
!
!

Proceedings+of+the+8th+
Scheduling+and+Planning+Applications+Workshop+

+
Edited+By:+

Gabriella+Cortellessa,+Mark+Giuliano,+Riccardo+Rasconi+and+Neil+Yorke@Smith+
+

Portsmouth,*New*Hampshire,*USA*5*June*22,*2014*

*

ICAPS
 2014

Organizing*Committee*
Gabriella(Cortellessa!
ISTC&CNR,!Italy!
Mark(Giuliano(
Space!Telescope!Science!Institute,!USA!!
Riccardo(Rasconi!
ISTC&CNR,!Italy!
Neil(Yorke6Smith(
American!University!of!Beirut,!Lebanon,!and!University!of!Cambridge,!UK!
!
Program*Committee*
Laura(Barbulescu,!Carnegie!Mellon!University,!USA!!
Anthony(Barrett,!Jet!Propulsion!Laboratory,!USA!!
Mark(Boddy,!Adventium,!USA!!
Luis(Castillo,!University!of!Granada,!Spain!!
Gabriella(Cortellessa,!ISTC&CNR,!Italy!
Riccardo(De(Benedictis,!ISTC&CNR,!Italy!!
Minh(Do,!SGT!Inc.,!NASA!Ames,!USA!!
Simone(Fratini,!ESA&ESOC,!Germany!!
Mark(Giuliano,!Space!Telescope!Science!Institute,!USA!
Christophe(Guettier,!SAGEM,!France!!
Patrik(Haslum,!NICTA,!Australia!!
Nicola(Policella,!ESA&ESOC,!Germany!!
Riccardo(Rasconi,!ISTC&CNR,!Italy!
Bernd(Schattenberg,!University!of!Ulm,!Germany!!
Tiago(Vaquero,!University!of!Toronto,!Canada!!
Ramiro(Varela,!University!of!Oviedo,!Spain!!
Gérard(Verfaillie,!ONERA,!France!!
Neil(Yorke6Smith,!American!University!of!Beirut,!Lebanon!and!University!of!Cambridge,!UK!
Terry(Zimmerman,!University!of!Washington!–!Bothell,!USA!
!
!
!
!
!
!
!
!
!
!
!
!

!

Foreword!
!
Application!domains!that!entail!planning!and!scheduling!(P&S)!problems!present!a!set!of!compelling!challenges!
to!the!AI!planning!and!scheduling!community,!from!modeling!to!technological!to!institutional!issues.!New!real&
world! domains! and! problems! are! becoming! more! and! more! frequently! affordable! challenges! for! AI.! The!
international!Scheduling!and!Planning!Applications!woRKshop!(SPARK)!was!established!to!foster!the!practical!
application!of!advances!made!in!the!AI!P&S!community.!Building!on!antecedent!events,!SPARK'14!is!the!eighth!
edition!of!a!workshop!series!designed!to!provide!a!stable,!long&term!forum!where!researchers!and!practitioners!
can!discuss!the!applications!of!planning!and!scheduling!techniques!to!real&world!problems.!The!series!webpage!
is!at!http://decsai.ugr.es/~lcv/SPARK/!
!
We!are!once!more!very!pleased!to!continue!the!tradition!of!representing!more!applied!aspects!of!the!planning!
and! scheduling! community! and! to! perhaps! present! a! pipeline! that! will! enable! increased! representation! of!
applied!papers!in!the!main!ICAPS!conference.!
!
We!thank!the!Program!Committee!for!their!commitment! in!reviewing.!We!thank!the!ICAPS'14!workshop!and!
publication!chairs!for!their!support.!
!
The!SPARK’14!Organizers!
! !

Table*of*Contents*
(
(
Optimization(Approach(for(the(Management(of(Transshipment(Operations(in(
Maritime(Container(Terminals..1(
Eduardo+Lalla@Ruiz,+Christopher+Expósito@Izquierdo,+Belén+Melian@Batista+
and+J.+Marcos+Moreno@Vega!
(
Temporal(Planning(for(Business(Process(Optimisation...3(
Daniele+Magazzeni,+Fabio+Mercorio,+Balbir+Barn,+Tony+Clark,+Franco+Raimondi+
and+Vinay+Kulkarni!
(
New(Algorithms(for(The(Top6K(Planning(Problem...10(
Anton+Riabov,+Shirin+Sohrabi+and+Octavian+Udrea!
(
The(Application(of(Planning(to(Urban(Traffic(Control..17(
Falilat+Jimoh,+Lukas+Chrpa+and+Lee+Mccluskey!
(
Planning(for(Social(Interaction(with(Sensor(Uncertainty..19(
Mary+Ellen+Foster+and+Ronald+Petrick!
(
Exploring(High(Dimensional(Metric(Spaces:(A(Case(Study(Using(Hubble(Space(
Telescope(Long(Range(Planning...21(
Mark+Giuliano!
(
Intelligent(UAS(Sense6and6Avoid(Utilizing(Global(Constraints..29(
David+Smith,+Javier+Barreiro+and+Minh+Do!
(
AI6MIX:(Using(Automated(Planning(to(Steer(Human(Workers(Towards(Better(
Crowdsourced(Plans...38(
Lydia+Manikonda,+Tathagata+Chakraborti,+Sushovan+De,+Kartik+Talamadupula+
and+Subbarao+Kambhampati!
(
A(machine(learning(surrogate(for(rotorcraft(noise(optimization...44(
Kristen+Brent+Venable,+Bob+Morris,+Matthew+Johnson,+Aliyeh+Mousavi+and+Nikunj+Oza!
(

Optimization Approach for the Management of Transshipment Operations in
Maritime Container Terminals

Eduardo Lalla-Ruiz, Christopher Expósito-Izquierdo, Belén Melián-Batista and J. Marcos Moreno-Vega
{elalla, cexposit, mbmelian, jmmoreno}@ull.es

Department of Computer Engineering
University of La Laguna, Spain

Abstract

In this paper we propose a functional integration of two
well-known logistic problems arising at maritime con-
tainer terminals. This integration approach is aimed at
addressing the berthing operations at the seaside of a
container terminal by considering the service time re-
quired to serve incoming container vessels in terms of
the work plan of the quay cranes. Due to its relevance
as practical application in real environments, our inter-
est here is to provide an appropriate framework to op-
timize the usage of the technical equipment while im-
proving the service of the vessels. The computational
results suggest the suitable performance of our scheme
in realistic maritime container terminals.

Introduction
A maritime container terminal is an infrastructure aimed at
connecting different transportation modes, usually container
vessels, trucks, and trains. The main goal of a maritime con-
tainer terminal is to serve the container vessels arrived to the
port. In this regard, serving a container vessel involves to
unload those containers that are going to be later retrieved
from the terminal by another transportation mode and load
those containers to be carried by the vessel towards a dif-
ferent port. The service of a container vessel can be there-
fore structured into the following operational decisions: (i)
determining a suitable berthing position and berthing time,
(ii) allocating an appropriate subset of quay cranes, and (iii)
scheduling the transshipment operations, that is, loading and
unloading of containers (Stahlbock and Voβ 2008).
In this paper we propose an algorithmic integration ap-

proach aimed at modelling the service of container vessels
arrived to the port. This problem is of utmost importance for
terminal managers due to its impact on the overall perfor-
mance of the terminal.

Application Environment
The berthing operations at a container terminal are aimed
at serving the container vessels arrived toward the maritime
container terminal. They pursue to maximize the productiv-
ity of the handling equipment used to serve the vessels. In

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this context, two main logistics problems tightly related to
each other arise at container terminals:
• Berth Allocation Problem (BAP). This problem is aimed
at allocating and scheduling incoming container vessels
to berthing positions along the quay of a port (Cordeau et
al. 2005).

• Quay Crane Scheduling Problem (QCSP). It is aimed at
determining the schedule of the loading and unloading
tasks of a container vessel (Bierwirth and Meisel 2009).

The joint consideration of both aforementioned problems
might provide a highlighted approach for the management
of the seaside operations in maritime container terminals.
Therefore, in this work, we address both logistic problems
jointly and we will refer to as BAQCSP.
In the BAQCSP, we are given a set of incoming vessels,

V = {1, ..., v}, and a set of berths, B = {1, ..., b}. Each
j ∈ B is divided into a set of segments, Pj = {1, ..., pj},
and has a subset of allocated quay cranes, Qj = {1, ..., qj}.
Each q ∈ Qj has a position p ∈ Pj within the berth j ∈ B.
Each container vessel i ∈ V must be assigned to an empty
berth j ∈ B within the vessels and berth time windows,
[tvi, tv′i] and [tbj , tb′j], respectively. The stowage plan de-
fines a set of tasks, Ωi = {1, ..., ni} (associated to the load-
ing or unloading operations of the containers groups within
the vessel), for each i ∈ V . Each t ∈ Ωi is located in a
certain bay along the container vessel, lt, and has a positive
handling time, pt. It is worth mentioning that it is assumed
that each quay crane performs a task without any interrup-
tion. This means that once a quay crane starts to (un)load the
containers related to a given task, this goes on until all the
containers included into the relevant group are (un)loaded.
Moreover, in each j ∈ B each q ∈ Qj is only available after
its earliest ready time, rq ≥ 0, is initially located on a posi-
tion, lq

0
, and can travel between two adjacent positions of the

container vessel with a travel time, t̂ > 0. The handling time
required to serve a vessel i ∈ V at berth j ∈ B, denoted as
cij , depends on the required time for performing its associ-
ated loading/unloading tasks by the quay cranes allocated at
that berth. The main goal of the BAQCSP is to determine the
berthing position and berthing time of each vessel in order
to minimize service time for all vessels, defined as the time
elapsed between the arrival of the vessels and the completion
of their handling.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 1

Solution Approach
The functional integration approach aimed at providing an
overall berth planning for those container vessels arriving to
the terminal is as follows:
1. The handling time of each container vessel allocated to
a given berth is determined by solving its particular in-
stance of QCSP. Therefore, v times b QCSPs have to be
solved in order to obtain the handling times for each ves-
sel within the available berths at the terminal. For solv-
ing each QCSP, an Estimation of Distribution Algorithm
(EDA) proposed in (Expósito-Izquierdo, Melián-Batista,
and Moreno-Vega 2012) is used. The execution of this al-
gorithm is ruled by a maximum computational time, tmax.
The value of tmax is set by the decision maker before
starting the execution. tmax = 1 second in this work.

2. Once the handling times of each vessel are computed, the
BAP for determining the berthing position and berthing
time of each vessel is addressed. For solving it, a Tabu
Search with a Path-Relinking strategy (T 2S∗ + PR) pro-
posed in (Lalla-Ruiz, Melián-Batista, and Moreno-Vega
2012) is used.

3. The handling times determined in step 1 may have room
for improvement due to the time limit when solving the
QCSP. Thus, a limited number of QCSPs restricted to the
solution of the BAP obtained in step 2 are considered.
Namely, for each vessel constrained to the allocated berth
within that solution, a QCSP for that case is solved. There-
fore, v QCSPs are solved in this step. The time limit in this
case is α · tmax seconds, where the value of α is set by the
decision maker. α = 5 in this work.

4. The solution of the BAP is appropriately adjusted in case
the handling times obtained in the previous step have
changed. This may be translated into an improvement of
the objective function value.
In order to obtain an overall planning and assess the suit-

ability of the proposed integration scheme, a scenario based
upon the joint consideration of realistic instances is used. In
this regard, the problem instances provided in (Cordeau et
al. 2005) and (Bierwirth and Meisel 2009) are tackled.
Figure 1 shows a screenshot of Seaside Manager (an ex-

perimental software tool that is currently being developed)
which illustrates a complete solution for the BAQCSP. In
doing so, a representative instance composed of 35 vessels,
10 berths, and 30 quay cranes is considered. At the left ver-
tical axis are delimited the berths and at the right side the
number of quay cranes allocated at each berth. The horizon-
tal axis represents the time. Each rectangle corresponds to a
container vessel. The specific schedule of the involved load-
ing/unloading tasks is shown for each container vessel.

Concluding Remarks and Future Lines
In this paper, we present a functional integration to jointly
address two essential seaside problems at maritime container
terminals: the Berth Allocation Problem and the Quay Crane
Scheduling Problem. It is noticeable from the computational
experiments that the proposed framework provides a feasible

Figure 1: Overall planning of 35 container vessels arrived to
a maritime container terminal with 10 berths

overall planning for the seaside operations of a container ter-
minal. In this regard, our approach provides an overall plan-
ning for realistic scenarios in less than 40 seconds. More-
over, through the application of efficient approximate algo-
rithms proposed in the related literature, the solution is ob-
tained by means of short computational times. In this regard,
the time advantage makes this framework suitable for being
included into real decision-support systems.
On the basis of this work, the next stage of our research

will be focused on including other realistic objectives func-
tions such as reducing the time of the use of quay cranes,
minimizing the idle time of the berths, etc.

Acknowledgments
This work has been partially funded by the European Re-
gional Development Fund, the Spanish Ministry of Econ-
omy and Competitiveness (project TIN2012-32608). Ed-
uardo Lalla-Ruiz and Christopher Expósito-Izquierdo thank
the Canary Government the financial support they receive
through their doctoral grants.

References
Bierwirth, C., and Meisel, F. 2009. A fast heuristic for quay
crane scheduling with interference constraints. Journal of
Scheduling 12(4):345–360.
Cordeau, J.-F.; Laporte, G.; Legato, P.; andMoccia, L. 2005.
Models and tabu search heuristics for the berth-allocation
problem. Transportation Science 39(4):526–538.
Expósito-Izquierdo, C.; Melián-Batista, B.; and Moreno-
Vega, M. 2012. Pre-marshalling problem: Heuristic solu-
tion method and instances generator. Expert Systems with
Applications 39(9):8337 – 8349.
Lalla-Ruiz, E.; Melián-Batista, B.; and Moreno-Vega, J.
2012. Artificial intelligence hybrid heuristic based on tabu
search for the dynamic berth allocation problem. Engineer-
ing Applications of Artificial Intelligence 25(6):1132–1141.
Stahlbock, R., and Voβ, S. 2008. Operations research at
container terminals: a literature update. OR Spectrum 30:1–
52.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 2

Temporal Planning for Business Process Optimisation
Daniele Magazzeni

Department of Informatics
King’s College London, UK

Fabio Mercorio
CRISP Research Centre

University of Milan Bicocca, Italy

Balbir Barn, Tony Clark, Franco Raimondi
Department of Computer Science

Middlesex University, London, UK

Vinay Kulkarni
Tata Consultancy Services

Pune, India

Abstract
In this paper we consider the problem of designing and opti-
mising a business process. Given a set of activities and a fixed
budget, the objective is to determine duration and resource al-
location for each activity such that the time-to-market is min-
imised while budget and dependencies constraints are met.
We give a formal description of the problem and we show
how it can be cast as a temporal planning problem, result-
ing in a challenging benchmark planning problem involving
concurrency and duration-dependent costs.
The user has to define only dependencies among activities,
costs of resources and the available budget, and then use a
planner to design an efficient process, which is then gener-
ated as a Gantt chart. As a case study, we consider a concrete
scenario provided by an industrial partner, and we use a tem-
poral planner to design an effective business process.

Introduction
Business organisations that provide or build products (e.g.,
software, mixed software-hardware solutions, and even ac-
tual goods) are likely to employ abstract modelling lan-
guages to describe and analyse their business processes.
A number of formal languages are available for modelling
business processes, and various tools exist to automate the
analysis of the modelled workflows and get advice on how to
better invest resources. In a number of instances, including
large organisations, the design of business processes is still
a manual process that relies on the experience of top-level
managers and domain experts to produce sequences of steps
that achieve a desired business goal, subject to the minimi-
sation/maximisation of various metrics. As a result, there is
no guarantee that the business processes obtained using this
process are indeed the most efficient solution. Additionally,
the exploration of different options is a very time-consuming
task: each new process has to be developed and analysed
separately, and alternative solutions need to be compared
manually.

In this paper we argue that the design and the optimisation
of business processes can be automated using AI planning
techniques, thus providing an effective tool to search for “ef-
ficient” solutions for resource allocation and task schedul-
ing, or to quickly explore alternative business processes.

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

More in detail, our contributions can be summarised as
follows: we present a novel application domain for temporal
planning that is derived form a concrete instance provided
by an industrial partner; we describe a benchmark domain
that results in a challenging multi-objective temporal plan-
ning problem; as a practical example, we consider a model-
driven software development process and we show how it
can be encoded as a temporal planning problem. Finally, we
use a temporal planner to generate solutions that minimise
time-to-market for a given project budget and we provide
a visual representation of the automatically generated non-
trivial resource allocation using Gantt charts.

A Formal Model for Business Processes
In this section we first provide a formal semantics for busi-
ness processes that abstracts the existing approaches de-
scribed above. Then, we describe an actual process currently
in use at Tata Consultancy Services. Then a mapping be-
tween the formal model and a temporal planning model is
presented, using the concrete business process as a running
example.
Definition 1 (Business Process) A Business Process (BP)
B is a 10-tuple (S ,si,se,P ,D,R,A,T ,C,b), where: S is a fi-
nite set of states, si 2 S is the initial state, se 2 S is the
end state, P is a finite set of parameters, D : S ! 2

S is the
dependency function, R : S ! 2

P is the requirements func-
tion, A : S ! 2

P is the allocation function, T : S ! R+ is
the temporal function, C : S ⇥ 2

P ⇥ R+ ! R+ is the cost
function and b 2 R+ is the budget.

The set of states S corresponds to the set of typical busi-
ness steps, such as “Requirements analysis” or “Code test-
ing”. Each state may depend on other states: for instance,
“Code testing” depends on “Code generation”. The set P in-
cludes parameters such as number of developers, number of
testers, number of domain experts, etc. For each state s 2 S ,
D(s) defines the set of states s depends on, R(s) defines the
requirements for the phase represented by s, A(s) defines
the resources allocated for it, T (s) defines its duration and
C(s,A(s), T (s)) defines its cost. Finally we have an initial
state si 2 S (such that D(si) = ;), and an end state se 2 S .
Definition 2 (Business Process Execution) A Business
Process Execution for the BP B=(S ,si,se,P ,D,A,T ,C,b) is
a sequence ⇡ = (s0a0t0)(s1a1t1)(s2a2t2) . . . sn, where,

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 3

8j � 0, sj 2 S , aj = A(sj), tj = T (sj). A Business
Process Execution is admissible iff: (i) s0 = si, (ii) sn = se,
(iii) 8j � 1, 8sk 2 {D(sj)} : sk 2 ⇡ ^ k < j, (iv)
8sl 2 S,R(sl) ✓ A(sl), (v)

P
j=0...n�1 C(sj , aj , tj)  b.

In particular, conditions (iii), (iv), and (v) require all the
dependencies among phases to be satisfied, all phases re-
quirements to be met and the total cost to be within the given
budget, respectively.

The Model-Driven Software Development Process
Table 1 describes the states and the associated functions
R(s), T (s), and C(s, a, t) for a model-driven software de-
velopment (MDSD) process that has been used to deliver
several large business applications for past 16 years at Tata
Consultancy Services.

A row of the table depicts a specific phase of the MDSD
process, the time the phase takes to complete as a percent-
age of total time taken for completion of the MDSD pro-
cess, and the various actors participating in the phase along
with their relative contribution. For instance, the High Level
Design phase requires 5% of the time taken by the overall
MDSD process, and requires the participation of a Solution
Architect (SA), a Domain Expert (DE) and a Technology
Architect (TA). If the overall time required by a project is
100 man-days, this line encodes the fact that the HLD phase
requires 0.3 ·5 TA days, 0.1 ·5 DE days, and 0.6 ·5 SA days.
The remaining actors are Test Engineer (TE), MDE Expert
(ME), Modeller (M), Developer (D), and Tester (T).

The initial state is si = RE, and the end state is se = END.
The dependency function D is graphically shown in Fig-
ure 1. The function C(s, a, t) can be derived from the times
described in Table 1 and the costs in Table 2 (where costs
are normalised to the cost of a tester).

Business Process Optimisation as a Temporal
Planning Problem

The proposal of this paper is a translation of a business
process (as defined in Definition 1) into a temporal plan-
ning problem, so that planners can be used to find admissi-
ble business process executions (as defined in Definition 2)
while minimising the time-to-market.

It is worth noting that the use of temporal planning is
key in this context as it allows modelling of concurrent
activities and time-dependent resource allocations, and to
compute duration-dependent costs. Furthermore, although
the business process design could be seen as a scheduling
problem, it represents an interesting domain where planning
plays an important role. To this aim, we follow the same
approach proposed in (Fox, Long, and Magazzeni 2011;
2012), where the battery scheduling problem is cast as a
temporal planning problem and solved using the temporal
planner UPMurphi (Della Penna et al. 2009). In particular,
in the battery scheduling problem the number of switching
actions cannot be identified in advance as well as in the BP
domain the number of resources that can be allocated to each
phase is not known in advance. Furthermore, the order in
which phases are executed, their duration and how concur-
rency can be exploited are not know, either. In the following

we present the main components of the PDDL domain and
problem.

The Planning Domain. The business process domain
presents a number of challenging features to be modelled.
First, the business process consists of different phases each
of which, in turn, requires a number of tasks to be accom-
plished. The order of execution of the phases is not fixed,
but there is a set of dependencies among phases that must be
satisfied, which, however, allow for a set of phases to be exe-
cuted in parallel. Second, each task is associated with a skill
and people of different skills have to be allocated to each
phase to accomplish their corresponding tasks. The number
of people to allocate is not know in advance, and only an
upper bound is provided. Third, the project cost, that needs
to be maintained within the given budget, depends on how
many days each resource is allocated and thus is modelled
as a time-dependent cost. Finally, as we want to optimise the
time-to-market, the duration of the plan has to be minimised.

We begin the description of the domain with the
start project and end project actions, shown in
Figure 2a. The start (end) project action is used to enable
(disable) the recruitment of resources and the execution of
the project phases. Then, in order to model resource alloca-
tion, we distinguish between employing a resource (which
defines the total number of resources for each skill that will
be used) and allocating a resource (which defines how re-
sources are used throughout the process). We make this dis-
tinction as both recruitment and daily costs of resources
must be considered.

Employing Resources. Figure 2b shows the employ and
dismiss actions for domain experts (similar actions are
defined for other skills). These actions are used for manag-
ing the amount of resources recruited over the project. In
particular the employ action increments the project cost by
the cost of recruiting that particular resource (costs of re-
sources of different skills are shown in Table 2) making that
available to be allocated. On the other hand, the dismiss
action, which is applied when the project is completed, is
used to dismiss a resource.

Allocating resources. The planner can use allocation
(deallocation) actions to assign (release) resources of differ-
ent skills to each phase of the business process before (af-
ter) performing that phase through the corresponding execu-
tion action. As an example, Figure 2c shows the actions for
allocating and deallocating a domain expert. Note that the
deallocate action for skill Y does not require the whole
phase to be finished, but only the task for skill Y to be com-
pleted. This allows a flexible allocation of the same resource
to different phases.

Executing Phases. Modelling the execution of a phase
presents an interesting issue, as a phase consists of one or
more tasks to be completed. Furthermore, the duration of
each task is defined in terms of man-days for the skill re-
quired to perform the task (as shown in Table 1). Let us
assume that phase p requires skills A, B, C, and for each
of them the amount of work is pAdays, pBdays and
pCdays.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 4

Figure 1: Dependency graph for the MDSD process

Table 1: Phases of the MDSD process

s 2 S T (s) R(s)
% Time DE SA TA TE ME M D T

Requirements Elicitation (RE) 15 0.9 0.1
High Level Design (HLD) 5 0.1 0.6 0.3
Test Case Preparation (TCP) 5 0.2 0.1 0.7
Low Level Design (LLD) 10 0.3 0.7
Code Generator Procurement (CGP) 10 0.2 0.2 0.6
Component Interface Modelling (CIM) 2 0.1 0.1 0.8
Component Interface Validation (CIV) 2 0.1 0.1 0.8
Component Interface Assembly (CIA) 1 0.2 0.1 0.7
Modelling Component Implementation (MCM) 5 0.1 0.1 0.8
Validation of Component Implementation Model (VCIM) 5 0.1 0.1 0.8
Coding of Component Implementation (CCI) 7 0.8 0.2
Model-Based Code Generation (MBCG) 3 0.1 0.1 0.8
DSL translation (DSLT) 4 0.1 0.9
Compilation (COMP) 5 1
Unit Testing (UT) 5 1
Component Assembly (CA) 5 0.2 0.4 0.4
Integration Testing (IT) 5 0.1 0.1 0.8
User Acceptance Testing (UAT) 5 0.1 0.1 0.1 0.7
Sign Off (SO) 1 0.4 0.3 0.3
END

(:action start_project
:parameters (?p - phase)
:precondition (and
(todo_project)
(is_first_phase ?p))

:effect (and
(running_project)
(not (todo_project))))

(:action end_project
:parameters (?p - phase)
:precondition (and
(completed ?p)
(is_last_phase ?p))

:effect (and
(project_completed)))

(a)

(:action employ_DE
:parameters ()
:precondition (and
(< (employed_DE) (max_DE))
(running_project))

:effect (and
(increase (available_DE) 1)
(increase (employed_DE) 1)
(increase (total_project_cost)
(employment_cost_DE))))

(:action dismiss_DE
:parameters ()
:precondition (and (project_completed)
(> (employed_DE) 0) (> (available_DE) 0))
:effect (and
(decrease (employed_DE) 1)
(decrease (available_DE) 1)))

(b)

(:action allocate_DE
:parameters (?p - phase)
:precondition (and
(doing ?p)
(> (available_DE) 0))

:effect (and
(increase (allocated_DE ?p) 1)
(decrease (available_DE) 1)))

(:action deallocate_DE
:parameters (?p - phase)
:precondition (and
(completed_DE ?p)
(>= (available_DE) 0)
(> (allocated_DE ?p) 0))

:effect (and
(decrease (allocated_DE ?p) 1)
(increase (available_DE) 1)))

(c)

Figure 2: (a) The start project and end project actions. (b) The employ and dismiss actions for a Design Expert.
(c) The allocate and deallocate actions for a Design Expert

If the planner has allocated pAres, pBres, pCres re-
sources to phase p, then the duration of the phase is

max

i2{A,B,C}

✓
pidays

pires

◆

Therefore, the effects of the action become effective only
when all the tasks have been completed. On the other hand,
the resources of skill j allocated for the phase become avail-
able as soon as the task requiring skill j terminates, even if
the other tasks of the phase are still executing.

