 2009) accept structured tem-
poral specifications written in “natural language” style and
handle reactive robotics. However, due to decidability lim-
itations, the tool relies on a propositional representation of
the problem. Besides the fact that we accept programmer in-
formation, the primary difference between these approaches
and our proposal is that we use a first-order representation,
where a space consisting of a vast number of plausible in-
tegrated plans can be represented concisely in the form a
quantifier-free logical formula containing variables. Such a
formula can be solved with a small number of calls to an au-
tomated solver. In contrast, methods relying on the explicit
enumeration of a space may not scale as well, even when
that space is symbolically represented using, for example,
Binary Decision Diagrams (BDDs) (Bryant 1992).

Acknowledgments. Work on this paper by M.M. and L.K.
was supported in part by NSF NRI 1317849 and 1139011
grants. Work by S.N., S.P., and S.C. was supported in part by
NSF Award 1162076 and NSF CAREER Award 1156059.

References
Bhatia, A.; Maly, M.; Kavraki, L.; and Vardi, M. 2011. Mo-
tion planning with complex goals. IEEE Robotics & Au-
tomation Magazine 18(3):55 –64.
Bryant, R. E. 1992. Symbolic boolean manipulation with or-
dered binary-decision diagrams. ACM Comput. Surv. 24(3).

PlanRob 2014 Proceedings

146

Chitta, S.; Şucan, I.; and Cousins, S. 2012. MoveIt! IEEE
Robotics & Automation Magazine 19(1):18–19.
De Moura, L., and Bjørner, N. 2008. Z3: An efficient SMT
solver. In Tools and Algorithms for the Construction and
Analysis of Systems. Springer. 337–340.
Guo, M.; Johansson, K.; and Dimarogonas, D. 2013. Motion
and action planning under LTL specifications using naviga-
tion functions and action description language. In Proc. of
the Intl. Conf. on Intelligent Robots and Systems (IROS).
Kaelbling, L. P., and Lozano-Pérez, T. 2011a. Planning in
the know: Hierarchical belief-space task and motion plan-
ning. In Workshop on Mobile Manipulation, IEEE Intl. Conf.
on Robotics and Automation.
Kaelbling, L., and Lozano-Pérez, T. 2011b. Hierarchical
task and motion planning in the now. In IEEE Intl. Conf. on
Robotics and Automation (ICRA), 1470–1477.
Kiva warehouse management system.
http://www.kivasystems.com/resources/demo.
Kress-Gazit, H.; Fainekos, G.; and Pappas, G. 2009.
Temporal-logic-based reactive mission and motion plan-
ning. IEEE Trans. on Robotics 25(6):1370–1381.
Nareyek, A.; Freuder, E.; Fourer, R.; Giunchiglia, E.; Gold-
man, R.; Kautz, H.; Rintanen, J.; and Tate, A. 2005. Con-
straints and AI planning. IEEE Intelligent Systems 20(2):62–
72.
Nau, D.; Ghallab, M.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. San Francisco, CA, USA:
Morgan Kaufmann.
Nedunuri, S.; Prabhu, S.; Moll, M.; Chaudhuri, S.; and
Kavraki, L. 2014. SMT-based synthesis of integrated task
and motion plans from plan outline. In Proc. IEEE Int. Conf.
on Robotics and Automation (ICRA).
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an
open-source Robot Operating System. In ICRA Workshop
on Open Source Software.
RP-VITA. http://www.intouchhealth.com/products-and-
services/products/rp-vita-robot/.
Solar-Lezama, A.; Tancau, L.; Bodik, R.; Seshia, S.; and
Saraswat, V. 2006. Combinatorial sketching for finite pro-
grams. In Proc. of the 12th Intl. Conf. on Architectural Sup-
port for Programming Languages and Operating Systems,
ASPLOS XII, 404–415.
Srivastava, S.; Gulwani, S.; and Foster, J. S. 2010. From
program verification to program synthesis. In Proc. 37th
ACM Symp. Principles of Prog. Lang. (POPL), 313–326.
Wongpiromsarn, T.; Topcu, U.; and Murray, R. 2010. Re-
ceding horizon control for temporal logic specifications. In
Proc. of the 13th ACM Intl. Conf. on Hybrid Systems: Com-
putation and Control, 101–110.

PlanRob 2014 Proceedings

147

Heuristic Search for Task and Motion Planning

Caelan Reed Garrett and Tomás Lozano-Pérez and Leslie Pack Kaelbling
MIT CSAIL

Abstract

Manipulation problems involving many objects present sub-
stantial challenges for motion planning algorithms due to the
high dimensionality and multi-modality of the search space.
Symbolic task planners can efficiently construct plans involv-
ing many entities but cannot incorporate the constraints from
geometry and kinematics. In this paper, we show how to ex-
tend the heuristic ideas from one of the most successful sym-
bolic planners in recent years, the FastForward (FF) planner,
to motion planning, and to compute it efficiently. We use a
multi-query roadmap structure that can be conditionalized to
model different placements of movable objects. The resulting
tightly integrated planner is simple and performs efficiently in
a collection of tasks involving manipulation of many objects.

Introduction
Mobile manipulation robots are physically capable of solv-
ing complex problems involving moving many objects to
achieve an ultimate goal. Mobile bases with one or more
arms are becoming available and increasingly affordable
while RGBD sensors are providing unprecedented sensory
bandwidth and accuracy. However, these new capabilities
are placing an increasing strain on existing methods for pro-
gramming robots. Traditional motion-planning algorithms
that find paths between fully specified configurations cannot
address problems in which the configuration space of inter-
est is not just that of the robot but the configuration space of
a kitchen, for example, and the goal is to make dinner and
clean the kitchen. We almost certainly do not want to choose
whether to get the frying pan or the steak next by sampling
configurations of the robot and kitchen and testing for paths
between them.

Researchers in artificial intelligence planning have been
tackling problems that require long sequences of actions and
large discrete state spaces and have had some notable suc-
cess in recent years. However, these symbolic “task-level”
planners do not naturally encompass the detailed geometric
and kinematic considerations that motion planning requires.
The original Shakey/STRIPS robot system (Fikes and Nils-
son 1971; Nilsson 1984), from which many of these sym-
bolic planners evolved, managed to plan for an actual robot
by working in a domain where all legal symbolic plans were
effectively executable. This required the ability to represent
symbolically a sufficient set of conditions to guarantee the

success of the steps in the plan. This is not generally possi-
ble in realistic manipulation domains because the geometri-
cal and kinematic constraints are significant.

Consider a simple table-top manipulation domain where
a variety of objects are placed on a table and the robot’s task
is to collect some subset of the objects and pack them in a
box, or use them to make a meal, or put them away in their
storage bins. The basic robot operations are to pick up an ob-
ject and place it somewhere else; in addition, the robot can
move its base in order to reach a distant object. Note that,
in general, to reach some object, we will have to move other
objects out of the way. Which objects need moving depends
on their shapes, the shape of the robot, where the robot’s
base is placed and what path it follows to the object. When
an object is moved, the choice of where to place it requires
similar considerations. The key observation is that construct-
ing a valid symbolic plan requires access to a characteriza-
tion of the connectivity of the underlying free configuration
space (for the robot and all the movable objects). We cannot
efficiently maintain this connectivity with a set of static as-
sertions updated by STRIPS operators; determining how the
connectivity of the underlying free space changes requires
geometric computation.

A natural extension to the classic symbolic planning
paradigm is to introduce “computed predicates” (also know
as “semantic attachments”); that is, predicates whose truth
value is established not via assertion but by calling an exter-
nal program that operates on a geometric representation of
the state. A motion planner can serve to implement such a
predicate, determining the reachability of one configuration
from another. This approach is currently being pursued, for
example, by Dornhege et al. (2009; 2013), as a way of com-
bining symbolic task-level planners with motion planners to
get a planner that can exploit the abstraction strengths of the
first and the geometric strengths of the second. A difficulty
with this approach, however, is that calling a motion planner
is generally expensive. This leads to a desire to minimize
the set of object placements considered, and, very impor-
tantly, to avoid calling the motion planner during heuristic
evaluation. Considering only a sparse set of placements may
limit the generality of the planner, while avoiding calling
the motion planner in the heuristic leads to a heuristic that is
uninformed about geometric considerations and may result
in considerable inefficiency due to backtracking during the

PlanRob 2014 Proceedings

148

(a) Median 18 actions

(b) Median 20 actions

(c) Median 32 actions

Figure 1: This figure illustrates the type of tasks addressed in this paper, involving a mobile manipulator (modeled on the PR2)
that must move some set of specified objects (the ones not colored red) to specified target regions, moving the red objects as
necessary to achieve this. Shown are the initial and final states in three of the tasks (numbered 3,4,5) used in our experiments.

PlanRob 2014 Proceedings

149

search for a plan.
An alternative approach to integrating task and motion

planning has been to start with a motion planner and use a
symbolic planner to provide heuristic guidance to the motion
planner, for example in the work of Cambon et al. (2009).
However, since the task-level planner is ignoring geometry,
its value as a heuristic is quite limited.

In this paper we show how to obtain a fully integrated task
and motion planner using a search in which the heuristic
takes geometric information into account. We show an ex-
tension of the heuristic used in the FastForward (FF) (Hoff-
mann and Nebel 2001) planning system to the FFRob heuris-
tic, which integrates reachability in the robot configuration
space with reachability in the symbolic state space. Both the
search and the computation of the FFRob heuristic exploit a
roadmap (Kavraki et al. 1996) data structure that allows mul-
tiple motion-planning queries on the closely related prob-
lems that arise during the search to be solved efficiently.

Related work
There have been a number of approaches to integrated task
and motion planning in recent years. The pioneering Asy-
mov system of Cambon et al. (2009) conducts an interleaved
search at the symbolic and geometric levels. They care-
fully consider the consequences of using non-terminating
probabilistic algorithms for the geometric planning, allocat-
ing computation time among the multiple geometric plan-
ning problems that are generated by the symbolic planner.
The process can be viewed as using the task planner to
guide the motion planning search. The work of Plaku and
Hager (2010) is similar in approach.

The work of Erdem et al. (2011), is similar in approach
to Dornhege et al. (2009), augmenting a task planner that is
based on explicit causal reasoning with the ability to check
for the existence of paths for the robot.

Pandey et al. (2012) and deSilva et al. (2013) use HTNs
instead of generative task planning. Their system can back-
track over choices made by the geometric module, allow-
ing more freedom to the geometric planning than in the ap-
proach of Dornhege et al. (2009). In addition, they use a cas-
caded approach to computing difficult applicability condi-
tions: they first test quick-to-evaluate approximations of ac-
cessibility predicates, so that the planning is only attempted
in situations in which it might plausibly succeed.

Lagriffoul et al. (2012) also integrate the symbolic and
geometric search. They generate a set of approximate lin-
ear constraints imposed by the program under considera-
tion, e.g., from grasp and placement choices, and use linear
programming to compute a valid assignment or determine
one does not exist. This method is particularly successful in
domains such as stacking objects in which constraints from
many steps of the plan affect geometric choices.

In the HPN approach of Kaelbling and Lozano-
Pérez (2011), a regression-based symbolic planner uses gen-
erators, which perform fast approximate motion planning,
to select geometric parameters, such as configurations and
paths, for the actions. Reasoning backward using regres-
sion allows the goal to significantly bias the actions that

are considered. This type of backward chaining to iden-
tify relevant actions is also present in work on navigation
among movable obstacles. The work of Stilman et al. (2006;
2007) also plans backwards from the final goal and uses
swept volumes to determine, recursively, which additional
objects must be moved and to constrain the system from
placing other objects into those volumes.

Srivastava et al. (2013; 2014) offer a novel control struc-
ture that avoids computing expensive precondition values in
many cases by assuming a favorable default valuation of the
precondition elements; if those default valuations prove to
be erroneous, then it is discovered in the process of perform-
ing geometric planning to instantiate the associated geomet-
ric operator. In that case, symbolic planning is repeated. This
approach requires the ability to diagnose why a motion plan
is not possible in a given state, which can be challenging, in
general. Empirically, their approach is the only one of which
we are aware whose performance is competitive with our
FFRob method.

All of these approaches, although they have varying de-
grees of integration of the symbolic and geometric planning,
generally lack a true integrated heuristic that allows the ge-
ometric details to affect the focus of the symbolic planning.
In this paper, we develop such a heuristic, provide methods
for computing it efficiently, and show that it results in a sig-
nificant computational savings.

Problem formulation
When we seek to apply the techniques of symbolic plan-
ning to domains that involve robot motions, object poses and
grasps, we are confronted with a series of technical prob-
lems. In this section, we begin by discussing those problems
and our solutions to them, and end with a formal problem
specification.

We might naturally wish to encode robot operations that
pick up and place objects in the style of traditional AI plan-
ning operator descriptions such as:

PICK(C1, O,G, P,C2):
pre: HandEmpty , Pose(O,P),

RobotConf (C1), CanGrasp(O,P,G,C2),
Reachable(C1, C2)

add: Holding(O,G), RobotConf (C2)
delete: HandEmpty , RobotConf (C1)

PLACE(C1, O,G, P,C2):
pre: Holding(O,G),

RobotConf (C1), CanGrasp(O,P,G,C2),
Reachable(C1, C2)

add: HandEmpty , Pose(O,P), RobotConf (C2)
delete: Holding(O,G), RobotConf (C1)

In these operations, the C, P , and G variables range over
robot configurations, object poses, and grasps, respectively.
These are high-dimensional continuous quantities, which
means that there are infinitely many possible instantiations
of each of these operators. We address this problem by sam-
pling finitely many values for each of these variable domains
during a pre-processing phase. The sampling is problem-
driven, but may turn out to be inadequate to support a so-
lution. If this happens, it is possible to add samples and re-

PlanRob 2014 Proceedings

150

attempt planning, although that was not done in the empiri-
cal results reported in this paper.

Even with finite domains for all the variables, there is
a difficulty with explicitly listing all of the positive and
negative effects of each operation. The operations of pick-
ing up or placing an object may affect a large number of
Reachable literals: picking up an object changes the “shape”
of the robot and therefore what configurations it may move
between; placing an object changes the free configuration
space of the robot. Even more significant, which Reachable
literals are affected can depend on the poses of all the other
objects (for example, removing any one or two of three ob-
stacles may not render a configuration beyond the obstacles
reachable). Encoding this conditional effect structure in typ-
ical form in the preconditions of the operators would essen-
tially require us to write one operator description for each
possible configuration of movable objects.

We address this problem by maintaining a state represen-
tation that consists of both a list of true literals and a data
structure, called details, that captures the geometric state in
a way that allows the truth value of any of those literals to
be computed on demand. This is a version of the semantic
attachments strategy (Dornhege et al. 2009).

The last difficulty is in computing the answers to queries
in the details, especially about reachability, which requires
finding free paths between robot configurations in the con-
text of many different configurations of the objects. We ad-
dress this problem by using a conditional roadmap data
structure called a conditional reachability graph, related to
a PRM (Kavraki et al. 1996), for answering all reachabil-
ity queries, and lazily computing answers on demand and
caching results to speed future queries.

More formally, a state is a tuple 〈L,D〉, where L is a set
of literals and D is a domain-dependent detailed represen-
tation. A literal is a predicate applied to arguments, which
may optionally have an attached test, which maps the argu-
ments and state into a Boolean value. A literal holds in a
state if it is explicitly represented in the state’s literal set, or
its test evaluates to true in the state:

HOLDS(l, s) ≡ l ∈ s.L or l.test(s) .

A goal is a set of literals; a state satisfies a goal if all of the
literals in the goal hold in the state:

SATISFIES(s,Γ) ≡ ∀l ∈ Γ. HOLDS(l, s) .

An operator is a tuple 〈φ, epos , eneg , f〉 where φ is a set
of literals representing a conjunctive precondition, epos is
a set of literals to be added to the resulting state, eneg is a
set of literals to be deleted from the resulting state, and f
is a function that maps the detailed state from before the
operator is executed to the detailed state afterwards. Thus,
the successor of state s under operator a is defined

SUCCESSOR(s, a) ≡ 〈s.L ∪ a.epos \ a.eneg , a.f(s)〉 .

An operator is applicable in a state if all of its preconditions
hold in that state:

APPLICABLE(a, s) ≡ ∀l ∈ a.φ. HOLDS(l, φ) .

An operator schema is an operator with typed variables,
standing for the set of operators arising from all instantia-
tions of the variables over the appropriate type domains.

Our general formulation has broader applicability, but in
this paper we restrict our attention to a concrete domain in
which a mobile-manipulation robot can move, grasp rigid
objects, and place them on a surface (see Figure 1). To for-
malize this domain, we use literals of the following forms:

• RobotConf (C): the robot is in configuration C, where C
is a specification of the pose of the base as well as joint
angles of the arm;

• Pose(O,P): object O is at pose P , where P is a four-
dimensional pose (x, y, z, θ), assuming that the object is
resting on a stable face on a horizontal surface;

• Holding(O,G): the robot is holding object O with grasp
G, where G specifies a transform between the robot’s
hand and the object;

• HandEmpty : the robot is not holding any object;

• In(O,R): the object O is placed in such a way that it is
completely contained in a region of space R; and

• Reachable(C1, C2): there is a collision-free path between
robot configurations C1 and C2, considering the positions
of all fixed and movable objects as well as any object the
robot might be holding and the grasp in which it is held.

The details of a state consist of the configuration of the
robot, the poses of all the objects, and what object is being
held in what grasp.

Two of these literals have tests. The first, In , has a simple
geometric test, to see if object O, at the pose specified in
this state, is completely contained in region R. The test for
Reachable is more difficult to compute; it will be the subject
of the next section.

Conditional reachability graph
In the mobile manipulation domain, the details contain a
conditional reachability graph (CRG), which is a partial rep-
resentation of the connectivity of the space of sampled con-
figurations, conditioned on the placements of movable ob-
jects as well as on what is in the robot’s hand. It is similar
in spirit to the roadmaps of Leven and Hutchinson (2002)
in that it is designed to support solving multiple motion-
planning queries in closely related environments. The CRG
has three components:

• Poses: For each object o, a set of possible stable poses.

• Nodes: A set of robot configurations, ci, each annotated
with a (possibly empty) set {〈g, o, p〉} where g is a grasp,
o an object, and p a pose, meaning that if the robot is at
the configuration ci, and object o is at pose p, then the
robot’s hand will be related to the object by the transform
associated with grasp g.

• Edges: A set of pairs of nodes, with configurations c1 and
c2, annotated with an initially empty set of validation con-
ditions of the form 〈h, g, o, p, b〉, where b is a Boolean
value that is TRUE if the robot moving from c1 to c2
along a simple path (using linear interpolation or some

PlanRob 2014 Proceedings

151

other fixed interpolator) while holding object h in grasp g
will not collide with object o if it is placed at pose p, and
FALSE otherwise.

The validation conditions on the edges are not pre-
computed; they will be computed lazily, on demand, and
cached in this data structure. Note that some of the collision-
checking to compute the annotations can be shared, e.g. the
same robot base location may be used for multiple configu-
rations and grasps.

Constructing the CRG The CRG is initialized in a pre-
processing phase, which concentrates on obtaining a useful
set of sampled object poses and robot configurations. Object
poses are useful if they are initial poses, or satisfy a goal
condition, or provide places to put objects out of the way.
Robot configurations are useful if they allow objects, when
placed in useful poses, to be grasped (and thus either picked
from or placed at those poses) or if they enable connections
to other useful poses via direct paths. We assume that the
following components are specified: a workspace W , which
is a volume of space that the robot must remain inside; a
placement region T , which is a set of static planar surfaces
upon which objects may be placed (such as tables and floor,
but not (for now) the tops of other objects); a setOf of fixed
(immovable) objects; a set Om of movable objects; and a
vector of parameters θ that specify the size of the CRG. It
depends, in addition, on the start state s and goal Γ. We as-
sume that each object o ∈ Om has been annotated with a set
of feasible grasps. The parameter vector consists of a num-
ber np of desired sample poses per object (type); a number
nik of grasp configurations per grasp; a number nn of con-
figurations near each grasp configuration; a number nc of
RRT iterations for connecting configurations, and a number
k specifying a desired degree of connectivity.

The CONSTRUCTCRG procedure is outlined below.

CONSTRUCTCRG(W,T, s,Γ,Of ,Om, θ) :

1 N = {s.details.robotConf } ∪ {robot configuration in Γ}
2 for o ∈ Om:
3 Po = {s.details.pose(o)} ∪ {pose of o in Γ}
4 for i ∈ {1, . . . , θ.np}:
5 Po.add(SAMPLEOBJPOSE(o.shape, T))
6 for g ∈ o.grasps:
7 for j ∈ {1, . . . , θ.nik}:
8 N.add(SAMPLEIK(g, o, p), (g, o, p))
9 for j ∈ {1, . . . , θ.nn}:

10 N.add(SAMPLECONFNEAR(g, ()))
11 E = { }
12 for n1 ∈ N :
13 for n2 ∈ NEARESTNEIGHBORS(n1, k,N):
14 if CFREEPATH(n1.c, n2.c,Of): E.add(n1, n2)
15 N,E = CONNECTTREES(N,E,W, θ.nc)
16 return 〈P,N,E〉

We begin by initializing the set of nodes N to contain the
initial robot configuration and the configuration specified in
the goal, if any. Then, for each object, we generate a set of
sample poses, including its initial pose and goal pose, if any,
as well as poses sampled on the object placement surfaces.

For each object pose and possible grasp of the object, we
use the SAMPLEIK procedure to sample one or more robot
configurations that satisfy the kinematic constraints that the
object be grasped. We sample additional configurations with
the hand near the grasp configuration to aid maneuvering
among the objects. We then add edges between the k near-
est neighbors of each configuration, if a path generated by
linear interpolation or another simple fixed interpolator is
free of collisions with fixed objects. At this point we gen-
erally have a forest of trees of configurations. Finally, we
attempt to connect the trees using an RRT algorithm as in
the sampling-based roadmap of trees (Plaku et al. 2005).

To test whether this set of poses and configurations is
plausible, we use it to compute a heuristic value of the start-
ing state, as described in section . If it is infinite, meaning
that the goal is unreachable even under extremely optimistic
assumptions, then we return to this procedure and draw a
new set of samples.

Querying the CRG Now that we have a CRG we can use
it to compute the test for the Reachable literal, as shown in
REACHABLETEST below.

REACHABLETEST(c1, c2, D, CRG) :

1 for (o, p) ∈ D.objects:
2 for e ∈ CRG.E:
3 if not 〈D.heldObj , D.grasp, o, p, ∗〉 ∈ e.valid :
4 p = CFREEPATH(e.n1.c, e.n2.c, o@p,
5 D.heldObj , D.grasp)
6 e.valid .add(〈D.heldObj , D.grasp, o, p,
7 (p ! = None)〉)
8 G = {e ∈ CRG.E | ∀(o, p) ∈ D.objects.
9 〈D.heldObj , D.grasp, o, p,True〉 ∈ e.valid}

10 return REACHABLEINGRAPH(c1, c2, G)

The main part of the test is in lines 8–10: we construct a
subgraph of the CRG that consists only of the edges that are
valid given the object that the robot is holding and the cur-
rent placements of the movable objects and search in that
graph to see if configuration c2 is reachable from c1. Lines
1–7 check to be sure that the relevant validity conditions
have been computed and computes them if they have not.
The procedure CFREEPATH(c1, c2, obst , o, g) performs col-
lision checking on a straight-line, or other simply interpo-
lated path, between configurations c1 and c2, with a single
obstacle obst and object o held in grasp g.

In addition, the CRG is used to implement
APPLICABLEOPS(s,Ω, CRG), which efficiently deter-
mines which operator schema instances in Ω are applicable
in a given state s. For each schema, we begin by binding
variables that have preconditions specifying the robot
configuration, object poses, the currently grasped object
and/or the grasp to their values in state s. We consider all
bindings of variables referring to objects that are not being
grasped. For a pick operation, P is specified in the current
state, so we consider all bindings of G and C2 such that
(C2, (G,O, P)) ∈ CRG.N . For a place operation, G is
specified in the current state, so we consider all bindings of
P and C2 such that (C2, (G,O, P)) ∈ CRG.N .

PlanRob 2014 Proceedings

152

Planning algorithms
A planning problem, Π, is specified by 〈s,Γ,O, T,W,Ω〉,
where s is the initial state, including literals and details, Γ is
the goal, O is a set of objects, T is a set of placement sur-
faces,W is the workspace volume, and Ω is a set of operator
schemas.

PLAN, shown below, is a generic heuristic search proce-
dure. Depending on the behavior of the EXTRACT proce-
dure, it can implement any standard search control struc-
ture, including depth-first, breadth-first, uniform cost, best-
first, A∗, and hill-climbing. Critical to many of these strate-
gies is a heuristic function, which maps a state in the search
to an estimate of the cost to reach a goal state from that
state. Many modern domain-independent search heuristics
are based on a relaxed plan graph (RPG). In the following
section, we show how to use the CRG to compute the relaxed
plan graph efficiently.

PLAN(Π, EXTRACT, HEURISTIC, θ)

1 〈s,Γ,O, T,W,Ω〉 = Π
2 CRG = CONSTRUCTCRG(W,T, s,Γ,O, θ)
3 def H(s): HEURISTIC(RPG(s,Γ, CRG,Ω))
4 q = QUEUE(SEARCHNODE(s, 0,H(s),None))
5 while not q .empty():
6 n = EXTRACT(q)
7 if SATISFIES(n.s,Γ): return n.path
8 for a ∈ APPLICABLEOPS(n.s,Ω, CRG):
9 s′ = SUCCESSOR(n.s, a)

10 q.push(SEARCHNODE(s′, n.cost + 1,H(s′), n))

Computing the relaxed plan graph In classical symbolic
planning, a plan graph is a sequence of alternating layers of
literals and actions. The first layer consists of all literals that
are true in the starting state. Action layer i contains all op-
erators whose preconditions are present and simultaneously
achievable in literal layer i. Literal layer i + 1 contains all
literals that are possibly achievable after i actions, together
with a network of mutual exclusion relations that indicates
in which combinations those literals might possibly be true.
This graph is the basis for GraphPlan (Blum and Furst 1997)
and related planning algorithms.

The relaxed plan graph is a simplified plan graph, with-
out mutual exclusion conditions; it is constructed by ignor-
ing the negative effects of the actions. From the RPG, many
heuristics can be computed. For example, the HAdd heuris-
tic (Bonet and Geffner 2001) returns the sum of the levels at
which each of the literals in the goal appears. It is optimistic,
in the sense that if the mutual exclusion conditions were
taken into account, it might take more steps to achieve each
individual goal from the starting state; it is also pessimistic,
in the sense that the actions necessary to achieve multi-
ple goal fluents might be “shared.” An admissible heuristic,
HMax (Bonet and Geffner 2001), is obtained by taking the
maximum of the levels of the goal literals, rather than the
sum; but it is found in practice to offer weaker guidance. An
alternative is the FF heuristic (Hoffmann and Nebel 2001),
which performs an efficient backward-chaining pass in the
plan graph to determine how many actions, if they could be

performed in parallel without deletions, would be necessary
to achieve the goal and uses that as the heuristic value. An
important advantage of the FF heuristic is that it does not
over-count actions if one action achieves multiple effects,
and it enables additional heuristic strategies that are based
on helpful actions. We use a version of the helpful-action
strategy that reduces the choice of the next action to those
that are in the first level of the relaxed plan, and find that it
improves search performance.

In order to use heuristics derived from the RPG we have
to show how it can be efficiently computed when the add
lists of the operators are incomplete and the truth values of
some literals are computed from the CRG in the details. We
present a method for computing the RPG that is specialized
for mobile manipulation problems. It constitutes a further
relaxation of the RPG which allows literals to appear earlier
in the structure than they would in an RPG for a traditional
symbolic domain. This is necessary, because the highly con-
ditional effects of actions on Reachable literals makes them
intractable to compute exactly. The consequence of the fur-
ther relaxation is that the HAdd and HMax heuristics com-
puted from this structure have less heuristic force. However,
in section we describe a method for computing a version of
HFF that recovers the effectiveness of the original.

The intuition behind this computation is that, as we move
forward in computing the plan graph, we consider the pos-
itive results of all possible actions to be available. In terms
of reachability, we are removing geometric constraints from
the details; we do so by removing an object from the uni-
verse when it is first picked up and never putting it back, and
by assuming the hand remains empty (if it was not already)
after the first place action. Recall that, in APPLICABLE and
SATISFIES, the HOLDS procedure is used to see if a literal
is true in a state. It first tests to see if it is contained in the
literal set of the state; this set becomes increasingly larger
as the RPG is computed. If the literal is not there, then it is
tested with respect to the CRG in the details, which becomes
increasingly less constrained as objects are removed.

Importantly, since the geometric tests on the CRG are
cached, the worst-case number of geometric tests for plan-
ning with and without the heuristic is the same. In practice,
computing the RPG for the heuristic is quite fast, and using
it substantially reduces the number of states that need to be
explored.

RELAXEDPLANGRAPH, shown below, outlines the algo-
rithm in more detail.

PlanRob 2014 Proceedings

153

RELAXEDPLANGRAPH(s,Γ, CRG,Ω) :

1 D = s.D; ops = ALLNONCONFBINDINGS(Ω)
2 literals = [] ; actions = [] ; hState = s
3 while True
4 layerActions = { } ; layerLiterals = { }
5 for op ∈ ops:
6 if APPLICABLE(op, hState):
7 layerActions.add(op)
8 layerLiterals.union(op.epos)
9 ops.remove(op)

10 if op.type = pick : D.objects.remove(op.obj)
11 if op.type = place: D.heldObj = None
12 literals .append (layerLiterals)
13 actions .append (layerActions)
14 hState = 〈

⋃
i literalsi, D〉

15 if SATISFIES(hState,Γ): return (literals, actions)
16 if layerActions = { }: return None

In the second part of line 1, in a standard implementation
we would generate all possible instantiations of all actions.
However, because of the special properties of reachability,
we are able to abstract away from the particular configu-
ration the robot is in when an action occurs; thus, we con-
sider all possible bindings of the non-configuration variables
in each operator, but we only consider binding the starting
configuration variable to the actual current starting config-
uration and leave the resulting configuration variable free.
In line 2, we initialize hState , which is a pseudo-state con-
taining all literals that are possibly true at the layer we are
operating on, and a set of details that specifies which objects
remain as constraints on the robot’s motion at this layer. In
line 6, we ask whether a operator schema with all but the
resulting configuration variable bound is applicable in the
heuristic state. We only seek a single resulting configuration
that satisfies the preconditions of op in hState; even though
many such configurations might exist, each of them will ul-
timately affect the resulting hState in the same way. Lines
7–9 constitute the standard computation of the RPG. In lines
10–11 we perform domain-specific updates to the detailed
world model: if there is any way to pick up an object, then
we assume it is completely removed from the domain for the
rest of the computation of the RPG; if there is any way to put
down the currently held object, then we assume that there is
no object in the hand, when doing any further computations
of reachability in the CRG. Line 14 creates a new hState ,
which consists of all literals possibly achievable up to this
level and the details with possibly more objects removed.

There is one last consideration: the strategy shown above
does not make the dependencies of Reachable literals at
level i on actions from level i− 1 explicit; the truth of those
literals is encoded implicitly in the details of the hState . We
employ a simple bookkeeping strategy to maintain a causal
connection between actions and literals, which will enable
a modified version of the FF heuristic to perform the back-
ward pass to find a parallel plan. We observe that, in the
relaxed plan, once an object is picked, it is effectively re-
moved from the domain. So, we add an extra positive effect
literal, Picked(o) to the positive effects set of the pick ac-
tion, just when it is used in the heuristic computation.

The FFRob heuristic The FF heuristic operates by ex-
tracting a relaxed plan from the RPG and returning the num-
ber of actions it contains. A relaxed plan P constructed for
starting state s and set of goal literals G consists of a set of
actions that has the following properties: (1) For each literal
l ∈ G there is an action a ∈ P such that l ∈ a.epos and (2)
For each action a ∈ P and each literal l ∈ a.φ, either l ∈ s
or there exists an action a′ ∈ P such that l ∈ a.epos .

That is, the set of actions in the relaxed plan collectively
achieve the goal as well as all of the preconditions of the
actions in the set that are not satisfied in the initial state. It
would be ideal to find the shortest linear plan that satisfied
these conditions, however that is NP-hard (Hoffmann and
Nebel 2001). Instead, the plan extraction procedure works
backwards, starting with the set of literals in the goal G. For
each literal l ∈ G, it seeks the “cheapest” action a∗ that can
achieve it; that is,

a∗ = arg min
{a|l∈a.epos}

∑
l∈a.φ

L(l) ,

where L(l) is the index of the lowest layer containing l
(which is itself a quick estimate of the difficulty of achieving
l.)

The minimizing a∗ is added to the relaxed plan, l and any
other literals achieved by a∗ are removed from the goal set,
and the preconditions a∗.φ are added to the goal set unless
they are contained in s. This process continues until the goal
set is empty.

The RPG computed as in section does not immediately
support this computation, because the Picked fluents that are
positive results of Pick actions do not match the Reachable
fluents that appear in preconditions. In general, there may
be many ways to render a robot configuration reachable, by
removing different combinations of obstacles. Determining
the smallest such set is known as the minimum constraint re-
moval problem (Hauser 2014). Hauser shows it is NP-Hard
in the discrete case and provides a greedy algorithm that is
optimal if obstacles must not be entered more than once.
We have extended this method to handle the case in which
objects are weighted; in our case, by the level in the RPG
at which they can be picked. The weighted MCR algorithm
attempts to find a set of obstacles with a minimal sum of
weights that makes a configuration reachable.

So, any action precondition of the form Reachable(c) is
replaced by the set of preconditions Picked(o) for all objects
o in the solution to the weighted MCR problem for configu-
ration c. This represents the (approximately) least cost way
to make c accessible. Having carried out this step, we can
use the standard FF method for extracting a relaxed plan.
The FFRob heuristic returns the number of actions in this
relaxed plan.

Geometric biases It frequently happens that multiple
states have the same heuristic value; in such cases, we break
ties using geometric biases. These three biases do not af-
fect the overall correctness or completeness of the algorithm.
Intuitively, the idea is to select actions that maximize the
reachability of configurations in the domain from the cur-
rent state.

PlanRob 2014 Proceedings

154

T Pre No H HFF HAddR HFFR, HA HFFRB HFFRB, HA
t m s t m s t m s t m s t m s t m s

0 21 265 35 48719 102 72 6123 41 19 536 6 5 78 7 5 87 2 0 23
1 25 300 0 63407 283 17 14300 162 55 2042 3 0 8 16 11 153 4 1 49
2 29 300 0 50903 300 0 8947 300 0 3052 5 1 12 17 13 114 7 2 32
3 23 300 0 39509 300 0 4849 300 0 1767 83 19 464 99 43 523 13 1 69
4 30 300 0 23920 300 0 1574 300 0 1028 300 0 1274 18 3 20 16 3 20
5 51 300 0 9422 300 0 1533 300 0 592 300 1 272 106 17 32 99 14 32

Figure 2: The results of running the algorithms on each of the six tasks (T). Each entry in the table reports median time (t) in
seconds (shown in gray), median absolute deviation, MAD, of the times (m), and median states (s) expanded. Each task also
incurs a pre-processing time (Pre, in seconds) for building the roadmap.

• Choose actions that leave the largest number of config-
urations corresponding to placements of objects in their
goal poses or regions available. This captures the idea that
blocking goal regions should be avoided if possible. This
is useful because although a heuristic will report when a
placement is immediately bad, i.e., already blocking fu-
ture goals, it will not convey information that the place-
ment may prevent two necessary placements later in the
search because it was out in the open. This is because the
relaxed plan assumed that a free placement exists, despite
objects being placed there, because it does not model neg-
ative effects of actions.

• Choose actions that leave the largest total number of con-
figurations corresponding to placements reachable; this
ensures that all placements are as tight as possible against
the edge of the reachable space.

• If neither of the previous biases breaks the tie, then se-
lect actions that maximize the total number of reachable
configurations.

These biases experimentally prove to be helpful in giving
the search additional guidance in this domain, especially in
combination with enforced hill climbing search, which lacks
backtracking to undo bad decisions.

Results
We have experimented with various versions of this algo-
rithm, differing in the definition of the heuristic, on a variety
of tasks; we report the results in this section.

The search strategy in all of our experiments is enforced
hill-climbing (Hoffmann and Nebel 2001), in which a sin-
gle path through the state space is explored, always moving
to the unvisited successor state with the smallest heuristic
value, with ties broken using geometric biases. This search
strategy is known not to be complete, but we have found
it to be very effective in our domains. If the hill-climbing
search were to reach a dead end, one could restart the search
(as is done in FastForward), using the best-first strategy or
weighted A∗, which are complete. However, even with a
complete search and no helpful-action heuristic, the overall
planner is not probabilistically complete, since it is limited
to the initial set of sample poses and configurations.

The parameters governing the creation of the CRG are:
np ∈ [25− 50] (the number of placements for each object);
this varies with the size of the placement regions; nik = 1

(number of robot configurations for each grasp); nn = 1
(number of additional robot configurations near each grasp);
nc = 250 (number of RRT iterations); k = 4 (number of
nearest neighbors).

In our experiments, we generate an initial CRG using these
parameters during pre-processing and then test whether the
value of the heuristic at the initial state is finite. If it is not,
we discard it and try again, with the same parameters. Very
few retries were necessary to find a CRG with finite heuris-
tic value. This condition was effective: in every case in our
experiments, the CRG contained a valid plan.

The following versions of the planner are compared in the
experiments:

1. No H: The heuristic always returns 0.

2. HFF: This is the original heuristic in FF, based only on
the symbolic literals, completely ignoring the reachability
conditions when computing the heuristic. Helpful actions
are not used.

3. HAddR: This is a version of the original HAdd heuristic
that returns the sum of the levels of the RPG at which the
goal literals are first found. This makes use of the CRG to
reason about reachability. It does not build a relaxed plan
and, therefore, does not have helpful actions.

4. HFFR,HA: This computes the RPG, does a backward scan
to find a relaxed plan and computes helpful actions based
on that plan.

5. HFFRB: Like HFFR but using geometric biases to break
ties and without using helpful actions.

6. HFFRB,HA: Like HFFR but using geometric biases to
break ties and using helpful actions.

We tested our algorithm on 6 different tasks, in which the
goals were conjunctions of In(Oi, Rj) for some subset of
the objects (the ones not colored red). Other objects were
moved as necessary to achieve these goals. The last three
tasks are shown in Figure 1; the first three are tasks are sim-
pler variations on task 3 (Figure 1(a)).

The table in Figure 2 shows the results of running the al-
gorithms in each of the tasks. Each entry in the table reports
median time (t) in seconds (shown in gray), median abso-
lute deviation, MAD, of the times (m), and median states (s)
expanded. Each task also incurs a pre-processing time for
building the roadmap; this is reported (in seconds) in the
Pre column of the table. The median-based robust statistics

PlanRob 2014 Proceedings

155

are used instead of the usual mean and standard deviation
since the data has outliers. Entries with a median time of
300 and MAD of 0 did not successfully complete any of the
simulations. There were 20 simulations per task for the first
two heuristics and 120 simulations per task for the others.
Running times are from a Python implementation running
on a 2.6GHz Intel Core i7.

As can be clearly seen, especially in the number of
expanded states, exploiting geometric information in the
heuristic produces substantial improvements. Introducing
geometric biases to settle ties helps in the most cluttered of
the examples.

Conclusion We have shown how to combine data struc-
tures for multi-query motion planning algorithms with the
search and heuristic ideas from the FF planning system to
produce a deeply integrated task and motion planning sys-
tem. The integrated heuristic in this system is quite effective
in focusing the search based on geometric information at rel-
atively low cost.

Acknowledgements This work was supported in part by
the NSF under Grant No. 1117325. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation. We also grate-
fully acknowledge support from ONR MURI grant N00014-
09-1-1051, from AFOSR grant FA2386-10-1-4135 and from
the Singapore Ministry of Education under a grant to the
Singapore-MIT International Design Center.

References
Blum, A., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artif. Intell. 90(1-2):281–300.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid ap-
proach to intricate motion, manipulation and task planning.
International Journal of Robotics Research 28.
de Silva, L.; Pandey, A. K.; Gharbi, M.; and Alami, R. 2013.
Towards combining HTN planning and geometric task plan-
ning. In RSS Workshop on Combined Robot Motion Plan-
ning and AI Planning for Practical Applications.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.;
and Nebel, B. 2009. Semantic attachments for domain-
independent planning systems. In International Conference
on Automated Planning and Scheduling (ICAPS), 114–121.
AAAI Press.
Dornhege, C.; Hertle, A.; and Nebel, B. 2013. Lazy eval-
uation and subsumption caching for search-based integrated
task and motion planning. In IROS workshop on AI-based
robotics.
Erdem, E.; Haspalamutgil, K.; Palaz, C.; Patoglu, V.; and
Uras, T. 2011. Combining high-level causal reasoning
with low-level geometric reasoning and motion planning for
robotic manipulation. In IEEE International Conference on
Robotics and Automation (ICRA).