Modelling such a scenario is not trivial, and the proposed

solution is illustrated in Figure 4. For each phase of the busi-
ness process, an envelope action is used, whose duration is
left to the planner, which encapsulates k durative actions
(where k is the number of different tasks required to com-
plete the phase), whose duration depends on the resources
previously allocated by the planner.

As an example, Figure 3a shows the envelope action to
perform a phase, while Figure 3b shows the action for the
task requiring domain experts. Note that the number of re-
sources to be allocated to the task is a significant value that
the planner will identify carefully. Indeed, this value affects

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 5

Table 2: Normalised costs of resources of different skills

Skill per-day-cost employment cost
DE 5 30
SA 5 30
TA 4 25
TE 2 20
ME 5 30
M 2 20
D 1.25 12.5
T 1 10

both the duration of a task and, in turn, the cost for executing
it, since a resource is paid according to its daily cost and the
task duration.

The Planning Problem. The goal is to complete the
whole project satisfying all the dependencies. Further-
more, the total project cost must be within the given
budget. To this end, the goal has the condition that
total project cost must be no greater than budget,
where total project cost depends on the number of
resources with different skills allocated to a task and the
per-day cost of each resource (as shown in Table 2). As
we said before, we are interested in minimising Time-to-
Market. This is mapped into the planning metric (:metric
minimize (total-time)).

A fragment of the PDDL problem is shown in Fig-
ure 3c, where we show key elements for phase Com-
pilation (COMP) and resource Developer (D). The bud-
get is fixed to 1, 500 (normalised to the cost of a tester).
The per day cost D, the employment cost D and
the maximum number of Developers that can be employed
are defined according to the normalised costs of resources
shown in Tab. 2.

The predicate (todotask D COMP) is used to spec-
ify which kind of skills are needed to complete the phase
(here a Developer is needed to perform the Compila-
tion phase). The dependency graph for the MDSD process
is defined through the predicate (depends COMP CIA
MBCG DSLT)which constrains the execution of the COMP
phase to the completion of three distinct phases, that are the
Component Interface Assembly, Model-Based Code Gener-
ation, and DSL Translation.

Experimental Results
To solve the business process domain, we used the for-
ward chaining temporal planner POPF (Coles et al. 2010).
We considered the MDSD of Table 1, with a budget of
1, 500 and a maximum number of employees for each skill
to be employed equal to 5. We used a x64 Linux machine
equipped with 6 GB of RAM and we considered the best so-
lution found by POPF within 30 minutes1. We found a solu-
tion for the MDSD process (P in the following) that requires
about 15 days, with a total cost of 1, 202.

A complete Gantt chart for the solution P that gives an
overview of the execution of phases and tasks has been

1POPF is an any-time planner, which improves the current so-
lution as time is given.

generated2. Here we focus on a fragment of it (shown in
Figure 5) which allows us to highlight the key element of
the plan, that is the optimised parallel execution of several
phases. In particular, the model allows the switching of a re-
source between phases even when they are still on-going.
Specifically, Figure 5 focuses on phases Modelling Com-
ponent Implementation (MCM), Component Interface As-
sembly (CIA), and Coding of Component Implementation
(CCI). Note that all these three phases need to complete a
task which involves Software Architects (boxes with a green
vertical texture in Figure 5). Furthermore, the three phases
need to be completed in order to start the Compilation phase
(according to the dependency graph shown in Figure 1). In
order to speed up the execution of these parallel phases the
planner decides to assign 4 out of 5 Software Architects to
complete the task of phase Coding of Component Implemen-
tation. At the same time, it first assigns the remaining Soft-
ware Architect to phase Component Interface Assembly, and
then to phase Modelling Component Implementation, while
the phase Coding of Component Implementation is still run-
ning. Through a non-trivial allocation of resources between
tasks, the planner is able to reduce the project duration and
optimise the budget usage.

Evaluation
The generated solution has been validated by our industrial
partner, in comparison with plans used in the company for
similar projects. From a practical point of view, our indus-
trial partner confirmed that the added value of the plan-based
solution comes from having a plan that suggests efficient du-
rations for phases where resources are switched between on-
going phases, which is key for reducing the time-to-market
and that would be hard to be planned manually.

As a further evaluation, we compare the solution P with
two other plan-based solutions PA and PB , as described in
the following.

Solution PA. First we want to show how planning can
provide different high quality solutions according to the
amount of resources available, by modifying (if needed) the
process itself, and not only the resource allocation. There-
fore we modify the planning problem by allowing the plan-
ner to recruit up to 6 workers (instead of 5) for each skill.
The planner is then able to find the plan PA, which is more
expensive (although still within the assigned budget) but
shorter then P . Figure 6 shows a comparison between the
two solutions. As can be noticed, the planner produces a dif-
ferent process, and PA differs from P not only in the re-
source allocations and phase durations, but also in the order
in which the phases are executed.

Solution PB . Second we want to show how the use of
planning can effectively help the business process design,
comparing to what one could achieve without using a plan-
ner. To this aim, based on the industrial partner’s experience,
we modify the planning domain to reflect as much as possi-
ble how the business process is currently designed in indus-
try. As noticed before, a typical approach followed by man-

2 Due to the space limitation the complete Gantt chart has been
made available at http://goo.gl/Ki7RvX

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 6

(:durative-action execute_phase
:parameters (?p ?dp1 ?dp2 ?dp3 -
phase)
:duration (and (<= ?duration
(upper_bound ?p)))
:condition (and
(at start (todo ?p))
(at start (running_project))
(at start (depends ?p ?dp1 ?dp2
?dp3))

(at start (completed ?dp1))
(at start (completed ?dp2))
(at start (completed ?dp3))
(at end (completed_DE ?p))
(at end (completed_SA ?p))
(at end (completed_TA ?p)))

:effect (and
(at start (doing ?p))
(at end (completed ?p))
(at end (not (doing ?p)))
(at end (not (todo ?p)))))

(a)

(:durative-action task-execution_DE
:parameters (?p - phase
?nT - somenumber)

:duration (= ?duration
(/ (duration_task_DE ?p)
(value_of ?nT)))

:condition (and
(at start (todotask_DE ?p))
(over all (doing ?p))
(over all (= (allocated_DE ?p)
(value_of ?nT)))
(at end (>= (employed_DE)
(value_of ?nT))))

:effect (and
(at start (not (todotask_DE ?p)))
(at end (completed_DE ?p))
(at end
(increase
(total_project_cost)
(* (* (value_of ?nT) ?duration)
(per_day_cost_DE))))))

(b)

(is_first_phase RE) (is_last_phase END)
(= (budget) 1500) (= (total_project_cost) 0)
;; Developer
(= (employed_D) 0) (= (max_D) 5)
(= (available_D) 0) (= (employment_cost_D) 12.5)
(= (per_day_cost_D) 1.25)

;; columns R(s) of Tab. 1 for a Developer
(todotask_D CCI) (todotask_D MBCG)
(todotask_D DSLT) (todotask_D COMP)
(todotask_D UT) (todotask_D CA)
(depends COMP CIA MBCG DSLT) ;; graph of Fig.1

;; COMP PHASE
(completed_DE COMP) (completed_TA COMP)
(completed_TE COMP) (completed_ME COMP)
(completed_M COMP) (completed_T COMP)
(completed_SA COMP) (= (duration_task_D COMP) 5)

(:goal (and (project_completed)
(<= (total_project_cost) (budget)))

(:metric minimize (total-time)))

(c)

Figure 3: (a) An example of execute phase action. (b) An example of task-execution action. (c) An extraction of
PDDL problem for the COMP phase

p

p

pB,

pA, pB, pC

p

p

pA,

pC,

release−res−skillB

release−res−skillC

release−res−skillA
update−people−cost,

update−people−cost,

update−people−cost,

execute−phase

task−skillA

task−skillB

task−skillC

Figure 4: Envelope action for task execu-
tion

6 7 8 9

Phase CCI
TaskSA CCI 4

Phase CIA
TaskSA CIA 1
Phase MCM

TaskME CIA 3
TaskM MCM 2
TaskSA MCM 1

TaskM CIA 3
TaskD CCI 5

TaskME MCM 5

Figure 5: A fragment of the Gannt Chart of Solution P . Relevant tasks are high-
lighted with a green vertical texture, an orange crosshatched texture or a blue
slanted texture, to refer to Software Architects (SA), MDE Experts (ME) or Mod-
ellers (M), respectively.

agers is to move a resource to a different phase only when
the current phase is finished, as the switching of resources
between ongoing phases is hard to be planned manually. To
model such a scenario, we modify the deallocate (?p
- phase) action requiring the whole phase to be finished
to release a resource. The best solution found by the planner
is plan PB shown in Figure 7 in comparison with P . As ex-
pected, each phase duration is much longer than in plan P ,
and the whole project takes 41 days longer than in P , when
faced with the same budget.

Note that dependencies between phases do not limit the
planner in deciding the order in which phases are executed.
Indeed, both PA and PB solutions present a different execu-
tion flow, while continuing to satisfy the dependency graph3.

Discussion and Related Work
A number of P&S techniques as well as CP-based ap-
proaches have been applied to the domain of BPM, aiming to
help workflow designers. In particular, FlowOpt (Barták et

3The complete set of PDDL domain/problems/plans have been
made publicly available at http://goo.gl/OlUDWS

al. 2011; 2012) is a tool for workflow optimisation, based
on constraint satisfaction techniques. The user can visu-
ally model a workflow, and the tool automatically gener-
ates a production schedule represented as a Gantt chart. The
user can then vary the quantities of items to be produced
and the tool will modify the schedule accordingly also sug-
gesting some improvements such as buying new resources.
On the other hand, JABBAH (Gonzalez-Ferrer, Fernandez-
Olivares, and Castillo 2013) provides a mapping between
BPM and the HTN planning paradigm. The tool takes as in-
put a workflow graph (described in the BPMN notation) and
translates it into HTN-PDDL code. Then the planner IAC-
TIVE is used to find a valid plan, i.e., a valid Gantt chart for
the given BPM. In the work by Senkul and Toroslu (Senkul
and Toroslu 2005), workflows described in the WSL lan-
guage are translated into constraint programs in Oz, and then
CP techniques are used to find valid resource allocations.
Other related approaches include (Lombardi and Milano
2009; Valls, Pérez, and Quintanilla 2009; Wang et al. 2011;
Wang and Smith 2005).

Although these papers are all relevant, a key issue that
differentiates our work is the temporal optimisation. In par-

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 7

ticular, we consider tasks with flexible durations whose val-
ues are optimised by the planner. Furthermore, the order of
tasks is not fixed, but is chosen by the planner, too. This mo-
tivates the exploration of using a planner to minimise time-
to-market while respecting budget constraints. Furthermore,
users have to define only dependencies among phases, leav-
ing to the planner the decision on how to better schedule
the activities for improving efficiency while respecting the
dependencies.

BPM has also been modelled as a resource-constrained
project scheduling problem (RCPSP), where a set of tasks
(activities) with fixed start times and durations, have to be
executed without interruption using a given set of resources.
But again, existing works consider activities with fixed du-
rations (Hartmann and Briskorn 2010). Recently the multi-
mode RCPSP framework has been proposed, where an ac-
tivity can be associated with several modes, each modelling
a feasible pair (resource allocation/duration) for the activity.
This approach, however, requires the set of possible modes
to be enumerated by the user, which represents a significant
issue for BPM designers when faced with large projects. In-
stead, in the planning based approach, this issue is left to the
planner which can look for efficient solutions going beyond
the limited set of possibilities provided by the user.
Finally, it is worth mentioning the work (Hoffmann, Weber,
and Kraft 2012) developed in collaboration with SAP where
the planner FF is used for process composition.

Conclusion and Future Work
In this paper we described how the problem of designing
and optimising a business process can be cast as a temporal
planning problem. Our experience at Tata Consultancy Ser-
vices over nearly two decades has shown that the correct de-
sign of business processes can make the difference between
successful and unsuccessful projects. However, in spite of
the large body of work available for the generation and ver-
ification of business processes (see for instance (Bianculli,
Ghezzi, and Spoletini 2007) and references therein), the sup-
port for the automatic optimisation of business processes is
still at an early stage. We presented a contribution on this
direction, modelling the design and the optimisation of the
business process as a temporal planning domain. We then
provided an effective solution for an industrial case study
using a temporal planner to find plans that minimise time-
to-market for a given project budget.

The domain, as such, represents a challenging problem
for planning as it requires concurrency and the handling of
durative actions with duration-dependent costs. Beyond that,
we hope that the problem we consider in this paper, where
activities to be scheduled have a flexible duration depen-
dent on resource allocation and time-to-market needs to be
minimised, can represent an interesting benchmark for the
community and foster the application of P&S and CP-based
techniques to the domain of BPM optimisation.

A natural future work for extending the proposed model
is to exploit the expressive power of PDDL3 (Gerevini
and Long 2006) and use preferences to take into account
soft constraints. Furthermore, it will be challenging to deal

with the multi-objective optimisation involved in this prob-
lem (such as time-to-market vs budget tradeoff) and pro-
vide richer suggestions to business organisations. Finally,
we want to explore the use of mixed approach where plan-
ning and scheduling techniques can be interleaved to find
efficient solutions.

References
Barták, R.; Jaska, M.; Novák, L.; Rovensky, V.; Skalicky, T.; Cully,
M.; Sheahan, C.; and Thanh-Tung, D. 2011. Workflow optimiza-
tion with FlowOpt: On modelling, optimizing, visualizing, and
analysing production workflows. In Proc. TAAI’11, 167–172.
Barták, R.; Jaska, M.; Novák, L.; Rovensky, V.; Skalicky, T.; Cully,
M.; Sheahan, C.; and Thanh-Tung, D. 2012. FlowOpt: Bridging the
gap between optimization technology and manufacturing planners.
In Proc. ECAI’12, 1003–1004.
Bianculli, D.; Ghezzi, C.; and Spoletini, P. 2007. A model checking
approach to verify BPEL4WS workflows. In Proc. SOCA’07, 13–
20.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In Proc. ICAPS.
Della Penna, G.; Intrigila, B.; Magazzeni, D.; and Mercorio, F.
2009. UPMurphi: a tool for universal planning on PDDL+ prob-
lems. In Proc. ICAPS’09, 106–113. AAAI Press.
Fox, M.; Long, D.; and Magazzeni, D. 2011. Automatic construc-
tion of efficient multiple battery usage policies. In Proc. ICAPS’11,
74–81.
Fox, M.; Long, D.; and Magazzeni, D. 2012. Plan-based policies
for efficient multiple battery load management. J. Artif. Intell. Res.
(JAIR) 44:335–382.
Gerevini, A., and Long, D. 2006. Preferences and soft constraints
in PDDL3. In Proceedings of ICAPS Workshop on Planning with
Preferences and Soft Constraints.
Gonzalez-Ferrer, A.; Fernandez-Olivares, J.; and Castillo, L. 2013.
From business process models to hierarchical task network plan-
ning domains. The Knowledge Engineering Review 28(2):175–193.
Hartmann, S., and Briskorn, D. 2010. A survey of variants and
extensions of the resource-constrained project scheduling problem.
European Journal of Operational Research 207(1):1–14.
Hoffmann, J.; Weber, I.; and Kraft, F. 2012. SAP speaks PDDL:
Exploiting a software-engineering model for planning in business
process management. J. Artif. Intell. Res. (JAIR) 44:587–632.
Lombardi, M., and Milano, M. 2009. A precedence constraint
posting approach for the rcpsp with time lags and variable dura-
tions. In Principles and Practice of Constraint Programming-CP
2009. Springer. 569–583.
Senkul, P., and Toroslu, I. H. 2005. An architecture for workflow
scheduling under resource allocation constraints. Information Sys-
tems 30(5):399–422.
Valls, V.; Pérez, Á.; and Quintanilla, S. 2009. Skilled workforce
scheduling in service centres. European Journal of Operational
Research 193(3):791–804.
Wang, X., and Smith, S. F. 2005. Retaining flexibility to max-
imize quality when the scheduler has the right to decide activity
durations. In ICAPS, 212–221.
Wang, X.; Policella, N.; Smith, S. F.; and Oddi, A. 2011.
Constraint-based methods for scheduling discretionary services. Ai
Communications 24(1):51–73.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

RE 19.78%
TCP 0.00%
HLD 24.67%
LLD 4.69%
CIM 20.13%
CGP 20.32%
CIV 18.39%
CCI 107.94%
CIA 0.00%

MCM 19.93%
DSLTPA
VCIMP 18.88%

VCIMPA
DSLTP 13.11%
MBCG 18.93%
COMP 19.76%

UT 19.76%
CA 18.90%
IT 19.81%

UAT 19.47%
SO 22.86%

Figure 6: Solution PA. Plan P (red) using at most 5 workers costs 1,202.405 with time-to-market 15.289. Plan PA (blue) using
at most 6 workers costs 1,338.672 with time-to-market 12.755. The duration of each phase for solution PA is compared with
the corresponding phase of solution P . The difference is shown in percentage with respect to P .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

RE -69.42%
TCP -66.56%
HLD -66.28%
LLD -77.66%

CGPPB
CIMP -35.25%

CIMPB
CGPP -78.50%

CIV -79.43%
CCI -58.11%

MCMPB
CIAP 0.00%

CIAPB
MCMP -50.01%

VCIM -79.86%
DSLT -79.77%

MBCG -79.66%
COMP -79.89%

UT -79.89%
CA -79.59%
IT -79.93%

UAT -79.80%
SO -57.21%

Figure 7: Solution PB . Plan P (red) using at most 5 workers costs 1,202.405 with time-to-market 15.289. Plan PB (blue) with
no resource exchange between phases costs 1,205.979 with time-to-market 55.851. The duration of each phase for solution PB

is compared with the corresponding phase of solution P . The difference is shown in percentage with respect to P .

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 9

New Algorithms for The Top-K Planning Problem

Anton V. Riabov Shirin Sohrabi Octavian Udrea
IBM T.J. Watson Research Center

PO Box 704, Yorktown Heights, NY 10598, USA
{riabov, ssohrab, oudrea}@us.ibm.com

Abstract
Cost-optimal planning is a variant of a general planning prob-
lem, where all actions have non-negative costs, and the solu-
tion is a valid plan that minimizes the sum of the costs of
all actions included in the plan. In this paper, we propose a
new planning problem formulation, top-k planning, which is
a generalization of cost-optimal planning with applications in
plan recognition, diagnosis, explanation generation, and other
domains. No existing planners can solve this problem out of
the box. We have implemented and compared a total of four
new planning algorithms for top-k planning. Two of the al-
gorithms are based on the k shortest paths algorithm by Epp-
stein and a recently proposed variant of that algorithm for dy-
namic graphs called K⇤, by Aljazzar and Leue. We also im-
plemented a branch and bound algorithm, and an iterative re-
planning algorithm based on LAMA. Our experiments show
that the top-k planning problem can be solved efficiently, in
time comparable to cost-optimal planning. We also show that
our implementation of top-k planning based on the K⇤ algo-
rithm outperforms other algorithms.

Introduction
The shortest path problem is a problem of finding a path
connecting a given source-destination pair in a graph with
minimum total cost (or length). The all-pair shortest path
requires computation of the shortest path between all pairs
in the graph. Several researches have examined modeling
the planning problem as a shortest path computation in a
graph or more specifically applying the single-source or all-
pair shortest paths algorithm to precompute all shortest paths
(e.g., (Botea and Harabor 2013; Edelkamp and Kissmann
2009)). This eliminates the need to search and can lead to
fast computation of cost-optimal plans. In turn, cost-optimal
planning can also be used for solving a class of preference-
based planning problems (Baier and McIlraith 2008) follow-
ing Keyder and Geffner 2009.

Given an arbitrary number k, the k shortest paths problem
is a problem of finding the k shortest paths from a source
node to a destination node in a graph. This problem has
many applications including path planning (e.g., (Zhu et al.
2013)), video games (Botea 2011), and networking. There
are a number of reasons why a k shortest paths algorithm
could be needed instead of a single shortest path. Comput-
ing k shortest paths can be beneficial, for example, if there
are other types of constraints beyond path costs, but those

constraints are not fully defined or are missing. In addition,
analyzing the k shortest paths can help gain better under-
standing of the properties of the problem and its optimal
solutions. See (Eppstein 1998) for a more comprehensive
discussion of these applications.

In this paper, similar to how the k shortest paths extends
the shortest path problem, we propose the formulation of the
top-k planning problem for cost-optimal planning. We also
propose four planning algorithms for top-k planning based
on existing methods, including k shortest paths computation
for plan cost minimization over the state graph. Unlike opti-
mal planning, where the objective is to find one optimal plan
with minimum cost, we define the top-k planning problem
as the problem of finding a set of k distinct plans with low-
est cost. This set can contain both optimal plans and near-
optimal plans, depending on k, and, by definition, for each
plan in this set all valid plans of lower cost must also be in
the set. To the best of our knowledge we are the first to for-
mulate the top-k planning problem and propose a solution to
finding top-k plans, at least for cost-optimal planning.

We argue that the top-k planning problem has impor-
tant applications, some of which intersect with those of the
k shortest paths problem. In particular, we are interested
in this problem because of its applications in plan recog-
nition, diagnosis of discrete event systems, and explana-
tion generation, all of which can be modeled as planning
problems (e.g., (Ramı́rez and Geffner 2009; Sohrabi, Baier,
and McIlraith 2011)). In these applications it may be im-
portant to not only generate one optimal solution, but a set
of “good” alternatives. In recent work, the need for top-
k planning has been highlighted in the malware detection
problem, where the objective is to explain the sequence of
observations given the system description (Sohrabi, Udrea,
and Riabov 2013). There, top-k plans correspond to alter-
native plausible hypotheses explaining unreliable observa-
tions. Generally, computing top-k plans can help deal with
incompleteness in the domain, imperfect quality measures,
and unreliable knowledge, such as missing or noisy obser-
vations. Hence, we believe top-k planning formulations and
algorithms can provide some of the tools needed for fulfill-
ing the model-lite planning vision (Kambhampati 2007).

The k shortest paths problem was introduced in (Hoffman
and Pavley 1959) and several efficient algorithms were de-
veloped for it. In particular Yen’s algorithm (Yen 1971) and

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 10

several later implementation improvements of it are used to
find ranked loopless paths. Another known algorithm is by
Eppstein 1998, which allows loops and has better perfor-
mance. However, one drawback of Eppstein’s algorithm is
that it requires the graph to be fully defined and available in
memory. The recent extension of the Eppstein’s algorithm
called the K⇤ algorithm (Aljazzar and Leue 2011) over-
comes this problem by supporting on-the-fly construction of
the graph and thus allows use of heuristic search, making it
a very strong candidate match for planning problems.

In this paper, we introduce and compare four planning
algorithms for top-k planning: iterative replanning using
LAMA or other existing high-performance planners, branch
and bound, a planning algorithm based on the Eppstein’s k
shortest paths algorithm, and an algorithm based on the K⇤

algorithm. We call the top-k planner based on Eppstein’s al-
gorithm, TK, and the planner based on the K⇤ algorithm,
TK⇤. Note, that our algorithms are based on known exist-
ing methods, but are employed to address the top-k planning
problem. Our experiments show that planning time required
for top-k planning is comparable to cost-optimal planning
that finds a single cost-optimal plan. We also find that TK⇤

outperforms all other approaches by a large margin.

Problem Formulation
Top-k planning problem is defined as R0

= (F,A, I,G, k),
where F is a finite set of fluent symbols, A is a set of ac-
tions with non-negative costs, I is a clause over F defin-
ing the initial state, G is a clause over F defining the goal
state, and k is the number of plans to find. The set of plans
⇡ = {↵1, ...,↵k} is the solution to the top-k planning prob-
lem R0 if an only if each plan ↵i 2 ⇡ is a solution to the
cost-optimal planning problem (F,A, I,G) and there does
not exists a plan ↵0 for (F,A, I,G), ↵0 /2 ⇡ such that
cost(↵0

) < cost(↵i) for all ↵i 2 ⇡. It follows that at least
one optimal plan is in the set of plans ⇡ if k > 0.

Note, while we indicated that the goal state, G, is in a form
of a final-state goal in the definition of R0, we consider tem-
porally extended goals as well. Temporally extended goals
such as sequence of observations from a system description
either totally ordered or partially ordered can be compiled
away to final-state goal following a compilation technique
discussed in several papers (e.g., (Sohrabi, Baier, and McIl-
raith 2010; Haslum and Grastien 2011)); the temporally ex-
tended goals can be compiled away by an action which en-
forces the temporal sequence of the goal.

Top-k Planning via Iterative Replanning
The first of the four approaches we describe builds upon ex-
isting Planning Domain Definition Language (PDDL) (Mc-
Dermott 1998) planners, extending the applicability of those
planners to top-k planning problems. We have introduced
this approach in prior work as a simple practical solution for
top-k problems (Sohrabi, Udrea, and Riabov 2013). In our
experiments we used LAMA (Richter and Westphal 2010),
as one of the fastest planners available, but the approach
does not depend on the choice of the planner. LAMA can be
used to find cost-optimal plans by modeling costs as domain

variables, and the last returned plan is optimal if LAMA is
given sufficient time to complete the search and exit (this
was confirmed in our experiments).