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Hauser, K. 2014. The minimum constraint removal problem
with three robotics applications. I. J. Robotic Res. 33(1):5–
17.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
Artificial Intelligence Research (JAIR) 14:253–302.
Kaelbling, L. P., and Lozano-Perez, T. 2011. Hierarchical
planning in the now. In IEEE Conference on Robotics and
Automation (ICRA).
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transactions
on Robotics and Automation 12(4):566–580.
Lagriffoul, F.; Dimitrov, D.; Saffiotti, A.; and Karlsson, L.
2012. Constraint propagation on interval bounds for deal-
ing with geometric backtracking. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).
Leven, P., and Hutchinson, S. 2002. A framework for real-
time path planning in changing environments. I. J. Robotic
Res. 21(12):999–1030.
Nilsson, N. J. 1984. Shakey the robot. Technical Report
323, Artificial Intelligence Center, SRI International, Menlo
Park, California.
Pandey, A. K.; Saut, J.-P.; Sidobre, D.; and Alami, R.
2012. Towards planning human-robot interactive manipula-
tion tasks: Task dependent and human oriented autonomous
selection of grasp and placement. In RAS/EMBS Interna-
tional Conference on Biomedical Robotics and Biomecha-
tronics.
Plaku, E., and Hager, G. 2010. Sampling-based motion plan-
ning with symbolic, geometric, and differential constraints.
In IEEE International Conference on Robotics and Automa-
tion (ICRA).
Plaku, E.; Bekris, K. E.; Chen, B. Y.; Ladd, A. M.; and
Kavraki, L. E. 2005. Sampling-based roadmap of trees for
parallel motion planning. IEEE Transactions on Robotics
21(4):597–608.
Srivastava, S.; Riano, L.; Russell, S.; and Abbeel, P. 2013.
Using classical planners for tasks with continuous operators
in robotics. In ICAPS Workshop on Planning and Robotics
(PlanRob).
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. Combined task and motion planning
through an extensible planner-independent interface layer.
In IEEE Conference on Robotics and Automation (ICRA).
Stilman, M., and Kuffner, J. J. 2006. Planning among mov-
able obstacles with artificial constraints. In Workshop on
Algorithmic Foundations of Robotics (WAFR).
Stilman, M.; Schamburek, J.-U.; Kuffner, J. J.; and Asfour,
T. 2007. Manipulation planning among movable obstacles.
In IEEE International Conference on Robotics and Automa-
tion (ICRA).

PlanRob 2014 Proceedings

156

Extending Knowledge-Level Contingent Planning for Robot Task Planning

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, Scotland, UK
rpetrick@inf.ed.ac.uk

Andre Gaschler
fortiss GmbH

An-Institut Technische Universität München
Munich, Germany

gaschler@fortiss.org

Abstract

We present a set of extensions to the knowledge-level
PKS (Planning with Knowledge and Sensing) planner,
aimed at improving its ability to generate plans in real-
world robotics domains. These extensions include a fa-
cility for integrating externally-defined reasoning pro-
cesses in PKS (e.g., invoking a motion planner), an
interval-based fluent representation for capturing the ef-
fects of noisy sensors and effectors, and an application
programming interface (API) to facilitate software in-
tegration on robot platforms. We demonstrate our tech-
niques in three simple robot domains, which show their
applicability to a broad range of robot planning applica-
tions involving incomplete knowledge, real-world ge-
ometry, and multiple robots and sensors.

Introduction and Motivation
A robot operating in a real-world domain often needs to do
so with incomplete information about the state of the world.
A robot with the ability to sense the world can also gather
information to generate plans with contingencies, allowing
it to reason about the outcome of sensed data at plan time.

In this paper, we explore an application of planning with
incomplete information and sensing actions to the problem
of task planning in robotics domains. In particular, building
models of realistic domains which can be used with general-
purpose planning systems often involves working with in-
complete (or uncertain) perceptual information arising from
real-world sensors. Furthermore, this task may be compli-
cated by the difficulties of bridging the gap between geo-
metric and symbolic representations: robot systems typically
reason about joint angles, spatial coordinates, and continu-
ous spaces, while many symbolic planners work with dis-
crete representations in represented in logic-like languages.

Our approach makes use of the PKS (Planning with
Knowledge and Sensing) planner (Petrick and Bacchus
2002; 2004) as the high-level reasoning tool for task plan-
ning in robotics domains. PKS is a general-purpose contin-
gent planner that operates at the knowledge level (Newell
1982), by reasoning about how its knowledge changes due
to action during plan generation. PKS is able to represent
known and unknown information, and model sensing actions
using concise but rich domain descriptions, making it well

Figure 1: In the FORCE SENSING scenario, a compliant
robot manipulator senses if beverage containers are filled
by lifting them and sensing their weight. Objects must be
held upright while moving to prevent spilling, unless they
are known to be completely empty or unopened.

suited for reasoning in structured, partially-known environ-
ments of the kind that arise in many robot scenarios.

While PKS has been used successfully in previous robot
domains (Petrick et al. 2009), it lacks certain features which
could improve its applicability to a wider range of robotics
tasks. In this paper, we describe a set of extensions de-
signed to improve PKS’s ability to generate plans in real-
world robot scenarios, by focusing on three tasks: combining
high-level symbolic planning with low-level motion plan-
ning, reasoning about noisy sensors and effectors, and facil-
itating planner-level software integration on robot platforms.

The planner has also been integrated into a larger soft-
ware framework called Knowledge of Volumes for robot task
Planning (KVP) (Gaschler et al. 2013a), aimed at facilitat-
ing the use of planning techniques on a variety of robot plat-
forms (see Figures 1 and 5), which has been developed as
part of the JAMES project.1 This framework serves as the
basis for the robot demonstrators we describe below.

The rest of this paper is organised as follows. We first

1See http://james-project.eu/ for more information.

PlanRob 2014 Proceedings

157

present an overview of PKS and then describe three exten-
sions to the basic planning system which enhance its ability
to operate in robotics domains. We then give three exam-
ples of robot domains where we use the extended version
of the planner to generate solutions; the first two domains
are tested on real robots, while the third domain is tested in
simulation. Finally, we situate our approach with respect to
related research and discuss future directions of our work.

Planning with Knowledge and Sensing (PKS)
PKS (Planning with Knowledge and Sensing) is a contin-
gent planner that builds plans in the presence of incomplete
information and sensing actions (Petrick and Bacchus 2002;
2004). PKS works at the knowledge level by reasoning about
how the planner’s knowledge state, rather than the world
state, changes due to action. PKS works with a restricted
subset of a first-order logical language, and limited infer-
ence. Thus, unlike planners that reason directly with possi-
ble worlds models or belief states, PKS works with a set of
formulae representing the planner’s knowledge state. This
enables it to support a rich representation with features such
as functions and variables; however, as a trade-off, its re-
stricted representation means that the planner cannot model
certain types of knowledge.

PKS is based on a generalisation of STRIPS (Fikes and
Nilsson 1971). In STRIPS, the state of the world is mod-
elled by a single database. Actions update this database and,
by doing so, update the planner’s world model. In PKS, the
planner’s knowledge state, rather than the world state, is
represented by a set of five databases, each of which mod-
els a particular type of knowledge. The contents of these
databases have a fixed, formal interpretation in a modal logic
of knowledge. Actions can modify any of the databases,
which has the effect of updating the planner’s knowledge
state. To ensure efficient inference, PKS restricts the type
of knowledge (especially disjunctions) that it can represent.
The contents of the databases are as follows:

Kf : This database is like a STRIPS database except that
both positive and negative facts are permitted and the closed
world assumption is not applied. Kf is used for modelling
action effects that change the world. Kf can include any
ground literal `, where ` ∈ Kf means “the planner knows `.”
Kf can also contain known function (in)equality mappings.

Kw: This database models the plan-time effects of sens-
ing actions with binary outcomes. φ ∈ Kw means that at
plan time the planner either “knows φ or knows ¬φ,” and
that at execution time this disjunction will be resolved. In
such cases we will also say that the planner “knows whether
φ.” Know-whether information is important since PKS uses
such knowledge to construct conditional plans (see below).

Kv: This database stores information about function values
that will become known at execution time. In particular, Kv

can model the plan-time effects of sensing actions that re-
turn constants, such as numeric values. Kv can contain any
unnested function term f , where f ∈ Kv means that at plan
time the planner “knows the value of f .” At execution time,
the planner will have definite information about f ’s value.

As a result, PKS is able to use Kv terms as run-time vari-
ables (Etzioni et al. 1992) in its plans.

Kx: This database models the planner’s exclusive-or knowl-
edge. Entries in Kx have the form (`1|`2| . . . |`n), where
each `i is a ground literal. Such formulae represent a partic-
ular type of disjunctive knowledge that arises in many plan-
ning scenarios, namely that “exactly one of the `i is true.”

LCW: This database stores the planner’s local closed world
information (Etzioni, Golden, and Weld 1994), i.e., in-
stances where the planner has complete information about
the state of the world. We will not use LCW in this paper.

PKS’s databases can be inspected through a set of prim-
itive queries that ask simple questions about the planner’s
knowledge state. Simple knowledge assertions can be tested
with a query K(φ) which asks: “is a formula φ true?” A
queryKw(φ) asks whether φ is known to be true or known to
be false (i.e., does the planner “know whether φ”). A query
Kv(t) asks “is the value of function t known?” The negation
of the above queries can also be used. An inference proce-
dure is used to evaluate primitive queries by checking the
contents of the databases, taking into consideration the in-
teraction between different types of knowledge.

An action in PKS is modelled by a set of preconditions
that query the agent’s knowledge state, and a set of ef-
fects that update the state. Action preconditions are sim-
ply a list of primitive queries. Action effects are described
by a collection of STRIPS-style “add” and “delete” opera-
tions that modify the contents of individual databases. E.g.,
add(Kf , φ) adds φ to Kf , and del(Kw, φ) removes φ from
Kw. Actions can also have ADL-style context-dependent ef-
fects (Pednault 1989), where the secondary preconditions of
an effect are described by lists of primitive queries. A sim-
ple form of quantification, ∀Kx and ∃Kx, that ranges over
known instantiations of x can also be used. Examples of
PKS actions are shown below in Figure 3.

PKS constructs plans by reasoning about actions in a sim-
ple forward-chaining manner: if the preconditions of an ac-
tion are satisfied by the planner’s knowledge state, then the
action’s effects are applied to produce a new knowledge
state. Planning then continues from the resulting state. PKS
can also build contingent plans with branches, by consid-
ering the possible outcomes of its Kw and Kv knowledge.
For instance, if φ ∈ Kw then PKS can construct two condi-
tional branches in a plan: along one branch (the K+ branch)
φ is assumed to be known (i.e., φ is added to Kf), while
along the other branch (the K− branch), ¬φ is assumed to
be known (i.e., ¬φ is added to Kf). A similar type of multi-
way branching plan can also be built by considering a re-
stricted type of Kv information. Planning continues along
each branch until the goal—a list of primitive queries–is sat-
isfied. A sample plan with branches is shown in Figure 4,
and described in greater detail below.

Extensions to PKS for Robot Task Planning
In this section we consider three recent extensions to the ba-
sic PKS system which we believe are particularly useful for
robot task planning. First, we describe a mechanism which

PlanRob 2014 Proceedings

158

allows externally-defined procedures (e.g., from support li-
braries) to be integrated with the internal reasoning mech-
anisms of the planner. Second, we present an extension of
the PKS representation which allows a form of noisy nu-
merical information to be modelled, for instance to repre-
sent the effects of error prone sensors. Finally, we describe
a software-level application programming interface to PKS,
which aids in the engineering task of integrating the planner
with a robot system.

Executing Externally-Defined Procedures
The first extension we describe aims to take advantage of
existing reasoning tools by providing a mechanism for PKS
to invoke externally-defined procedures (e.g., defined in spe-
cial purpose libraries) from within the planner’s internal rea-
soning mechanism during plan generation. While this idea is
not new, and has been successfully applied in other contexts
(see the discussion section, below), the introduction of this
technique into PKS is a recent extension to the planner.

In particular, PKS provides an external query mechanism
of the form:

extern(proc(~x)),
where extern is a special keyword indicating that con-
trol should be transferred to an external procedure with the
name proc. ~x is a set of parameters that should be passed
to proc. In general, x can contain any symbols defined in
PKS’s knowledge state, providing a link between the plan-
ner and the externally-defined procedure. An extern call
can be used within an action definition, either as a precondi-
tion or an effect. The return value of the extern call, defined
within the external procedure, is passed back to PKS, which
interprets it in the context where it occurs in the action. Ad-
ditional tests may be performed on this value, which can be
assigned to domain properties and included in the planner’s
knowledge state. While no restrictions are placed on when
such procedures can be used in a planning domain, in prac-
tice extern calls are most useful if used for complex or spe-
cial purpose reasoning that cannot easily be modelled in the
planner’s restricted representation language, or where more
efficient reasoning engines already exist.

The externmechanism provides a powerful tool for PKS
to use in robotics domains by augmenting PKS’s core rea-
soning capabilities with the addition of motion planning,
collision detection, and other special purpose robotics li-
braries. For instance, geometric predicates and continuous
motions can be evaluated with extern calls, and reasoned
about at the symbolic level, enabling us to solve problem in-
stances which may be difficult to model directly at either the
motion planning or symbolic planning level alone. Examples
of this process are given below.

One important drawback with this facility in its present
form, is that there is no control over how long an external
procedure may take to execute, or whether it will terminate
at all. As a result, we are currently extending our extern
implementation to introduce a simple timeout facility that
will force external procedure calls to terminate if a speci-
fied cutoff time is reached. Currently, however, the domain
designer must ensure that any externally-defined procedures
operate correctly in the context of a given planning domain.

Reasoning with Interval-Valued Fluents
One type of sensed information that arises in many real-
world robotics contexts is numerical information, which is
often necessary for modelling state properties (e.g., the robot
is 10 metres from the wall), limited resources (e.g., ensure
the robot has enough fuel), constraints (e.g., only grasp an
object if its radius is less than 10 cm), or arithmetic opera-
tions (e.g., advancing the robot one step reduces its distance
to the wall by 1 metre). Reasoning with incomplete numer-
ical information is often problematic, however, especially
when planners represent incompletely known state proper-
ties by sets of states, each of which denotes a possible con-
figuration of the actual world state. E.g., if a fluent f could
map to any natural number between 1 and 100, then we re-
quire 100 states to capture f ’s possible mappings. The state
explosion resulting from large sets of mappings can be com-
putationally difficult for planners that must reason directly
with individual states to construct plans.

In PKS, we build on a previous planning approach (Pet-
rick 2011) which uses interval-valued fluents (IVFs) (Funge
1998) to avoid some of the computational problems involved
with uncertain numerical information. The idea is simple:
instead of representing each possible mapping by a separate
state, a single interval mapping is used, where the endpoints
of the interval indicate the fluent’s range of possible values.
Thus, a fluent f that could map to values between 1 and 100
can be denoted in an interval-valued form by f = 〈1, 100〉.

In general, PKS treats each IVF as a function whose deno-
tation is an interval of the form 〈u, v〉. The endpoints of the
interval, u and v, indicate the bounds on the range of possi-
ble mappings for the fluent. Since we are interested in plan-
ning with incomplete information, a mapping f = 〈u, v〉
will mean that the value of f is known to be in the interval
〈u, v〉. If a fluent maps to a point interval of the form 〈u, u〉,
then the mapping is certain and known to be equal to u.

PKS’s knowledge of (general) IVFs are stored in its Kx

database, as a generalisation of its exclusive-or information.
In addition to basic intervals, disjunctive intervals (i.e., sets
of disjoint interval mappings) are also permitted. For in-
stance, if a fluent f could possibly map to any value be-
tween 5 and 10 or, alternatively, map to values between 15
and 18, we can represent such information by the Kx for-
mula (f = 〈5, 10〉 |f = 〈15, 18〉).

Certain types of IVFs can also be represented in the
Kv and Kw databases. For instance, a fluent of the form
f : 〈x− c, x+ c〉 in Kv means that the value of the fluent
f is known, and f is in the range x ± c, for some numeric
constant c and unknown fluent value x. This mechanism can
be used to model the results of noisy sensors. In Kw, we
also permit numeric relations of the form f op c, where
op ∈ {=, 6=, >,<,≥,≤} and c is a numeric constant. Thus,
f > 5 ∈ Kw can be used to model a sensing action that
determines whether f is greater than 5 or not. Since Kw is
used to build contingent branches into a plan, this extension
also enables PKS to build branches based on IVFs.

An Application Programming Interface
The task of integrating a planner onto a robot platform of-
ten centres around the problem of representation, and how

PlanRob 2014 Proceedings

159

to abstract the capabilities of a robot and its working en-
vironment so that it can be put in a suitable form for use
by the planner. Integration also typically requires the ability
to communicate information between system components.
Thus, the integration of a planning system usually requires
a consideration of certain engineering-level concerns, to en-
sure proper interoperability with components that aren’t tra-
ditionally considered in theoretical planning settings.

In order to facilitate the task of providing software-level
planning services to robot systems, we have created an
application programming interface (API) for a version of
PKS implemented as a C++ library. This interface abstracts
many common planning operations into a series of func-
tions which provide direct access to these services. For in-
stance, this interface includes methods for manipulating do-
main representations, as well as functions for controlling
certain aspects of the the plan generation process itself (e.g.,
selecting goals, generation strategies, or planner-specific set-
tings). Moreover, functions that allow plans to be manipu-
lated as first-class entities (e.g., for replanning) are provided.
A fragment of the API is given in Figure 2.

Overall, the API is designed to be generic and is not meant
to be tied to one particular planning system. For instance, the
planner configuration methods are meant to provide a way to
set certain properties of the underlying planning system, and
provide access to features needed for debugging. The do-
main configuration functions provide the main methods for
defining planning domain models, either from traditional do-
main/problem files, or via string-based descriptions. One im-
portant idea behind the configuration functions is that they
offer the possibility of specifying domains to the planner in-
crementally, using function calls alone, rather than specify-
ing a single monolithic domain file. This means that an ini-
tial domain could be specified and then later revised, for in-
stance due to additional information discovered by the robot
during execution (e.g., new domain objects, revised action
descriptions, additional properties corresponding to new ca-
pabilities of the robot, etc.). Finally, the plan generation and
iteration functions specify methods for controlling various
aspects of the plan generation process, and provide a way
for processes external to the planner to control simple moni-
toring and replanning activities, including updates to certain
aspects of the planning problem, such as goal change.

We will discuss the integration of PKS on our robot plat-
forms in greater detail in the discussion section below.

Example Domains
To demonstrate our approach, we now describe three
robotics scenarios that make use of knowledge-level plan-
ning: the FORCE SENSING and the BIMANUAL robot sce-
narios, based on domains first described in (Gaschler et al.
2013c) and tested on real robots, and the ROBOT LOCALI-
SATION scenario, tested in simulation. In all scenarios, the
robot uses sensing actions to obtain knowledge of some do-
main property which is necessary for achieving the goal.
In the first scenario, only the basic PKS system is used. In
the second scenario, PKS’s external procedure mechanism
is used to link a motion planning library to the planner’s in-
ternal reasoning mechanisms. In the final scenario, we make

// Configuration and debugging
void reset();
string getPlannerProperty(string);
bool setPlannerProperty(string, string);

// Domain configuration
bool defineDomain(string);
bool defineSymbols(string);
bool defineActions(string);
bool defineProblems(string);
bool definePlanState(string);
bool defineObservedState(string);

// Plan generation and iteration
bool buildPlan();
string getCurrentPlan();
Action getNextAction();
bool isNextActionEndOfPlan();
bool isPlanDefined();
bool setProblem(string);
bool setProblemGoal(string);

Figure 2: A fragment of the PKS API.

use of interval-valued fluents in a simple localisation task.
In each case, we discuss the symbolic domain definitions of
the scenario, and provide an example of the solution plan
that was generated in that domain.