The main idea is to use a PDDL planner iteratively,
slightly modifying the problem each time, until top-k plans
are found. To solve the top-k planning problem R0

=

(F,A, I,G, k), we solve a sequence of cost-optimal plan-
ning problems Ri = (Fi, Ai, Ii,Gi), starting with finding
the optimal plan of length n for R1 = (F,A, I,G). Then,
given a cost-optimal plan p for Ri, and assuming m prob-
lems were created at a previous iteration, we create a new set
of problems {Rj |j = m+1, ...,m+n)} by modifying Ri by
adding, for each action that occurs in p, a new precondition
that prevents that action from appearing at the same posi-
tion in the new plan. The best solution to the new problems
Rj will be used to find the next-best plan p0. The generated
problems are modified again to generate new problems and
find the next best plan, until k such plans are found. Note
that this algorithm does not find plans that have top-k plans
as their prefixes (i.e., plans that reach the goal more than
once). Overall, solving the top-k planning problem requires
at most O(Nk

) replanning iterations, where N is the length
of the longest plan among the top-k plans.

The actions are modified by introducing new predicates
(at-pos ?i) and (next ?i ?j) to keep track of the position of
each action in the plan. For example, the initial state will
include predicates (at-pos p1) (next p1 p2), (next p2 p3),
etc., and for each action the precondition will include (at-
pos ?i) (next ?i ?j), while the effect of the same action will
include (at-pos ?j) (not (at-pos ?i)). This modification does
not change the set of valid plans. However, it allows dis-
abling application of an action by adding a negated precon-
dition: for example, adding (not (at-pos p3)) to an action
will prevent that action from appearing at the third position
in any valid plan.

The outline of this algorithm is presented below.
0. Find plan ↵ for the original problem R.
1. Set ⇡ = {↵}.
2. Add each action a of ↵ and its position i

S = {(a, i)} to future exploration list L.
3. For each S in L
4. For each (a, i) 2 S
5. Add negated predicate associated

with a, i to action a.
6. Generate a plan ↵0

for the new problem

where all actions in S are disallowed.

7. For each action a at position i in ↵0

8. Add the set S [{(a, i)} to L0
.

9. Add one of the plans ↵0
with minimum cost to ⇡.

10. Replace L with L0
.

11. If |⇡| < k and L 6= ; go to step 2.

12. Return ⇡ as the solution to the problem.

Top-k Planning via Branch and Bound
The second approach we propose for top-k planning prob-
lem is based on branch and bound. Unlike iterative replan-
ning, it does not require solving many similar planning prob-
lems. Branch and bound is a general framework used for
finding optimal solutions in a variety of settings, and it can
be modified for solving top-k problems. The additional ad-
vantage of the general framework is the flexibility it allows
in defining optimization objectives and constraints.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 11

Branch and bound begins by selecting a variable for
branching (e.g., the variable can represent the action applied
at the first step of the plan), creates a search node for ev-
ery feasible value of the variable, and computes lower and
upper bounds on the possible solutions. For example, the
lower bound can be the cost of the selected action and the
upper bound can be infinity. Assuming that a minimization
problem is being solved, search nodes can be pruned if their
lower bound value exceeds already known upper bound on
the solution, or the value of the current best solution. In the
next iteration, which can be done separately for each search
node, the next variable is selected, and the next set of search
nodes is created following the same procedure.

This standard framework can be modified to find top-k
solutions instead of a single optimal solution, by pruning
the search tree based on the k-th best solution found in-
stead of using the value of the best solution. When search
terminates, the remaining k best solutions will be the top
k solutions. In most scenarios, however, this modification
increases the search time, especially for large values of k,
because the search tree cannot be efficiently pruned until k
complete solutions are found.

In our implementation we apply forward branching on op-
erators of the planning problem after grounding. Grounding,
implemented during preprocessing, assigns fixed values to
variables of actions and thus creates multiple operators from
a single action. During this preprocessing, an index of op-
erators is also created, based on the matching between pre-
conditions and effects. To control the potential exponential
explosion of the number operators, we implement ground-
ing based on forward reachability within a relaxed planning
problem without deletes. We note that despite the reduction
in the number operators thanks to reachability analysis, a
significant fraction of operators created during grounding
may still never be explored during search, since action costs
are not accounted for in this process. The fourth approach
we describe further in this paper will improve on this by im-
plementing dynamic grounding.

The final algorithm can be summarized as follows.
0. Read planning problem R0

= (F , A, I, G, k);
Set U = {}, ⇡ = {}; Set UB = 1;

Insert a partial plan ↵ = {I} into U.
1. Apply forward grounding to A

to create operator set O.
2. If U is empty, return the set of plans ⇡.
3. Remove a partial plan ↵ from U.
4. If for last state s of ↵, s 2 G Then

5. Set ⇡ = ⇡ [{s}.
6. If |⇡| > k Then

7. Set ⇡ = ⇡ \ argmax{cost(↵0
) | ↵0 2 ⇡}.

8. If |⇡| = k Then

9. Set UB = max{cost(↵0
) | ↵0 2 ⇡}.

10. Find operators {o} ⇢ O applicable in s;
Set U = U [{↵0

= (↵, o) | cost(↵0
) < UB}.

11. Repeat from step 2.

Note the algorithm assumes that all actions have nonneg-
ative costs, and therefore costs of partial plans can be used
as lower bounds for complete plans in Step 10. In addition,
a variety of heuristics can be used to order the set of partial
plans U in Step 3, and the choice of the heuristic will affect
performance. In our implementation we sort partial plans by
distance to goal computed based on the relaxed formulation

��������������������������������
V

W
���������������������������������

���������������������������������

���

��

W

V

��D���E��

Figure 1: (a) shows the nodes and edges of a graph with source
node s and terminal node t with edge lengths specified on the
edges; (b) shows the shortest path in bold arrows and the second
shortest path in dashed arrows.

used during grounding. Finally, while we have not done this
ourselves, branch and bound and heuristic search share mul-
tiple features, and modifications for finding top-k plans can
similarly be made to heuristic search algorithms.

Top-k Planning via K Shortest Paths
The cost-optimal planning problem can be modeled as the
problem of finding the shortest path in state space from ini-
tial state to the goal. In this section we build on this idea
by applying Eppstein’s k shortest paths algorithm (Eppstein
1998) in state space to solve the top-k planning problem.
The resulting algorithm is very efficient, but requires the
complete graph of states and actions to be available in mem-
ory. Constructing this graph is expensive in large problems,
and this shortcoming will be addressed using an improved
variant of the algorithm in the approach described in the next
section. In this section we first introduce notation for the k
shortest paths problem, and then describe the planning algo-
rithm based on Eppstein’s k shortest paths.

Background: K Shortest Paths Problem
K shortest paths problem is an extension of the shortest path
problem where in addition of finding one shortest path, we
need to find a set of paths that represent the k shortest paths
(Hoffman and Pavley 1959). Following Eppstein 1998, k
shortest path problem is defined as 4-tuple R = (G, s, t, k),
where G = (V,E) is a graph with a finite set of n nodes
(or vertices) V and a finite set of m edges E, s is the source
node, t is the destination node, and k is the number of short-
est paths to find. Each edge e 2 E has a length (or weight
or cost), which we denote by l(e). The length of a path p,
l(p), is consequently defined by the sum of its edge lengths.
The distance d(u, v) for any pair of nodes u and v 2 V
is the length of the shortest path between the two nodes.
Hence, d(s, t) is the length of the shortest path for the prob-
lem R. Figure 1 shows an example from (Eppstein 1998) to
illustrate the terminology. The distance d(s, t) = 55, is the
length of the shortest path shown in bold; the length of the
second shortest path is 58.

The set of paths P = {p1, p2, ..., pk} is the solution to
the k shortest paths problem R if and only if it is a set of
shortest paths from node s to node t. That is each pi 2 P ,
1  i  k, is a path in graph G and there does not exists
a path p0 in graph G, p0 /2 P such that l(p0) < l(pi) for
all pi 2 P . That is, there is no path, except amongst the k

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 12

���

W

V���

��D���E��
��

���������������

�������������������������������

�������������������������������

���������������

Figure 2: (a) shows the shortest path tree T and distance to desti-
nation t; (b) shows the side edges with their associated detour cost.

shortest paths, with better length than any of the paths in the
set P . It follows that at least one shortest path with length
d(s, t) is in the set P if k > 0.

Background: Eppstein’s Algorithm (EA)
Given a k shortest paths problem R = (G, s, t, k), the EA
algorithm first computes a single-destination shortest path
tree with t as the destination (or the reversed single-source
shortest path tree) by applying Dijkstra’s algorithm on G.
The edges in the resulting shortest path tree, T are called
the tree edges while all the missing edges (i.e., the edges
in G � T) are called the sidetrack edges. Each edge in G
is assigned a number that measure the detour cost of taking
that edge. Consequently, the detour cost of the tree edges is
0, while the detour cost of the sidetrack edges is greater than
0. Figure 2 shows the shortest path tree T and the side edges
along with their detour cost of our earlier example.

The EA algorithm then constructs a complex data struc-
ture called path graph P (G) that stores the all paths in G,
where each node in represents a sidetrack edge. This is fol-
lowed by the use of Dijkstra search to P (G) to extract the
k shortest paths. An important property is that given a se-
quence of sidetrack edges representing a path in P (G) and
the shortest path tree T , it is possible to uniquely construct
a s-t path in G. This can be done by using sub-paths from T
to connect the endpoints of sidetrack edges. Given this prop-
erty and the special structure of P (G), it is ensured that the
i-th shortest path in P (G) results in a sidetrack sequence
which can be mapped to the i-th shortest path in G. By con-
struction, P (G) provides a heap-ordered enumeration of all
paths in G, and since every node of P (G) has limited out-
degree (at most 4), the complexity of enumerating paths in
increasing cost order is bounded. The worst-case runtime
complexity of the EA algorithm is O(m + n log n + kn).
This complexity bound depends on a compact representation
of the resulting k paths, and can be exceeded if the paths are
written explicitly, by enumerating all nodes and links, as we
have done in our planner implementation. For more details
see (Eppstein 1998).

Top-k Planning Algorithm Based on EA
Our planning algorithm can be summarized as follows. We
call the top-k planner based on this algorithm, TK.
0. Read planning problem R0

= (F , A, I, G, k).
1. Apply forward grounding to A

to create operator set O.
2. Initialize G = (V ,E): let V = {I}, E = ;.
3. Let U = {I}.

4. For each state s 2 U
5. U = U � {s}
6. For each operator o 2 O

such that s satisfies precondition of o
7. Let s0 = o(s).
8. If edge o(s, s0) 62 E Then

9. If s0 62 V Then

10. Let V = V [{s0}, U = U [{s0}.
11. Add o(s, s0) to E.
12. Let cost(o(s, s0)) = cost(o).
13. If U 6= ; goto step 4.

14. Apply EA to G to find k shortest paths.

This algorithm consists of three main stages. Step 1 im-
plements action grounding. Steps 2-12 implement forward
search to construct the complete state transition graph G.
Finally, step 13 applies Eppstein’s algorithm to the resulting
graph. Since nodes in G represent states and edges in G cor-
respond to operators, all paths in G correspond to plans in
R0, and paths have the same cost as corresponding plans.
Therefore, the solution produced by Eppstein’s algorithm
can be directly used as a solution to the top-k planning prob-
lem. We note that in our experiments the first two stages,
grounding and creating the state graph, taken together, took
approximately the same amount of time as the last stage.

Top-k Planning via K⇤ Search
The major bottleneck of the previous approach is the con-
struction of the complete state transition graph, which may
include a huge number of states that are very far away from
the goal, and would not appear in top-k plans. Planners com-
monly deal with this challenge by relying on heuristic search
algorithms like A⇤ to dynamically expand only the neces-
sary portion of the state graph during search, while being
guided by a heuristic toward the goal (e.g., FF (Hoffmann
and Nebel 2001) and Fast Downward (Helmert 2006)), and
the effectiveness of this approach has been proven (Bonet
and Geffner 2001). The K⇤ algorithm proposed by Aljazzar
and Leue combines the best of both worlds: it allows con-
structing the graph G dynamically using heuristic-guided A⇤

search, while updating its equivalent of P (G) to find k short-
est paths. In addition to eliminating the complete state graph
construction, with K⇤ we can ground actions dynamically,
eliminating the expensive grounding stage.

Background: K⇤ Algorithm
The K⇤ algorithm (Aljazzar and Leue 2011) uses many of
the same concepts as in the EA algorithm including sidetrack
edges, detour costs, and the path graph P (G) (although with
a few differences in its construction) and has the same worst-
case complexity as the EA algorithm. However the K⇤ algo-
rithm has better performance in practice because unlike the
EA algorithm it does not require the graph G to be com-
pletely defined or available when the search starts. It also
does not perform the all-nodes shortest path computation on
G to compute the shortest path tree T . In short, the K⇤ algo-
rithm works as follows. The first step is to apply a forward
A⇤ search to construct a portion of graph G. The second step
is suspending A⇤ search, updating P (G) to include nodes
and sidetracks discovered by A⇤, and applying Dijkstra to
P (G) to extract solution paths and resuming the A⇤ search.
The use of A⇤ search to dynamically expand G enables the

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 13

use of heuristic search and also allows extraction of the so-
lution paths before G is fully explored.

Top-k Planning Algorithm Based on K⇤

In the implementation of the planning algorithm we follow
the algorithm structure imposed by K⇤, as follows. Note that
we call our top-k planner that is based on K⇤, TK⇤.
0. Read planning problem R0

= (F , A, I, G, k).
1. Expand the state graph G by using A⇤

and applying actions to compatible states

starting from I, and until G is reached.

2. Continue applying A⇤ to expand G
until 20% increase in links or nodes.

3. Update P (G) based on new links in G.
4. Apply Dijkstra step

to extract the next path from P (G).

5. If k paths are found

6. Exit.

7. If K⇤ scheduling condition is reached

8. Goto step 2.

9. Goto step 4.

The K⇤ scheduling condition is evaluated by comparing
the state of A⇤ and Dijkstra searches, as defined in K⇤ al-
gorithm. It determines whether new links must be added to
G before resuming Dijkstra search on updated P (G). There
is no separate grounding stage, since actions are ground at
the same time when they are applied during A⇤ search. The
amount of A⇤ expansion required before resuming Dijkstra
(in our implementation, 20%), is an efficiency tradeoff, and
20% is the same value that was used in experiments in the
original K⇤ paper (Aljazzar and Leue 2011). Of course, step
2 may also be completed if no new links can be added.

Overall, due to multiple improvements in efficiency made
possible by this algorithm, TK⇤ was the best performing in
our experiments. We also expect that with some work this
approach can be integrated into planners that use A⇤ search,
enabling those planners to solve top-k problems.

In our experiments, TK⇤ with constant 0 heuristic per-
forms very well, and we have not experimented with other,
potentially better performing heuristics. This is an interest-
ing direction for improvement that could be explored in fu-
ture work. Even though this is not a requirement for K⇤ in
general, our implementation requires a consistent heuristic,
which did not allow us to experiment with, for example,
lookahead heuristics. Further, the dynamic grounding pre-
vented the use of heuristics used in the Branch and Bound
approach, since those heuristics require static grounding.

Experimental Evaluation
In this paper we argue that practical solutions can be de-
veloped for the top-k planning problem. To that end, we
have 3 main objectives in our experiments. First, we mea-
sure the change in performance that results from the require-
ment to find top-k plans instead of a single cost-optimal
plan. Second, we compare the performance of four different
approaches we propose. Third, we measure the effect that
increasing the value of k will have on planning time.

Generated Random Problem Instances
The approach we introduced in this paper is general and
can be applied in a variety of applications that require cost-

optimal planning. As a benchmark for performance evalu-
ation, we have generated random instances of varying size
based on the hypothesis exploration problem with unreli-
able observations (Sohrabi, Udrea, and Riabov 2013). This
application provides a good example of a challenging top-
k planning problem, and generated problems typically have
a very large number of possible plans with different costs.
The domain and the generated problems were represented in
a STRIPS-like planning language recognized by our planner,
as well as in PDDL for LAMA.

All generated problems share a planning domain descrip-
tion containing 6 actions and 8 predicates. In this domain,
low costs were assigned to actions used in perfect explana-
tions of observations, and high costs to actions representing
exceptions, such as unexplained observations or state tran-
sitions without observations. To generate a random problem
instance, we generated a random state transition system with
a given number of states.

Malware Detection Instances
In addition to randomly generated state transition systems,
we used the malware detection problem (18 states), as de-
scribed in (Sohrabi, Udrea, and Riabov 2013). In short, the
malware detection problem involves generating hypotheses
about the network hosts by analyzing the network traffic
data. To make this possible, the domain description includes
the states of the host (e.g., infected with malware due to
downloading an executable file or the Command & Control
Rendezvous state via Internet Relay Chat (IRC)) and tran-
sitions between these states and many-to-many correspon-
dence between states and observations. The results for this
domain is shown under the “Malware Domain” rows.

Planning Time for The Top-k Problem
We have varied the size of the problem by changing the
number of the states of the system being modeled (not to be
confused with planning states) and the number of observa-
tions received from the system. For all time measurements
in this paper we used the same Quad-core 2.93 GHz Intel
Xeon X5570 processor with 32 GB RAM and 64-bit Red-
Hat Linux OS.

Table 1 presents the results of comparison between ap-
proaches described in this paper. For all algorithms except
iterative replanning, we measured time it took to find top
k = 50 plans. For iterative replanning (“LAMA top-1” col-
umn in the table), we measured the duration of a single iter-
ation, i.e., solving one cost-optimal planning problem using
LAMA, while at least k = 50 iterations will be required
for the top-k problem (and in the worst case, exponentially
more). Conveniently, this also helps compare planning time
of top-k and regular cost-optimal planning. During measure-
ment we enforced a limit on planning time of 300 seconds,
and the instances where this limit was exceeded are indi-
cated by “-” in the table. For LAMA the time we report is
the time that it took for LAMA to terminate (i.e., exhaust the
search space) and hence its last returned plan is cost-optimal
or top-1. The “-” entries indicate that LAMA was not able to
find the cost-optimal plan or terminate its search before the
time limit is reached.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 14

LAMA, top-1 Branch & Bound, top-50 TK, top-50 TK ⇤, top-50
Problem size Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Malware Domain, 5 obs. 0.52 0.64 1.16 0.11 0.22 0.39 0.06 0.07 0.09 0.04 0.06 0.08
10 states, 5 obs. 0.35 0.52 1.68 0.08 0.13 0.22 0.05 0.05 0.06 0.03 0.04 0.06
50 states, 5 obs. 0.94 1.08 1.17 0.36 0.56 0.97 0.18 0.21 0.24 0.06 0.08 0.10

100 states, 5 obs. 2.64 2.95 3.20 1.45 2.49 4.19 1.03 1.23 1.47 0.18 0.22 0.25
Malware Domain, 10 obs. 0.69 0.75 0.86 0.28 3.67 10.33 0.09 0.12 0.15 0.06 0.07 0.11

10 states, 10 obs. 0.40 0.47 0.54 0.64 0.97 1.59 0.06 0.07 0.08 0.04 0.06 0.07
50 states, 10 obs. 1.50 1.89 2.37 1.46 7.86 37.04 0.42 0.51 0.60 0.10 0.12 0.13

100 states, 10 obs. 5.20 6.27 9.14 5.88 21.08 51.93 2.62 3.43 3.97 0.21 0.35 0.55
Malware Domain, 20 obs. 1.06 1.37 2.10 1.49 - - 0.19 0.27 0.33 0.08 0.12 0.38

10 states, 20 obs. 0.50 0.71 0.94 7.24 31.13 132.34 0.10 0.13 0.15 0.06 0.09 0.37
50 states, 20 obs. 3.50 4.48 6.65 11.20 77.11 300.08 1.36 1.72 2.02 0.17 0.21 0.30

100 states, 20 obs. 12.08 20.11 28.01 51.14 - - 8.52 10.55 12.10 0.46 0.66 0.82
Malware Domain, 60 obs. 2.93 4.30 7.04 25.05 - - 1.06 1.45 2.15 0.08 0.15 0.23

10 states, 60 obs. 1.98 2.65 3.22 - - - 0.44 0.54 0.70 0.14 0.17 0.20
50 states, 60 obs. 18.93 61.96 134.84 - - - 9.49 12.52 15.48 0.35 0.60 0.80

100 states, 60 obs. 107.39 - - - - - 56.52 75.17 102.63 1.12 2.07 2.81
Malware Domain, 120 obs. 6.63 10.23 16.93 - - - 4.61 5.77 8.94 0.15 0.26 0.47

10 states, 120 obs. 5.83 9.28 22.23 - - - 1.81 2.40 3.27 0.27 0.33 0.41
50 states, 120 obs. 69.98 - - - - - 40.42 51.91 70.16 0.90 1.51 2.23

100 states, 120 obs. - - - - - - 229.22 294.80 - 2.81 5.35 7.68

Table 1: Relative performance: Minimum, maximum and average planning time, in seconds, for 15 instances of each size.

The results were obtained on the same problem instances,
and help illustrate the advantages and disadvantages of the
algorithms we evaluated. While iterative replanning is the
easiest to implement and may perform well in practice on
small instances, it is by far the worst performing, as ex-
pected. Iterative replanning results were omitted from Ta-
ble 1 to save space, but they can be easily estimated based
on “LAMA top-1”, by multiplying the time of one iteration
by a very optimistic estimate of the minimum number of iter-
ations (in this case, 50). Branch and bound generalizes for a
variety constraints and objective functions, but as expected,
it is not as fast as specialized shortest paths algorithms.

The unexpected result is how well TK and TK⇤ perform,
in comparison with the time it takes LAMA to find a single
plan. While our implementation of the Eppstein’s algorithm,
very fast on small problems, is limited on large problems by
the requirement to create the complete planning state graph,
TK⇤ does not have that limitation, and performs much bet-
ter. For example, for the largest problem size of 100 sys-
tem states and 120 observations, TK⇤ is on average 55 times
faster by the next fastest approach, TK.

We note that TK⇤ is the only approach that implements
dynamic grounding. In our experiments action grounding is
responsible for roughly half of the planning time of k short-
est paths algorithm, and since the same grounding imple-
mentation is used for branch and bound, it suffers the same
performance penalty.

The Impact of the Value of K
Above, we showed that TK and TK⇤ scale well with increas-
ing problem size. Notably, these planners also scale well
with increasing k. To measure this, we rerun the same exper-
iments with k=1000, and these results, along with the results
for k=50 from Table 1, for the two best planning approaches,
are presented in Table 2.

As previously shown for TK and TK⇤, while TK⇤ is faster
overall, it is more sensitive to the value of k, and larger val-

ues lead to somewhat longer planning times. For example,
for the largest problem of 100 states and 120 observations,
for k=1000 the average planning time increases by 70%
compared to k=50. TK spends significant time upfront com-
puting a shortest path tree covering the entire state graph,
but finding individual plans after that is very fast, and dif-
ference in planning time between k=50 and k=1000 for TK
is negligible. For the same problem size, average planning
time increases only by approximately 1%.

Conclusions
Our work on top-k planning is motivated by a specific ap-
plication where finding multiple high-quality plans is re-
quired, namely hypothesis exploration for malware detec-
tion (Sohrabi, Udrea, and Riabov 2013). We proposed a new
top-k plans formulation for cost-optimal planning, which
can be used in this and other applications.

Generating diverse plans is a notable related work (e.g.,
(Myers and Lee 1999; Srivastava et al. 2007; Nguyen et al.
2012)). However, rather finding a representative set of plans,
our approach focuses on computing top-k plans. Also, gen-
erating Pareto frontiers or a Pareto set (e.g., (Sroka and Long
2012; Khouadjia et al. 2013)) is related. Like diverse plans,
this work does not focus on finding all top-k plans in any
of the dimensions of the objective function, instead mul-
tiple diverse plans from a Pareto optimal curve are found.
Furthermore, we do not rely on additional objectives to find
near-optimal plans with a single objective.

We have implemented and evaluated four top-k planning
algorithms, two based on the k shortest paths algorithm by
Eppstein and its successor K⇤. We also compared the result
of these algorithms with the result of computing top-k plans
from our iterative replanning and branch and bound algo-
rithms. The results show that computation of top-k plans is
comparable to the computation of a single cost-optimal plan.
Additionally, we found that our top-k planning system based
on the K⇤ algorithm, TK⇤, is as expected, the most promis-

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 15

TK, top-50 TK, top-1000 TK ⇤, top-50 TK ⇤, top-1000
Problem size Min Avg Max Min Avg Max Min Avg Max Min Avg Max

10 states, 5 obs. 0.05 0.05 0.06 0.27 0.29 0.35 0.03 0.04 0.06 0.21 0.24 0.28
50 states, 5 obs. 0.18 0.21 0.24 0.42 0.45 0.48 0.06 0.08 0.10 0.24 0.28 0.41

100 states, 5 obs. 1.03 1.23 1.47 1.30 1.47 1.74 0.18 0.22 0.25 0.41 0.44 0.47
10 states, 10 obs. 0.06 0.07 0.08 0.42 0.49 0.53 0.04 0.06 0.07 0.32 0.38 0.42
50 states, 10 obs. 0.42 0.51 0.60 0.83 0.94 1.10 0.10 0.12 0.13 0.43 0.48 0.53

100 states, 10 obs. 2.62 3.43 3.97 3.09 3.85 4.44 0.21 0.35 0.55 0.67 0.75 0.81
10 states, 20 obs. 0.10 0.13 0.15 0.90 0.96 1.03 0.06 0.09 0.37 0.72 0.74 0.78
50 states, 20 obs. 1.36 1.72 2.02 2.23 2.56 2.85 0.17 0.21 0.30 0.81 0.89 0.93

100 states, 20 obs. 8.52 10.55 12.10 9.33 11.44 12.96 0.46 0.66 0.82 1.10 1.36 1.49
10 states, 60 obs. 0.44 0.54 0.70 2.69 2.95 3.34 0.14 0.17 0.20 1.98 2.10 2.24
50 states, 60 obs. 9.49 12.52 15.48 11.82 14.95 18.33 0.35 0.60 0.80 2.24 2.52 2.75

100 states, 60 obs. 56.52 75.17 102.63 57.93 77.72 106.43 1.12 2.07 2.81 2.96 4.07 4.73
10 states, 120 obs. 1.81 2.40 3.27 6.58 7.18 7.84 0.27 0.33 0.41 4.07 4.24 4.44
50 states, 120 obs. 40.42 51.91 70.16 45.92 57.22 75.92 0.90 1.51 2.23 4.67 5.40 6.01

100 states, 120 obs. 229.22 294.80 412.89 234.58 300.41 419.97 2.81 5.35 7.68 6.55 9.13 11.37

Table 2: The impact of the value of k: Minimum, maximum and average planning time, in seconds, for 15 instances of each size.

ing direction for top-k planners, and in our implementation
it performed more than 100 times faster than all other al-
gorithms (in part due to faster grounding). To conclude, the
contribution of this paper is: 1) the formulation of the top-
k planning problem and its reduction to a k shortest paths
computation in a graph, 2) comparison of four implementa-
tions of the top-k planner, 3) experimental evaluation of per-
formance of our implementations on synthetic benchmarks
derived from a real-world scenario.

References
Aljazzar, H., and Leue, S. 2011. K*: A heuristic search al-
gorithm for finding the k shortest paths. Artificial Intelligence
175(18):2129–2154.
Baier, J., and McIlraith, S. 2008. Planning with preferences. AI
Magazine 29(4):25–36.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1-2):5–33.
Botea, A., and Harabor, D. 2013. Path planning with compressed
all-pairs shortest paths data. In Proc. of the 23rd Int. Conference
on Automated Planning and Scheduling (ICAPS), 293–297.
Botea, A. 2011. Ultra-fast optimal pathfinding without runtime
search. In Proc. of the 7th AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment (AIIDE), 112–127.
Edelkamp, S., and Kissmann, P. 2009. Optimal symbolic planning
with action costs and preferences. In Proc. of the 21st Int. Joint
Conference on Artificial Intelligence (IJCAI), 1690–1695.
Eppstein, D. 1998. Finding the k shortest paths. SIAM Journal on
Computing 28(2):652–673.
Haslum, P., and Grastien, A. 2011. Diagnosis as planning: Two
case studies. In Int. Scheduling and Planning Applications woRK-
shop (SPARK), 27–44.
Helmert, M. 2006. The Fast Downward planning system. Journal
of Artificial Intelligence Research 26:191–246.
Hoffman, W., and Pavley, R. 1959. A method for the solution of
the nth best path problem. Journal of the ACM 6(4):506–514.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:253–302.
Kambhampati, S. 2007. Model-lite planning for the web age
masses: The challenges of planning with incomplete and evolving
domain models. In Proc. of the 22nd National Conference on Arti-
ficial Intelligence (AAAI), 1601–1604.

Keyder, E., and Geffner, H. 2009. Soft Goals Can Be Compiled
Away. Journal of Artificial Intelligence Research 36:547–556.
Khouadjia, M. R.; Schoenauer, M.; Vidal, V.; Dréo, J.; and Savéant,
P. 2013. Pareto-based multiobjective AI planning. In Proc. of the
23rd Int. Joint Conference on Artificial Intelligence (IJCAI), 2321–
2327.
McDermott, D. V. 1998. PDDL — The Planning Domain Defini-
tion Language. Technical Report TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control.
Myers, K. L., and Lee, T. J. 1999. Generating qualitatively different
plans through metatheoretic biases biases. In Proc. of the 16th
National Conference on Artificial Intelligence (AAAI), 570–576.
Nguyen, T. A.; Do, M. B.; Gerevini, A.; Serina, I.; Srivastava, B.;
and Kambhampati, S. 2012. Generating diverse plans to handle un-
known and partially known user preferences. Artificial Intelligence
190:1–31.
Ramı́rez, M., and Geffner, H. 2009. Plan recognition as planning.
In Proc. of the 21st Int. Joint Conference on Artificial Intelligence
(IJCAI), 1778–1783.
Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding
cost-based anytime planning with landmarks. Journal of Artificial
Intelligence Research 39:127–177.
Sohrabi, S.; Baier, J.; and McIlraith, S. 2010. Diagnosis as planning
revisited. In Proc. of the 12th Int. Conference on the Principles of
Knowledge Representation and Reasoning (KR), 26–36.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2011. Preferred
explanations: Theory and generation via planning. In Proc. of the
25th National Conference on Artificial Intelligence (AAAI), 261–
267. Accepted as both oral and poster presentation.
Sohrabi, S.; Udrea, O.; and Riabov, A. 2013. Hypothesis explo-
ration for malware detection using planning. In Proc. of the 27th
National Conference on Artificial Intelligence (AAAI), 883–889.
Srivastava, B.; Nguyen, T. A.; Gerevini, A.; Kambhampati, S.; Do,
M. B.; and Serina, I. 2007. Domain independent approaches for
finding diverse plans. In Proc. of the 20th Int. Joint Conference on
Artificial Intelligence (IJCAI), 2016–2022.
Sroka, M., and Long, D. 2012. Exploring metric sensitivity of plan-
ners for generation of pareto frontiers. In Proc. of the 6th Starting
AI Researchers’ Symposium (STAIRS), 306–317.
Yen, J. 1971. Finding the k shortest loopless paths in a network.
Management Science 17:712–716.
Zhu, A. D.; Ma, H.; Xiao, X.; Luo, S.; Tang, Y.; and Zhou, S.
2013. Shortest path and distance queries on road networks: towards
bridging theory and practice. In ACM SIGMOD Int. Conference on
Management of Data (SIGMOD), 857–868.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 16

The Application of Planning to Urban Traffic Control

Falilat Jimoh and Lukáš Chrpa and Thomas Leo McCluskey
Department of Informatics
University of Huddersfield

United Kingdom

Abstract

In this position paper we discuss our current work that
aims to develop a technology based on Automated Plan-
ning applied to handling unforeseen situations in ur-
ban traffic control. To achieve this, we advocate the
need for planners which can reason with mixed dis-
crete/continuous variables in dynamic environments.

Introduction
Control systems which support urban traffic control (UTC),
such as those controlling networks of traffic lights, have
utilised AI techniques since the 1970’s. These systems are
embedded in a real time control environment, and are often
based on algorithms that rely on feedback and adaptation.
They use road traffic data which may be current (gathered
every few seconds) or historic (gathered‘ over several years).
For instance, current traffic control systems often operate on
the basis of adaptive green phases and flexible co-ordination
in road (sub) networks based on measured traffic conditions.

These approaches, however, are still not very efficient
during unforeseen situations such as road incidents when
changes in traffic are requested in a short time inter-
val (Roozemond 2001; De Oliveira and Bazzan 2009). In
such circumstances, traffic control systems usually use fixed
traffic signal timing or apply some hard-coded approach in
order to revert back into a recognized state.

Therefore, we need systems that can plan and act effec-
tively in order to restore an unexpected road traffic situation
into a normal order. One promising direction is in creating
a generic architecture that enables control systems to auto-
matically reason with knowledge of their environment and
their controls, in order to generate plans and schedules from
first principles to manage themselves in unforeseen situa-
tions. This would be a significant step forward in the ur-
ban traffic control. A step towards this would be to exploit
Automated Planning techniques which can reason about un-
foreseen situations in the road network and generate plans
(sequences of actions) achieving a desired traffic situation.
In fact we see AI planning as having a vital role to play in
achieving such kind of robust control system, and this pa-

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

per proposes such potential in the domain of urban traffic
control.

To improve reasoning with continuously changing vari-
ables with respect to time in the urban traffic environment, it
is necessary to incorporate knowledge of control processes
into planning engines. We aim to develop a planner which
supports creating and analysing domain descriptions and
plans containing continuous processes, events and actions.

Problem Definition and Related Work
We are interested in such domains that are modelled by us-
ing variables which are changing continuously, as parts of
processes and events that are both internal and exogenous.
Most existing planners can only reason with classical do-
main models, i.e., deterministic, fully observable and static
environments, though planning engines which can reason
with mixed discrete/continuous domains have been recently
developed (Coles et al. 2008; Ono, Williams, and Blackmore
2013; Coles and Coles. 2013). Shin and Davis (2005) use
a compilation of SAT and linear programming techniques
to solve planning problems with numeric variables allowing
linear continuous change. UPMurphi (Penna et al. 2009),
on the other hand, handles with both linear and non-linear
continuous changes, but it has the limitation depending on a
hand-crafted discretisation of time to enable reasoning with
continuous change.

An interesting approach to fuse plan generation and con-
trol in a continuous system is to use an external module con-
nected to a planner (Lhr et al. 2012; Piacentini et al. 2013).
This helps to control the overall dynamics of a continuous
system by minimising the deviation of numeric state vari-
ables continuously changing over the time from their desir-
able values. This approach is used to overcome weaknesses
in existing planning engines in order to cope with contin-
uously changing state variables. However, there is a need
to design and develop planning engines that can reason with
continuous processes and generate optimal or nearly optimal
plans in reasonable time.This also calls for the development
of new heuristics for such problems considering the com-
plexity of the numeric variables involved, for instance, in
urban traffic processes.

In the applications we consider (e.g. Urban Traffic Con-
trol), we need a planning technology that can:

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 17

• reason with the system model as well as the disturbances
in the system (disturbances in a system are unforeseen
changes to the state variables)

• generate a plan irrespective of whether the goal is fully or
partially satisfied

• exhibit the ”anytime” planning property

• deal with multi-variable constraints in the presence of a
fixed or continuous changing time-stamp.

Modelling this problem requires a language that can rep-
resent mixed discrete / continuously changing variables,
such as PDDL+(Fox and Long 2006). Although PDDL+

provides increased expressiveness, with the representation
of continuous processes and events in domain models, we
need more expressiveness for the traffic domain beyond ex-
isting description languages. Thus we will modify existing
tools by using traffic representation and reasoning schema in
our domain and problem description such as multi-variable
constraints.

Our Research Program
In our previous work, we have introduced the problem
of self-management of a road traffic network as a tempo-
ral planning problem in order to effectively navigate cars
throughout a road network in urban areas (Jimoh et al.
2013). So, we introduced Automated Planning into UTC
which, moreover, can re-route traffic flow when a road be-
comes unavailable due to unexpected circumstances. As part
of this effort, we embedded the knowledge of UTC structure
into a planning domain model and evaluated the possibility
of reasoning with this knowledge and optimising traffic flow
in situations where a given road within a network of roads
becomes unavailable due to unexpected situations such as
road accidents. This allows us to control traffic more effi-
ciently in the road network. Our preliminary experimental
evaluation showed that our approach is able to provide plans
in a reasonable time.

Embedding a planning component consisting of state-of-
the-art domain-independent planning engines into our ur-
ban traffic environment, does not provide optimal solutions
and, moreover, solutions are often very sub-optimal even in
quite simple cases. Also, it is questionable whether plan-
ners’ performance would not significantly decrease on larger
road networks. On the other hand, developing a domain-
dependent planner specifically tailored to urban traffic con-
trol might overcome (some of) these issues. We need to be
able to reason with discrete (logical) and continuous (nu-
meric) state variables as well as to reason with discrete and
continuous time change in the UTC domain. Existence of an
efficient domain-dependent continuous planner which can
also handle continuous processes and events will be suffi-
cient for the UTC domain to demonstrate usefulness of AI
planning there. This type of problem in flow processing is
presently optimised with Model Predictive Control (MPC)
strategy. Thus, exploiting such a control approach and em-
bedding it into existing state-of-the-art planners would lead
to an improvement in planning with continuous variables.

Our present efforts are focused to using a MPC architec-
ture(Al-Gherwi, Budman, and Elkamel 2011; Veselý, Rosi-
nov, and Foltin 2010; Camacho and Bordons 1999) to im-
plement a continuous planner which can generate plans that
will get and keep the urban traffic controller in a desirable
state in order to optimize traffic flows in urban areas.

References
Al-Gherwi, W.; Budman, H.; and Elkamel, A. 2011. A robust
distributed model predictive control algorithm. Journal of Process
Control 21(8):1127–1137.
Camacho, E., and Bordons, C. 1999. Model predictive control.
London: Springer.
Coles, A. J., and Coles., A. I. 2013. Pddl+ planning with events and
linear processes. In Proceedings of the 1st Workshop on Planning
in Continuous Domains at the Twenty Third International Confer-
ence on Automated Planning and Scheduling (ICAPS-13).
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2008. Plan-
ning with linear continuous numeric change. In Proceedings of the
27th Workshop of the UK Planning and Scheduling Special Interest
Group (PlanSIG 2008).
De Oliveira, D., and Bazzan, A. L. C. 2009. Multiagent Learn-
ing on Traffic Lights Control: Effects of Using Shared Information.
307–322.
Fox, M., and Long, D. 2006. Modelling mixed discrete-continuous
domains for planning. J. Art. Int. Res. (JAIR) 27:235–297.
Jimoh, F.; Chrpa, L.; McCluskey, T.; and Shah, M. M. S. 2013. To-
wards application of automated planning in urban traffic control. In
16th International IEEE Conference on Intelligent Transportation
Systems. automated planning, urban transport control, autonomic
systems.
Lhr, J.; Eyerich, P.; Keller, T.; and Nebel, B. 2012. A planning
based framework for controlling hybrid systems.
Ono, M.; Williams, B. C.; and Blackmore, L. 2013. Probabilistic
planning for continuous dynamic systems under bounded risk. J.
Artif. Int. Res. 46(1):511–577.
Penna, G. D.; Magazzeni, D.; Mercorio, F.; and Intrigila, B. 2009.
Upmurphi: A tool for universal planning on pddl+ problems. In
Gerevini, A.; Howe, A. E.; Cesta, A.; and Refanidis, I., eds.,
ICAPS. AAAI.
Piacentini, C.; Alimisis, V.; Fox, M.; and Long, D. 2013. Com-
bining a temporal planner with an external solver for the power
balancing problem in an electricity network. In ICAPS.
Roozemond, D. A. 2001. Using intelligent agents for pro-active,
real-time urban intersection control. European Journal of Opera-
tional Research 131(2):293–301.
Shin, J., and Davis, E. 2005. Processes and Continuous Change in
a SAT-based Planner. Art. Int. (AIJ) 166:194–253.
Veselý, V.; Rosinov, D.; and Foltin, M. 2010. Robust model
predictive control design with input constraints. ISA Transactions
49(1):114–120.
Xie, X.-F.; Smith, S.; and Barlow, G. 2012. Schedule-driven coor-
dination for real-time traffic network control.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 18

Planning for Social Interaction with Sensor Uncertainty

Mary Ellen Foster

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh EH14 4AS, Scotland, UK
M.E.Foster@hw.ac.uk

Ronald P. A. Petrick

School of Informatics
University of Edinburgh

Edinburgh EH8 9AB, Scotland, UK
rpetrick@inf.ed.ac.uk

Abstract

A robot coexisting with humans must not only be able to
perform physical tasks, but must also be able to interact
with humans in a socially appropriate manner. In this
paper, we describe an extension of prior work on plan-
ning for task-based social interaction using a robot that
must interact with multiple human agents in a simple
bartending domain. We describe how the initial state rep-
resentation developed for this robot has been extended
to handle the full range of uncertainty resulting from the
input sensors, and outline how the planner will use the
resulting uncertainty in the state during plan generation.

Introduction

A crucial aspect in the design of an interactive system is state
management: transforming the noisy, continuous hypotheses
produced by the low-level input processing components into
a form that can be used as the basis for higher-level action
selection by a component such as a planner. Intuitively, states
represent a point of intersection between low-level sensor
data and the high-level structures used for action selection.
Since states are induced from the mapping of sensor ob-
servations to property values, the challenge of building an
effective state manager rests on defining appropriate map-
ping functions. A state representation that considers only the
highest-confidence inputs is straightforward to maintain and
reason with, but discards a great deal of potentially useful
information. On the other hand, a representation that takes
into account the full set of input possibilities—along with
their estimated confidence scores—can be more robust and
informative, but requires more sophisticated methods of main-
tenance and more complex forms of reasoning and planning.

The particular application we consider here is a robot
bartender called JAMES (Figure 1), which has the goal
of supporting socially appropriate multi-party interaction
in a bartending scenario.1 In particular, the robot’s sensors
monitor two primary input modalities: vision and speech.
Based on observations about the agents in the bar provided
by these sensors, the system maintains a model of the so-
cial context, and decides on effective and socially appro-
priate responses in that context. Key to our approach is
the use of a high-level planner for action selection in the

1See www.james-project.eu for more information.

Figure 1: The JAMES robot bartender

robot system, in the place of a traditional interaction man-
ager (Larsson and Traum 2000). Specifically, we use the
knowledge-level planner PKS (Petrick and Bacchus 2002;
2004), a choice that is motivated by PKS’s ability to work
with incomplete information and sensing actions, since the
robot will often have to gather information from its environ-
ment (e.g., by asking a customer for a drink order) in addition
to performing physical tasks such as handing over drinks.

In this paper, we describe how the initial, deterministic
state representation has been extended to incorporate the full
data from the robot’s input sensors, and how the planner is
using this enhanced representation during plan generation.

State Management with Uncertain Input

The task of the state manager in the robot bartender system is
to keep track of information about the agents in the scene: for
example, their locations, whether they are currently seeking
the bartender’s attention, and their drink orders. The state is
derived from the continuous stream of messages produced
by the low-level input and output components. In addition to
storing low-level sensor information, we also infer additional
relations not directly reported by the sensors; for example,
we fuse vision and speech to determine which user should
be assigned a recognised speech hypothesis, and use the
vision data to estimate each customer’s attention-seeking
state (Foster, Gaschler, and Giuliani 2013).

Since the input provided by the vision and speech process-
ing components is uncertain, there is an inherent uncertainty
about the state. However, for simplicity, the state represen-
tation used in the initial JAMES system (Petrick and Foster
2013) stored only the highest-probability hypotheses, with no

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 19

seeksAttention(A1) true 0.75
seeksAttention(A2) false 0.45
lastSpeaker() A1 1.0
lastEvent() userSpeech(A1) 1.0
drinkOrder(A1) green lemonade 0.677

blue lemonade 0.322
lastAct(A1) greet 0.25

Table 1: State excerpt, showing both the old discrete repre-
sentation (highlighted portion) and the new representation

action ask-drink(?a : agent)
preconds: K(inTrans = ?a) ^ ¬K(ordered(?a)) ^

¬K(otherAttnReq) ^ ¬K(badASR(?a))
effects: add(Kf , ordered(?a)),

add(Kv, drinkOrder(?a))

Figure 2: Example PKS action in the bartender domain

confidence measures; a sample state using this representation
is shown in the highlighted portion of Table 1.

This initial representation simplified action selection con-
siderably, but also discarded potentially relevant information
from the input sensors. We have therefore extended the ini-
tial version of the state manager to associate each hypothesis
with a confidence score, and to include alternative hypotheses
about a customer’s drink order (Foster, Keizer, and Lemon
2014). Table 1 shows a full state using this expanded rep-
resentation: in addition to the old-style state information in
the highlighted portion, this state adds confidence scores to
all properties—meaning that low-confidence relations like
lastAct(A1) can now be included—and also includes multiple
values for relations like drinkOrder(A1). The resulting repre-
sentation is similar to the Discrete distribution used in RDDL
(Sanner 2011), the language for the recent probabilistic tracks
of the International Planning Competition.

Planning under Sensor Uncertainty

To generate plans for the robot, PKS uses a knowledge-level
domain model that includes a specification of the physical,
sensory, and linguistic (speech) actions available to it. The
current domain supports simple interactions with individual
agents for ordering drinks from the robot, as well as socially
motivated behaviour such as group ordering and multi-party
turn-taking. For example, Figure 2 shows the PKS representa-
tion for the ask-drink(?a) action (“ask an agent ?a for a drink
order”), which is modelled as a sensing action that returns
a placeholder (the function drinkOrder) for information that
will become known at execution time.

We are currently improving our ability to plan with sensor
uncertainty in the states described above. Since PKS does
not (currently) work directly with probabilistic representa-
tions, we are modelling disjunctive state information like
drinkOrder in Table 1 using PKS’s ability to use “exclusive
or” formula of the form (�1|�2| . . . |�n) (which is interpreted
as “one, and only one, of the �is is true”), ordered by decreas-
ing confidence values. To incorporate confidence information
for single-value relations, such as seeksAttention, we instead
employ empirically determined confidence thresholds to de-
termine whether to accept the current state information or to

make an effort to gather more information before continuing.
Updated state information is regularly sent to the planner
from the state manager after action execution, and used for
monitoring and replanning purposes.

Once the extended state information is available in the
planner’s knowledge state, it can be directly used during
plan construction. In practice, such knowledge often has the
effect of introducing additional sensing actions into a plan,
to disambiguate between disjunctive alternatives. To aid this
process, we are adding new actions which correspond to
information-gathering (clarification) questions that the robot
can ask to help clarify uncertain beliefs—without asking an
agent to simply repeat an utterance, which is often interpreted
by humans as a poor dialogue move (Skantze 2005).

Future Work

We will shortly carry out a user study to assess the impact of
the new state representation and updated planning approach
on user interactions with the system, comparing a version
of the bartender that deals with all of the above forms of
uncertainty to one that does not. Based on the behaviour of
previous versions of the system—which did not incorporate
state uncertainty but still performed reasonably well—we
expect to see a positive impact in task performance (i.e., the
number of drinks correctly served), since the bartender should
clarify lower-confidence or ambiguous state hypotheses in-
stead of simply serving what it believes to be the requested
drink. On the other hand, it may be that the subjective user
judgements will be negatively affected if the system clarifies
too frequently in contexts where the top hypothesis is correct.

Acknowledgements

This research has received funding from the European
Union’s 7th Framework Programme under grant No. 270435.

References

Foster, M. E.; Gaschler, A.; and Giuliani, M. 2013. How can I help
you? Comparing engagement classification strategies for a robot
bartender. In Proceedings of ICMI 2013.
Foster, M. E.; Keizer, S.; and Lemon, O. 2014. Towards action
selection under uncertainty for a socially aware robot bartender. In
Proceedings of HRI 2014.
Larsson, S., and Traum, D. 2000. Information state and dialogue
management in the TRINDI dialogue move engine toolkit. Natural
Language Engineering 6(3–4):323–340.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-based ap-
proach to planning with incomplete information and sensing. In
Proceedings of AIPS 2002, 212–221.
Petrick, R. P. A., and Bacchus, F. 2004. Extending the knowledge-
based approach to planning with incomplete information and sens-
ing. In Proceedings of ICAPS 2004, 2–11.
Petrick, R. P. A., and Foster, M. E. 2013. Planning for social
interaction in a robot bartender domain. In Proceedings of ICAPS
2013, Novel Applications Track.
Sanner, S. 2011. Relational Dynamic Influence Diagram Language
(RDDL): Language description.
Skantze, G. 2005. Exploring human error recovery strategies:
Implications for spoken dialogue systems. Speech Communication
45(3):325–341.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 20

Exploring High Dimensional Metric Spaces:
A Case Study Using Hubble Space Telescope Long Range Planning

Mark E. Giuliano
Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21217, USA

giuliano@stsci.edu

Abstract
Planning and scheduling applications often have multiple
criteria or metrics that need to be satisfied and or optimized
to create a plan suitable for execution. Applications also
typically have corresponding program input parameters that
impact the objectives. A multi-objective approach provides
a framework for evaluating plans and the impacts of control
parameters in terms of multiple criteria without having to
combine criteria evaluations with a single objective
function. However, the framework requires tools that allow
end users to analyze alternate plans in terms of a Pareto-
surface of competing solutions. This paper explores the
utility of such tools through a case study exploring a high
dimension metric space (32 separate metrics) for operational
Hubble Space Telescope planning and scheduling data.

 Introduction
Although the SPIKE system has been used for long range
planning Hubble Space Telescope (HST) observations for
over 20 years, the core requirements that determine the
quality of a plan have only recently been formally
specified. [Giuliano 2013] describes a set of metrics that
were incorporated into the SPIKE system and outlines a
study to validate the metrics using operational HST data.
This paper presents the results of that study and provides a
case study on the effectiveness of multi-objective graphical
based tools for analyzing multi-objective solutions when
exploring high dimension metrics spaces. The HST case
study involves 32 separate metrics collected for 32 plans
that varied seven SPIKE control parameters. The long
term goal of this work is to streamline the long range
planning process for HST and for the future James Webb
Space telescope mission.

HST Planning and Scheduling
Launched in 1990, the Hubble Space Telescope is a
general purpose space observatory that provides support
for near-infrared, visible, and ultraviolet frequencies. HST

has multiple science detectors that were designed to be
upgraded and replaced during its mission. HST is in a low
earth orbit approximately ~600 km above the Earth and
orbits the Earth every 96 minutes. The main physical
constraint on HST observations is that targets selected by
the observer cannot be occulted by the Earth, the Sun, or
the Moon. In addition, a user can place other requirements
on an observation including the ability to specify time
windows for observations (e.g. schedule OBS1 day 330-
360), to link observations via precedence or grouping
relationships with offsets (e.g OBS1 after OBS2 by 10-15
days), and to link observations via roll constraints (e.g.
Same roll OBS1 as OBS2). The time intervals that satisfy
all constraints are called observation constraint windows.
 Hubble observations are carried out in a repeated yearly
cycle. In each cycle, astronomers submit proposals for
using the telescope to the Space Telescope Science
Institute (STScI). The submitted proposals are ranked by
scientific merit by an external Time Allocation Committee.
Approved proposals are prepared for execution using the
Astronomer’s Proposal Tool (APT) and then submitted to
STScI. Accepting a proposal represents a commitment by
STScI to execute the observations to completion. There
are no priorities within the pool of accepted proposals.
 HST scheduling is handled in a two-phase process by
separate long-range planning and short-term scheduling
systems [Giuliano 1998]. In the first phase, long-range
planning assigns observations to overlapping least
commitment plan windows that are nominally 56 days
long. Plan windows are a subset of an observation’s
constraint windows and represent a best effort commitment
to schedule within the window. In the second phase, plan
windows are used to create successive short-term
schedules for 7-day upload periods. This two phase
process allows a separation of concerns in the scheduling
process: plan windows globally balance resources, are
stable with respect to schedule changes, and provide
observers with a time window so they can plan their data

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 21

reduction activities. The short-term scheduler provides
efficient fine-grained schedules to the telescope.
 At the start of each yearly cycle an ingest process, plans
all observations from the current new cycle, on top of
observations from previous cycles that have not already
been executed. This paper presents a case study of the
cycle ingest process based on the most recent HST
observing cycle.
 HST long range planning is implemented by the SPIKE
planning and scheduling system. SPIKE (Johnston and
Miller, 1994) is a constraint based planning and scheduling
tool kit that was created for use on the Hubble Space
Telescope. SPIKE models astronomical scheduling
constraints and provides a rich set of search mechanisms
which can be configured to explore the high value portion
of the long range plan space (Giuliano 2013, Giuliano
2008).