Force Sensing Scenario
In the FORCE SENSING scenario, a robot manipulator is
tasked with transferring beverage containers from one table
to another, as shown in Figure 1. Through its torque sensors,
it can sense the external force of a grasped container, and
decide whether or not that drink could be spilled. The robot
should hold drinks exactly upright to prevent spilling, un-
less a drink is known to be completely empty, in which case
a faster arbitrary motion may be performed. In order to keep
this scenario simple, the location of all objects are known
and no sensing except force sensing is available.

Figure 3 shows the PKS actions in the FORCE SENSING
scenario, which includes a sensing action, senseWeight,
which senses the weight of a beverage container ?o. To per-
form this action, the robot must first be grasping object ?o.
To ensure only new knowledge is gained from this action,
and to increase planning efficiency, we include a precondi-
tion that the robot must not yet know whether ?o is spillable.
When this action is performed, knowledge of whether ?o is
spillable or not is added to PKS’s Kw database.

This scenario also includes a number of actions for ma-
nipulating domain objects, including transferUpright,
transfer, grasp, and ungrasp actions, also listed in Fig-
ure 3. For example, in the transferUpright action, the
robot can move a grasped container from one table to the
other, while keeping the orientation of its parallel gripper
fixed. Only objects that are grasped and not yet removed to
the second table can be transferred.

An example plan for the FORCE SENSING scenario is
shown in Figure 4 for the case of two objects in the do-
main. In particular, a sensing action is performed on each

PlanRob 2014 Proceedings

160

action senseWeight(?o:object)
preconds:

¬Kw(isSpillable(?o)) &
K(isGrasped(?o))

effects:
add(Kw, isSpillable(?o))

action transfer(?o:object)
preconds:

K(¬isSpillable(?o)) &
K(isGrasped(?o)) &
K(¬isRemoved(?o))

effects:
add(Kf, isRemoved(?o))

action transferUpright(?o:object)
preconds:

K(isSpillable(?o)) &
K(isGrasped(?o)) &
K(¬isRemoved(?o))

effects:
add(Kf, isRemoved(?o))

action grasp(?o:object)
preconds:

K(emptyGripper) &
K(¬isRemoved(?o))

effects:
add(Kf, isGrasped(?o)),
add(Kf, ¬emptyGripper)

action ungrasp(?o:object)
preconds:

K(isGrasped(?o)) &
K(isRemoved(?o))

effects:
add(Kf, ¬isGrasped(?o)),
add(Kf, emptyGripper)

Figure 3: Actions in the FORCE SENSING domain.

object (can1 and can2) and the objects are individually ma-
nipulated depending on whether their contents are spillable
or not. The resulting plan therefore considers four contin-
gent situations which could arise during plan execution. This
scenario was tested on a joint-impedance controlled light-
weight 7-DoF robot with a force-controlled parallel gripper.
Forces were measured by internal torque sensing.

Bimanual Robot Scenario
The second scenario is a demonstration of a BIMANUAL
robot (Figure 5) whose hands can reach different areas of
a table. In this case, the robot can sense if bottles on the ta-
ble are empty or full using a top-down camera. Its goal is
to clean up all empty bottles by removing them to a cer-
tain “dishwasher” location. In order to achieve this goal,
the robot must move objects that are only accessible by its
left arm to a location that its right arm can reach, a be-
haviour which arises purely from symbolic planning. In con-
trast to the previous FORCE SENSING scenario, the BIMAN-
UAL robot scenario relies on visual information, which can
be gathered without requiring manipulation.

1. grasp(can1) ;
2. senseWeight(can1) ;
3. branch(isSpillable(can1))
4. K+:
5. transferUpright(can1) ;
6. ungrasp(can1) ;
7. grasp(can2) ;
8. senseWeight(can2) ;
9. branch(isSpillable(can2))
10. K+:
11. transferUpright(can2) ;
12. ungrasp(can2).
13. K-:
14. transfer(can2) ;
15. ungrasp(can2).
16. K-:
17. transfer(can1) ;
18. ungrasp(can1) ;
19. grasp(can2) ;
20. senseWeight(can2) ;
21. branch(isSpillable(can2))
22. K+:
23. transferUpright(can2) ;
24. ungrasp(can2).
25. K-:
26. transfer(can2) ;
27. ungrasp(can2).

Figure 4: A plan for removing 2 objects from a table in the
FORCE SENSING domain.

The PKS actions in the BIMANUAL scenario are given
in Figure 6. Two robot arms are tasked with removing all
empty bottles that are visible on a table, and moving them to
the dishwasher location, which can only be reached by the
right robot arm. The domain includes one sensing action,
senseIfEmpty, which has no precondition other than the
requirement that the knowledge it gathers must be new. For
manipulation, both robot arms can perform the pickUp and
putDown actions. However, not all locations can be reached
by both hands, so the preconditions of these actions include
an extern call to isReachable, which is defined in a motion
planning library and which checks reachability for a specific
manipulator and location. This interaction of symbolic and
motion planners is described in greater detail in the discus-
sion section below, and in (Gaschler et al. 2013a).

An example plan is shown in Figure 7 for the case of
4 objects. In particular, the plan senses each object to de-
tect whether or not it is empty and then constructs a condi-
tional plan to subsequently remove the empty objects to the
dishwasher. The resulting plan therefore considers 16 possi-
ble configurations of empty/non-empty bottles which could
arise at execution. (The actions for the case where bottle0
and bottle2 are empty are shown.) It is interesting to ob-
serve that this simple robot scenario already gives rise to in-
teresting behaviour: since the right arm cannot directly reach
all objects that need to be transferred to the goal location, the
left arm must pass those objects to a location reachable by
both hands. This behaviour has not been pre-programmed,
but instead arises purely from the combination of symbolic
and geometric planning.

PlanRob 2014 Proceedings

161

Figure 5: In the BIMANUAL scenario, a camera is used to
recognise empty bottles which a bimanual robot should re-
move from the table to a “dishwasher” location on the left
side, behind the table (Gaschler et al. 2013a; Giuliani et
al. 2013). A video of the robot operating in this scenario
is available at http://youtu.be/yMmZkhHr8ss.

This domain was tested on a two 6-DoF industrial manip-
ulator setup with Meka Robotics H2 humanoid hands, with
an RGB camera facing top-down for simple colour-filtering
object recognition, as described in (Foster et al. 2012).

Robot Localisation Scenario
In the final example, we consider a robot whose loca-
tion, represented by the IVF robotLoc, is measured by the
robot’s distance to a wall. The robot has two physical ac-
tions available to it: moveForward, which moves the robot
either 1 or 2 units towards the wall; and moveBackward,
which moves the robot 1 unit away from the wall. The robot
also has a sensing action, atTarget, which senses whether
the robot is at a target location, specified by the function
targetLoc. Additionally, the robot also has a second sens-
ing action, withinTarget, that determines whether or not
the robot is within the target distance targetLoc.

The definitions of the PKS actions for this scenario are
given in Figure 8 (all action preconditions are assumed to be
true). The robot’s initial location is specified by the interval
mapping robotLoc = 〈3, 4〉 stored in Kx. The goal is to
move the robot to the target location, i.e., K(robotLoc =
targetLoc), where targetLoc = 2 is stored in Kf .

One solution generated by PKS is the conditional plan
in Figure 9. Since forward movements may change the
robot’s position by either 1 unit or 2 units, noisyForward
in step 1 results in an even less certain position for the robot,
namely robotLoc = 〈1, 3〉 ∈ Kx. However, the sensing
action in step 2, together with the branch point in step 3,
lets us split this interval into two parts. In step 4, we as-
sume that robotLoc ≤ 2 and consider the case where
robotLoc = 〈1, 2〉. atTarget, together with the branch
in step 6, lets us divide this interval even further: in step 7,
robotLoc = 2 and the goal is satisfied, while in step 8,
robotLoc = 1 and a moveBackward action achieves the
goal. In step 10 we consider the other sub-interval of the

action senseIfEmpty(?o:object)
preconds:

¬Kw(isEmptyBottle(?o))
effects:

add(Kw, isEmptyBottle(?o))

action pickUp(?r:robot, ?o:object, ?l:location)
preconds:

K(?l = getObjectLocation(?o)) &
K(handEmpty(?r)) &
K(extern(isReachable(?l, ?r)))

effects:
del(Kf, ?l = getObjectLocation(?o)),
del(Kf, handEmpty(?r)),
add(Kf, inHand(?o, ?r))

action putDown(?r:robot, ?o:object, ?l:location)
preconds:

K(inHand(?o, ?r)) &
K(extern(isReachable(?l, ?r)))

effects:
del(Kf, inHand(?o, ?r)),
add(Kf, ?l = getObjectLocation(?o)),
add(Kf, handEmpty(?r))

Figure 6: Actions in the BIMANUAL domain.

first branch, i.e., robotLoc = 3 ∈ Kf . In this case we have
definite knowledge, however, a subsequent noisyForward
results in robotLoc = 〈1, 2〉. The remainder of the plan in
steps 12–16 is the same as in steps 5–9: the robot condition-
ally moves backwards in the case that robotLoc is deter-
mined to be 1, while the plan trivially achieves the goal if
robotLoc = 2.

We have not tested this domain on a real robot yet but
have instead performed a series of tests in simulation using
a variety of initial and target locations. Experimentation with
IVF domains on a real robot is a focus of current work.

Related Work and Discussion
Applications of automated planning to robotics go back to
the early 1980s, for instance with the famous robot sys-
tems Shakey (Nilsson 1984) and Handey (Lozano-Pérez
et al. 1989). Since that time, the field has made substan-
tial progress, and various approaches to robot task plan-
ning have been proposed, including probabilistic techniques
from artificial intelligence (Kaelbling and Lozano-Pérez
2013), closed-world symbolic planning (Cambon, Alami,
and Gravot 2009; Plaku and Hager 2010; Dornhege et al.
2009b), formal synthesis (Kress-Gazit and Pappas 2008;
Cheng et al. 2012), and sampling-based manipulation plan-
ning (Zacharias, Borst, and Hirzinger 2006; Barry 2013).

As part of our work to apply general-purpose planning
in robotics domains, we developed the Knowledge of Vol-
umes framework for robot task Planning (KVP), initially
presented in (Gaschler et al. 2013a). KVP uses PKS as its
underlying symbolic planner, and combines it with the idea
of treating 3D geometric volumes as an intermediary rep-
resentation between continuously-valued robot motions and
discrete symbolic actions, to address the problem of bridg-

PlanRob 2014 Proceedings

162

1. senseIfEmpty(bottle0) ;
2. senseIfEmpty(bottle1) ;
3. senseIfEmpty(bottle2) ;
4. senseIfEmpty(bottle3) ;
5. branch(isEmptyBottle(bottle0))
6. K+:
7. branch(isEmptyBottle(bottle1))
8. K+: . . .
9. K-:
10. branch(isEmptyBottle(bottle2))
11. K+:
12. branch(isEmptyBottle(bottle3))
13. K+: . . .
14. K-:
15. pickUp(left,bottle0,l0) ;
16. putDown(left,bottle0,l5) ;
17. pickUp(right,bottle2,l2) ;
18. putDown(right,bottle2,dishwasher) ;
19. pickUp(right,bottle0,l5) ;
20. putDown(right,bottle0,dishwasher).
21. K-: . . .
22. K-: . . .

Figure 7: A plan for 4 objects in the BIMANUAL domain.

action moveForward
effects:

add(Kf, robotLoc := robotLoc - <1,2>)

action moveBackward
effects:

add(Kf, robotLoc := robotLoc + 1)

action atTarget
effects:

add(Kw, robotLoc = targetLoc)

action withinTarget
effects:

add(Kw, robotLoc <= targetLoc)

Figure 8: Actions in the LOCALISATION domain.

ing the gap between geometric and symbolic planning repre-
sentations. By using the intermediate representation of vol-
umes, KVP can model continuous geometry, in contrast to
arbitrary discretisation (Gaschler et al. 2013a).

Previous work described the KVP framework (Gaschler
et al. 2013a), and gave details of the swept volume compu-
tation for convex sets of polyhedra (Gaschler et al. 2013b).
The two task planning scenarios discussed in this paper were
previously presented in (Gaschler et al. 2013c), however, the
present paper focuses on the planning aspects of this work,
giving a detailed discussion of knowledge-level planning,
sensing actions, and discrete uncertainty.

A number of approaches also address the problem of
integrating symbolic planning and motion planning. For
instance, our work is in part inspired by Kaelbling and
Lozano-Pérez’s earlier work on hierarchical task and motion
planning (Kaelbling and Lozano-Pérez 2011), borrowing the
continuous geometry of swept volumes. However, while the

robotLoc
0. 〈3, 4〉
1. noisyForward ; 〈1, 3〉
2. withinTarget ;
3. branch(robotLoc ≤ targetLoc)
4. K+: 〈1, 2〉
5. atTarget ;
6. branch(robotLoc = targetLoc)
7. K+: nop. 2
8. K-: 1
9. moveBackward. 2
10. K-: 3
11. noisyForward ; 〈1, 2〉
12. atTarget ;
13. branch(robotLoc = targetLoc)
14. K+: nop. 2
15. K-: 1
16. moveBackward. 2

Figure 9: A plan in the LOCALISATION domain.

geometric preconditions may be similar, their underlying
aggressively hierarchical planning strategy differs from the
knowledge-level planning approach we use here. Further
approaches that integrate symbolic and geometric reason-
ing are presented by Cambon, Alami and Gravot (2009),
handling geometric preconditions and effects; Dornhege et
al. (2009b); and, more recently, Plaku and Hager (2010),
which additionally allow differential motion constraints in
a sampling-based motion and action planner. We note that
the latter three approaches assume a closed world, where all
symbols must be either true or false. Our approach instead
represents open-world knowledge, which allows us to model
incomplete information and high-level sensing. Prior work
has also used PKS to connect robot vision and grasping with
automated planning (Petrick et al. 2009).

In terms of our extensions to PKS, the ability to link ex-
ternal libraries to internal reasoning processes is key to our
approach. While this idea is not new, and has been pre-
viously applied (Eiter et al. 2006; Dornhege et al. 2009a;
Erdem et al. 2011), the introduction of such techniques to
PKS is a recent addition to the planner. Current work is fo-
cused on extending this interface, to allow external proce-
dures partial access to internal PKS planning states, for more
efficient external execution during plan generation.

Interval-valued numeric models have been previously in-
vestigated in planning contexts, e.g., for modelling time
as a resource (Edelkamp 2002; Frank and Jónsson 2003;
Laborie 2003). A similar representation to ours for bounding
noisy numeric properties has also been proposed by Pog-
gioni, Milani, and Baioletti (2003). This idea also has par-
allels to work on register models (van Eijck 2013). The im-
portance of numerical reasoning in planning has been recog-
nised with the inclusion of numeric state variables in PDDL,
and in planners like MetricFF. We believe representations
such as our IVF approach offer a useful middle ground be-
tween discrete and fully probabilistic models of uncertainty.

Motion planning and collision detection in our work rely
heavily on the Robotics Library (RL)2 (Rickert 2011), ex-

2Available from http://www.roboticslibrary.org/.

PlanRob 2014 Proceedings

163

Domain definition time

Geometric
volumes

Domain
Definition

Symbolic domain
Goal definition

Kinematic models

Planning time
Runtime

Volume
Simplification

Collision
Detection

Motion paths Trajectory
Generation

Robot
Control

Sensing

Plan
Execution

Simplified volumes

Paths

Motion
Planning

PKS planner

Figure 10: Overview of the implemented KVP framework
(Gaschler et al. 2013a).

tended with several crucial additions to swept volume com-
putations with sets of convex bodies (Gaschler et al. 2013a).
To efficiently generate these sets of convex bodies, Mamou
and Ghorbel’s approximate convex decomposition algorithm
(Mamou and Ghorbel 2009) is applied. An overview of
KVP’s component architecture is shown in Figure 10; the
integration of PKS within this framework is achieved using
the API described in this paper.

Finally, we note that the set of functions we defined for
our planning API can be thought of as an interface to a series
of abstract planning services which are ultimately imple-
mented by some underlying “black box” planning system.
As with other types of complex software modules, such an
interface removes the need for the application programmer
to know about how such services are actually implemented
within the black box, but instead allows the designer to build
more complex components that simply make use of these
services. We are currently exploring the option of adapting
other existing planners to use our interface, in order to ex-
periment with alternative planner backends.

Conclusions
We described a set of extensions to PKS, aimed at improv-
ing its applicability to problems in robot task planning. We
demonstrated the capabilities of our approach in solving typ-
ical robot tasks at the knowledge level, including the com-
bination of high-level symbolic planning with low-level mo-
tion planning. Our evaluation included two simple scenar-
ios that covered force sensing and visual sensing, with real
execution on physical robot setups. A final example demon-
strated a simple robot localisation task in simulation. As part
of our ongoing and future work, we are continuing to re-
fine our extensions and apply them in more complex sce-
narios, in order to gather empirical data and better under-
stand the limits of our techniques. Overall, we believe our
approach is useful for a broad range of robot planning appli-
cations that require incomplete knowledge, real-world ge-
ometry, and multiple robots and sensors.

Acknowledgements
This research was supported in part by the European
Commission’s Seventh Framework Programme under grant
no. 270435 (JAMES, james-project.eu) and grant
no. 270273 (XPERIENCE, xperience.org)

References
Barry, J. L. 2013. Manipulation with Diverse Actions. Ph.D. Dis-
sertation, Massachusetts Institute of Technology.
Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid approach
to intricate motion, manipulation and task planning. International
Journal of Robotics Research 28(1):104–126.
Cheng, C.; Geisinger, M.; Ruess, H.; Buckl, C.; and Knoll, A.
2012. Game solving for industrial automation and control. In IEEE
Int. Conf. on Robotics and Automation, 4367–4372.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.; and
Nebel, B. 2009a. Semantic attachments for domain-independent
planning systems. In Proc. of the Int. Conference on Automated
Planning and Scheduling (ICAPS), 114–121.
Dornhege, C.; Gissler, M.; Teschner, M.; and Nebel, B. 2009b.
Integrating symbolic and geometric planning for mobile manipula-
tion. In IEEE International Workshop on Safety, Security & Rescue
Robotics, 1–6.
Edelkamp, S. 2002. Taming numbers and durations in the model
checking integrated planning system. Journal of Artificial Intelli-
gence Research 20:195–238.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2006. Ef-
fective integration of declarative rules with external evaluations for
semantic-web reasoning. In The Semantic Web: Research and Ap-
plications, 273–287.
Erdem, E.; Haspalamutgil, K.; Palaz, C.; Patoglu, V.; and Uras, T.
2011. Combining high-level causal reasoning with low-level geo-
metric reasoning and motion planning for robotic manipulation. In
Int. Conference on Robotics and Automation, 4575–4581.
Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.; and
Williamson, M. 1992. An approach to planning with incomplete
information. In Proceedings of the International Conference on
Knowledge Representation and Reasoning (KR), 115–125.
Etzioni, O.; Golden, K.; and Weld, D. 1994. Tractable closed world
reasoning with updates. In Proc. of the International Conference
on Knowledge Representation and Reasoning (KR), 178–189.
Fikes, R., and Nilsson, N. 1971. Strips: A new approach to the
application of theorem proving to problem solving. Artificial Intel-
ligence 2:189–208.
Foster, M. E.; Gaschler, A.; Giuliani, M.; Isard, A.; Pateraki, M.;
and Petrick, R. 2012. Two people walk into a bar: Dynamic multi-
party social interaction with a robot agent. In Proceedings of the
ACM International Conference on Multimodal Interaction (ICMI).
Frank, J., and Jónsson, A. 2003. Constraint-based attribute and
interval planning. Journal of Constraints, Special Issue on Con-
straints and Planning 8:339–364.
Funge, J. 1998. Interval-valued epistemic fluents. In AAAI Fall
Symposium on Cognitive Robotics, 23–25.
Gaschler, A.; Petrick, R.; Giuliani, M.; Rickert, M.; and Knoll, A.
2013a. KVP: A Knowledge of Volumes Approach to Robot Task
Planning. In IEEE/RSJ Intl Conf on Intelligent Robots and Systems
(IROS), 202–208.
Gaschler, A.; Petrick, R.; Kröger, T.; Khatib, O.; and Knoll, A.
2013b. Robot task and motion planning with sets of convex poly-
hedra. In RSS Workshop on Combined Robot Motion Planning and
AI Planning for Practical Applications.
Gaschler, A.; Petrick, R.; Kröger, T.; Knoll, A.; and Khatib, O.
2013c. Robot task planning with contingencies for run-time sens-
ing. In ICRA Workshop on Combining Task and Motion Planning.
Giuliani, M.; Petrick, R.; Foster, M. E.; Gaschler, A.; Isard, A.;
Pateraki, M.; and Sigalas, M. 2013. Comparing task-based and

PlanRob 2014 Proceedings

164

socially intelligent behaviour in a robot bartender. In Proceedings
of the International Conference on Multimodal Interaction (ICMI).
Kaelbling, L. P., and Lozano-Pérez, T. 2011. Hierarchical task and
motion planning in the now. In IEEE International Conference on
Robotics and Automation (ICRA), 1470–1477.
Kaelbling, L. P., and Lozano-Pérez, T. 2013. Integrated task and
motion planning in belief space. International Journal of Robotics
Research 32(9–10):1194–1227.
Kress-Gazit, H., and Pappas, G. 2008. Automatically synthesizing
a planning and control subsystem for the darpa urban challenge.
In Automation Science and Engineering, 2008. CASE 2008. IEEE
International Conference on, 766–771.
Laborie, P. 2003. Algorithms for propagating resource constraints
in AI planning and scheduling: Existing approaches and new re-
sults. Artificial Intelligence 143:151–188.
Lozano-Pérez, T.; Jones, J.; Mazer, E.; and O’Donnell, P. 1989.
Task-level planning of pick-and-place robot motions. Computer
22(3):21–29.
Mamou, K., and Ghorbel, F. 2009. A simple and efficient approach
for 3d mesh approximate convex decomposition. In IEEE Interna-
tional Conference on Image Processing (ICIP), 3501–3504.
Newell, A. 1982. The knowledge level. Artificial Intelligence
18(1):87–127.
Nilsson, N. 1984. Shakey the robot. Technical Report 323, AI
Center, SRI International.
Pednault, E. P. D. 1989. ADL: Exploring the middle ground be-
tween STRIPS and the situation calculus. In Proceedings of the
International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR), 324–332.
Petrick, R., and Bacchus, F. 2002. A knowledge-based approach to
planning with incomplete information and sensing. In Proceedings
of the International Conference on Artificial Intelligence Planning
and Scheduling (AIPS), 212–221.
Petrick, R., and Bacchus, F. 2004. Extending the knowledge-based
approach to planning with incomplete information and sensing. In
Proceedings of the International Conference on Automated Plan-
ning and Scheduling (ICAPS), 2–11.
Petrick, R.; Kraft, D.; Krüger, N.; and Steedman, M. 2009. Com-
bining cognitive vision, knowledge-level planning with sensing,
and execution monitoring for effective robot control. In ICAPS
Workshop on Planning and Plan Execution for Real-World Sys-
tems, 58–65.
Petrick, R. 2011. An extension of knowledge-level planning to
interval-valued functions. In AAAI 2011 Workshop on Generalized
Planning.
Plaku, E., and Hager, G. 2010. Sampling-based motion planning
with symbolic, geometric, and differential constraints. In IEEE Int.
Conference on Robotics and Automation, 5002–5008.
Poggioni, V.; Milani, A.; and Baioletti, M. 2003. Managing interval
resources in automated planning. Journal of Information Theories
and Applications 10:211–218.
Rickert, M. 2011. Efficient Motion Planning for Intuitive Task Exe-
cution in Modular Manipulation Systems. Dissertation, Technische
Universität München.
van Eijck, J. 2013. Elements of epistemic crypto logic. Slides from
a talk at the LogiCIC Workshop, Amsterdam.
Zacharias, F.; Borst, C.; and Hirzinger, G. 2006. Bridging the gap
between task planning and path planning. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 4490–4495.

PlanRob 2014 Proceedings

165

A Fast and Effective Online Algorithm for the Canadian Traveler Problem

O. Furkan Sahin and Vural Aksakalli
Dept. of Industrial Engineering

Istanbul Sehir University
34662 Istanbul, Turkey

furkansahin@std.sehir.edu.tr, aksakalli@sehir.edu.tr

Ali Fuat Alkaya
Dept. of Computer Engineering

Marmara University
34722 Istanbul, Turkey

falkaya@marmara.edu.tr

Abstract

The Canadian Traveler Problem (CTP) is a difficult
path planning problem on stochastic graphs where some
edges are blocked with certain probabilities and sta-
tus of edges can be disambiguated only upon reach-
ing an end vertex. The goal is to devise a policy that
minimizes the expected traversal length between two
given vertices. In this study, we introduce a simple, yet
fast and effective sub-optimal algorithm for CTP that
can be used in an online fashion. We present compu-
tational experiments involving real-world and synthetic
data that suggest our algorithm finds near-optimal poli-
cies in very short execution times.

Introduction
The Canadian Traveler Problem (CTP) is a probabilistic
path planning problem introduced by Papadimitrou and Yan-
nakakis (1991). In this problem, an agent needs to travel
from a source vertex s to a termination vertex t in a stochas-
tic graph where some edges are blocked with certain proba-
bilities and status of edges can be disambiguated only upon
reaching an end vertex. The task here is to devise a strategy
that will result in the shortest expected traversal length.

CTP has rather interesting characteristics in the sense that
it can be cast both as a Markov Decision Process (MDP)
with exponentially many states, or as a Partially Observable
MDP (POMDP) with deterministic observations. Specifi-
cally, it can be shown that CTP belongs to an intermediate
class of problems, called Deterministic POMDPs, which al-
low for state uncertainty but avoid noisy observations (Ak-
sakalli and Sahin, 2014). In particular, CTP has been proven
to be PSPACE-Complete (Fried et al., 2013), suggesting that
not only its computational complexity is intractable, but its
space complexity is intractable as well.

Despite its complexity, CTP finds practical applications
in many different areas such as robot navigation (Blei and
Kaelbling, 1999; Likhachev and Stentz, 2009), adaptive
transportation systems (Fiosins et al., 2011), and minefield
navigation (Fishkind et al., 2007). Amongst several variants
of CTP, such as CTP with remote sensing (Bnaya, Felner,
and Shimony, 2009), multi-agent CTP (Bnaya et al., 2011),
CTP on disjoint-path graphs (Nikolova and Karger, 2008),
our study focuses on the Discretized Stochastic Obstacle

Scene Problem (D-SOSP), which is a variant on grid graphs
with dependent edge probabilities (Aksakalli et al., 2011).
D-SOSP is in fact a grid discretization of Continuous SOSP
wherein an agent wishes to travel from one point to an-
other in an obstacle field through arbitrarily-shaped regions,
which may or may not be obstacles as specified through
a certain probability function. The agent can disambiguate
a possibly-obstacle region only upon reaching the region’s
boundary. The objective here is to find a policy that mini-
mizes the expected length of traversal while deciding which
regions to disambiguate and when. The reason we study D-
SOSP variant of CTP is that we believe D-SOSP is perhaps
the most realistic variant that has real-world applications in
naval minefield navigation, a problem setting we consider in
our computational experiments. We note that the difference
between D-SOSP and general CTP is that in general CTP,
there is no probabilistic dependency among edges. In other
words, disambiguating one edge does not affect the status
of other edges in CTP. However, in D-SOSP, edges inter-
secting the same obstacle are probabilistically dependent in
the sense that (i) actual status of each edge intersecting the
same obstacle are the same, and (ii) disambiguating any one
of these edges will reveal the status of the other dependent
edges as well.

There are several approximation and sub-optimal algo-
rithms available in the literature for CTP (Baglietto et
al., 2003; Xu et al., 2009; Eyerich, Keller, and Helmert,
2009) and there exist optimal algorithms for several spe-
cial cases (Nikolova and Karger, 2008; Bnaya et al., 2011).
In particular, Aksakalli (2007) proposes an exact algorithm
for D-SOSP, called the BAO* Algorithm, which is an im-
provement on the classical AO* Search that uses stronger
pruning techniques, including utilization of upper bounds on
path lengths (in addition to lower bounds as in AO*), and
uses less computational resources compared to AO*. On the
other hand, Aksakalli and Sahin (2014) extends BAO* to
general CTP and makes two key improvements: (1) they use
a caching mechanism to avoid re-expansion of previously
visited states, and (2) they make use of dynamic lower and
upper bounds at a node level for state-space pruning. This
new algorithm is called CAO*, which stands for AO* with
Caching. CAO* is not polynomial-time, but it can signif-
icantly shorten the run time needed to find an exact solu-
tion to moderately-sized instances of the problem. Aksakalli

PlanRob 2014 Proceedings

166

and Sahin (2014) illustrates that CAO* runs several orders of
magnitude faster than BAO*, AO*, and value iteration. We
use CAO* in our computational experiments for the purpose
of finding the optimal policy.

Regarding sub-optimal algorithms for CTP, of particu-
lar interest is the Distance-to-Termination (DT) Algorithm
that has been originally proposed for D-SOSP by Aksakalli
and Ari (2014). This algorithm involves successive calcula-
tion of deterministic shortest paths with respect to a specific
edge weight function during the agent’s traversal. The au-
thors present computational experiments that compare per-
formance of the DT Algorithm against optimal policies ob-
tained by the BAO* Algorithm on relatively small D-SOSP
instances. Apart from DT, there are other heuristics for CTP
in the literature as well. (Eyerich, Keller, and Helmert, 2009)
evaluates these sampling-based heuristics both theoretically
and empirically. Due to their sampling-based nature, they
are likely to perform slower in comparison to penalty-based
algorithms. However, quality-wise, there are currently no
studies comparing their performances, which would be an
excellent direction for future research.

The contribution of this study is two-fold: (1) we show
how the DT Algorithm can easily be adapted for general
CTP and, (2) we provide computational experiments to em-
pirically assess performance of the DT Algorithm on the D-
SOSP variant where the optimal policies are obtained by the
CAO* Algorithm. In particular, CAO* allows us to solve
much larger problem instances to better benchmark DT Al-
gorithm’s performance. We present experiments involving
both real-world and synthetic data. Our results indicate that
the DT Algorithm finds near-optimal policies in very short
execution times and, its superior performance and compu-
tational savings are maintained on large problem instances
as well. In what follows, we first provide formal definitions
of CTP, Continuous SOSP, and D-SOSP. Next, we present
adaptation of the DT Algorithm for general CTP, which is
followed by our computational experiments.

CTP, Continuous SOSP, and Discretized SOSP
CTP Formulation
Let G = (V,E) be an undirected graph. An agent wishes to
travel from s ∈ V to t ∈ V using edges e ∈ E for which the
following functions are defined:

• weight function ` : E→ R≥0
• disambiguation cost function c : E→ R≥0
• blockage probability function p : E→ [0, 1].

We assume that there are two types of edges. First, edges
in the subset E′ ⊆ E are called stochastic edges for which
traversability status are unknown, but blockage probabilities
are known a priori by the agent in the form of the func-
tion p. The agent can not traverse a stochastic edge unless
it has been disambiguated at a cost c(e) and found to be un-
blocked. Disambiguation is defined as revealing the status
of a stochastic edge by reaching an end vertex. Once disam-
biguated, status of a stochastic edge does not change over the
course of traversal. It is further assumed that blockage prob-
abilities of stochastic edges are independent. The second

subset E \ E′ is called the set of deterministic edges, which
are known to be traversable without any disambiguation re-
quirements. For convenience, blockage probabilities of de-
terministic edges are defined to be 0. The Canadian Traveler
Problem (CTP) is defined as finding the optimal policy that
will result in the shortest expected s − t path length. Since
unlimited disambiguations will require the agent to visit all
the vertices of the graph in the worst case, without loss of
generality, we shall assume that there is a limit K on the
total number of disambiguations the agent can perform. In-
deed, total disambiguation requires visiting all the vertices
of the graph in the worst case, thus the existence of the limit
K.

Continuous SOSP Formulation
The Stochastic Obstacle Scene Problem (SOSP) is a vari-
ant of CTP that is a continuous-space path planning prob-
lem (Papadimitriou and Yannakakis, 1991). This problem
is defined as follows: consider a marked point process in
a region R in R2 which will be called as the obstacle field.
The process creates random detections XT , XF ⊆ R (cor-
responding to true and false detections, respectively) and
marks ρT : XT → [0, 1] and ρF : XF → [0, 1]. When
a realization of this process occurs, only X := XT

⋃
XF

and ρ := ρT
⋃
ρF are known to the agent at the planning

time. It is assumed that ρ(x) is the probability of x ∈ XT ,
for all x ∈ X . Associated with each detection x is a region
Dx that is possibly an obstacle. Without loss of generality,
we assume these regions are open disks centered at x with
a fixed radius of r > 0. In SOSP context, for any x ∈ X ,
the probability ρ(x) is referred to as “mark” of the associ-
ated diskDx, which is defined as the probability of the given
disk being a true obstacle.

At planning time, the agent knows the mark of each
possible-obstacle, but not their actual true/ false status. Start-
ing from a point s ∈ R, towards the termination t ∈
R, the agent wants to travel a continuous s, t curve in
(
⋃
x∈XT

Dx)
C with the shortest possible arclength (in this

context, C denotes the set complement operator). Further-
more, it is assumed that there is a dynamic learning capa-
bility which is defined as the option to disambiguate the
obstacle (to reveal if x ∈ XT or not) when the curve is
on the boundaries ∂Dx. However, given a cost function
c : X → R≥0, a cost c(x) is added to the overall length of
path. We assume that the agent has a disambiguation limit
of K. The strategic decision of where and when to disam-
biguate in order to minimize the expected length of the curve
is called the Continuous SOSP.

Discretized SOSP Formulation
Optimal disambiguation algorithms are capable of solving
only the most trivial instances of continuous SOSP. Hence,
for the simplicity and convenience, a discrete approximation
of continuous SOSP is considered. In this approximation, we
define a graph G consisting of vertices that correspond to all
pairs of integers i, j such that 1 ≤ i ≤ imax and 1 ≤ j ≤
jmax, where imax and jmax are integers specifying boundaries
of the obstacle field. The lattice edges are of the following
four types:

PlanRob 2014 Proceedings

167

1. Between (i, j) and (i+ 1, j) with unit length,

2. between (i, j) and (i, j + 1) with unit length,

3. between (i, j) and (i+ 1, j + 1) with length
√
2,

4. between (i+ 1, j) and (i, j + 1) with length
√
2.

A vertex s is designated as the starting vertex and another
vertex t as the termination. The agent seeks to traverse from
s to t in G through “traversable edges”, which are the ones
that do not intersect with a true or ambiguous obstacle. It
is possible for the agent to traverse the edges that intersect
false obstacles. If, however, the agent seeks to use an edge
that is intersecting with an ambiguous obstacle, a disam-
biguation should be carried on one of the outermost edges of
the ambiguous obstacle. The goal here is to devise a policy
that will minimize the expected length of traversal by effec-
tive exploitation of the disambiguation capability. We refer
to this discretized problem as Discretized SOSP, or simply
D-SOSP. It is important to observe that D-SOSP is simply
a variant of CTP on grid graphs with probabilistic depen-
dency among stochastic edges. A simple D-SOSP instance
is shown in Figure 1.

s

t

Figure 1: Lattice discretization of a simple SOSP instance
with only one disk. Stochastic edges, i.e., edges intersecting
with the disk, are shown in bold.

The DT Algorithm
First introduced by Aksakalli and Ari (2014), the notion of
penalty-based algorithms for D-SOSP is a heuristic frame-
work that involves successive calculation of deterministic
shortest paths with respect to a specific edge weight func-
tion during the agent’s s − t traversal. The idea behind
using an edge weight function is to discourage traversing
stochastic edges by assigning them additional weights. A
penalty-based algorithm within the context of CTP employs
the navigate-disambiguate-repeat (NDR) strategy described
below:

1. Find the deterministic shortest path from start s to ter-
mination t in the graph where all the edge weights are
assigned by the weight function.

2. Traverse the path until a vertex associated with an am-
biguous stochastic edge is reached.

3. Since an ambiguous edge cannot be traversed, disam-
biguate the edge from the current vertex. Set the block-
age probability to zero if the edge has been found to be
traversable, and 1 otherwise.

4. Set the current vertex as the new starting vertex s and re-
peat 1 through 3 above until t is reached.

Aksakalli and Ari (2014) generalizes the weight functions
utilized in NDR strategy, using the notion of “penalty func-
tions”:

wFD(e) := `e(e) + 1e∈E′ · F (e), (1)

As a result, it is now possible to plug in different penalty
functions to obtain different weight calculations. In fact,
apart from DT Algorithm, the article includes an extensive
discussion of two other penalty functions, Simulated Risk
Disambiguation Algorithm (SRA) (Fishkind et al., 2007)
and Reset Disambiguation Algorithm (RDA) (Aksakalli et
al., 2011). In SRA, the penalty function F is specified as
FSR(e) := α log(1 − ρ(e))−1 whereas it is defined as
FRD(e) :=

c(e)
1−ρ(e) for RDA. The first function is motivated

by the idea of risk simulation (temporarily assuming that
ambiguous edges are riskily traversable), where the second
function is based on the idea of using the optimal weights
for parallel graphs on arbitrary instances. A major disadvan-
tage of SRA is that it requires to tune the parameter α for
improved performance, thus, increased computational time.
The lack of a tuning parameter, as it has been empirically
shown, provides a significant advantage for RDA in terms of
run time. However, despite its better performance and lack
of tuning parameters, the weight function FRD cannot be
used when the disambiguation cost is zero. In other words,
in a setting where the agent performs the disambiguation by
simply a clear line of sight, FRD is not applicable.

The above mentioned disadvantages of FSR and FRD re-
veals the quest to find a better penalty function. After exten-
sive computational experiments, Aksakalli and Ari (2014)
observed that the penalty function FDT (e) := c(e) +(

dt(e)
1−ρ(e)

)− log(1−ρ(e))
consistently outperformed both of the

former functions in most of the instances. The new function
utilized the cost parameter as an additive term and it was
monotonically nondecreasing in c(e) and ρ(e) for edges that
intersect possible-obstacles in discretized SOSP. In particu-
lar DT algorithm uses the following weight for D-SOSP:

wDTAD (e) := `(e)+1e∈E′ ·
(
c(e)+

(dt(e)

1− p(e)

)− log(1−p(e)))
Above, 1 is the indicator function and dt(e) denotes the

distance of edge e’s midpoint to t, hence the name “distance-
to-termination”. The DT Algorithm thus calculates at most
K deterministic paths and therefore it is extremely fast. It
can also be used in an online fashion as the agent traverses
the graph. Note, however, that computation of the expected
path length requires O(2K) path calculations. The authors,

PlanRob 2014 Proceedings

168

however, make the following observation regrading the DT
Algorithm:

“Despite the fact that DTA performed remarkably well
[. . .] in our simulations, it may or may not perform at the
same level on obstacle fields with different topologies or
with non-circular obstacle regions. Further research on in-
stances with different characteristics is required in order to
confirm that high performance of DTA is consistent across
various problem settings. To that end, it might as well be the
case that perhaps a different penalty function outperforms
that of DTA in certain problem environments. Nonetheless,
the NDR strategy guided by appropriate penalty functions
seems to be an efficient and effective algorithmic framework
for SOSP, and our study could be seen as a show case of this
framework using the DT penalty function on an important
real-world variant of the problem”.

CAO*
The CAO* algorithm is an improvement upon the classical
AO* Algorithm (Chang and Slagle, 1971; Martelli and Mon-
tanari, 1978) for searching AO trees. By utilizing admissible
lower bounds called heuristic labels that are guaranteed not
to overestimate the true label of any node, the AO* Algo-
rithm guides the search so that it is only required to examine
a small portion of the complete AO tree. Although the la-
bels are referred to as “heuristics” in the AO* terminology,
the AO* algorithm itself is optimal with the prerequisite of
having admissible lower bounds.

CAO* exploits the following two important properties of
CTP: (1) admissible upper bounds, (2) state overlaps in the
AO tree. First, by utilizing the fast and efficient DT Algo-
rithm, CAO* can quickly determine an upper bound that is
very close to the optimal, which results in pruning a large
portion of the solution tree. Second, when disambiguation
limit K is greater than 1, the agent might end up at the
same particular state in the AO tree after visiting different se-
quences of states. To take advantage of this property, CAO*
uses a state caching mechanism to avoid generation of multi-
ple copies of same nodes. As a result, CAO* examines a very
small fraction of the complete tree, thus decreasing the run
time required to obtain a solution. In fact, computational ex-
periments showed that CAO* executed 770 times faster than
value iteration and 1,850 times faster than the classical AO*
algorithm on D-SOSP problems. For further discussion, the
reader is referred to (Aksakalli and Sahin, 2014).