The HST Cycle Ingest Process
The most recent HST long range planning cycle ingest
took place in a three week period during the late summer
of 2013. During this time operations staff used SPIKE to
generate multiple candidate long range plans by running
SPIKE multiple times with different runtime control
parameters. The users explored the SPIKE input parameter
space by performing 32 runs that varied seven SPIKE
Boolean major control parameters (these controls are
explained in a subsequent section). These runs explored
the high value portion of the 128 possible control
parameter assignments. Operations staff evaluated these
runs using plan metrics and manual inspection of SPIKE
graphics for resources and plan window placement. Based
on this inspection an additional set of runs were performed
using the best setting of the seven parameters and
exploring additional spike parameters. Finally, all the
schedules generated were considered and a single long
range plan was selected for operations and released to the
astronomical community so they could plan for data
analysis. It must be stressed that the process of selecting a
long range plan for operational release is currently highly
intuitive involving the competing intuitions of three
operations staff members.
 The plan metrics and SPIKE runtime images for each of
the runs were stored on disc and made available to the
SPIKE development team. These metrics include not only
metrics calculated by SPIKE itself but also metrics derived
from SPIKE reports and plans based on tools written by the
operations staff. The data was used as a basis for a study
examining the metrics data in the winter of 2014. The
goals of this exercise were:

- To validate the utility of graphical based tool in
exploring and analyzing HST long range planning
metric data

- To validate the choice of SPIKE control
parameter by determining the impacts of SPIKE
control parameters on the quality metrics.

- To validate the quality of the metrics by
determining the extent to which metrics that
nominally evaluate the same features correlate.

- To determine the extent to which metrics coded
directly within SPIKE match metrics determined
off line after the SPIKE processing has finished.

The overall purpose of the exercise is to feedback the
findings into the next cycle ingest process.

HST SPIKE Plan Metrics

Figure 1 presents 32 plan metrics considered in this study.
These metrics which evaluate the quality of a plan as a
whole are classified into 3 broad categories and are marked
as to whether or not they are internal to SPIKE or derived
from SPIKE output products by user tools.
 Of special concern to long range planning is the
handling of orbital resources. There are approximately
fifteen 96 minute orbits in a HST day. About nine out of
the fifteen orbits in each day cross the South Atlantic
Anomaly (SAA) a region off the coast of South America
that has unusually high radiation. In each of these orbits,
the SAA passage occurs in a slightly different portion of
the orbit. These orbits are called SAA impacted orbits. No
observations can occur during an SAA passage. However,
we can schedule observations in SAA impacted orbits, if
the Earth occultation for the observation occurs during the
SAA passage. This case is called SAA hiding. Orbits
without any SAA crossing are called SAA free orbits. In
the most recent HST observing cycle 60% of the approved
observations can be scheduled only in SAA-free orbits,
whereas only 33.3% of the orbits are SAA-free. For any
given target, SAA hiding occurs only for a small fraction
of a year. In addition the HST orbit follows a 56-day north
to south precession cycle. During the week where HST is
in it’s most northern part of the precession cycle it is
especially hard to find observations that are schedulable as
sun exclusion blocks northern targets.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 22

Category Metrics Purpose
Resources global-resource

orbit-criteria
saa-orbit
orbit-distribution
orbit-pcf-usage
res-report
res-report-over
res-report-over-free north-point1
north-point2
saa-another
res-report-v
res-report-over-v
res-report-over-free-v
north-point1-v
north-point2-v
saa-another-v

To assign plan windows that balance resources across the planning
session. Especially resources involving the SAA and the north point
SAA.

Criteria in italics are internal to SPIKE while not italic criteria are
from SPIKE outputs using operational scripts.

Spike has a mode in which it can validate its own least commitment
resource model by assigning observations to precise times. Metrics
with a –v are from those runs while the non –v reports use a least
commitment resource model.

All metrics are translated into minimization criteria within the
SPIKE model.

Window
Size

window-size-plan
mean-pw-dur
percent-1
percent-2
percent-3
percent-26
percent-41
mean-pw-dur-sr
percent-1-sr
percent-2-sr
percent-3-sr
percent-26-sr
percent-41-sr

To assign plan windows that come close to the nominal size of 56
days and to minimize to many short plan windows.

The percent metrics 1,2,3, minimize the number of days that have
1,2,3 .. day plan windows overlapping them. The percent metrics
26, and 41 are maximization criteria.

The metrics with –sr limit the results with respect to special
requirements. For example, an astronomer can put a requirement
that limits scheduling to a week. The –sr metrics take this into
account while the non –sr metrics do not.

Packing
observing
programs

pack-proposal
clustering
clustering-v

To plan visits from a single observing program as close a possible
in time. This helps STScI to complete programs.

Figure 1: SPIKE Plan Metrics

Graphical Tools for exploring Pareto Surfaces
 A major goal of the study was to examine the utility of
tools for exploring Pareto-surfaces to select a solution for
execution. A first result is that with 32 metrics 31 out of
the 32 schedules generated are not strictly dominated by
another. With a high number of metrics, just considering
non dominated solutions does not winnow the search space
effectively. This result held even when subsets of metrics
were considered. A second result is that tools such as
those described in [Giuliano Johnston 2010, Giuliano
Jonahston 2011] get overwhelmed by the high number of
dimensions. Even though these tools are dynamic they are
not flexible enough to provide users with the visualization
tools needed to explore a complex space. As part of the
case study a new set of tools were developed to address
these problems. The tool is based on the d3 java script
library and has the following features:

- Pareto surfaces and metrics are represented in the
SPIKE domain model;

- Within the domain model end users have the
ability to dynamically create alternate Pareto-
surfaces by selecting the metrics under
consideration, and the candidate set of potential
solutions to consider;

- Users can create charts that get displayed in
browser windows. The user can select the type of
data displayed (e.g. raw criteria scores, rank index
of scores, normalized criteria values).

- The user can also control color annotations in
making a chart.

- The charts themselves allow features such as
reordering axis and brushing indexes.

Figure 2a shows a chart considering a Pareto surface made
from the initial 32 runs and 16 metrics that evaluate the
schedules in terms of resources and SAA hiding. The chart
is color coded so that solutions with a specified set of

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 23

control parameters (see the next section) are in green, the
solution selected for execution is in blue, and the rest are
presented as red.
 Even with a smaller set of 16 metrics, that only measure
resource related issues, the parallel coordinate chart is very
messy and it is hard to see patterns. Users utilize some
metrics as strict criteria and others as diagnostic
information that indicates the need for manual inspection
of the plan for issues. As such users need the ability to
flexibly define the metrics and metric ranges that are
considered in making a Pareto-surface. Figure 2b shows
the same chart where the chart has been brushed to select a
specified range of values for a given criteria.
 The new graphical tool set is both flexible and light
weight reusing browser capabilities. All charts presented
in this paper are available in the tool set. However I have
substituted hand produced charts in some cases from Excel
as they currently look better. The plan for the next HST
cycle ingest is to further develop these tools and to provide
them to end users for use in the operational ingest process.

The impact of SPIKE Control Mechanisms
The SPIKE long range planning algorithm is driven by
three software mechanisms called criteria, critics, and
filters. By default SPIKE plans an observation by iterating
through the schedulable start times for a plan window at
the granularity of a day. For each day a potential plan
window is generated consisting of any suitable time over
the next 56 days (56 days being the nominal plan window
size). The resulting window is evaluated by criteria and the
best window according to the criteria evaluation is
selected. This process is modified by critics and filters.
Critics sculpt the 56 day window by ensuring that certain
properties apply. For example, an SAA critic cuts plan
windows that contain SAA regions to end and start at week
boundaries. This mechanism ensures we explore the high
value portion of the search space. Filters prevent SPIKE
from iterating over the entire planning horizon. SPIKE has
a series of filters each of which define a subset of the
planning horizon for a visit. The filters are ordered from
most restrictive (i.e. highest value) to least restrictive and
SPIKE attempts to use each filter in turn ensuring that
SPIKE will assign a window with the most restrictive filter
(i.e. the highest value feasible portion of the search space).
 Figure 3 gives a taxonomy of SPIKE search
mechanisms. It shows that window criteria, critics, and
filters directly guide the selection of windows by SPIKE
while plan metrics currently only perform post plan
evaluations. A long term goal of this work is to move the
plan metrics into a guiding roll within the SPIKE process.

Mechanism What they do Impact
Window Evaluates potential Guide the plan

Criteria windows for
observations

windows selected
by SPIKE

Critics Sculpts windows

Filters Reduces the search
space

Plan Metrics Evaluates plans

Evaluate
Entire plans do
not currently
guide plan
creation in
SPIKE

Figure 3. A Taxonomy of SPIKE Control Mechanisms

The SPIKE Pareto surface mechanism was augmented to
measure the impacts of SPIKE control parameters on the
quality of solutions. While SPIKE has many types of
criteria, critics, and filters the mechanisms varied in the
cycle ingest process all involve resources and the SAA.
The operations staff varied whether the following control
mechanisms were used in the runs:

- Great-attractor (GA). This new criteria
determines the possible demand for each orbit in
the session and prefers to plan observations in
times with the least amount of demand.

- North point and SAA criterion – When possible
prefer to plan visits in times where they have
north point SAA or SAA hiding.

- North point and SAA critics – Sculpt plan
windows to only include weeks which have good
north point SAA or SAA hiding

- North point and SAA filters – If an viable solution
can be found with north point SAA, or SAA
hiding do not consider other time intervals.

These parameters define a set of seven Boolean controls.
Operations staff examined 32 different settings of these
parameters. Figure 4a shows how the values for 16
resource related metrics change in aggregate when
comparing runs with and without the particular control
feature turned on. Here a positive number means the
turning on the control feature improved schedules with
respect to a plan metric and a negative number means the
control feature made the plan metric worse. As can be seen
the great attractor is strongly associated with improving
plan metrics. This criteria was new in this cycle and differs
from the others in that it is based on the actual resources
available to schedule in a cycle. We know from
experience that SAA orbits are hard to fill but it is still the
case that some are harder to fill than others based on the
distribution of targets in the given cycle.
 The controls in italics are those that the operations staff
chose as the best settings for further exploration. In
general these controls have the most positive impacts on all
of the resource criteria and no or minimal negative

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 24

impacts. This chart strongly validates the choice of control
settings by the operations staff.
 Figure 4b shows the same control chart but this time
plots the impacts on plan metrics that evaluate an LRP in
terms of preferring that windows for a single science
program are close in time and maximizing plan window
size. Here the results show that turning on the controls
generally makes these metrics worse (i.e. most impacts are
below zero). This is logical as these controls prefer other
features than large windows and packed programs. In
general the selected controls perform least poorly (with the
exception of the SAA filter). These results suggest that
SPIKE should have corresponding control mechanisms that
in effect lobby for these plan metrics.

Validating SPIKE Metrics

 In this part of the study we examined the internal
consistency of the SPIKE metrics. Do metrics that
nominally measure the same feature typically have the
same score? Are there metrics that can be removed as
redundant? Do the metrics that are internally part of
SPIKE correlate with the metrics produced externally from
SPIKE by user tools. This last question is important as the
goal is to move metrics into SPIKE so they can be used to
guide the generation of plans.
The ability to reason about metric correlations was added
to the multi-objective model and graphical displays were
defined. Figures 5a-c present bar graphs showing the
correlation between the groups of each type of metric. The
chart shows the average variation in criteria values
between each pair of criteria in the group. The variation is
measured for metric scores normalized to be between 0 and
1. The greater the value the smaller the correlation.
 The results are mixed. Figure 5a shows that each of the
three proposal packing metrics maps within 15% of the
other metrics. The internal SPIKE proposal packing
metric is sufficient. The window size plot (Figure 5b)
shows a very strong correlation between the metrics with
and without special requirements. These vary only by 1-
5%. In future cycles both sets of metrics do not need to be
considered. The internal SPIKE plan window size metric
matches within 8% of the external mean pw duration
metric. The outlier is the 26 day percentage metric which
does not correlate with the other metrics. A better
understanding of this metric needs to be developed.
 The correlation for the resource related metrics is
relatively poor with few metrics correlating at 15% and
most correlating around 25% or higher. In hindsight this is
not unexpected. Quantifying resource usage is the most
complex part of the HST long range planning process and
SPIKE has three different models of resource consumption
used in planning [Giuliano et al 2013]. The fact that
multiple measures have competing results shows the

different perspectives taken by the models and the
complexity in modeling least commitment windows.

Conclusions
The results of a plan metric evaluation study using data
from the most recent HST observing cycle were presented.
The study examined data for 32 plan metrics on 32
scheduling runs which varied 7 SPIKE control parameters.
The study showed the utility of highly dynamic tools to
explore Pareto surfaces. Users need the ability to define
the metrics of interest and to produce charts that can be
graphically manipulated. The study validated the choice of
control parameters selected by SPIKE operations. Finally
the study examined how groups of metrics correlate with
each other. The goal of the study is to provide feedback
into the operations process so we can improve the long
range planning process. The long term goal is to move the
plan evaluation process form its current intuitive based
state to one based on graphical based presentations of
validated metrics.

Acknowledgements
Thanks to Ian Jordan and Dave Adler for providing the
cycle 21 operations data and for providing an operational
perspective. Thanks to Andrew Myers for help with
developing the d3 graphics code.

References
Johnston, M. and Miller, G. 1994. Spike: Intelligent Scheduling of
Hubble Space Telescope Observations. In Zweben M. and Fox M.
eds. Intelligent Scheduling, 391- 422. Morgan-Kaufmann.

Giuliano M.E. 2013. The Mystery of the Missing Requirements:
Optimization Metrics for SPIKE Long Range Planning.
International Workshop on Planning and Scheduling for Space
(IWPSS) NASA Ames Research Center, California
Giuliano, M.E., and Johnston, M.D. 2011. Developer Tools for
Evaluating Multi-Objective Algorithms. International Workshop
on Planning and Scheduling for Space, Darmstadt, Germany.
Giuliano, M.E, Hawkins R, Rager R,. 2011. A Status Report on
the Development of the JWST Long Range Planning System.
International Workshop on Planning and Scheduling for Space
(IWPSS). Darmstadt, Germany.
Giuliano, M.E., and Johnston, M.D. 2010. Visualization Tools
For Multi-Objective Algorithms. Demonstration: International
Conference on Automated Planning and Scheduling (ICAPS),
Toronto, Canada. !
Giuliano, M.E., 2008. Handling Oversubscribed Orbital
Resources in Hubble Space Telescope Operations. Workshop on
Oversubscribed Planning and Scheduling, at the International
Conference on Automated Planning and Scheduling (ICAPS),
Sydney Australia.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 25

Giuliano, M.E. 1998. Achieving Stable Observing Schedules in
an Unstable World. In Astronomical Data Analysis Software and
Systems VII. 271-274.

Figure 2. Parallel coordinate charts showing values for 16 resource related metrics. Each line represents a

long range plan. Lines in green have a specified set of SPKE control parameters on. The line in blue is the
solution selected for operations. Figure 2a (above) is the raw data of the chart. Figure 2b (below) is the chart

with ranges selected (gray rectangles) for two metrics.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 26

Figure 4. Parallel coordinate plots showing the incremental impact of turning on 7 different SPIKE control
parameters on a specified set of resources. Each line represents turning on a SPIKE control feature. Values

above zero represent a positive effect. Values below zero are a negative effect. Figure 4a (above) shows impacts
for resource related metrics. Figure 4b (below) shows impacts for window size and program packing metrics.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 27

Figure 5. Bar graphs showing the correlation between pairs of metrics within a category (see figure 1 for
categories). The value is the average difference in a 0-1 normalized score. Smaller values indicate better

correlations. Note that the scales are different in each graph. Figure 5a (upper left) gives correlations for
proposal packing criteria. Figure 5b (Upper right) gives correlations for window size criteria. Figure 5c (lower)

gives correlations for resource criteria.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 28

Intelligent UAS Sense-and-Avoid Utilizing Global Constraints

Javier Barreiro and Minh Do and David E. Smith

NASA Ames Research Center
Moffett Field, CA 94035

javier.barreiro, minh.do, david.smith@nasa.gov

Abstract

Sense-and-avoid (SAA) is a critical research topic for en-
abling the operation of Unmanned Aircraft Systems (UAS)
in civilian airspace. SAA involves two planning related prob-
lems: 1) plan-recognition to predict the future trajectory of
nearby aircraft, and 2) path planning to avoid conflicts with
nearby aircraft that pose a threat. We have designed and built
components of a novel intelligent sense-and-avoid (iSAA)
reasoning framework that takes into account information
about aircraft type, transponder code, communications, local
routes, airports, airspace, terrain, and weather to more accu-
rately predict near- and medium-term trajectories of nearby
aircraft. By using this additional information both the on-
board control software and the ground-based UAS operator
can make more informed, intelligent decisions to effectively
predict and avoid conflicts and maintain separation. While
this capability benefits all categories of UASs operating under
both Instrument Flight Rules (IFR) and Visual Flight Rules
(VFR), it is absolutely essential for allowing smaller UASs to
operate VFR at low altitude in uncontrolled airspace for oper-
ations such as survey work, wildlife tracking, aerial photog-
raphy, utilities inspection, crop dusting, and package delivery.

1 Introduction

Unmanned Aircraft Systems (UAS) come in a wide range
of sizes, from tiny to quite large as illustrated in Figure 1.
As you would expect, they have an equally wide range of
characteristics and capabilities, including cost, operating al-
titudes, range, speed, instrumentation, communication abili-
ties, sensors, and payload capacity. To date, UASs have been
used predominantly for military applications, but there is
growing demand to employ these vehicles for a wide range
of civilian purposes, including such things as: search and
rescue, traffic monitoring and reporting, wildlife monitor-
ing and surveys, fire and flood monitoring, pipeline and
transmission line inspection, aerial photography, cropdust-
ing, and package delivery. All of these applications, require
operation of UASs in civilian airspace at lower altitudes. To
date, UASs have essentially been operated under Instrument
Flight Rules (IFR), which means that they have to adhere to
a strict flight plan, and Air Traffic Controllers (ATC) have
authority over their operation and route. This is not practical
for smaller vehicles, for vehicles operating at low altitudes
(below radar coverage), and for many of the applications en-
visioned for these vehicles. To operate in this environment,

Figure 1: Some small, medium, and large UASs with widely
varying performance and capabilities.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 29

these vehicles must be able to operate under Visual Flight
Rules (VFR), and be able to Sense and Avoid (SAA) other
aircraft in the same way that most small aircraft currently
operate.

There are many aspects to the SAA problem including
sensor technology, sensor integration, communication tech-
nology and security, threat detection, and threat resolution.
Because of the interest in UASs, there has been a great deal
of work on many of these topics. In this paper, we describe
our preliminary work on threat detection and threat resolu-
tion. We assume a variety of inputs from various possible
sensors and sources for use in threat detection. In the next
section, we describe some related work on threat detection
and threat resolution. We then motivate our approach in rela-
tion to this previous work. In Section 4 we lay out the archi-
tecture for our approach in greater detail, and describe our
initial prototype implementation of threat detection utilizing
a dynamic Bayesian Network. Section 5 describes current
work on improving our prediction algorithm by automati-
cally generating dynamic Bayesian Networks tailored to the
location of the intruder. Section 6 describes future work on
developing medium-term threat resolution software utilizing
fast online probabilistic path planning.

2 Related Work

There has been a great deal of work sponsored and/or con-
ducted by the FAA, NASA, the US military (e.g. GILA, JAS-
MAD), and European agencies on automation of air traffic
control and deconfliction of airspace. Most of this work fo-
cuses on recognition and resolution of conflicts at the Air
Traffic Control (ATC) level between aircraft with known,
well-defined routes. It assumes that at least one aircraft is
in communication with ATC, and that the aircraft are “visi-
ble” to ATC (under radar coverage). This paradigm does not
apply to smaller aircraft operating under Visual Flight Rules
(VFR) at low altitudes – in many cases these aircraft are not
in communication with ATC, may not be visible to ATC,
and are not required to file or follow a flight plan. In these
cases, the aircraft must sense and avoid each other without
any ATC guidance.

There has also been considerable work on the SAA prob-
lem (Federal Aviation Administration 2009; Barnhart et al.
2012). Most relevant to this paper is work on TCAS (Fed-
eral Aviation Administration 2011), ACAS X (Kochender-
fer, Holland, and Chryssanthacopoulos 2012), and JOCA
(Chen et al. 2009).

Since 2000, the Traffic Collision and Avoidance Sys-
tem (TCAS II) (Federal Aviation Administration 2011) has
been required in many countries (including the US, Europe,
China, Australia and India) on all large commercial transport
aircraft. TCAS is designed to reduce the chances of mid-air
collision with other transponder or TCAS equipped aircraft
by issuing advisories and threat resolutions to the TCAS
equipped aircraft. It does this by 1) projecting the current
track of any nearby aircraft (intruder) into the future, 2) rec-
ognizing if this poses a threat of a Near Mid-Air Collision
(NMAC), and 3) issuing a Traffic Advisory (TA) if there is
danger of an NMAC within 20-48 seconds, and 4) issuing a
Resolution Advisory (RA) to avoid the NMAC if the danger

!

!

Figure 2: Scope of traffic advisories (TA) and resolution ad-
visories (RA) for TCAS II.

is within 15-35 seconds. If both aircraft are TCAS equipped,
the advisories are automatically coordinated to ensure that
the responses do not conflict. Figure 2 illustrates the scope
of TCAS reasoning and advisories.

While TCAS has reduced the incidence of NMACS for
larger aircraft, there are a number of limitations with the sys-
tem. First, the cost, hardware and power requirements limit
installation to larger aircraft. Second, the system projects
that the intruder will continue on its current course. While
this may be a reasonable assumption for en-route aircraft op-
erating at higher altitudes, it is less accurate, and less robust
within the terminal area, particularly for smaller intruders
operating VFR at low altitudes. Third, the resolution logic
consists of hand generated heuristic rules, which are incom-
plete and difficult to verify. Finally, the system is designed
for only short-term conflict resolution (15-48 seconds from
NMAC). As a result, the Resolution Advisories are fairly
aggressive maneuvers, and are limited to actions of climb-
ing, descending, and otherwise constraining vertical speed.
There are no horizontal avoidance actions. Note that vertical
RAs could often be problematic for aircraft operating VFR
at low altitude – descent may not be safe due to terrain, and
climbing may not be possible due to clouds or airspace re-
strictions above.

The ACAS X system (Kochenderfer, Holland, and Chrys-
santhacopoulos 2012) is a proposed successor to TCAS II
that is currently undergoing testing and evaluation. ACAS X
improves on several of TCAS II’s limitations – in particu-
lar, it is 1) capable of utilizing positional information from a
broader range of sources, 2) it uses a probabilistic model of
the intruders likely trajectory, and 3) the resolution logic is
based on offline solution of an MDP, and is therefore more
systematic, complete, and robust. As a result, ACAS X has
demonstrated the ability to resolve more conflicts, while is-
suing fewer unnecessary resolution advisories. The architec-
ture of ACAS X is shown in Figure 3. Unfortunately, ACAS

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 30

22 LINCOLN LABORATORY JOURNAL � VOLUME 19, NUMBER 1, 2012

NEXT-GENERATION AIRBORNE COLLISION AVOIDANCE SYSTEM

logic table to determine the best action to take—that is,
whether to issue an advisory and if so, what vertical rate
to use. This processing chain is repeated once per second
with every new sensor measurement [8].

Critical to understanding the logic optimization pro-
cess are two important concepts. The first is a Markov
decision process, which is essentially the probabilistic
dynamic model combined with the utility model. The
second is dynamic programming, which is the iterative
computational process used to optimize the logic.

Markov Decision Processes
Markov decision processes (MDP) are a general frame-
work for formulating sequential decision problems [9].
The concept has been around since the 1950s, and it has
been applied to a wide variety of important problems.
The idea is very simple, but the effective application can
be very complex. Figure 5 shows a small MDP with three
states, but to adequately represent the collision avoidance
problem, as many as 10 million states may be required—
the states representing the state of the aircraft involved,
including its position and velocity.

Available from each state is a set of actions. In Fig-
ure 5, actions A and B are available from all three states.
In the collision avoidance problem, the actions corre-
spond to the various resolution advisories available to the

system. Depending on the current state and the action
taken, the next state is determined probabilistically. For
example, if action A is taken from state 2 in the example
MDP, there is a 60% chance that the next state will be 1
and a 40% chance the next state will be 2.

The benefits or rewards of any action are generated
when transitions are made. Rewards can be positive, such
as +1 and +5 in the example, or they can be negative like �10
for making the transition from state 3 to state 2 by action B.
In the collision avoidance problem, there are large costs for
near midair collisions and small costs for issuing resolution
advisories to the pilots. There are also costs for reversing
the direction of the advisory and increasing the required
vertical rate. The objective in an MDP is to choose actions
intelligently to maximize the accumulation of rewards, or,
equivalently, minimize the accumulation of costs.

Dynamic Programming
Dynamic programming is an efficient way to solve an
MDP [10]. The first step involves discretizing the state
space. Figure 6 shows a notional representation of the
state space, where the discrete states are represented as
boxes. In this simple representation, the vertical axis rep-
resents altitude relative to the other aircraft, and the hori-
zontal axis represents time. The time at which a potential
collision occurs corresponds to the rightmost column. The

FIGURE 4. ACAS X performs state estimation and action selection once per second. Based on new sensor measurements
and models of the dynamics and sensors, the system updates its estimate of the state of the aircraft. Uncertainty in the state
estimate is represented as a probability distribution. This distribution specifies where to look in a table to determine which
resolution advisory to provide to the pilots.

Updates
once per second

State
estimation

Action
selection

Sensor
measurements

Fast table
lookups

State
distribution

Resolution
advisory

Probabilistic
dynamic model

Probabilistic
sensor model Optimized

logic table

Figure 3: Architecture of ACAS X, from (Kochenderfer,
Holland, and Chryssanthacopoulos 2012).

X is still aimed at short-term conflict resolution, and the ad-
visories are still limited to climbing, descending, and con-
straint of vertical speed.

3 Approach

In this work, we are interested in addressing medium-term
conflict avoidance for small UASs operating VFR at low al-
titude in a mixed air traffic environment. By medium-term
we mean detecting and resolving conflicts between 30 and
120 seconds before they would occur. By doing this, we can
maintain greater separation between aircraft, and conflicts
can be resolved using less aggressive and less costly maneu-
vers. On the negative side, it is more difficult to accurately
predict the trajectory of another aircraft this far in advance.
The focus on VFR operation at low altitudes also presents
challenges: 1) trajectories are less predictable for VFR traf-
fic, and 2) terrain and weather may be a significant factor
in predicting those trajectories and resolving conflicts – no-
tably, aircraft operating VFR are required to maintain certain
clearances from clouds and terrain, both vertically and hori-
zontally.

We regard the problem of predicting the future trajectory
of an aircraft as probabilistic plan recognition. Conflict res-
olution is a problem of path planning under uncertainty. We
believe that both of these are knowledge intensive processes
that rely on more than just the previously observed trajectory
of the aircraft. In particular, prediction needs to take advan-
tage of information about such things as aircraft type, local
routes and traffic patterns, transponder operation, commu-
nications, terrain and weather. Conflict resolution needs to
take account of many of the same things as well as the goals
of the UAS.

To illustrate this, consider the simple example shown in
Figure 4. Here, a UAS and another aircraft (the intruder) are
both at 1000 ft AGL (above ground level) on intersecting
courses. TCAS II would predict that the intruder would re-
main on its present (straight and level) course resulting in a
conflict at the point X. Somewhere between 25 and 40 sec-
onds before the intersection, the TCAS logic would advise
an aggressive climb to avoid the intruder.

Figure 5 shows the difference for the ACAS X model:
here there is a probabilistic model of the possible future
positions of the intruder (derived from real data of aircraft

X
intruder

UAS

20-40s

1000 AGL TCAS

Figure 4: Intruder prediction for TCAS II.

intruder

UAS

20-40s

1000 AGL
ACAS X

.3

.2

.1
.05

.2

.1.05

Figure 5: Probabilistic intruder prediction for ACAS X.

tracks). As a consequence, the collision avoidance logic
would recommend a maneuver to avoid the most time criti-
cal and likely paths for the intruder. In some cases, the logic
will even delay making a decision until more evidence of the
intruder’s likely path is available.

In Figure 6 there is one piece of additional information
available – the intruder aircraft is downwind from Runway
27 at an uncontrolled airport. In this case, if the aircraft is
level or descending it is much more likely it is in the traffic
pattern for this airport, and will be turning on a base leg, and
then final leg as shown in Figure 6. As a result, the probabil-
ity distribution for the future location of the aircraft should
be strongly biased towards turning base. If we have addi-
tional information that the aircraft is descending, or that the
landing gear is down, then it is even more likely that the
aircraft will turn base and there will not be any conflict. In
contrast, if we know that the aircraft is climbing, or that the
landing gear is up, or that it has a discrete transponder code
then it is more likely that the aircraft is on a downwind de-
parture from the airport, and will not be turning base. Like-
wise, if the wind is strongly favoring the opposite runway
(Runway 09), or the traffic pattern is on the south side of the
airport rather than the north side (left traffic instead of right
traffic), or the runway is too short for this type of aircraft,

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 31

intruder

1000 AGL
.2

.05
.1.5

.05
.05

.05

27

09

uncontrolled

right traffic 27

UAS

Figure 6: Intelligent intruder prediction.

then it is even less likely that the aircraft will turn base; in
fact, it is unlikely that the aircraft is in the traffic pattern for
this airport at all.

For these examples, the presence of an airport and the na-
ture of its traffic pattern provided strong bias on the likely
path of an intruder. However, there are many other situa-
tions that can provide such bias. For example, if an intruder
has been observed performing abrupt changes in altitude and
heading it is likely engaged in aerobatics. Type of airspace,
weather conditions, time of day, the presence of an active
aerobatic box, and aircraft type can provide additional ev-
idence. Similarly, an intruder observed following a feature
such as a coastline, a river valley, or a road is more likely to
continue doing so instead of continuing on the current head-
ing.

In all these cases, information about local routes, aircraft
type, wind conditions, weather conditions, ceiling, topogra-
phy, and other factors. All of these factors are evidence that
needs to play a role in the prediction problem.

4 System Architecture

Sense-and-avoid procedures generally involve the following
steps: 1) intruder detection – identify nearby aircraft, 2)
threat detection – predict the trajectory of potential intrud-
ers and decide if any may cause a threat to the intended flight
path, 3) threat resolution – devise an appropriate course of
action to avoid the threat.

Figure 7 shows how these different components work to-
gether to provide the pilot/operator with a set of evasion ma-
neuvers whenever a threat is detected. The Airspace Con-
cept Evaluation System (ACES) (Airspace Systems Divi-
sion, NASA Ames Research Center) is a simulation en-
vironment for the National Airspace that has been devel-
oped at NASA Ames Research Center. ACES includes an
example SAA implementation called GenericSAA which
follows this architecture. Since GenericSAA constitutes a
working implementation that is compatible with our concep-
tual model of the problem, we have adopted it and enhanced
it to fit our approach.

The intruder detection component is relatively straight-

Trajectory Prediction

Sensor Data / Historical Trajectories / Local Knowledge

Ownship’s
trajectory

Intruder
trajectories

Intruder Detection

Set of possible threat aircraft

 Threat Evaluation

Threat Resolution

Loss of Separation
Threats

Maneuver(s) to address
most immediate threats

Figure 7: SAA Software Architecture

forward, as it consists of applying specific vertical and hor-
izontal separation thresholds for any aircraft detected in the
vicinity of the ownship. In some cases any detected aircraft
will automatically be considered an intruder, depending on
the capabilities of the sensors available to the aircraft.

The threat detection component consists of trajectory

prediction and threat evaluation. We have formulated a
probabilistic approach that predicts the trajectories of poten-
tial intruders given their historical paths and relevant knowl-
edge about the aircraft and the region. Figure 8 shows the
components of our trajectory prediction framework, which
feeds into the threat evaluation component:

Leg Extraction: unlike existing algorithms that utilize
only the intruders observed trajectory as points to help pre-
dict short-term future trajectory points, we go one step fur-
ther in extracting trajectory legs. A trajectory leg is a contin-
uous portion of the trajectory where the aircraft is in a par-
ticular mode such as: climbing, turning right, flying straight,
etc. A sequence of legs reveals the flights pattern and helps
predict subsequent legs. We have built new software to ex-
tract legs from the observed state information for an aircraft
based on three state variables: 1) speed; 2) altitude; and 3)
heading.

Route Database: To understand the intent of each trajec-
tory leg, we match it against defined route segments in the
area. For example, if an observed aircraft is downwind for
an active runway, is at traffic pattern altitude, and is level or
descending, its very likely that it will subsequently turn on
a base leg for the runway. We constructed a database of legs
for traffic patterns, instrument approach procedures, and air-
ways for an interesting test area near Sacramento, CA that
contains several airports and a mix of different kinds of traf-
fic. Each leg is described by its name, type, start and end
fixes, altitudes for those fixes, heading, lateral tolerance, al-

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 32

Figure 8: Trajectory Prediction Architecture

titude tolerance, and heading tolerance. These tolerances are
much tighter for something like an instrument approach than
for something like a federal airway, or crosswind departure.

Segment Matching: we developed and built an algorithm
to match the trajectory legs, created from the observed his-
tory of an intruders trajectory, to the segments in the route
database. Our matching algorithm decides that a leg L could
be a given route segment S in our database if all points in
L 1) are located within the geometric region defined by Ss
start/end points and tolerances, and 2) have heading bounded
by Ss heading and heading-tolerance values.

Predicting Future Intruder Trajectory: we use a Dynamic
Bayesian Network to infer the probabilities of different op-
tions that the intruder might pursue next. We constructed
our Bayesian Net utilizing the open source JavaBayes pack-
age. In addition to any route segment matches for the ob-
served trajectory legs (described above), the Bayesian Net-
work has variables representing many pieces of information
that might be available about the intruder and area: 1) VFR
or IFR; 2) transponder code; 3) aircraft characteristics (e.g.
aircraft size, wing type, tail type, number of engines, engine
type, observed gear position); 4) communications on rele-
vant frequencies, 5) ceiling and visibility, and 6) wind direc-
tion and intensity. Feeding this information as evidence into
the Bayesian Network, we are able to infer the probabilities
of possible next legs, or other actions by the intruder.

Threat Evaluation: Our trajectory prediction algorithm re-
turns multiple possible medium-term future trajectories with
associated probabilities for each aircraft. Threat Evaluation
consists of taking these trajectory predictions and detecting
possible loss-of-separation violations during the time hori-
zon for the SAA algorithm (30-120secs in our case). We
carry this out by performing a fine-grained (1sec) discretiza-
tion of all of the probabilistic trajectories, mapping them to a
2D data structure (ignoring altitude) and reporting any pos-
sible overlaps. Possible overlaps are then filtered to rule out
aircraft that will remain separated in altitude.

Threat Resolution: The threat evaluation component re-
turns a set of probabilistic trajectories that potentially vi-
olate loss-of-separation thresholds within the time horizon

for the SAA algorithm. Threat Resolution consists of com-
puting aircraft maneuvers which will steer the ownship clear
of the trajectories that pose threats. This is typically done
by choosing from a set of maneuvers that eliminate con-
flicts and optimize some risk/benefit function. We propose
a probabilistic threat resolution approach explained in detail
in a subsequent section. Currently, we reuse the approach
implemented by the GenericSAA framework, which has the
following characteristics: 1) Only the most immediate threat
is addressed. 2) Resolutions are computed by examining a
small set of maneuvers that modify one of {Horizontal Po-
sition, Altitude, Speed}, in that order. 3) The first maneuver
that yields a conflict-free trajectory projection is chosen as
the solution; no optimization is performed at this point.

We have implemented most of the elements in our Tra-
jectory Prediction architecture: Leg Extraction, Segment
Matchings, and Route Prediction using a Dynamic Bayesian
Network. For the time being we have manually created
Route Database entries for a small test area near Sacra-
mento, CA. We have integrated our probabilistic trajectory
prediction with ACES’ GenericSAA framework. Generic-
SAA provides Threat Evaluation and Threat Resolution
functionality and therefore allows us to evaluate our ap-
proach in the context of a complete SAA solution. For veri-
fication purposes we have also built a lightweight simulation
and visualization mechanism (Figure 9) that allows us to 1)
Set up intruder and ownship flights and 2) Step through time
to incrementally visualize the aircraft states, projected tra-
jectories, computed threats and computed threat resolution
maneuvers.

5 Improving Probabilistic Path Prediction

As described in the previous section, we developed a proto-
type dynamic Bayesian Network model that takes advantage
of knowledge about aircraft, routes, traffic patterns, topog-
raphy, airspace, weather information, and observed commu-
nications in order to better predict the path of an intruder
aircraft. While this additional information can be very pow-
erful, the states in the Bayesian network must be tailored to
the specific area of the intruder. For example, if the intruder

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 33

Takeoff

Low
approach

Extended
finalFinal

Dwind

Xwind
departure

Xwind

Upwind
Departure

Upwind

Dwind
departure

45 Entry

Base1 Base2

Left
Xwind

departure

Overhead
entry

Overhead
270

departure

µ Bayes Net

Figure 10: Bayesian Network capturing probabilistically the relation between different characteristics of the intruder aircraft
and how they can be used to infer the probability of what the intruder may do next.

Figure 9: SAA Simulator. Diagram on the left shows rela-
tive track of intruder threats (horizontal line) compared with
track of the UAS. Each point is a time step. Text on the right
describes details of the threats (conflict time, duration, sep-
aration), and recommended resolution maneuver.

is near a particular airport, then possible next states for the
aircraft may include traffic pattern legs or approach legs for
that airport. However, if the aircraft is at 4000 ft AGL, then
those legs are not relevant as possible next states for the air-
craft. In our current prototype, we dodged this issue by in-
cluding all possible states for the local area whether or not
they were reachable by the intruder within the time window
of interest. This resulted in the current and next state nodes
in the Bayesian network having more than 30 possible val-
ues. As a result, the conditional probability tables for some
of these nodes required more than 1000 entries. Although
most of the entries in this table are zero, it is impractical to
generate these tables by hand for anything other than a lim-
ited geographical area. In addition, the conditional probabil-
ity tables are not very compact or easy to understand. Based
on our experience, we believe that it is possible to encode
this information much more succinctly, and automatically
generate the Bayesian network for a particular location. The
key to this is to recognize that traffic patterns and procedures
at an airport can be encoded as probabilistic automata. For
each leg in the procedure there are a set of possible succes-
sor legs with different probabilities. Those probabilities are
influenced by factors such as aircraft type, airspeed, vertical
speed, transponder code, etc. As a result, each set of transi-
tions for a leg form a small dynamic Bayesian network. Fig-
ure 10 provides an illustration of what this automata looks
like for a typical airport traffic pattern. An aircraft remain-
ing in the pattern (practicing landings) would transition from
Takeoff to Upwind to Crosswind (Xwind) to Downwind

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 34

Lateral resolution actions Vertical resolution actions

Standard rate left turn Climb 1000 ft/min
Half standard rate left turn Climb 500 ft/min

Straight Level
Half standard rate right turn Descend 500 ft/min

Standard rate right turn Descend 1000 ft/min

Table 1: Resolution actions.

(Dwind) to Base to Final. There are multiple possible tran-
sitions at many of the nodes. For example, from downwind,
the aircraft could transition to a close-in base (Base1) a more
distant base (Base2), could depart downwind, or do an over-
head 270 departure. The probabilities of these different op-
tions are influenced by other factors, such as aircraft type,
speed, climb/descent, altitude, transponder code, communi-
cations, etc. We believe that most of this information can be
encoded generically for traffic patterns, approaches, depar-
tures, and airways, and that we can automatically generate
the appropriate dynamic Bayesian Network for any specific
location.

We recognize that our approach to “plan recognition” is
rather specialized for aircraft trajectories. We have consid-
ered recent approaches such as that of Ramirez and Geffner
(2010). The trouble is that for this problem there is lit-
tle ability to predict the long term goal of the aircraft. In-
stead, we are interested in predicting the next plan or tra-
jectory steps. In addition, the computational overhead of the
Ramirez/Geffner approach is substantial and would likely
be impractical for this domain. One can, however, think of
the dynamic Bayesian Network as encoding the informa-
tion that would be obtained from an approach like that of
Ramirez/Geffner – the probability of each possible next plan
step is influenced by the previous actions of the aircraft, as
well as the probability of the possible goals.

6 Medium-term Probabilistic Threat

Resolution

Systems such as TCAS and ACAS X are designed to detect
and avoid near term conflicts between aircraft conflicts that
would occur in a time frame between 15 and 48 seconds.
If a Near Mid-Air Collision (NMAC) is imminent (within
25 seconds) they issue a resolution advisory that involves
climbing, descending, or constraining vertical speed (e.g.
maintain climb, or do not descend). Because these systems
deal with near term critical situations, the resolution advi-
sories can be dramatic in nature, and can be disruptive and
inefficient for the intended flight path of one or both aircraft.

It is clearly desirable to have medium or longer term
conflict detection and avoidance, so that near-term conflict
avoidance can be minimized. In particular, we would like to
recognize potential conflicts up to two minutes in advance,
resolve them using less abrupt maneuvers, and keep the air-
craft well clear of each other. Furthermore, for smaller air-
craft and UASs operating at lower altitudes, climbing and
descending is often not the best approach for resolving con-
flicts – descent may be limited by terrain or obstacles, and

climb may be limited by performance, clouds, or airspace.
As a result, most conflicts between VFR aircraft are resolved
by heading changes to go around or pass behind the other
aircraft.

Our objective is to develop and test an algorithm for
medium-term conflict resolution for conflicts that are pre-
dicted in the time frame between 30 seconds and 2 minutes.
We assume a probabilistic model of the possible pose (lo-
cation, airspeed, vertical speed, heading, and turn rate) for
the intruder aircraft as a function of time. In particular, the
model developed and described earlier may predict specific
future actions with high probability for the intruder based on
inference that the intruder is on a particular route, on an ap-
proach, in the traffic pattern, or will need to deviate based on
weather, terrain, or airspace constraints. We intend to con-
sider both lateral resolutions (e.g. standard rate left turn),
and altitude resolutions (e.g. descend 500 ft/min) as shown
in Table 1.

The vertical resolutions in Table 1 are much gentler than
those considered by TCAS and ACAS X for two reasons: 1)
most small aircraft are limited to sustained climb rates be-
tween 1000 ft/min and 1500 ft/min, and 2) because of the
longer time horizon, climbs and descents do not need to be
aggressive. From the initial state of our aircraft, each ver-
tical and lateral possibility will be considered at each time
step, which we will take to be every 15 seconds. Given that
there are 6 time steps from 2 minutes until 30 seconds, and
25 action combinations at each time step, this results in a
state space of 256 or approximately 250 million states. How-
ever, the vertical and lateral spaces can be considered inde-
pendently, resulting in two spaces of approximately 16,000
states each, a much more manageable number.1 An illustra-
tion of the lateral and vertical state spaces are shown in the
Figure 11.

There are costs associated with the different actions that
the aircraft can take. In particular, there is a cost associated
with initiating each new action (other than none), and more
aggressive actions cost more than less aggressive actions.
Given the distribution of possible projected locations for the
intruder, each of the leaf states in this state tree can be given
a value based on the clearance from the intruder, and the
cost of returning to the original route. Using dynamic pro-
gramming, this information can be backed up through the
state space to find the best action at each time step. This
approach, is similar to the approach taken in ACAS X, but
there are some differences:

1. The action space is quite different we are considering
both lateral and vertical actions, but the actions are less
aggressive.

2. The time horizon is much longer, but we use much coarser
time steps because the conflict is farther off.

1Although we are dealing with a longer time horizon than
ACAS X, and lateral as well as vertical resolutions, our discretiza-
tion of time is much coarser. As a result the search space is actually
smaller. We can get away with this because with a longer time hori-
zon it is not necessary to consider action choices at such fine time
intervals.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 35

Figure 11: The lateral and vertical action spaces for threat resolution. For lateral maneuvers, standard and half-standard rate
turns are considered every 15 seconds resulting in heading changes of 45 and 22.5 degrees respectively. For vertical maneuvers,
500 and 1000 ft/min climb and descent are considered every 15 seconds.

However, the most critical difference is due to our knowl-
edge intensive approach to prediction of the course of the in-
truder. Because the probability distribution for the intruder
is influenced by location (routes, weather, terrain), the val-
ues on the leaf nodes of the MDP are dependent on the par-
ticular situation. As a result, the MDP cannot be solved in
advance and compiled into a decision table as in ACAS X
instead it must be solved in real time. Given the size of the
MDP, we believe that this can be done in a few seconds. If
this turns out not to be the case, we can resort to approxi-
mate policy generation methods for solving the MDP, which
would reduce solution time. Because of the medium-term
time frame, optimal solution of the MDP is not as important
as for ACAS X.

One final difference between this approach and that of
ACAS X is that the value of each leaf node is also influenced
by the cost of returning the UAS to its intended course. De-
viating more from the intended course increases the penalty,
and this must be balanced with maintaining clearance from
the intruder. There is no consideration of this issue in TCAS
or ACAS X.

7 Conclusion

There is growing demand to operate UASs in civilian
airspace. Enabling this will require much better sense-and-
avoid technology, so that UASs of vastly different sizes
and capabilities can maintain separation from other aircraft.
While most current research has concentrated on near-term
collision detection and avoidance utilizing only the observed
trajectory history of an aircraft, we target mid-term detection
and avoidance utilizing a variety of information beyond just
aircraft trajectory.

We concentrated on two tasks: (1) conflict detection: uti-
lizing probabilistic path recognition; and (2) conflict reso-

lution: utilizing fast online probabilistic path planning. Our
work is preliminary. We have implemented the components
necessary for the conflict detection portion and integrated it
with the ACES traffic simulation system. We are refining
and improving the dynamic Bayesian Network prediction
and plan to implement our probabilistic conflict resolution
approach. We hope to evaluate the techniques using a large
database of actual air traffic trajectories that have been col-
lected and made available through related efforts at NASA.

8 Acknowledgements

We would like to thank Eric Mueller for helping us hone our
ideas on this project. We would like to thank Confesor San-
tiago for help with the ACES simulation environment, and
the GenericSAA module developed for ACES. This work
was supported by the NASA Aeronautics Research Institute
(NARI).

References

Airspace Systems Division, NASA Ames Research
Center. Airspace Concept Evaluation System (ACES).
http://www.aviationsystemsdivision.arc.
nasa.gov/research/modeling/aces.shtml.
Barnhart, R.; Hottman, S.; Marshall, D.; and Shappee, E.,
eds. 2012. Introduction to Unmanned Aircraft Systems. CRC
Press.
Chen, W.-Z.; Wong, L.; Kay, J.; and Raska, V. 2009.
Autonomous sense and avoid (SAA) for unmanned
air systems (UAS). In Systems Concepts and Integra-

tion Panel (SCI) Symposium, volume RTO-MP-SCI-
202. NATO Science and Technology Organization.
ftp://ftp.rta.nato.int/PubFullText/RTO/
MP/RTO-MP-SCI-202/MP-SCI-202-28.doc.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 36

Federal Aviation Administration. 2009. Literature review
on detect, sense, and avoid technology for unmanned air-
craft systems. Technical Report DOT/FAA/AR-08/41, U.S.
Department of Transportation. http://www.tc.faa.
gov/its/worldpac/techrpt/ar0841.pdf.
Federal Aviation Administration. 2011. TCAS II,
Version 7.1. Technical Report HQ 111358, U.S. De-
partment of Transportation. http://www.faa.
gov/documentLibrary/media/Advisory_
Circular/TCAS II V7.1 Intro booklet.pdf.
Francis DiLego, J.; Hitchings, J.; Salisbury, C.; Simmons,
H.; Sterling, J.; and Cai, J. 2009. Joint Airspace Man-
agement and Deconfliction (JASMAD). Technical Report
AFRL-RI-RS-TR-2009-13, Air Force Research Laboratory.
Kochenderfer, M.; Holland, J.; and Chryssanthacopoulos, J.
2012. Next-generation airborne collision avoidance system.
Lincoln Laboratory Journal 19(1):17–33.
Ramı́rez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In Proceedings

of the Twenty-Fourth AAAI Conference on Artificial Intelli-

gence (AAAI-10), 1121–1126. AAAI Press.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 37

AI-MIX: Using Automated Planning to Steer Human Workers Towards Better
Crowdsourced Plans

Lydia Manikonda Tathagata Chakraborti Sushovan De
Kartik Talamadupula Subbarao Kambhampati

Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287 USA

{lmanikon, tchakra2, sushovan, krt, rao} @ asu.edu

Abstract

One subclass of human computation applications are those
directed at tasks that involve planning (e.g. tour planning)
and scheduling (e.g. conference scheduling). Interestingly,
work on these systems shows that even primitive forms of
automated oversight on the human contributors helps in sig-
nificantly improving the effectiveness of the humans/crowd.
In this paper, we argue that the automated oversight used in
these systems can be viewed as a primitive automated plan-
ner, and that there are several opportunities for more sophis-
ticated automated planning in effectively steering the crowd.
Straightforward adaptation of current planning technology is
however hampered by the mismatch between the capabili-
ties of human workers and automated planners. We identify
and partially address two important challenges that need to
be overcome before such adaptation of planning technology
can occur: (i) interpreting inputs of the human workers (and
the requester) and (ii) steering or critiquing plans produced
by the human workers, armed only with incomplete domain
and preference models. To these ends, we describe the im-
plementation of AI-MIX, a tour plan generation system that
uses automated checks and alerts to improve the quality of
plans created by human workers; and present a preliminary
evaluation of the effectiveness of steering provided by auto-
mated planning.

1 Introduction
In solving computationally hard problems – especially those
that require input from humans, or for which the complete
model is not known – human computation has emerged
as a powerful and inexpensive approach. One such core
class of problems is planning. Several recent efforts have
started looking at crowd-sourced planning tasks (Law and
Zhang 2011; Zhang et al. 2012; 2013; Lasecki et al. 2012;
Lotosh, Milo, and Novgorodov 2013). Just like in a formal
organization, the quality of the resulting plan depends on
effective leadership. We observe that in most of these exist-
ing systems, the workers are steered by primitive automated
components that merely enforce checks and ensure satisfac-
tion of simple constraints. Encouragingly, experiments show
that even such primitive automation improves plan quality,
for little to no investment in terms of cost and time.