On a related note, Kuter and Hu (2008) describe a gen-
eral methodology for reducing the search space in factored
MDPs via upper and lower bounds on the value function us-
ing state equivalence classes. CAO* Algorithm also bene-
fits from such bounds, yet these bounds take advantage of
the special problem structure in CTP and therefore they are
much tighter than those suggested in Kuter and Hu (2008).

Computational Experiments
In this section, performance of the DT Algorithm is empir-
ically compared to CAO* on the D-SOSP variant of CTP.
The computational experiments are conducted in a mar-
itime minefield navigation domain. Our simulations were

performed in two different environments: Environment 1
that is concerned with a real-world data set, and Environ-
ment 2 that involves synthetic data. In both environments,
we consider cases with disambiguation limit K = 1, . . . , 5
and disambiguation cost c = 0, 2, 4, 6.

Environment 1
In the first environment, we consider a U.S. Navy minefield
data set, called COBRA data, which was used in Priebe et al.
(2005); Fishkind et al. (2007); Aksakalli et al. (2011); Ak-
sakalli and Ceyhan (2012). This data set has 39 disk-shaped
potential obstacles with disk radius r = 5 on a 100 × 100
integer lattice. A visual representation of the COBRA envi-
ronment is shown in Figure 2.

s

t

Figure 2: Illustration of COBRA data set. The gray intensity
of disks reflect probability of the disks being true obstacles.

Table 1 shows the experiment results performed on the
COBRA data set where the “zero-risk” column denotes the
length of the s−t path avoiding all disks without performing
any disambiguations. On the average, policies found by the
DT Algorithm was only 1.3% worse than the optimal policy,
yet mean DT run time was 7.8 seconds, which is about 200
times faster than CAO*. In fact, median percent difference
for DT in terms of expected path length was merely 0.3%.

Environment 2
In Environment 2, we randomly sampled six “COBRA-
like” instances with 39 disks with a radius of 5 units on a
100 × 100 integer lattice. To make the environment even
more challenging, the instances were conditioned to have a
zero-risk path length of at least 130 units. The results are
shown in Table 2. Similar to Environment 1, DT Algorithm
found solutions very close to the optimal within very short
execution times. On the average, policies found by the DT
Algorithm was 3.17% worse than the optimal policy. How-
ever, mean DT run time was 8.15 seconds, which is about
740 times faster than CAO*. In fact, DT Algorithm ran up
to 3300 times faster than CAO*. On the other hand, median
percent difference for DT in terms of expected path length

PlanRob 2014 Proceedings

169

Table 1: Performance of the DT Algorithm on COBRA data set for the K, c combinations listed.
Expected Distance (units) Run Time (seconds)

K c Zero-Risk OPT DTA
Percent

OPT DTA Ratio
Difference

1 0 104.33 80.02 80.17 0.18 7.32 3.46 2.12
2 104.33 82.02 82.17 0.18 5.47 3.21 1.70
4 104.33 84.02 84.17 0.17 8.39 3.71 2.26
6 104.33 86.02 86.17 0.17 8.04 3.68 2.18

2 0 104.33 75.47 80.25 6.34 389.80 4.50 86.62
2 104.33 79.47 79.74 0.34 1404.12 4.72 297.48
4 104.33 81.77 81.94 0.21 707.33 4.47 158.24
6 104.33 83.98 84.15 0.21 1422.32 4.81 295.70

3 0 104.33 74.20 78.20 5.39 935.58 9.49 98.59
2 104.33 79.27 79.78 0.63 4261.26 10.43 408.56
4 104.33 81.73 82.02 0.36 1582.92 9.70 163.19
6 104.33 83.97 84.27 0.35 1304.64 9.56 136.47

4 0 104.33 73.81 76.93 4.23 1736.94 9.80 177.24
2 104.33 79.02 79.54 0.66 4241.33 11.08 382.79
4 104.33 81.56 81.82 0.31 2579.95 10.01 257.74
6 104.33 83.85 84.09 0.29 2224.39 10.22 217.65

5 0 104.33 73.51 76.93 4.64 2291.41 10.10 226.87
2 104.33 79.01 79.54 0.67 4992.36 11.92 418.82
4 104.33 81.56 81.82 0.32 3802.77 11.21 339.23
6 104.33 83.85 84.09 0.29 3202.90 11.08 289.07

Mean 104.33 80.40 81.39 1.30 1855.46 7.86 198.13
Std. 0.00 3.72 2.59 2.02 1565.04 3.25 138.14

Median 104.33 81.56 81.82 0.32 1502.62 9.63 156.03

was only 0.96%. It can be also observed that computational
benefits of DT Algorithm get more significant as the disam-
biguation limit K is increased.

Conclusions
CTP is a difficult stochastic path planning problem and D-
SOSP is perhaps the most realistic variant of CTP. These
problems have practical applications in robot navigation,
adaptive traffic routing, and mine-field navigation. In this
study, we consider the DT Algorithm for CTP, which is a
sub-optimal online algorithm that is fast and effective. This
algorithm involves successive calculation of deterministic
shortest paths with respect to a certain edge weight function
during the agent’s traversal. We provide computational ex-
periments to empirically assess performance of the DT Al-
gorithm on the D-SOSP variant. In our experiments, the op-
timal policies are obtained by the CAO* Algorithm, which is
a state-of-the-art exact algorithm for CTP based on the clas-
sical AO* Search. We present computational experiments
involving both real-world and synthetic data. Our results in-
dicate that the DT Algorithm finds near-optimal policies in
very short execution times. Computational benefits of the
DT Algorithm become even more significant as the prob-
lem instances get larger. In particular, our results show that
percent deviation from the optimal policies found by the DT
Algorithm can be as low as 0.2%, and DT can run up to 3300
times faster than CAO*.

Acknowledgements
CTP, Continuous SOSP, and D-SOSP formulations are
adapted from Aksakalli and Ari (2014). Work of V. Ak-

sakalli and O.F. Sahin was supported by The Scientific
and Technological Research Council of Turkey (TUBITAK),
Grant 111M541. Work of A.F. Alkaya was supported by
Marmara University Scientific Research Committee.

References
Aksakalli, V., and Ari, I. 2014. Penalty-based algorithms

for the stochastic obstacle problem. In Press, INFORMS
J. on Computing, DOI:10.1287/ijoc.2013.0571.

Aksakalli, V., and Ceyhan, E. 2012. Optimal obstacle place-
ment with disambiguations. Ann. Appl. Stat. 6(4):1730–
1774.

Aksakalli, V., and Sahin, O. 2014. An AO* based exact
algorithm for the Canadian traveler problem. Submitted
for Publication.

Aksakalli, V.; Fishkind, D.; Priebe, C.; and Ye, X. 2011.
The reset disambiguation policy for navigating stochastic
obstacle fields. Naval Res. Logist. 58:389–399.

Aksakalli, V. 2007. The BAO* algorithm for stochastic
shortest path problems with dynamic learning. In In Proc.
the 46th IEEE Conf. on Decision and Control, New Or-
leans, LA, 6003–6008. Hoboken, NJ: Wiley-IEEE Press.

Baglietto, M.; Battistelli, G.; Vitali, F.; and Zoppoli, R.
2003. Shortest path problems on stochastic graphs: a
neuro dynamic programming approach. In In Proc. the
42nd IEEE Conf. on Decision and Control, 6187–6193.
Hoboken, NJ: Wiley-IEEE Press.

Blei, D., and Kaelbling, L. 1999. Shortest paths in a dy-
namic uncertain domain. In In Proc. IJCAI Workshop

PlanRob 2014 Proceedings

170

Table 2: Average performance of the DT Algorithm on six COBRA-like data sets for the K, c combinations listed.
Expected Distance (units) Run Time (seconds)

K c Zero-Risk OPT DTA
Percent

OPT DTA Ratio
Difference

1 0 138.27 119.21 132.70 11.32 10.01 3.44 2.91
2 138.27 121.21 134.70 11.13 10.44 4.01 2.60
4 138.27 123.21 137.03 11.22 10.12 4.03 2.51
6 138.27 125.21 131.01 4.63 9.94 3.76 2.64

2 0 138.27 110.52 112.16 1.49 1214.73 4.22 287.85
2 138.27 113.58 114.96 1.21 1376.05 5.13 268.24
4 138.27 116.38 116.83 0.39 1413.53 5.13 275.54
6 138.27 119.17 123.63 3.75 1609.05 5.59 287.84

3 0 138.27 107.72 109.71 1.85 6179.67 11.02 560.77
2 138.27 111.21 112.65 1.29 5249.41 9.98 525.99
4 138.27 114.36 115.50 1.00 4987.30 9.72 513.10
6 138.27 117.34 118.68 1.15 4808.78 9.79 491.19

4 0 138.27 106.22 109.10 2.71 17609.29 11.45 1537.93
2 138.27 110.76 112.10 1.20 12125.10 11.37 1066.41
4 138.27 113.97 115.01 0.91 8897.27 10.68 833.08
6 138.27 116.97 118.04 0.91 7911.87 10.04 788.03

5 0 138.27 105.54 109.00 3.27 35590.07 10.76 3307.63
2 138.27 110.17 112.03 1.69 17621.04 10.92 1613.65
4 138.27 113.45 114.69 1.09 13920.19 10.92 1274.74
6 138.27 116.53 117.80 1.09 13065.81 10.94 1194.31

Mean 138.27 114.64 118.37 3.17 7680.98 8.15 741.85
Std. 0.00 5.42 8.75 3.63 8832.52 3.19 788.59

Median 138.27 114.16 115.26 0.96 5118.35 9.89 517.79

on Adaptive Spatial Representations of Dynamic Environ-
ments. Palo Alto, CA: AAAI Press.

Bnaya, Z.; Felner, A.; Fried, D.; Maksin, O.; and Shimony,
S. 2011. Repeated-task Canadian traveler problem. In In
Proc. 4th Annual Symposium on Combinatorial Search,
24–30. Palo Alto, CA: AAAI Press.

Bnaya, Z.; Felner, A.; and Shimony, S. 2009. Canadian
traveler problem with remote sensing. In In Proc. IJCAI
2009, 437–442. AAAI Press.

Chang, C., and Slagle, J. 1971. An admissible and optimal
algorithm for searching and/or graphs. Artificial Intelli-
gence 2:117–128.

Eyerich, P.; Keller, T.; and Helmert, M. 2009. High-quality
policies for the Canadian traveler problem. In In Proc. the
24th AAAI Conf. on Artificial Intelligence, Atlanta, Geor-
gia, 51–58. Palo Alto, CA: AAAI Press.

Fiosins, M.; Fiosina, J.; Müller, J.; and Görmer, J. 2011.
Reconciling strategic and tactical decision making in
agent-oriented simulation of vehicles in urban traffic. In
Proc. the 4th Internat. ICST Conf. on Simulation Tools
and Techniques 144–151.

Fishkind, D.; Priebe, C.; Giles, K.; Smith, L.; and Aksakalli,
V. 2007. Disambiguation protocols based on risk simu-
lation. IEEE Trans. on Systems, Man, and Cybernetics,
Part A 37(5):814–823.

Fried, D.; Shimony, S.; Bensaat, A.; and Wenner, C. 2013.
Complexity of Canadian traveler problem variants. Theo-
retical Comp. Sci. 487:1–16.

Kuter, U., and Hu, J. 2008. Computing and using lower and
upper bounds for action elimination in MDP planning. In
In Proc. the 7th Symposium on Abstraction, Reformula-
tion, and Approximation (SARA-07), Whistler, Canada.

Likhachev, M., and Stentz, A. 2009. Probabilistic planning
with clear preferences on missing information. Artificial
Intelligence 173:696–721.

Martelli, A., and Montanari, U. 1978. Optimizing decision
trees through heuristically guided search. Comm. ACM
21:1025–10039.

Nikolova, E., and Karger, D. R. 2008. Route planning under
uncertainty: the Canadian traveller problem. In In Proc.
the 23rd AAAI Conf. on Artificial Intelligence, Chicago,
Illinois, 969–974. Palo Alto, CA: AAAI Press.

Papadimitriou, C., and Yannakakis, M. 1991. Shortest paths
without a map. Theoretical Comp. Sci. 84:127–150.

Priebe, C.; Fishkind, D.; Abrams, L.; and Piatko, C. 2005.
Random disambiguation paths for traversing a mapped
hazard field. Naval Res. Logist. 52:285–292.

Xu, Y.; Hu, M.; Su, B.; Zhu, B.; and Zhu, Z. 2009. The
Canadian traveller problem and its competitive analysis.
J. Combinatorial Opt. 18:195–205.

PlanRob 2014 Proceedings

171

Collision-free Path Planning for Remote Laser Welding

András Kovács
Fraunhofer Project Center for Production Management and Informatics,

Computer and Automation Research Institute, Budapest, Hungary
andras.kovacs@sztaki.mta.hu

Abstract

The paper proposes algorithms for collision-free path
planning in robotic Remote Laser Welding (RLW), us-
ing collision detection on a triangle mesh representation
of the moving objects and a path planning algorithm
based on a classical A∗ search, both highly specialized
to the needs of RLW. The algorithms depart from an
optimized task sequence and an initial, potentially col-
liding rough-cut path. The algorithms modify this path
to eliminate all collisions while preserving the stitch se-
quence and minimizing the cycle time. The approach is
validated in computational experiments on real indus-
trial data involving the welding of a car front door.

Introduction
A recent technological trend in the assembly of sheet metal
parts, such as car bodies, is the spreading application of
Remote Laser Welding (RLW). This contactless technology
eliminates the most important limitation of earlier joining
techniques, the accessibility issues between the welding gun
and the workpiece, by welding from a distant point using a
laser beam emitted from a laser scanner that is moved by
an industrial robot. This results in up to 80% lower cycle
times, reduced operating costs, and higher freedom in part
design (Park and Choi 2010). For conventional machining
technologies, on-line programming by manual guidance of
the robot is the typical programming approach. However,
due to the redundancy in the degrees of freedom of the RLW
robot and the laser scanner, on-line programming is hardly
possible for RLW. However, efficient off-line programming
methods tailored to the needs of RLW hardly exist (Reinhart,
Munzert, and Vogl 2008).

Our general objective is the development of an interac-
tive off-line programming toolbox with efficient optimiza-
tion capabilities for RLW (Erdős et al. 2013). In a recent
paper (Kovács 2013), we have introduced an efficient al-
gorithm for integrated task sequencing and rough-cut path
planning. Significant novelties of the algorithm include (1)
the explicit modeling of the coupled movement of the quick
tool (laser beam repositioning) and the relatively slow robot;
(2) exploiting the high degree of freedom in choosing the
robot path when welding a well-defined stitch position;
and finally, (3) planning in the continuous space, without
losses stemming from sampling that characterizes many

other approaches working on a discretized space represen-
tation. Nevertheless, that algorithm ignores potential colli-
sions along the path. This assumption is not absolutely un-
realistic, since general (fixture) design guidelines for RLW
require that the access volumes of the welding stitches are
left clear to preclude collisions. However, our experience on
real industrial data showed that this requirement is some-
times overridden by other design objectives, and collisions
do occur on the computed rough-cut path.

In this paper, we propose a collision-free path planning
algorithm that departs from the above rough-cut path, and
modifies it to avoid any collisions while preserving the orig-
inal stitch sequence and minimizing the cycle time. We
present collision detection techniques on triangle mesh mod-
els and a path planning algorithm based on classical A∗
search, both highly specialized to the needs of RLW. These
include searching for a trajectory that visits given regions of
the 3D space in a pre-defined order and spends the time re-
quired to execute the corresponding actions in each of those
regions. The definition of collision depends on the action
executed in a given position. A trajectory that minimizes the
cycle time is looked for.

The paper is organized as follows. First, a brief review
of the related literature and the technological background is
given. Then, the path planning problem is defined formally.
Afterwards, the proposed collision detection and path plan-
ning methods are presented in detail. Finally, computational
experiments are reported and conclusions are drawn.

Literature Review
The RLW technology, including its benefits and limitations,
is presented in (Tsoukantas et al. 2007). Applications of
RLW in the automotive industry are reviewed in (Shibata
2008). The importance of automated process planning for
RLW is emphasized in (Hatwig, Reinhart, and Zaeh 2010).

We are aware of a single earlier approach to task sequenc-
ing and path planning specifically for RLW and remote laser
cutting, introduced in a series of papers (Reinhart, Munz-
ert, and Vogl 2008; Hatwig et al. 2012). The proposed al-
gorithms are designed mostly for planar workpieces: task
sequencing is performed by solving a traveling salesman
problem (TSP) over the fixed welding stitch positions, and
a robot path is computed in a plane above the workpiece.
Potential collisions are ignored. A similar model is applied

PlanRob 2014 Proceedings

172

and construction heuristics are proposed for path planning
in laser cutting in (Dewil, Vansteenwegen, and Cattrysse
2014). The applied model also captures sophisticated order-
ing constraints among the contours to be cut.

An efficient, generic task sequencing and collision-free
path planning model, with illustrations from resistance spot
welding (RSW) is presented in (Saha et al. 2006). A critical
assumption is that the robot can execute each effective task
from a relatively small set of candidate configurations, e.g.,
at most 10 configurations per task, which can be generated a
priori. An iterative algorithm is proposed that tries to com-
pute as few point-to-point collision-free paths as possible,
hence avoids solving unnecessary computationally demand-
ing subproblems. The difficulty in applying this approach to
RLW stems from the fact that efficient paths in RLW exploit
the free movement of the robot in the continuous space while
welding.

The minimization of processing time in a milling op-
eration is investigated in (Castelino, D’Souza, and Wright
2002). A Generalized TSP (GTSP) approach is proposed,
where the nodes correspond to the candidate tool entry/exit
points for machining a feature. Potential collisions are ne-
glected. A TSP with Neighborhoods (TSPN) model is pro-
posed in (Alatartsev et al. 2013) for sequencing a set of
robotic tasks whose start/end points can be chosen arbitrar-
ily along open or closed contours, such as in the case of dif-
ferent cutting problems. In (Alatartsev, Augustine, and Ort-
meier 2013) a construction heuristic, the so-called constrict-
ing insertion heuristic is introduced for the derived TSPN
over a set of 2D polygons. A multi-objective constraint op-
timization model is proposed in (Kolakowska, Smith, and
Kristiansen 2014) for task sequencing in spray painting, for
minimizing cycle time and maximizing paint quality at the
same time.

Classical AI methods for collision-free path planning
search a discretized grid representation of the environment
using algorithms like A∗ or one of its numerous descendants.
These include D∗-Lite (Koenig and Likhachev 2005) or Fo-
cussed D∗ (Stentz 1995) for dynamically changing environ-
ments, or ARA∗ (Likhachev, Gordon, and Thrun 2003), an
anytime algorithm with provable bounds on sub-optimality.
Field D∗ (Ferguson and Stentz 2006) lifts the constraint on
the previous algorithms that they must move through a series
of neighboring grid points, thus saving unnecessary turnings
and further reducing path length. These methods are suitable
mostly for lower dimensional problems due to the computa-
tional effort required.

Higher dimensional problems, such as path planning
for a robot with many degrees of freedom, are often in-
tractable using the above methods. In such cases, incomplete
methods that apply randomization are preferred. The most
efficient approaches are Rapidly-exploring Random Trees
(RRT) (Kuffner and LaValle 2000) for the single-query case,
and Probabilistic Roadmaps (PRM) (Kavraki et al. 1996;
Geraerts and Overmars 2002) for the multiple-query case.
A recent tendency is to delegate motion planning to GPUs,
see, e.g., (Park et al. 2013), where a highly parallelized RRT
algorithm is proposed to exploit the computation capabilities
of GPUs.

Path planning algorithms typically rely on external soft-
ware libraries for collision detection. Such libraries contain,
e.g., the Proximity Query Package (PQP) (Larsen et al.
2000) for rigid objects represented as triangle mesh, or V-
Collide (Hudson et al. 1997) specifically for VRML appli-
cations. A benchmarking suite for pairwise static collision
detection algorithms and a comparison of numerous freely
available collision detection algorithms has been presented
in (Trenkel, Weller, and Zachmann 2007).

The integration of task and motion planning has received
significant attention in the robotics community, especially
in navigation and manipulation applications. A plethora of
approaches has been offered to combine symbolic planners
as high-level solvers and motion planners (e.g., PRM or RRT
planners) as subproblem solvers, see, e.g., (Kaelbling and
Lozano-Perez 2011; Srivastava et al. 2014).

Technological Background
The Welding Process
The recent development of a new generation of laser
sources, such as fiber lasers, enabled laser welding with an
operating distance (focal length) above one meter. The new
technology, RLW, joins sheet metal parts without physical
contact or even a close approach. This, on the one hand, en-
sures extremely fast positioning speed compared to classical
RSW, where a vast welding gun must contact the workpiece.
The high productivity of the technology results in up to 80%
lower cycle times and reduced operating costs, making RLW
economically profitable despite the high initial investments.
In addition to the direct economic gain, the abolishment of
the accessibility issues removes many earlier constraints on
part designs, an advantage that can be turned easily into parts
with reduced weight, yet higher stiffness. This, in the auto-
motive industry, facilitates the design of lighter and more
efficient cars, without compromising safety.

An RLW operation consists in joining two or more sheet
metal parts at various joints. In this paper, we assume stitch
welds, i.e., linear welding stitches with a typical length of
15-30 mm each. During the operation, the parts are held
in a fixture. It is assumed that the operation is performed
by a single RLW robot. A typical RLW robot consists of a
robot arm with 4 rotational joints and a laser scanner. The
robot arm moves the scanner with a maximum speed of 0.2-
0.6 m/s, and due to the low scanner weight, with a rather
high acceleration. The scanner contains two tilting mirrors
for the rapid positioning of the laser beam (up to 5 m/s), and
a lens system to regulate the focal length. Hence, the typical
RLW robot is a redundant kinematic chain with 7 degrees
of freedom, in which the mirrors in the scanner position the
laser beam an order of magnitude faster than the movement
of the mechanical joints of the robot arm. The process of
welding a car door by an RLW robot is depicted in Figure 1.

The robot can weld a stitch if the scanner is located within
the focus range (e.g., 800-1200 mm) from the stitch, and the
inclination angle (i.e., the angle between the laser beam and
the surface normal) is not more than a specified technolog-
ical parameter (e.g., 15◦). These constraints define a trun-
cated cone above the stitch, which will be called the tech-

PlanRob 2014 Proceedings

173

Figure 1: RLW robot welding a car front door, positioned
in a fixture. The blue sections of the indicated scanner path
represent the movement of the robot while welding, while
yellow sections denote idle movement.

nological access volume (TAV) of the stitch, as shown in
Figure 2. Strictly speaking, the above definition would re-
quire spherical outer and inner bases for the truncated cone.
However, to benefit from convex TAVs, we approximate this
shape by using a planar inner base, while leaving a spheri-
cal outer base. The collision-free access volume is the sub-
set of the TAV from which welding can be performed with-
out collisions. Since the length of a stitch is significantly
smaller than other characteristic dimensions in the welding
process, it is reasonable to assume that all points of a stitch
can be processed from the access volume belonging to the
mid-point of the stitch.

Figure 2: Technological access volume (TAV) of a welding
stitch.

Each stitch can be welded at a given speed (e.g., 50 mm/s),
which depends on the thickness and the material of the parts
to join. Each stitch must be processed without interruption.
The robot can weld the stitch while in motion, therefore the
trajectory of the scanner must be a curve in the 3D space,
such that sufficient time is spent in the access volume of each
stitch. There are 30-75 stitches to weld in an RLW operation

in the automotive industry.

An Off-line Robot Programming Approach
In industrial practice, robot programming is still typically
performed by on-line programming, i.e., by manually guid-
ing the robot from one position to the next, at very small
steps, which is a extremely time consuming and hardly fea-
sible for RLW. Our goal is to implement a complete off-line
programming toolbox for RLW, which can provide an au-
tomated method for computing close-to-optimal robot pro-
grams. This involves the optimization of the task sequence,
integrated with rough-cut path planning; collision-free path
planning in the workpiece coordinate system; the placement
of the workpiece in the welding cell; the inverse kinematic
transformation that converts the path into the robot joint co-
ordinate system; and finally, the simulation of complete pro-
cess plan and the automated generation of the robot program
code (see Figure 3). The workflow has been presented in de-
tail in (Erdős et al. 2013).

Generating robot program code

Off-line simulation

Inverse kinematic transformation

Workpiece placement

Collision-free path planning

Task sequencing & rough-cut path planning

Figure 3: Workflow in the off-line programming system. The
paper focuses on the second step, collision-free path plan-
ning.

An important consequence of the above workflow is that
path planning is performed in the 3D Cartesian coordinate
system of the workpiece. This was motivated by the fact that
the extensive geometric computations required for the opti-
mization of the task sequence and the robot path cannot be
executed efficiently in the robot joint coordinate system (Ku-
cuk and Bingul 2006).

In the recent conference paper (Kovács 2013) we have
presented an efficient algorithm for integrated task sequenc-
ing and rough-cut path planning, using a detailed techno-
logical model of the RLW process. However, that algorithm
ignores potential collisions along the path, exploiting that
RLW is less exposed to accessibility issues than any other
welding technology, and hence, the optimal task sequence
is hardly affected by collisions. The objective of the path
planning algorithm investigated in this paper is eliminating
all collisions from the rough-cut path while preserving the
given task sequence and minimizing cycle time.

Problem Definition
The collision-free path planning problem consists in com-
puting a scanner trajectory in the 3D Cartesian coordinate

PlanRob 2014 Proceedings

174

system attached to the workpiece, such that the robot welds
all stitches along the path and the cycle time is minimized.
Formally, there is a list of n welding stitches, denoted by
(s1, s2, ..., sn), to be welded by an RLW robot in this pre-
defined order, originally computed by some task sequencing
algorithm. Each stitch is characterized by its technological
access volume, TAVi, a truncated cone as defined above, a
collision-free access volume, CFAVi ∈ TAVi, and the asso-
ciated welding time, ti. Each stitch si must be welded with-
out interruption, during which the movement of the scanner
is constrained to CFAVi. Only one stitch can be welded at a
time. The path may contain idle robot movement, i.e., sec-
tions without welding. Such sections of the path must be lo-
cated within CF0, the region that is free of collisions of the
robot (with the laser beam switched off).

It is assumed that the maximum robot speed (speed of the
scanner), v, is independent of the position in the working
area, and the robot has an infinite working area. Finally, the
objective is minimizing the cycle time, i.e., the total time re-
quired for the robot to travel along the computed trajectory.

Path planning must avoid all types of collisions that can
be detected at this phase of the workflow, i.e., that are in-
dependent of decisions made in later phases (see Figure 3
earlier). These are the collisions between the laser beam vs.
the workpiece and the fixture, as well as the scanner head
vs. the workpiece and the fixture. It is noted that these are
the most critical types collisions in RLW.

In addition, we assume that there is given an initial, po-
tentially colliding rough-cut path, which has been originally
computed by an external algorithm, practically, the earlier
proposed task sequencing and rough-cut path planning algo-
rithm. This initial trajectory welds each stitch from TAVi,
but potentially from outside CFAVi. Below, we propose a
procedure that detects collisions along the rough-cut path,
and resolves those collisions by a series of modifications to
the initial path. The result of applying this method for colli-
sion avoidance is shown in Figure 4.

Collision detection
Collision detection is performed using PQP (Larsen et al.
2000) on a triangle mesh representation of the involved 3D
objects. The mesh representation of the workpiece and the
fixture is given as input, in STL file format, whereas the
mesh representation of the laser beam and the scanner head
is constructed runtime. Out of the various geometric compu-
tation functions offered by PQP, collision detection relies on
distance computation between pairs of objects. If the com-
puted distance is smaller than a given threshold, then the two
objects are declared colliding in a given robot position. Oth-
erwise, the two objects do not collide. If, in a given robot
position, none of the relevant pairs of objects collide, then
the position itself is non-colliding.

Collision detection must ensure that the required mini-
mum distance between the relevant pairs of objects is main-
tained while the robot moves along its continuous path.
To provide this guarantee based on collision checks per-
formed in an appropriately selected, finite set of discrete po-
sitions, the following method is applied. For each pair of rel-
evant objects, a lower tolerance and an upper tolerance dis-

Figure 4: Comparison of the rough-cut and the collision-free
paths. Blue sections denote welding, while yellow section
correspond to idle movement.

tance is introduced, denoted by dl and du, respectively, with
dl < du. Collision checks in the selected positions are per-
formed with a required minimum distance of du, which en-
sures that a minimum distance of dl is maintained through-
out the continuous path.

Let us denote by d∗ the minimum distance of a given pair
of objects along a continuous path. If d∗ < dl, then the
above method classifies the path as colliding. If d∗ ≥ du,
then the path is classified as non-colliding. However, if dl ≤
d∗ < du, then the classification is undefined. Hence, pa-
rameter dl specifies the minimum distance required between
the objects, while du can be used to control the trade-off
between geometric accuracy and computational efficiency
(number of sample points required).

In the implemented collision detection method, separate
tolerance parameters have been considered for the laser
beam and scanner head, as shown in Table 1. Moreover,
contact between the end of the laser beam and the work-
piece is operational: this is the physical core of the welding
process. Therefore, when performing collision detection be-
tween the laser beam and the workpiece, the beam length is
truncated by eL. No truncation is applied for collision detec-
tion against the fixture.

Finally, it is assumed that welding can be performed only
when the complete stitch is visible from the laser emission
point, and therefore, the theoretical possibility is ignored
that portions of the stitch might become visible only grad-
ually, as the scanner head moves along its path and welds
other portions of the same stitch. This assumption is com-
mon in stitch welding (see, e.g., (Hatwig et al. 2012)).

Collision detection for a single robot position
A key procedure for collision-free path planing is collision
detection for a given robot position, P . The definition of col-
lision depends on the action performed in the given position:

PlanRob 2014 Proceedings

175

Parameters for collision detection
dSl Lower tolerance distance for the scanner head
dSu Upper tolerance distance for the scanner head
dLl Lower tolerance distance for the laser beam
dLu Upper tolerance distance for the laser beam
eL Laser beam end truncation
rS Radius of the scanner head model

Parameters for collision avoidance
% Resolution of the 3D rectangular grid
B Maximum bypass w.r.t. the original path
N Neighborhood size for re-planning

Table 1: Parameters for collision detection and for collision
avoidance.

when welding a stitch, both the scanner head and the laser
beam are considered; during idle movement, the laser beam
is switched off, and hence, only the scanner head is taken
into account. The mesh models of the scanner head and the
laser beam are constructed as follows:

Scanner head Since path planning precedes inverse kine-
matics in the proposed workflow, the orientation of the scan-
ner head is unknown at the time of path planning. Hence, in-
stead of a precise geometric model, the circumscribed sphere
of the scanner head is used, which corresponds to a pes-
simistic assumption. Technically, this is achieved by using
a mesh model that represents the scanner head as a single
point P , and specifying rS + dSu as the distance threshold
value in the PQP distance query.

Laser beam The mesh model of the laser beam for weld-
ing a linear stitch consists of a single triangle, as shown in
Figure 5, corresponding to the assumption that the complete
stitch is visible from the given robot position. The triangle
is defined by the robot position (laser emission point), P ,
and the stitch start and end points, S1 and S2. In order to
avoid false positive results near the workpiece, the height of
the triangle is truncated by dLu when testing against the fix-
ture, and by dLu + eL when testing against the workpiece. In
both cases, a distance threshold of dLu is applied, resulting
in the light gray collision zone for the fixture and the dark
gray zone for the workpiece. In case of a circular stitch with
radius r, the mesh consists of a single line between the laser
emitting point and the stitch center point. The line is trun-
cated by dLu + r (fixture) or by dLu + eL + r (workpiece),
and the distance threshold is set to dLu + r, resulting in a thin
cylindrical volume that must be collision-free.

Collision detection for a continuous section
Collision detection is performed separately for each linear
section of the broken line scanner path. Checking the linear
section P1P2 starts by collision detection for position P =
P1, and continues by checking subsequent discrete points of
the section in the direction of P2. The size of the discrete
steps depends on the results of the distance queries, and it
is chosen to guarantee that the prescribed lower tolerance

P

S
2

S
1

eL

dL
u

Figure 5: Mesh model of the laser beam for welding the lin-
ear stitch S1S2 from robot position P . The approach results
in the light gray collision zone for fixture, and the dark gray
collision zone for both the fixture and the workpiece.

distance is maintained throughout the continuous path, even
at points not directly checked. If all the checked positions
are collision-free, then section P1P2 itself is collision-free.
Otherwise, the section is colliding. The pseudo-code of the
algorithm is presented below.

PROCEDURE IsColliding(P1, P2)
LET P := P1

LOOP
LET d := GetDistance(P)
IF (d < du) THEN

RETURN TRUE
ELSE IF P = P2 THEN

BREAK
LET s :=

√
d2 − d2l +

√
d2u − d2l

IF d(P, P2) > s) THEN
P := P + d(P1, P2)

s
d(P1,P2)

ELSE
P := P2

RETURN FALSE

In the pseudo-code, function GetDistance(P) executes a
PQP distance query for the single robot position P . The tol-
erance distance parameters dl and du are set as presented
above. The correctness of the procedure is proven in the fol-
lowing lemma, focusing on two subsequent robot positions
investigated in the inner loop of the algorithm, denoted as P
and P ′, for collisions of the scanner head, represented as a
single point mesh model.

Lemma 1 Let P and P ′ be two points in space such that
their shortest distance from a given, fixed 3D object O is
d(P,O) = d ≥ du and d(P ′, O) ≥ du. Now, if d(P, P ′) ≤√

d2 − d2l +
√
d2u − d2l = s, then for any point Q of section

PP ′, it holds that d(Q,O) ≥ dl.

Proof. Assume that the shortest distance between the object
O and the section PP ′ arises between points R ∈ O and
Q ∈ PP ′ (see Figure 6). If Q = P or Q = P ′ then the
lemma is trivial. Otherwise, Q is an internal point of section
PP ′. If d(P, P ′) ≤

√
d2 − d2l +

√
d2u − d2l , then either

d(P,Q) ≤
√

d2 − d2l or d(Q,P ′) ≤
√
d2u − d2l . Assume

that the first case holds. Then, PQR is a right triangle with

PlanRob 2014 Proceedings

176

hypotenuse d. By the Pythagorean theorem, if d(P,Q) ≤√
d2 − d2l , then d(Q,R) ≥ l2, and the lemma is proven. For

the second case, similar claims can be made for the triangle
P ′QR. 2

≥d
u

d
d
l

P P'Q

R

O

Figure 6: Illustration of the proof of the correctness of the
procedure for collision checking on the continuous section
PP ′.

It is straightforward to generalize the lemma to the laser
beam as well. The proof exploits that the mesh model of
the beam consists of triangles with one vertex corresponding
to the laser emission point, and two (possibly coinciding)
vertices are fixed while the robot moves along its path. Each
point of such a triangle moves along a linear section as the
laser emission point moves along PP ′.

Collision-free path planning
Representation of the path
It is assumed that the potentially colliding rough-cut path
is described as a list ((P1, a1), (P2, a2), ..., (Pk, ak)), where
segment (Pi, ai) denotes that the robot moves from point Pi
to point Pi+1 along a linear section while performing ac-
tion ai. Action ai can be of two types: ai = (s[i],+) or
ai = (s[i],−). Action ai = (s[i],+) encodes welding stitch
s[i], where s[i] corresponds to one of the stitches s1, ..., sn,
sequenced to the ith position of the path. In contrast, ai =
(s[i],−) denotes idle movement directly after welding s[i].
The rough-cut path contains exactly one segment for weld-
ing each stitch, and zero or one idle movement segment be-
tween two welding segments, hence, n ≤ k < 2n. Note that
the same does not hold for the collision-free path, since it
might be necessary to move the robot along a more complex
path to avoid collisions, both while welding and during idle
movement.

It is assumed that each segment (Pi, ai) is labeled as col-
liding or non-colliding by the above collision detection pro-
cedure. Collision avoidance relaxes the colliding segments
of the path, as well as the segments that are close to collid-
ing segments. More specifically, segment (Pi, ai) is relaxed
if and only if there exists j such that i−N ≤ j ≤ i+N and
segment (Pj , aj) is colliding, where N is the neighborhood
size for re-planning. The procedure is illustrated in Figure 7,
where the colliding segments (red) and their neighborhood
with N = 1 are re-planned, resulting in a collision-free path
(blue).

As a result, the rough-cut path consists of a series of re-
laxed and non-relaxed segments. Collision avoidance is per-
formed on maximal relaxed sections of the path, and re-
places these relaxed sections by new, collision-free sections.

P
i

P
i+1

P
i+2

P
i+3

P
i+4P

i+1

P
i+2

P
i+3
''

'

Figure 7: Collision avoidance by replanning the colliding
segments (red) and their neighborhood with N = 1.

The proposed procedure preserves the order of the stitches,
but it may modify the number of segments in the path, as
well as the points visited along the path.

In the sequel, we assume that collision avoidance is
performed for a single, maximal relaxed section of the
rough-cut path, ((Pα, aα), (Pα+1, aα+1), ..., (Pβ , aβ)). Fur-
thermore, let (s{1}, s{2}, ..., s{m}) denote the sequence of
welding the stitches along the relaxed path section. If there
are several, disjoint relaxed sections to re-plan, then the
same procedure is repeated on each of those sections.

Representation of the collision map
The state space for collision-free path planning is repre-
sented as a four-dimensional map of discrete vertices, with
the three spacial dimensions and one additional dimension
describing the action performed in the vertex. The map con-
tains the combination of a 3D point and an action, (P, a =
(s,+)) as a vertex if and only if P is contained in the CFAV
of stitch s. The pair (P, a = (s,−)) is contained in the map
if P itself is collision-free (with the laser beam switched
off), i.e., P ∈ CF0.

The points included in the map are the points of a dis-
cretized, rectangular 3D grid with a resolution of % =
min(dSu − dSl , d

L
u − dLl). By Lemma 1, the application of

this resolution and collision checks in the grid points with
tolerance dSu and dLu ensure that movement between two
neighboring grid points is collision-free with dSl and dLl .
The map is created for a finite rectangular area, defined
by values xmin, xmax, ymin, ymax, zmin, and zmax, where
xmin = minβi=α x(Pi) − B and B is the maximum by-
pass parameter, and other boundary parameters are com-
puted analogously.

Possible transitions between states are captured by di-
rected arcs between the vertices, according to the following
rules. Let N(P) denote the 6-neighborhood of point P , i.e.,
the set of six neighboring points along the x, y, and z axis.
From the vertex capturing action (s{i},+) in P , there are
arcs to
• (s{i},+) in N(P), i.e., continuing the welding operation

in a neighboring point;
• (s{i},−) in N(P), i.e., finishing the welding operation

and continuing with idle movement;
• (s{i+1},+) in N(P) ∪ P , i.e., continuing with welding

the next stitch.
From the vertex encoding (s{i},−) in P , there are arcs to
• (s{i},−) in N(P), i.e., continuing the idle movement in

one of the neighboring points;

PlanRob 2014 Proceedings

177

• (s{i+1},+) in N(P), i.e., welding the next stitch.
To save computation time by omitting unnecessary colli-

sion checks, the proposed procedure does not generate the
complete collision map at once. Instead, vertices are gener-
ated and checked for collisions on the fly, as they are ex-
plored by the search procedure. Moreover, the results of col-
lision detection are inferred from the results for the neigh-
boring points whenever possible.

A∗ search for a collision-free path
In order to compute a collision-free path, an A∗ search is
performed on the above defined collision map. Each node
of the search tree is represented as a tuple Γ = (P, a, r, t),
where P is a 3D point and a is an action, corresponding to
a vertex in the collision map. The non-negative real r is the
time remaining for welding stitch corresponding to a, and t
is the total time of traveling the path from the source node to
Γ. Note that if a is an idle movement action, then r = 0.

The source node of the search is defined as
(Pα, (s{1},+), t{1}, 0), and goal states are of the form
(Pβ , (s{m},+), 0, ·). A special case arises when the relaxed
section is at the beginning of the rough-cut path, since in
this case, the collision-free path can start at any point P in
CFAV{1}. Accordingly, search is initialized with multiple
source nodes in the list of open nodes, one for each such
point P . Similarly, when the relaxed section is at the end
of the rough-cut path, then it can terminate anywhere in
CFAV{m}.

The cost function of the A∗ search is t, while the heuristic
function h is a lower estimate of the remaining time. In a
node Γ = (P, (s{i}, ·), r, t), the heuristic value is computed
as

h(Γ) = max

r +
m∑

j=i+1

t{j},
d(P, Pβ)

v

 .

The first term encodes the total remaining welding time
on the current stitch and on the future stitches. The second
term is the time for traveling from the current location to
the goal point Pβ . When there are multiple goal points, the
second term is ignored.