This begs the obvious question: is it possible to improve
the effectiveness of crowdsourced planning even further by
using more sophisticated automated planning technologies?

It is reasonable to expect that a more sophisticated auto-
mated planner can do a much better job of steering the crowd
(much as human managers “steer” their employees). Indeed,
work such as (Law and Zhang 2011) and (Zhang et al. 2012)
is replete with hopeful references to the automated planning
literature. There exists a vibrant body of literature on au-
tomated plan generation, and automated planners have long
tolerated humans in their decision cycle – be it mixed ini-
tiative planning (Ferguson, Allen, and Miller 1996) or plan-
ning for teaming (Talamadupula et al. 2010). The context of
crowdsourced planning scenarios, however, introduces a re-
versed mixed initiative planning problem – the planner must
act as a guide to the humans, who are doing the actual plan-
ning. The humans in question can be either experts who
have a stake in the plan that is eventually created, or crowd
workers demonstrating collective intelligence.

In this paper, we present AI-MIX (Automated Im-
provement of Mixed Initiative eXperiences), a new system
(Manikonda et al. 2014) that implements a general architec-
ture for human computation systems aimed at planning and
scheduling tasks. AI-MIX foregrounds the types of roles an
automated planner can play in such systems, and the chal-
lenges involved in facilitating those roles. The most critical
challenges include:

Interpretation: Understanding the requester’s goals as
well as the crowd’s plans from semi-structured or unstruc-
tured natural language input.

Steering with Incompleteness: Guiding the collaborative
plan generation process with the use of incomplete mod-
els of the scenario dynamics and preferences.

The interpretation challenge arises because human workers
find it most convenient to exchange / refine plans expressed
in a representation as close to natural language as possible,
while automated planners typically operate on more struc-
tured plans and actions. The challenges in steering are mo-
tivated by the fact that an automated planner operating in a
crowdsourced planning scenario cannot be expected to have
a complete model of the domain and the preferences; if it
does, then there is little need or justification for using human
workers! Both these challenges are further complicated by
the fact that the (implicit) models used by the human work-
ers and the automated planner are very likely to differ in
many ways, making it challenging for the planner to critique
the plans being developed by the human workers.

���������������������	
�����
������	
�������

����	�������	���	�
��������	�	�	����
����	��
�������ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 38

Figure 1: A generalized architecture for crowdsourced plan-
ning systems.

In the rest of the paper we describe how these challenges
are handled in AI-MIX, and present an evaluation of their ef-
fectiveness in steering the crowd. The paper is organized as
follows. We first look at the problem of planning for crowd-
sourced planning in more detail, and present a generalized
architecture for this task. Next, we consider the roles that an
automated planner can play within such an architecture, and
discuss the challenges that need to be tackled in order to fa-
cilitate those roles. We then describe AI-MIX and present
a preliminary evaluation of the effectiveness of the steering
provided by automated planning on Amazon’s MTurk plat-
form1. We hope that this work will spur more directed re-
search on the challenges that we have identified.

2 Planning for Crowdsourced Planning
The crowdsourced planning problem involves constructing a
plan from a set of activities suggested by the crowd (hence-
forth referred to as the turkers) as a solution to a task, usu-
ally specified by a user called the requester. The requester
provides a high-level description of the task – most often in
natural language – which is then forwarded to the turkers.
The turkers can perform various roles, including breaking
down the high-level task description into more formal and
achievable sub-goals (Law and Zhang 2011), or adding ac-
tions into the plan that support those sub-goals (Zhang et
al. 2012). The term planner is used to refer to the automated
component of the system, and it performs various tasks rang-
ing from constraint checking, to optimization and schedul-
ing, and plan recognition. The entire planning process must
itself be iterative, proceeding in several rounds which serve
to refine the goals, preferences and constraints further until a
satisfactory plan is found. A general architecture for solving
this crowdsourced planning problem is depicted in Figure 1.

2.1 Roles of the planner
The planning module, or the automated component of the
system, can provide varying levels of support. It accepts

1Amazon Mechanical Turk, http://www.mturk.com

both the sub-goals SG, and crowd’s plan PC , as input from
the turkers. This module analyzes the current plan generated
by the crowd, as well as the sub-goals, and determines con-
straint and precondition violations according to the model
MP of the task that it has. The planner’s job is to steer the
crowd towards more effective plan generation.

However, the three main actors – turkers, requester, and
planner – need a common space in which to interact and
exchange information. This is achieved through a common
interactive space – the Distributed Blackboard (DBb) – as
shown in Figure 1. The DBb acts as a collaborative space
where information related to the task as well as the plan that
is currently being generated is stored, and exchanged be-
tween the various system components.

In contrast to the turkers, the planner cannot hope for very
complex, task-specific models, mostly due to the difficulty
of creating such models. Instead, a planner’s strong-suit is to
automate and speed-up the checking of plans against what-
ever knowledge it does have. With regard to this, the plan-
ner’s model MP can be considered shallow with respect to
preferences, but may range the spectrum from shallow to
deep where domain physics and constraints are concerned
(Zhuo, Kambhampati, and Nguyen 2012). The planning
process itself continues until one of the following conditions
(or a combination thereof) is satisfied:
• The crowd plan PC reaches some satisfactory threshold

and the requester’s original goal G is fulfilled by it; this
is a subjective measure and is usually determined with the
intervention of the requester.

• There are no more outstanding alerts, and all the sub-goals
in SG are supported by one (or more) actions in PC .

3 Planning Challenges
From the architecture described in Figure 1, it is fairly ob-
vious that a planner (automated system) would interact with
the rest of the system to perform one of two tasks: (1) inter-
pretation and (2) steering.

Interpretation is required for the planner to inform itself
about what the crowd is doing; steering is required for the
planner to tell the crowd what they should be doing.

3.1 Interpretation of the Crowd’s Evolving Plan
The planner must interpret the information that comes from
the requester, and from the crowd, in order to act on that
information. There are two ways in which the planner can
ensure that it is able to understand that information:

Force Structure The system can enforce a pre-determined
structure on the input from both the requester, and the crowd.
This can by itself be seen as part of the model MP , since
the planner has a clear idea about what kind of information
can be expected through what channels. The obvious dis-
advantage is that this reduces flexibility for the turkers. In
the tour planning scenario (our main application domain that
we explain in Section. 4), for example, we might force the
requester to number his/her goals, and force the turkers to
explicitly state which goals their proposed plan aims to han-
dle (c.f. (Zhang et al. 2012)). The turkers could also be
required to add other structured attributes to their plans such
as the duration and cost of various activities (actions).

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 39

Extract Structure The planner can also extract structure
from the turker inputs to look for specific action descrip-
tions that are part of the planner’s model MP , in order to
understand what aims a specific plan is looking to achieve.
Although this problem has connections to plan recogni-
tion (Ramı́rez and Geffner 2010), it is significantly harder
as it needs to recognize plans not from actions, but rather
textual descriptions. Thus it can involve first recognizing
actions and their ordering from text, and then recognizing
plans in terms of those actions. Unlike traditional plan
recognition that starts from observed plan traces in terms of
actions or actions and states, the interpretation involves first
extracting the plan traces. Such recognition is further com-
plicated by the impedance mismatch between the (implicit)
planning models used by the human workers, and the model
available to the planner.

Our system uses both the techniques described above to
gather relevant information from the requester and the turk-
ers. The requester provides structured input that lists their
constraints as well as goals (and optionally cost and dura-
tion constraints), and can also provide a free unstructured
text description for the task. The turkers in turn also pro-
vide semi-structured data - they are given fields for activity
title, description, cost and duration. The turkers can also en-
ter free text descriptions of their suggestions; the system can
then automatically extract relevant actions by using Natu-
ral Language Processing (NLP) methods to match the input
against the planner’s model MP .

3.2 Steering the Crowd’s Plan
There are two main kinds of feedback an automated planner
can provide to the human workers:

Constraint Checking One of the simplest ways of gener-
ating helpful suggestions for the crowd is to check for quan-
titative constraints imposed by the requester that are violated
in the suggested activities. In terms of the tour planning sce-
nario, this includes: (i) cost of a particular activity; and (ii)
the approximate duration of an activity. If the requester pro-
vides any such preferences, our system is able to check if
they are satisfied by the crowd’s inputs.

Constructive Critiques Once the planner has some
knowledge about the plan that the turkers are trying to
propose (using the extraction and recognition methods de-
scribed above), it can also try to actively help the creation
and refinement of that plan by offering suggestions as part
of the alerts. These suggestions can vary depending on the
depth of the planner’s model. Some examples include: (i)
simple notifications of constraint violations, as outlined pre-
viously; (ii) plan critiques (such as suggestions on the order
of actions in the plan and even what actions must be present);
(iii) new plans or plan fragments because they satisfy the
requester’s stated preferences or constraints better; (iv) new
ways of decomposing the current plan (Nau et al. 2003); and
(v) new ways of decomposing the set of goals SG.

4 System Description
The following section describes in detail the AI-MIX sys-
tem that was deployed on Amazon’s MTurk platform to en-

gage the turkers in a tour planning task. The system is sim-
ilar to Mobi (Zhang et al. 2012) in terms of the types of
inputs it can handle and the constraint and quantity checks
that it can provide (we discuss this further in Section 5.1).
However, instead of using structured input, which severely
restricts the turkers and limits the scope of their contribu-
tions, our system is able to parse natural language from user
inputs and reference it against relevant actions in a domain
model. This enables more meaningful feedback and helps
provide a more comprehensive tour description.

4.1 Requester Input
The task description, as shown in Figure 2, is provided by
the requester in the form of a brief description of their pref-
erences, followed by a list of activities they want to execute
as part of the tour, each accompanied by a suitable hashtag.
For example, the requester might include one dinner activ-
ity and associate it with the tag #dinner. These tags are
used internally by the system to map turker suggestions to
specific tasks. The upper half of Figure 2 shows an example
of a requester task, which includes a block of text for the
turkers to extract context from, and structured task requests
associated with hashtags.

4.2 Interface for Turkers
In addition to the task description, the AI-MIX interface
also contains a section that lists instructions for success-
fully submitting a Human Intelligence Task (HIT) on Ama-
zon MTurk. HIT is the individual task that the turkers work
on, in this context consisting of either adding an action or
a critique, as discussed in more detail later. The remaining
components, arranged by their labels in the figure, are:

1. Requester Specification: This is the list of requests and
to-do items that are yet to be satisfied. All the unsatisfied
constituents of this box are initially colored red. When a
tag receives the required number of supporting activities,
it turns from red to green. Tags that originated from the
requester are classified as top-level tags, and are always
visible. Tags that are added by the automated planner or
by turkers are classified as lower priority, and disappear
once they are satisfied by a supporting activity.

2. Turker Inputs: Turkers can choose to input one of two
kinds of suggestions: (i) a new action to satisfy an existing
to-do item; or (ii) a critique of an existing plan activity.

3. Turker Responses: The “Existing Activities” box dis-
plays a full list of the current activities that are part of the
plan. New turkers may look at the contents of this box in
order to establish the current state of the plan. This com-
ponent corresponds to the Distributed Blackboard men-
tioned in Section 2.1.

4. Planner Critiques: The to-do items include automated
critiques of the current plan that are produced by the plan-
ner. In the example shown, “broadwayshow showing” is
a planner generated to-do item that is added in order to
improve the quality of the turkers’ plan.

Finally, the right hand portion of the interface consists of a
map, which can be used by turkers to find nearby points of
interest, infer routes of travel or the feasibility of existing

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 40

Figure 2: The AI-MIX interface showing the distributed blackboard through which the crowd interacts with the system.

suggestions, or even discover new activities that may satisfy
some outstanding tags.

Activity Adddition The “Add Activity” form is shown in
Figure 3. Turkers may choose to add as many new activi-
ties as they like. Each new activity is associated with one of
the to-do tags. After each activity is submitted, a quantita-
tive analysis is performed where the activity is (i) checked
for possible constraint (duration or cost) violations; or (ii)
critiqued by the planner.

Action Extraction In order to extract meaning from the
new activities described by the turkers, the system performs
parts of speech (PoS) tagging on the input text using the
Stanford Log-Linear Part-of-Speech tagger (Toutanova et al.
2003). It identifies the name of the suggested activity and
places that the turkers are referring to using the verb and
noun parts of the tagger’s output respectively.

Sub-Goal Generation AI-MIX uses the same tags used
by turkers while inputting activities in order to determine
whether the planner has additional subgoal annotations on
that activity. To facilitate this, the planner uses a primi-
tive PDDL (McDermott et al. 1998) domain description of
general activities that may be used in a tour-planning appli-
cations – this description corresponds to the planner model
MP introduced earlier. Examples of actions in MP include
high level activities such as visit, lunch, shop etc.
Each activity is associated with a list of synonyms, which
helps the planner in identifying similar activities. Currently,
we generate these synonyms manually, but it is possible to
automate this via the use of resources such as WordNet.
Each action also comes with some generic preconditions.
When the planner determines that a turker generated activity
matches one of the actions from its model, it generates sub-
goals to be added as to-do items back in the interface based

on the preconditions of that action. An example of an action
description (for the “visit” action) is given below:
(:action visit ;; synonyms: goto, explore

:parameters (?p - place)

:precondition (at ?p) ;; Getting to ?p,

;; Entrance fee ?p, ;; Visiting hours ?p

:effect (visited ?p))

In the example given above, the planner would pop up
the three preconditions – Getting to, Entrance fee,
and Visiting hours – as to-do sub-goals for any
visit actions suggested by turkers. The system also pro-
vides some helpful text on what is expected as a resolution
to that to-do item – this is indicated by the yellow “planner
critique” box in Figure 2.

Constraint Checking In addition to generating sub-goals
for existing activities, our system also automatically checks
if constraints on duration and cost that are given by the
requester are being met by the crowd’s plan. If these
constraints are violated, then the violation is automatically
added to the to-do stream of the interface, along with a de-
scription of the constraint that was violated. Turkers can
then choose to add an action that resolves this to-do item
using the normal procedure.

Adding Turker Critiques The turkers can also add cri-
tiques of the actions in the existing plan. To do this, they use
the form shown in the lower half of Figure 3. The turkers
click on an existing activity, and enter the note or critique
in a text box provided. Additionally, they are also asked to
enter a child tag, which will be used to keep track of whether
an action has been added to the plan that resolves this issue.
Turkers can add as many critiques as they want.

Though the current system uses only a preliminary form
of automated reasoning, this effort can be seen as the first

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 41

Figure 3: Adding and critiquing activities (plan actions) in the AI-MIX system.

step towards incorporating more sophisticated methods for
plan recognition and generation (Talamadupula and Kamb-
hampati 2013). A video run-through of our system can be
found at the following URL: http://youtu.be/73g3yHClx90.

5 Experiments
5.1 Experimental Setup
For our study, HITs were made available only to the turk-
ers within US (since the requests involved locations inside
the US) with a HIT approval rate greater than 50%. Turk-
ers were paid 20 cents for each HIT, and each turker could
submit 10 HITs per task. We used tour planning scenar-
ios for six major US cities, reused from the Mobi system’s
evaluation (Zhang et al. 2012). To measure the impact of
automated critiquing on the generated plans, we compared
the results from three experimental conditions:

C1: Turkers could give suggestions in free text after reading
the task description - there were no automated critiques.

C2: Turkers quantified their suggestions in terms of cost and
duration, and the system checked these constraints for vi-
olations with respect to the requester demands.

C3: In addition to C2, the system processed free-form text
from turker input, and extracted actions to match with our
planning model in order to generate alerts for sub-goals
and missing preconditions.

C1 and C2 were compared to the proposed approach, C3,
separately. Each set was uploaded at the same time, with
the same task description and HIT parameters. In the first
run, C3 and C2 were compared on 6 scenarios (New York,
Chicago, San Francisco, Las Vegas, Washington and Los
Angeles) and were given 2 days before the HITs were ex-
pired. The interfaces for both C3 and C2 were made identi-
cal to eliminate any bias. In the second run, the conditions
C1 and C3 were run over a period of one day, for the two sce-
narios which were most popular in the first run (New York
and Chicago). For each of these tasks, the requester prepop-
ulated the existing activities with one or two dummy inputs
that reflect the kinds of suggestions she was looking for. In
sum, we had more than 150 turkers who responded to our
HITs. The analysis that follows is from the 35 turkers who
contributed to the final comparisons among C1, C2, and C3.

5.2 Task Completion Latency
When C3 was compared to C1 over a period of one day, we
found that C3 received four responses from 3 distinct turk-
ers, whereas C1 failed to attract any responses. This might
indicate that the presence of the “TO DO” tags generated by
the automated critiquing component was helpful in engag-
ing the turkers and guiding them towards achieving specific
goals. However, there may also be alternate explanations
for the fact that C1 did not receive any inputs, such as turker
fatigue, or familiarity with the C3 interface from previous
runs. There is need for further experimentation before these
results can be conclusively proved.

We also looked at the number of HITs taken to complete
the tasks for each of the scenarios. After the HITs were
expired, none of the tasks were entirely complete (a task is
“completed” if there are no more outstanding to-do items),
but C2 had 3.83 unfulfilled tags per HIT as compared to 10.5
for C3. As expected, the task completion latency seems to
have increased for C3, since alerts from the system drive up
the number of responses required before all the constraints
are satisfied. However, as shown next, the increased quality
of generated plans may justify this additional latency.

5.3 Generated Tour Plan Quality
We see that the quality of the plans, in terms of detail and de-
scription, seems to increase in C3, since we now have users
responding to planner critiques to further qualify suggested
activities. For example, a turker suggested “not really fun,
long lines and can not even go in and browse around” in re-
sponse to a planner generated tag (related to a “fun club”
activity suggested previously), while another suggested a
“steamer” in response to a planner alert about “what to eat
for lunch”. A comparison between the plans generated for
C2 and C3 (for New York City) is given in Table 1. This
seems to indicate that including a domain description in ad-
dition to the simplistic quantity and constraint checks in-
creases the plan quality.

5.4 Role Played by the Planner Module
We now look at some statistics that indicate the role played
by the automated module in the tasks. We received a to-
tal of 31 new activity suggestions from turkers, of which 5

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 42

Show: Go to TKTS half ticket discount booth. You have to stand in line
early but it’s an authentic nyc experience #show(3 hours)(200.0 $)
Show: Go to show #show(3 hours)(200.0 $)
Show: ABSOLUTELY CANNOT go wrong with Phantom of the Opera
#show(3 hours)(200.0 $)
Lunch: Alice’s Tea Cup #lunch(20.0 $)
Design: Walk around the Garment District (go into shops) just south of
Times Square. They often print their own fabrics. #design(2 hours)(0.0 $)
Dessert: Serendipity #dessert(1 hours)(10.0 $)
piccolo angolo: Italian in the Village - real deal #italiandinner(2
hours)(60.0 $)
Lombardi’s Pizza: #italian dinner #italiandinner todo1
Ice Cream: http://www.chinatownicecreamfactory.com/ #italiandin-
ner todo0
#lunch: Mangia Organics #lunch todo0
watch Wicked (musical): Do watch Wicked the musical. It’s a fantas-
tic show and one of the most popular on Broadway right now! #broad-
wayshow(3 hours)(150.0 $)
watch How to Succeed in Business: Also a great show, a little less grand
than Wicked. #broadwayshow(3 hours)(150.0 $)
Activity Steamer: #lunch #lunch todo1
Paradis To-Go: Turkey & Gruyere is pretty delicious. The menu is simple,
affordable, but certainly worth the time #lunch(1 hours)(10.0 $)
cupcakes!: Magnolia Bakery on Bleecker in the Village #dessert(1
hours)(10.0 $)

Table 1: Sample activity suggestions from turkers for the
two conditions: C2 (top) and C3 (bottom).

violated quantity constraints. The C3 interface attracted 39
responses, compared to 28 for C2, which may indicate that
the planner tags encouraged turker participation.

Note that in the AI-MIX interface, there is no perceptual
difference between the critiques generated by the planner
and the critiques suggested by humans. With this in mind,
there were 8 flaws pointed out by humans, but none were
acted upon by other turkers; the planner on the other hand
generated 45 critiques, and 7 were acted upon and fixed by
turkers. This seems to indicate that turkers consider the plan-
ner’s critiques more instrumental to the generation of a high
quality plan than those suggested by other turkers. Though
these results are not entirely conclusive, and might also be
attributed to possibilities like the critiques of the planner be-
ing more popular because they might have been easier to
solve; there is enough evidence to suggest that the presence
of an automated system does help to engage and guide the
focus of the crowd.

6 Conclusion
In this paper, we presented a system, AI-MIX, that is a first
step towards using an automated planner in a crowdsourced
planning application. We identified two major challenges in
achieving this goal: interpretation and steering. We then de-
scribed the framework of AI-MIX, and showed how these
challenges were handled by our system – using forced struc-
ture and structure extraction for interpreting actions; and us-
ing constraint checking and automated planner critiques for
steering. We also presented preliminary empirical results
over the tour planning domain, and showed that using an au-
tomated planner results in the generation of better quality
plans. Interestingly, it is possible to improve the complete-

ness of the domain model of a planner over time (Yang, Wu,
and Jiang 2007). We are continuing to run experiments us-
ing more scenarios and larger time scales to provide further
validation for our hypotheses. We are also looking at the
problem of eliciting information (Kaplan et al. 2013) from
the crowd in order to go from the current list of activities
suggested by the crowd, to a more structured plan in the tra-
ditional sense of the word.

Acknowledgments. This research is supported in part
by the ARO grant W911NF-13-1-0023, the ONR grants
N00014-13-1-0176 and N0014-13-1-0519, and a Google
Research Grant.

References
Ferguson, G.; Allen, J.; and Miller, B. 1996. Trains-95: Towards a
mixed-initiative planning assistant. In Proc. of AIPS-96, 70–77.
Kaplan, H.; Lotosh, I.; Milo, T.; and Novgorodov, S. 2013. An-
swering planning queries with the crowd. In Proc. of VLDB En-
dowment 6(9):697–708.
Lasecki, W. S.; Bigham, J. P.; Allen, J. F.; and Ferguson, G. 2012.
Real-time collaborative planning with the crowd. In Proc. of AAAI.
Law, E., and Zhang, H. 2011. Towards large-scale collaborative
planning: Answering high-level search queries using human com-
putation. In Proc. of AAAI.
Lotosh, I.; Milo, T.; and Novgorodov, S. 2013. CrowdPlanr: Plan-
ning Made Easy with Crowd. In Proc. of ICDE. IEEE.
McDermott, D.; Knoblock, C.; Veloso, M.; Weld, S.; and Wilkins,
D. 1998. PDDL–the Planning Domain Definition Language: Ver-
sion 1.2. Yale Center for Computational Vision and Control, Tech.
Rep. CVC TR-98-003/DCS TR-1165.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu,
D.; and Yaman, F. 2003. Shop2: An HTN planning system. JAIR
20:379–404.
Ramı́rez, M., and Geffner, H. 2010. Probabilistic plan recognition
using off-the-shelf classical planners. In Proc. of AAAI.
Talamadupula, K., and Kambhampati, S. 2013. Herding the
crowd: Automated planning for crowdsourced planning. CoRR
abs/1307.7720.
Talamadupula, K.; Benton, J.; Kambhampati, S.; Schermerhorn, P.;
and Scheutz, M. 2010. Planning for human-robot teaming in open
worlds. TIST 1(2):14.
Toutanova, K.; Klein, D.; Manning, C. D.; and Singer, Y. 2003.
Feature-Rich Part-of-Speech Tagging with a Cyclic dependency
network. In Proc. of HLT-NAACL.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action models from
plan examples using weighted MAX-SAT. Artificial Intelligence
Journal.
Zhang, H.; Law, E.; Miller, R.; Gajos, K.; Parkes, D.; and Horvitz,
E. 2012. Human Computation Tasks with Global Constraints. In
Proc. of CHI, 217–226.
Zhang, H.; Andre, P.; Chilton, L.; Kim, J.; Dow, S. P.; Miller, R. C.;
MacKay, W.; and Beaudouin-Lafon, M. 2013. Cobi: Communi-
tysourcing Large-Scale Conference Scheduling. In CHI Interactiv-
ity 2013.
Zhuo, H. H.; Kambhampati, S.; and Nguyen, T. A. 2012. Model-
lite case-based planning. CoRR abs/1207.6713.
Manikonda, L.; Chakraborti, T.; De, S.; Talamadupula, K.; Kamb-
hampati, S. 2014. AI-MIX: Using Automated Planning to Steer
Human Workers Towards Better Crowd Sourced Plans. To appear
in Proc. of IAAI.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 43

A machine learning surrogate for rotorcraft noise optimization

K. Brent Venable
Tulane University and

IHMC, USA
kvenabl@tulane.edu

Robert A Morris
NASA Ames, USA

robert.a.morris@nasa.gov

Matthew Johnson
IHMC, USA

mjohnson@ihmc.us

Aliyeh Mousavi
Stanford University, USA
amousavi018@gmail.com

Nikunj Oza
NASA Ames, USA

nikunj.c.oza@nasa.gov

Abstract
Recent increase in interest in using rotorcraft (heli-
copters and tilt-rotor craft) for public transportation has
spurred research in making rotorcraft less noisy, partic-
ularly as they land. The ground noise associated with
landing trajectories followed by rotorcraft depends in
part on the changes in altitude and velocity of the rotor-
craft during flight. Models of ground noise taking these
altitude and velocity effects into account can be used in
an optimization process to determine a set of pilot op-
erations that will lead to noise-minimal landing paths.
The Rotorcraft Noise Model (RNM) is one model cur-
rently used to analyze rotorcraft landing paths and de-
termine the area-averaged ground noise they produce.
However, this model is very slow and inefficient in the
optimization process. This project aims to explore a ma-
chine learning method, namely Gaussian Processes, to
produce faster, but approximate, noise models that can
replace the RNM. The experimental results we provide
suggest that machine learning has the potential to offer
useful approximations to complex engineering systems
for evaluating the cost of design decisions, specifically,
the design of paths using planners like A* and proba-
bilistic road maps.