According to the rules of the A∗ search, in each step, a
node with minimal t + h is expanded. When expanding a
node Γ = (P, a, r, t), Γ is removed from the open list, and
a new node Γ′ = (P ′, a′, r′, t′) is created and inserted into
the list of open nodes for each directed neighbor of (P, a) in
the collision map. The new node inherits P ′ and a′ from the
vertex of the map, whereas parameters r and t are computed
as follows.
• If a′ is welding the same stitch from a different position,

then r′ = max(r − %
v , 0) and t′ = t + %

v ;
• If a′ is welding the subsequent stitch and P = P ′, then

r′ = t{i+1} and t′ = t + r;

• If a′ is welding the subsequent stitch and P 6= P ′, then
r′ = t{i+1} and t′ = t + max(%v , r);

• If a′ is idle movement, then r′ = 0 and t′ = t +
max(%v , r);

This search step is iterated until a goal state is reached.
Links between nodes and their parents are maintained
throughout the search, and sequence of links from the first
goal state to the source state encodes a collision-free path
from Pα to Pβ .

Let there be given two search nodes belonging to the same
point P , denoted by Γ = (P, a, r, t) and Γ′ = (P, a′, r′, t′).
The following two dominance rules are defined.

Dominance rule #1: If t < t′ and t+ h(Γ) < t′ + h(Γ′),
then let Γ′ be fathomed.

Dominance rule #2: If t < t′, then let Γ′ be fathomed.
While rule #1 is obviously admissible, the stronger rule #2

is an inadmissible dominance rule, and may result in losing
the optimal collision-free path. However, even the applica-
tion of rule #2 maintains the completeness of the search, i.e.,
it is guaranteed that a feasible collision-free path is found if
there exists one. In our implementation we have decided to
apply rule #2, since initial experiments we have found that it
brings considerable speed-up with negligible loss of perfor-
mance.

Smoothing the path
The path computed by the A∗ search consists of small, ax-
ial sections in the Cartesian coordinate system of the work-
piece. This path is smoothed by eliminating the unnecessary
breakpoints using an algorithm that considers each section
(Pi, ai) one-by-one. If ai ≡ ai−1 and section Pi−1Pi+1 is
collision-free for executing action ai, then this section is re-
moved from the path, which implicitly entails that the pre-
vious section (Pi−1, ai−1) is extended until point Pi+1. The
procedure is illustrated in Figure 8. Finally, the smoothed
collision-free path segments are inserted at the place of the
removed, colliding path segments, and the cycle time is re-
calculated.

Figure 8: Comparison of the initial (black) and the smoothed
(red) collision-free paths.

Experimental Results
Comparison of Different Algorithms
The proposed algorithms have been evaluated on problems
involving the assembly of a car front door using RLW. Ex-
periments have been performed on real industrial data, con-
taining a single door geometry with different stitch layouts,
various fixture designs, and realistic technological param-
eters. The instances contained 28-71 welding stitches. The
mesh model of the door geometry consisted of ca. 105 trian-
gles, while the fixture model contained 5 · 105 triangles.

The experiments involved computing a task sequence and
a rough-cut path by three different algorithms for each in-
stance, and converting all the three solutions to a collision-

PlanRob 2014 Proceedings

178

free path by the algorithm proposed above. The three se-
quencing algorithms are as follows:

• TS-PP, our algorithm for integrated task sequencing and
path planning (Kovács 2013);

• RMV, the single sequencing algorithm dedicated to RLW
from the literature (Reinhart, Munzert, and Vogl 2008),
which solves a TSP over the stitch positions. Hence, this
algorithm focuses on the length of the tool contact point
(TCP) path when optimizing the stitch sequence;

• RMV∗, a modified version of RMV that solves the TSP
over the mid-points of the access volumes, instead of the
stitch position. This modification implies that RMV∗ ad-
dresses the minimization of the length of the scanner path,
instead of the TCP path.

All algorithms have been implemented in C++. RMV and
RMV∗ used ILOG CP as a TSP solver. The experiments
were run on a 2.66 GHz Intel Core 2 Duo computer. A time
limit of 120 seconds was applied.

The proposed algorithms computed a feasible, collision-
free robot path for every instance with all the three task se-
quencing methods. The results unambiguously indicate the
dominance of robot path planning (TS-PP and RMV∗) over
TCP path planning approaches, see Figure 9. For workpieces
with complex geometry, RMV leads to moving the scanner
head in a zigzag above stitches that have nearby positions
but different surface normals. In case of a car door, this phe-
nomenon is the most spectacular around the window frame,
where the stitches on the inner and the outer sides are close
to each other, but must be welded from opposite directions.
Consequently, in our experiments, RMV resulted in up to 3
times higher cycle times and up to 15 times higher idle times
than TT-PS.

The detailed comparison of the three algorithms is pre-
sented in Table 2, where each row stands for a separate prob-
lem instance. Instance names beginning with W and WF re-
fer to welding without fixture and with fixture, respectively.
Column n contains the number of stitches, while min. acces-
sibility and avg. accessibility present the minimum and aver-
age accessibility ratio, i.e., the ratio of CFAV and TAV, mea-
sured over the different stitches in percent. For each algo-
rithm, columns cycle1 and cycle2 contain the cycle time of
the rough-cut path and the collision-free path, respectively.
The best cycle times are denoted by bold font for each in-
stance. Columns run contain the run time of the algorithm in
seconds. It is noted that for RMV and RMV∗, the TSP solver
terminated with a locally optimal sequence in less then 1
second, hence, run is practically the time required for colli-
sion avoidance. In contrast, TS-PP was run for 120 seconds
on each instance, plus the time of collision avoidance.

The results show a notable difference among the instances
depending on stitch accessibility. For the WF instances, ac-
cessibility was very poor (minimum accessibility around
10%, average accessibility of 60-70%). For the W instances,
collision avoidance was run with the workpiece geometry
only, resulting in 24-50% min. and around 90% average ac-
cessibility. The reason of poor accessibility with fixture was
twofold. First, the car door was originally designed for spot

welding, and the stitch layout was received by replacing the
spots by RLW stitches, with minor modifications; in fact,
ca. 20-40% less stitches could ensure sufficient stiffness. On
the other hand, the key design objective for the experimental
fixture was to achieve perfect gap control, while the general
design guideline that the stitch accessibility volumes must
be kept clear was ignored. It is noted that several instances
had to be pre-processed to eliminate stitches that are com-
pletely inaccessible, since otherwise the path planning prob-
lem would have no feasible solution. After all, we expect
that for a car door in production, stitch accessibility and the
complexity of collision avoidance would be somewhere be-
tween those experienced for the W and the WF instances.

Regarding algorithm performance, TS-PP reduced cycle
times drastically compared to RMV. The reduction was
on average 63% on the rough-cut path, and 61% on the
collision-free path. This was mostly due to the joint con-
sideration of the TCP and the scanner movement, instead of
optimizing the TCP path only.

TS-PP also outperformed RMV∗ regarding the cycle time
of the rough-cut path on every instance, by computing up
to 6.1%, on average 2.9% more efficient paths. However,
this did not automatically translate to improvement on the
collision-free path on each individual instance. The pertur-
bation of the rough-cut paths by collision avoidance resulted
in a situation where TS-PP computed better collision-free
paths on 11 out of 15 instances, by up to 4.3%. However,
RMV∗ outperformed TS-PP on 4 of the 15 instances, by
2.1-4.9% on the different instances. This occurred typically
for the WF instances with the worst accessibility. Beyond
the random perturbation caused by the modifications to the
rough-cut path, a possible explanation of this phenomenon
comes from the different underlying assumptions made by
the algorithms for sequencing. Implicitly, RMV∗ assumes
that each stitch is welded from the mid-point of the tech-
nological access volume, whereas TS-PP assumes that the
complete technological access volume can be used. In these
problematic instances, the assumption of RMV∗ appears to
be closer to reality. Initial experiments on sequencing using
reduced TAVs confirm this hypothesis, and with an appropri-
ate choice of parameters, the method resulted in TS-PP out-
performing RMV∗ an all instance, but an elaborate heuristic
is subject to future work.

The average computation time was 165 seconds and 119
seconds for RMV and RMV∗. TS-PP required 241 seconds
on average, due to the higher computation time of sequenc-
ing. Half of the computation time was taken by sequenc-
ing and rough-cut path planning, while the other half by
collision-free path planning. Still, these response times com-
ply with industrial expectations, and enable the use of the
algorithms in a decision support tool in an iterative design
and planning process.

Conclusions
This paper introduced a new collision-free path planning
algorithm for RLW. The algorithm departs from a task se-
quence and a potentially colliding rough-cut path, and al-
ters this path to achieve a collision-free path with minimal

PlanRob 2014 Proceedings

179

Figure 9: Comparison of the paths computed by the RMV (left) and the proposed TS-PP (right) methods. TS-PP focuses on
the scanner path, and geometrical and technological parameters already at the time of task sequencing, which results in shorter
scanner path and reduced cycle time.

Accessibility RMV RMV∗ TS-PP
n min. avg. cycle1 cycle2 run cycle1 cycle2 run cycle1 cycle2 run

W1 28 47.32 91.63 30.05 30.53 22 14.01 14.01 7 13.69 13.69 128
W2 34 47.32 95.16 35.50 35.50 2 15.93 15.93 2 15.48 15.49 135
W3 62 49.29 93.61 76.39 76.64 11 26.91 26.91 2 26.11 26.11 122
W4 44 34.38 87.21 56.33 57.23 19 19.55 19.84 8 18.36 18.98 146
W5 71 24.46 90.76 78.64 78.64 3 30.29 30.29 3 29.85 29.85 123
W6 67 24.46 90.84 67.70 67.70 3 28.50 28.50 3 27.75 27.75 123
WF1 28 10.97 64.21 30.05 31.26 229 14.01 15.04 113 13.69 14.69 299
WF2 34 14.63 69.49 35.50 35.86 286 15.93 16.92 192 15.48 16.42 337
WF3 62 11.14 68.49 76.39 78.42 294 26.91 27.51 219 26.11 28.08 353
WF4 44 10.89 58.81 56.33 58.23 163 19.55 21.16 196 18.37 21.02 283
WF5 64 9.79 65.03 75.37 77.18 270 26.15 27.58 249 26.10 28.93 448
WF6 63 9.79 63.55 74.92 76.40 399 25.81 27.25 365 25.07 27.91 404
WF7 63 6.90 60.98 74.92 76.59 504 25.81 27.38 334 25.07 27.95 421
Avg. 51 21.04 72.18 59.08 60.01 170 22.26 22.95 130 21.63 22.84 256

Table 2: Comparison of the RMV, RMV∗, and the proposed TS-PP algorithms.

cycle time by iterating shortest path algorithms and dis-
tance queries on a mesh model representation of the involved
moving objects. Extensive computational experiments have
shown that the proposed algorithms are efficient in solving
real industrial problems originating from the automotive in-
dustry.

Nevertheless, the results achieved permit drawing conclu-
sions in a wider context as well. Most importantly, it has
been shown that in RLW, and in general, for machining tech-
nologies where relatively slow robot motion is coupled with
quick movements of the tool, optimization must jointly con-
sider the robot path and the tool path, instead of focusing
solely on the tool path. For the car door designs considered
in our experiments, this resulted in an enormous reduction
of the cycle times, by 63% for on average.

Second, while tool positions are well defined for the ef-
fective tasks, e.g., stitch positions in RLW, one has a sig-
nificant degree of freedom in choosing the corresponding
robot path. On the one hand, this freedom opens new oppor-
tunities for optimization, but on the other hand, it presents a

serious computational challenge, and an efficient combina-
tion of combinatorial optimization and geometric reasoning
is required for tackling it. While most earlier contributions
applied a sampling strategy to solve sequencing and path
planning over a finite set of pre-defined discrete points, we
proposed algorithms for planning in the continuous space,
using efficient geometric computation routines.

Our current research focuses on improving the stitch se-
quence and the rough-cut path on instances with poor ac-
cessibility, by heuristics that adjust the technological access
volumes to the real, collision-free access volumes. Further-
more, the verification and thorough evaluation of the devel-
oped off-line programming toolbox in physical experiments
is underway.

Acknowledgements
The author thanks József Váncza and Gábor Erdős for the
helpful discussions. This work has been supported by EU
FP7 grant RLW Navigator No. 285051 and the NFÜ grant
ED-13-2-2013-0002.

PlanRob 2014 Proceedings

180

References
Alatartsev, S.; Augustine, M.; and Ortmeier, F. 2013. Con-
stricting insertion heuristic for traveling salesman problem
with neighborhoods. In Proc. of the 23rd International Con-
ference on Automated Planning and Scheduling (ICAPS-
2013), 2–10.
Alatartsev, S.; Mersheeva, V.; Augustine, M.; and Ortmeier,
F. 2013. On optimizing a sequence of robotic tasks. In
Proc. of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS2013), 217–223.
Castelino, K.; D’Souza, R.; and Wright, P. K. 2002. Tool-
path optimization for minimizing airtime during machining.
Journal of Manufacturing Systems 22(3):173–180.
Dewil, R.; Vansteenwegen, P.; and Cattrysse, D. 2014. Con-
struction heuristics for generating tool paths for laser cutters.
International Journal of Production Research in print.
Erdős, G.; Kemény, Z.; Kovács, A.; and Váncza, J. 2013.
Planning of remote laser welding processes. Procedia CIRP
7:222–227.
Ferguson, D., and Stentz, A. 2006. Using interpolation to
improve path planning: The field D∗ algorithm. Journal of
Field Robotics 23(2):79–101.
Geraerts, R., and Overmars, M. H. 2002. A comparative
study of probabilistic roadmap planners. In Proc. Workshop
on the Algorithmic Foundations of Robotics, 43–57.
Hatwig, J.; Minnerup, P.; Zaeh, M. F.; and Reinhart, G.
2012. An automated path planning system for a robot with
a laser scanner for remote laser cutting and welding. In
2012 IEEE International Conference on Mechatronics and
Automation (ICMA), 1323–1328.
Hatwig, J.; Reinhart, G.; and Zaeh, M. F. 2010. Automated
task planning for industrial robots and laser scanners for re-
mote laser beam welding and cutting. Production Engineer-
ing 4(4):327–332.
Hudson, T. C.; Lin, M. C.; Cohen, J.; Gottschalk, S.; and
Manocha, D. 1997. V-collide: Accelerated collision de-
tection for vrml. In VRML 97: Second Symposium on the
Virtual Reality Modeling Language, 119–125.
Kaelbling, L., and Lozano-Perez, T. 2011. Hierarchical
task and motion planning in the now. In 2011 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
1470–1477.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transactions
on Robotics and Automation 12(4):566–580.
Koenig, S., and Likhachev, M. 2005. Fast replanning
for navigation in unknown terrain. IEEE Transactions on
Robotics 21(3):354–363.
Kolakowska, E.; Smith, S. F.; and Kristiansen, M. 2014.
Constraint optimization model of a scheduling problem for a
robotic arm in automatic systems. Robotics and Autonomous
Systems 62(2):267–280.
Kovács, A. 2013. Task sequencing for remote laser welding
in the automotive industry. In Proceedings of the 23rd Inter-

national Conference on Automated Planning and Schedul-
ing (ICAPS-2013), 457–461.
Kucuk, S., and Bingul, Z. 2006. Robot kinematics: For-
ward and inverse kinematics. In Cubero, S., ed., Industrial
Robotics: Theory, Modelling and Control. Pro Literatur Ver-
lag. 117–148.
Kuffner, J. J., and LaValle, S. M. 2000. RRT-connect: An
efficient approach to single-query path planning. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA’00), 995–1001.
Larsen, E.; Gottschalk, S.; Lin, M. C.; and Manocha, D.
2000. Fast proximity queries with swept sphere volumes.
In Proc. IEEE Int. Conf. Robot. Autom., 3719–3726.
Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA∗:
Anytime A∗ with provable bounds on sub-optimality. In Ad-
vances in Neural Information Processing Systems (NIPS).
Park, H.-S., and Choi, H.-W. 2010. Development of digital
laser welding system for car side panels. In Na, X., ed.,
Laser Welding. InTech. 181–192.
Park, C.; Pan, J.; Lin, M.; and Manocha, D. 2013. Realtime
gpu-based motion planning for task execution in dynamic
environments. In Proceedings of the 1st Workshop on Plan-
ning and Robotics (PlanRob 2013), 60–63.
Reinhart, G.; Munzert, U.; and Vogl, W. 2008. A program-
ming system for robot-based remote-laser-welding with
conventional optics. CIRP Annals – Manufacturing Tech-
nology 57(1):37–40.
Saha, M.; Sánchez-Ante, G.; Roughgarden, T.; and
Latombe, J.-C. 2006. Planning tours of robotic arms among
partitioned goals. International Journal of Robotics Re-
search 25(3):207–223.
Shibata, K. 2008. Recent automotive applications of laser
processing in Japan. The Review of Laser Engineering
36:1188–1191.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. Combined task and motion planning
through an extensible planner-independent interface layer.
In 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA).
Stentz, A. 1995. The focussed D∗ algorithm for real-time
replanning. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI’95), 1652–1659.
Trenkel, S.; Weller, R.; and Zachmann, G. 2007. A bench-
marking suite for static collision detection algorithms. In
International Conference in Central Europe on computer
graphics, visualization and computer vision (WSCG).
Tsoukantas, G.; Salonitis, K.; Stournaras, A.; Stavropoulos,
P.; and Chryssolouris, G. 2007. On optical design limitations
of generalized two-mirror remote beam delivery laser sys-
tems: the case of remote welding. The International Journal
of Advanced Manufacturing Technology 32(9–10):932–941.

PlanRob 2014 Proceedings

181

PlanRob 2014 Author Index

Author Index

Aha, David 106
Aksakalli, Vural 166
Alami, Rachid 20
Alford, Ronald 106
Alkaya, Ali Fuat 166
Amato, Christopher 69
Apker, Thomas 106
Arras, Kai Oliver 90, 136
Auslander, Bryan 106
Awaad, Iman 117

Beck, Chris 59
Bekris, Kostas 80
Bit-Monnot, Arthur 12
Borgo, Stefano 28
Brafman, Ronen 99

Cesta, Amedeo 28
Chaudhuri, Swarat 145
Cruz, Gabriel 69

de Silva, Lavindra 20
Dvorak, Fiip 12

Garrett, Caelan 148
Gaschler, Andre 157
Gelfond, Michael 127
Ghallab, Malik 12

Hertzberg, Joachim 117
How, Jonathan 69

Infantes, Guillaume 49
Ingrand, Félix 12

Kaelbling, Leslie 69, 148
Karneeb, Justin 106
Kavraki, Lydia 145
Kiesel, Scott 1
Kimmel, Andrew 80
Konidaris, George 69
Kovacs, Andras 172
Kraetzschmar, Gerhard 117

1

PlanRob 2014 Author Index

Lallement, Raphaël 20
Lesire, Charles 49
Lozano-Perez, Tomas 148

Maynor, Christopher 69
McMahon, James 106
Molineaux, Matthew 106
Moll, Mark 145

Nedunuri, Srinivas 145
Nejat, Goldie 59, 136

Orlandini, Andrea 28

Palmieri, Luigi 90
Petrick, Ron 157
Prabhu, Sailesh 145
Pralet, Cédric 49

Rasconi, Riccardo 28
Roberts, Mark 106
Ruml, Wheeler 1

Sahin, Furkan 166
Scala, Enrico 38
Schwenk, Markus 136
Shani, Guy 99
Shimony, Solomon 99
Sridharan, Mohan 127
Suriano, Marco 28

Umbrico, Alessandro 28

Vaquero, Tiago Stegun 59, 136
Vattam, Swaroop 106

Wilson, Mark 106
Wyatt, Jeremy 127

Zhang, Shiqi 127

2

	01 PlanRob-Intro3pages
	02 toc
	03 PlanRob proc_papers
	paper_1
	paper_10
	paper_26
	paper_27
	paper_28
	paper_6
	paper_15
	paper_16
	Introduction
	Decentralized, Partially Observable Markov Decision Processes
	Solutions

	Macro-Actions for Dec-POMDPs
	Model
	Algorithms

	Solving Multi-Robot Problems with MacDec-POMDPs
	Planning using MacDec-POMDPs in the Warehouse Domain
	The Warehouse Domain
	Scenario 1: No Communication
	Scenario 2: Local Communication
	Scenario 3: Global Communication

	Related Work
	Conclusion

	paper_25
	paper_3
	paper_12
	paper_21
	paper_19
	paper_24
	paper_20
	paper_9
	paper_13
	paper_22
	paper_2
	paper_11

	04 author_index