Introduction
Recently, there has been greater interest within the aeronau-
tics community in using rotorcraft for commercial air trans-
portation. A significant obstacle to implementing this type
of transportation that in large part has deterred commercial
rotorcraft use is the significant amount of ground noise pro-
duced during landing. While noise is very difficult to accu-
rately model, it does have some non-linear dependence on
the changes in altitude and velocity of the rotorcraft during
flight. On the most basic level, ground noise increases as a
result of an decrease in altitude or an increase in velocity.
These phenomena are illustrated in the time-lapse heat maps
shown in Figures 1 and 2. Nevertheless, the complexity of
the relationship between maneuvering and noise leaves am-
ple margins of improvement with respect to pilots’ rule of
thumbs which have been employed in the past.

The relationships between ground noise, altitude, and ve-
locity can be used to develop a model that predicts the

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Contour plot and descending pattern representing
the effect of change in altitude on ground noise in a landing
approach taking place from left to right. In the contour plots,
orange and red colors mean more noise.

Figure 2: Effect of change in velocity on ground noise on
ground noise in a landing approach taking place from left
to right. On the left the contour plots are shown, while on
the left an increased density of dots represents an increased
velocity.

amount of ground noise produced by different rotorcraft.
This model can be interfaced with optimization search al-
gorithms from Artificial Intelligence in order to determine a
set of pilot operations that will lead to noise-minimal land-
ing paths. The general approach for this optimization pro-
cedure is shown in Figure 3. The search procedure begins
by iteratively generating feasible landing paths. These paths
and the relevant information about them are then input into a
noise model, which then produces an estimate of the amount
of ground noise produced by the paths. The optimizer uses
the cost information to redirect the search in the direction of
quieter paths, until a termination condition is reached. Stan-
dard optimization algorithms which have been used include
A* (Lindsay, Morris, and Venable 2012), Stochastic Local
search (SLS) (Morris et al. 2012) and Probabilistic Road

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 44

Maps (PRM) (Morris et al. 2013).

Figure 3: Optimization Approach.

One model currently used to analyze rotorcraft landing
paths and determine the area-averaged ground noise they
produce is the Rotorcraft Noise Model (RNM) (RNM 2007).
This simulation tool developed at NASA Langley Research
Center utilizes a vehicle source noise database, experimen-
tal measurements, and models in order to simulate how ro-
torcraft noise propagates through the atmosphere and is ul-
timately perceived on the ground. While relatively accurate,
the RNM is very slow and thus degrades the optimization
process due to its inefficiency. The goal of this work is to
explore a method from machine learning for replacing the
RNM with a faster, but approximate, noise model. As shown
in the experimental section, this surrogate model improves
the performance of the optimization process by allowing for
faster evaluation of candidate paths than is provided by run-
ning RNM.

Background
Rotorcraft Noise and Noise Simulation
Helicopter noise sources include the main rotor, the tail ro-
tor, the engine(s), and the drive systems. The most notice-
able acoustical property of helicopters is referred to as BVI
(Blade Vortex Interaction) noise. This impulsive noise oc-
curs during high-speed forward flight as a result of blade
thickness and compressible flow on the advancing blade. A
common noise measure is the Sound Exposure Level (SEL).
SEL provides a comprehensive way to describe noise events
for use in modeling and comparing noise environments. The
average SEL value over the plane is called the SEL average
(SEL

av

). The equation for SEL
av

is

SELav = 10log10⌃n(⌃i10
SPLdB,i,n/10�ti,n/T0)�An/A0 [1]

Here, n ranges over the locations on the ground plane and i
refers to path elements. SPL

db,i,n

refers to the Sound Pres-
sure Level in decibels for a location and a path element,
and the �s are elemental ground- or trajectory elements. A0

refers to the area of the ground plane and T0 is a reference
interval of one second.

One challenge in performing a systematic study of ap-
proach trajectories for optimization is the cost of verifying
results. The most accurate means of verification is through

field tests, but these are too costly and time-consuming to
perform on a casual basis. Fortunately, there are a num-
ber of robust noise models that allow for the evaluation of
trajectories through simulation. One such modeling tool is
the Rotorcraft Noise Model (RNM) (RNM 2007), a simu-
lation program that predicts how the sound of a rotorcraft
propagates through the atmosphere and accumulates on the
ground. The core of the RNM method is a database of ve-
hicle source noises defined as sound spheres. Spheres are
obtained through measured test data or through models. The
spheres allow for a representation of the 3D noise directivity
patterns associated with the operating rotorcraft. A sphere is
associated with one noise source and one flight condition (a
value for flight path angle and airspeed). Each sphere rep-
resents constant airspeed conditions for a given flight path
angle. The sound source properties are extracted from the
sphere database using a linear interpolation of both required
speed and flight path angle.

The input to RNM consists of a set of computational pa-
rameters, including identity of rotorcraft, and the dimensions
and resolution of a grid that will display output noise and a
specification of the flight trajectory, including position, ve-
locity and orientation. RNM outputs a time history and the
effective SEL (or similar metrics) at any location along the
path. The result is usually displayed as a contour plot (Fig-
ure 4) over a ground plane. Each color corresponds to a dB
level (redder and lighter colors noisier). One important pa-
rameter that controls performance of RNM is the grid resolu-
tion. The grid resolution specifies the distance between grid
points, and thus the size of the area of the ground surface (in
the SEL computation) being evaluated. Higher resolution
means more accurate prediction of ground noise, but at the
cost of slower run times for simulation. Experience shows a
dramatic degradation of performance with increased resolu-
tion (RNM 2007).

Figure 4: A Noise Contour Plot.

In (Morris et al. 2012) a method for aggregating the in-
formation in the contour plot into a scalar value to be used
within noise minimization algorithms was proposed. The
method is based on a Binning Heuristic function called
Bin. Given trajectory t, and a SEL value for each grid

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 45

point (x, y), denoted SEL(t, x, y), a sequence of decreas-
ing ranges, hr1, r2, . . . , rni partitioning the SEL values of
the grid points is defined. In particular, each range cor-
responds to an interval of SEL values which are associ-
ated with a similar level of annoyance (FIC-Noise 1992).
Moreover, given S

i

(t) = {(x, y)|SEL(t, x, y) 2 r
i

}, the
set of grid values within the range r

i

, a vector b(t) =
hb1(t), b2(t), . . . , bn(t)i, where b

i

(t) = |S
i

(t)|, represents
the number of grid points with an associate SEL value within
each range. The bin-score of solution t can then be defined
as Bin(t) = ⌃

i=1...nwi

b
i

(t) where w
i

is the weight associ-
ated to the i-th bin, which is proportional to the annoyance
level of the corresponding range and is such that w

i

> w
i+1

and ⌃
i=1,...,nwi

= 1 . Thus a solution that assigns lower
levels of noise to larger regions of the grid is to be preferred.
Weights can be tuned in various ways to penalize the pres-
ence of noisy regions in the grid.

A* and Probabilistic Road Maps
In this paper we will present a surrogate based on a ma-
chine learning technique that predicts the Bin Score value
given a trajectory in input. The overall goal is to evaluate
the impact of replacing the Bin scores computed from con-
tour plots generated by RNM with scores predicted by the
surrogate during optimization. The actual search will be car-
ried out according to the well-known path planning algo-
rithm A*. A* is a complete best-first search algorithm for
discrete planning that is based on incrementally expanding
a partial solution s through the use of a function f(s) which
estimates the minimal cost path from the start through s.
f(s) is the sum of the cost g(s) to reach the state plus a
heuristic h(s) that estimates the lowest cost path to achieve
the goal state that passes through s. A* enforces a best-first
search strategy via a priority queue (called the open list) or-
dered by f -values. At each iteration, the state (node) with the
lowest f -value is removed from the open list, and its neigh-
bors generated and evaluated. The algorithm continues until
a goal node has a lower value than any node in the queue.
A* is complete and optimal provided the h never overesti-
mates the cost of achieving the goal through s. In previous
experiments it was shown that a good heuristic estimate for
a given node is the cost of a trajectory in which altitude is
maintained until the goal, but airspeed is reduced as fast as
possible to the minimum velocity. This fly high and slow
heuristic has been empirically confirmed to be admissible,
but to evaluate it requires a run of RNM, which can be costly
at high grid resolutions.

We also note that A* requires a way of aggregating a path-
cost g as a solution is generated, where g(x) is the cost from
an initial state of the solution to x. Given two states, x, y,
an edge distance d(x, y) is defined; the aggregate cost is
g(y) = g(x) + d(x, y). Unfortunately, aggregating the cost
for noise is problematic, because the cost is not a simple
sum. It is rather, an average of the noise over time. Despite
this result, following (Lindsay, Morris, and Venable 2012),
we employ the cost function in which we assume factora-
bility. In fact, although not true in general, experiments with
the approximate cost function have shown that the version of
A* does produce a solution that is close to optimal, and en-

ables the sort of cost aggregation required by the algorithm
(Lindsay, Morris, and Venable 2012). We refer the reader
to (Lindsay, Morris, and Venable 2012) for more details on
the implementation of A* in the context of rotorcraft noise
minimization.

Sampling-based path planning techniques emerged out of
the need to address the complexity of realistic path-planning
problems. The main idea behind sampling-based approaches
is to generate and organize a sequence of samples from a
configuration space into a graph, where the edges are labeled
with a cost. The graph is then traversed to find a path that
solves the planning instance.

Probabilistic Road Maps (PRMs) (Kavraki et al. 1996) is
a sampling-based method that consists of a road map con-
struction phase and a user-defined query phase in which the
roadmap is consulted for planning purposes. The basic PRM
algorithm is easy to implement and performs well on a vari-
ety of problems. In (Morris et al. 2013) the authors describe
how PRMs can be used to find noise-minimal landing tra-
jectories for rotorcrafts.

The planning algorithm used in this paper is hybrid of
PRM and A*. In particular first we perform a preliminary
run of PRM and we find an initial path. This path is refined
by an A* search performed in a more fine-grained sampled
space built around the original path.

Gaussian Processes
The supervised machine learning method we investigate in
this paper as a replacement model for the RNM is Gaussian
Processes. Supervised machine learning (Mitchell 1997)
starts with a set of correct data or experience with respect to
some task and performance measure and then uses that data
to infer a model that accurately approximates the real func-
tion that produced the correct data. The method of Gaussian
Processes (Ebden 2008) is a robust method which provides
a confidence interval on its predictions.

A Gaussian Process consists of a collection of random
variables, some finite number of which have a joint Gaussian
distribution (Ebden 2008). The process is fully specified by
a mean function and a covariance function. The mean func-
tion, as its name implies, is simply the mean of the input
data, specifically, of the predictor variable. This mean can
be taken to equal zero in the absence of further informa-
tion. The covariance function defines how different inputs
relate to one another and gives an indication of their sim-
ilarity. There are a variety of different types of covariance
functions, and each is defined in terms of different param-
eters known as hyperparameters (Ebden 2008). Given a co-
variance function k, the general equation for regression in
Gaussian Processes is defined as follows:

ŷ⇤ = K⇤(�2I +K)�1y

where

• ŷ⇤ is the model prediction, that is it is the vector of size n⇤

containing the predicted output for the n⇤ test examples.

• K⇤ is the cross covariance matrix that relates the covari-
ance functions to the training data and the test data. K⇤ is

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 46

a n⇤⇥n matrix where n⇤ and n are, respectively, the num-
ber of test and training inputs. Element K⇤

ij

= k(x⇤
i

, x
j

)
where x⇤

i

belongs to the test set and x
j

belongs to the
training set.

• � represents the noise in the training data and I is the
identity matrix of size n. �2I is known as the diagonal
noise matrix.

• K is the covariance matrix. K is a n⇥ n matrix, where n
is the size of the training data set. where K

ij

= k(x
i

, x
j

)
and x

i

and x
j

belong to the training set.
• y is a vector of size n containing the training output data,

that is the values associated by the function we want to
learn to the examples contained in the training set.
We note that K⇤ and K are both symmetric, positive and

semidefinite. A Gaussian Process is initialized by choosing
values for the hyperparameters that are then optimized, dur-
ing the training phase, in order to determine the optimum
covariance function for the training data. In other words, a
prior mean and covariance assignment based on the initial
hyperparameters is specified and then a posterior mean and
covariance is produced based on the prior and the data. Thus,
the way the prior is specified can have significant influence
on the posterior produced (Ebden 2008) . In this project we
investigate the squared exponential covariance function with
Automatic Relevance Determination (covSEard), defined as
follows:

k(x
i

, x
j

) = �2e(�(1/2)⇣2|x�x|2)

where � and ⇣ are the hyperparameters.

Related Work
Aside from the connections to past work in trajectory opti-
mization and 3D path planning, recent work most relevant
to that presented here is so-called surrogate modeling (or
approximation modeling), usually in the context of optimal
engineering design (Marsden et al. 2004). In this approach,
design space exploration is performed by an inexpensive
surrogate function that stands in for the real cost function.
Sampling in the design parameter space using the cost func-
tion being modeled during optimization allows for the in-
terpolation of the surrogate model. The difference between
surrogate modeling and the approach here is that in our ap-
proach the surrogate is created offline using supervised ma-
chine learning in the form of Gaussian Processes.

Gaussian Process Modeling of the RNM
simulator

In our setting, training and test examples are landing tra-
jectories and the output values we want to learn is the the
Bin score associated with the trajectories. Each trajectory
is represented by a list of L waypoints. Each waypoint is
described, in our configuration space by 3 values for its Eu-
clidean coordinate (x, y, z) and two value for the change in
velocity, �(v) and in altitude �(z). Flyability and comfort
constraints have been imposed as restrictions to the values
of �(v) and �(z). The training set can be represented as a

n ⇥ 5L matrix where each row corresponds to a path. The
training output vector y contains the n Bin score values for
the training examples.

The concept underlying the training of a GP is Bayesian
inference. Values for the hyperparameters of the covariance
function (� and ⇣, in our case) are stored in a vector called ✓.
The first step is to select some initial values for ✓. Then, for
each choice of ✓ we can compute the marginal likelihood,
given the training set:

log p(y|X, ✓) = (1/2)yTK
y

y�(1/2)log|K
y

|�(n/2)log2⇡

where K
y

= K
f

+ �2nI is the covariance function with
noise. Training the GP model can thus be reformulated as
searching for a choice of ✓ which maximized the marginal
likelihood. This is obtained by performing a gradient de-
scent, that is, by using partial derivatives with respect to each
hyperparameter to guide the search. The complexity of this
approach is dominated by that of inverting the K matrix,
which is O(n3) for positive semidefinite matrices of size n.
Unfortunately, the method is prone to exhibiting local min-
ima and is highly sensitive to the initial settings ✓ (Ebden
2008).

Optimization with the GP surrogate
The main goal of this research is to develop a surrogate of
RNM to be used during optimization in order to overcome
the significant runtime overhead which RNM causes. Ide-
ally, one would want to be able to use only the surrogate
while searching for an optimal trajectory. This however was
found to be not feasible due to the appearance of ’error drift’
that caused by the accumulation of small error over time dur-
ing search until performance of the optimizer is degraded
significantly. The approach we have taken is thus that of
finding a good mix of the GP model and RNM in order to get
acceptable performance in terms of noise predictions in less
time. The improvement should be particularly significant on
problems with a high grid resolution, where the increased
amount of points on which noise is evaluated by RNM takes
a larger toll.

We have thus parametrized the frequency of calls to, re-
spectively, RNM and the GP model through a ’bias’ param-
eter with range [0, 1], where a bias of 0 means only GP pre-
dictions for noise are made; and bias of 1 means only RNM
is run to determine cost. Tuning this parameter allows for
the determination of an optimal mixture of simulator with
GP prediction that should compensate for ’error drift’.

Experimental results
We are designing a number of experiments comparing a
wide range of settings that characterize both the GP model
and the difficulty of the optimization problem. There are
three sets of design parameters to investigate, each associ-
ated with a set of design decisions:
• Training set specification: what are the features to be

trained on? What kinds of approach patterns should be
used for the training? What is the size of the training set?

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 47

• GP model training: what covariance function type should
be used? What initial settings of hyper-parameters should
be used? How many iterations of gradient descent are re-
quired in the training?

• Planning problem algorithm and search space complexity:
what optimizer planner should be used? What search and
grid resolutions should be used? What bias setting should
be used for the GP cost function, trading simulator with
model predictions to calculate score?

Training Sets
For these experiments, the features selected for training are
the sets of five tuple state vectors of a complete path (loca-
tion, x, y, z, velocity v and heading h). Thus, if a path has 7
waypoints, there will be 7⇥5 = 35 features. Although this is
a simple approach to feature selection, it has limitations that
will be addressed in future work. The primary limitation is
that it does not train the model on the kind of paths that are
evaluated by the A* solver. Recall that A*, in general, re-
quires to evaluate partial paths, that is paths from the start
up the next decision point. In our context, the evaluation of
a partial path is obtained by evaluating a completion of it in
which the rotorcraft remains, from the decision point on, at a
steady altitude to the goal. The GP model, by contrast, never
sees such “relaxed” completions of a partial path, which may
be a factor that limits the performance of the GP predictor.

Second, we experimented with training set sizes of be-
tween 50 and 500 instances. Preliminary results have not
shown a large discrepancy in performance of the predictor
between small and large training set sizes, although more
systematic tests should be conducted. For the tests here, all
models are built from training set size of 200 instances.

Finally, our system has been design to optimize paths with
different patterns (straight approach, dog-leg, out-and-back,
etc.). In addition, our system is currently being expanded to
model obstacles in the form of restricted airspace (for exam-
ple, to avoid intrusion into fixed wing landing space) as well
as land use restrictions (for example, to avoid hospitals). For
the experiments here, we limit the path types to a simple
straight approach with no obstacles for both the training and
the optimization.

GP Model
GP model training is a trial and error process for a function
that is virtually unknown, such as the function define by the
RNM simulator. The major effort in GP model design is in
selecting the covariance function, the initial hyper-parameter
settings for training, and the number of iterations in the train-
ing algorithm, which uses gradient descent to find the model
that optimizes the data likelihood. Over time it was deter-
mined that the best performing covariance functions were
one based on neural nets and the squared exponential (SE);
the latter is the one selected for the experiments here. The
SE function has a large number of hyper-parameters (specif-
ically, D+2, where D is the number of features in the training
set). An acoustic model is highly non-linear, and it is also
likely that numerous local optima exist for GP covariance

functions, some better than others. We found significant sen-
sitivity in the GP model selection: minute changes in initial
hyper-parameter settings often resulted in dramatic changes
in the performance of the trained model on the test set, based
on mean squared error between predicted and actual (RNM
generated) scores. Eventually using brute force trial and er-
ror, we were able to find a GP model that worked ’pretty
well’. The hyper-parameter setting that generated this model
was used for all the GP models generated.

Planning Problem Specification
The primary purpose of the experiments here is to explore
the tradeoffs of using a GP-based cost evaluator for path
planning optimization with respect to one based on running
the RNM simulator. The tradeoff is between quality and time
to solve. Furthermore, we utilized the ability to modify the
grid resolution of the problem to explore the tradeoffs at dif-
ferent resolutions. In our optimizer there are two kinds of
resolution: grid resolution, discuss earlier, and what we call
search resolution. Search resolution is a way of imposing
a grid on the control decisions that expand a path during
A* search, specifically on two state variables, altitude and
velocity. We define a search resolution of N by M to mean
that the range of possible altitude (velocity) decisions at each
search point is divided into N (M) discrete choices.

For these experiments we used a single search resolution
(10 by 14) and 3 different grid sizes (500, 700, and 1000).
We also used 3 different settings the ’bias’ parameter in the
GP cost function: 0 (no runs of RNM) 1 (no GP prediction
for cost evaluation) and .5 (50 percent each of RNM and
GP prediction). All results are averages over 50 runs of the
path planner, for which we used the pairing of PRM and A*
discussed earlier in the paper.

Results and Lessons Learned
The results of the experiments are found in table 1. All
scores reflect the RNM Bin value, even when GP was used
during optimization, in order to be able to calculate the
degradation of performance by using the GP predictor. For
example, the score in row one is the result of running RNM
on the path determined to be optimal by the solver using
only GP prediction during search. First, we notice the insen-
sitivity of GP time to grid resolution (by comparing the time
column value for each of the rows with 0 bias value). This is
to be expected, since GP prediction is sensitive only to the
dimensions of the model and covariance matrix size (which
is the same for each grid setting). By contrast, the time col-
umn for each of the rows with bias value 1 (only RNM sim-
ulation to evaluate paths) changes significantly as resolution
is increased (from 1000 to 500). Consequently, GP modeling
has higher payoff for problems where the alternative, such as
running simulations, is more costly. Again, this result con-
firms expectations and is not surprising, although it’s infor-
mative to study the rate at which these values change.

Second, note the relative degradation of performance di-
minishes with grid resolution growth. Thus for resolution
500 the GP-only score (Bias = 0) is 27 % worse than the
RNM-only score (Bias = 1), whereas for resolution 1000 the

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 48

Search Resolution: 10 X 14
Grid Resolution Bias Score Time RNM Runs

500
0 303.86 113.39 0
.5 283.79 238.0 1751.84
1.0 238.67 524.37 4781.34

700
0 165.13 113.4 0
.5 151.9 144.2 1985.9
1.0 125.85 299.3 4772.82

1000
0 83.22 114.38 0
.5 74.9 112.81 2779.54
1.0 60.53 160.1 4527.8

Table 1: Comparison of scores and run time (expressed
in seconds) for GP model prediction with simulator-based
prediction for optimization. Values in the right most three
columns are averages over 50 runs of optimizer planner
based on Probabilistic Road Maps (PRM). Three grid res-
olutions (500, 700, 1000) and three bias settings (0, .5 and
1) are shown, where 0 bias means only GP predictions are
made (i.e. 0 RNM runs) and a bias of 1 means no GP pre-
dictions are made. The GP models were trained on data sets
of size 200. The table illustrates the trade off between time
and quality by using a GP model during optimization.

GP-only score is 37 % worse. Thus, again as expected, GP-
only is a better alternative as resolution (complexity of the
problem) is increased. The ability to tune the bias offers de-
signers a range of options for trading score with speed.

For planning problems similar to the one discussed in this
paper, the results of these experiments suggest that machine
learning has the potential to offer useful approximations to
complex engineering systems for evaluating the cost of de-
sign decisions, specifically, the design of paths using plan-
ners like A* and PRMs. The cost of using machine learning
is mostly incurred ’off line’, first in the generation of train-
ing sets for GP modeling (which of course can take time but
is fully automated), and second in the design and training
of a GP predictor, which potentially includes many hours of
human trial and error as well as machine cycles. We plan to
expend more (human and machine) effort in the design of
GP models to try to come closer to the RNM-only perfor-
mance.

Summary and Future Work
Future work will investigate and document experiments over
a wider range of experimental designs specifically geared to-
wards assessing the interdependence of approximation qual-
ity and solution quality. In first instance, we will analyze
how the training set size affects the performance of the pre-
dictor. We are also eager to explore one advantage of GPs
that were not exploited in the experiments here, namely that
GP prediction returns both a mean value and a variance mea-
sure. Variance can be used as an indicator of the confidence
in the prediction made; higher variance means less confi-
dence. We’re considering a smarter alternative to the bias
parameter discussed above, in which variance determines
whether the simulator needs to be run to determine cost.

We have also started modeling land usage and restricted

airspace conditions. We not how our planning approaches as
well as the Bin scoring rule allow for a natural embedding of
such features by means of obstacles and reweighing of grid
portions. In the long term, we also plan to extend our work to
multi-rotorcraft scenarios by exploiting a related simulation
capability already available in RNM.

In this paper we have considered the design of a surro-
gate for a computationally intensive rotorcraft noise simula-
tion tool based on Gaussian processes. We have tested the
utility of the surrogate in the context of searching for noise-
minimal landing trajectories. The experimental results sug-
gest the high potential of the surrogate both in terms of effi-
ciency, accuracy and robustness to different grid resolutions.
In future work we will conduct additional experiments on
the use of the surrogate coupled with different search algo-
rithms, such as, local search and PRM.

References
Ebden, M. 2008. Gaussian Processes for Regression: a
quick Introduction. University of Oxford.
FIC-Noise. 1992. 1992 federal interagency commitee on
noise (ficon) report - federal agency review of selected air-
port noise analysis issues. Technical report, Federal Intera-
gency Committee on Noise.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE transactions
on robotics an automation, Vol.12, No.4.
Lindsay, J.; Morris, R.; and Venable, K. 2012. Automated
design of noise-minimal, safe rotorcraft trajectories. In Pro-
ceedings of the 68th American Helicopter Society Annual
Forum & Technology Display, Acoustics Session. AHS In-
ternational.
Marsden, A. A.; Wang, M.; Jr., J. E. D.; and Moin, P. 2004.
Optimal aeroacoustic shape design using the surrogate man-
agement framework. Optimization and Engineering 5.
Mitchell, T. 1997. Machine Learning. McGraw Hill.
Morris, R.; Venable, K. B.; Pegoraro, M.; and Lindsay, J.
2012. Local search for designing noise-minimal rotorcraft
approach trajectories. In IAAI. AAAI.
Morris, R. A.; Donini, M.; Venable, K.; and Johnson, M.
2013. Designing quiet rotorcraft landing trajectories with
probabilistic road maps. In Workshops on Scheduling and
Planning Applications woRKshop (SPARK 2013).
RNM. 2007. Rotorcraft Noise Model Technical Reference
and User Manual (Version 7). NASA Langley Research
Center.

ICAPS 2014

22/06/2014 Proceedings of SPARK 2014 - Scheduling and Planning Application woRKshop 49

	SPARK
	spark14_submission_1
	spark14_submission_2
	spark14_submission_3
	spark14_submission_4
	spark14_submission_5
	spark14_submission_6
	spark14_submission_7
	spark14_submission_8
	spark14_submission_9

